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1. Introduction

Many empirical studies in economics and finance investigate regressions of the form
Yy = @ + BTy + Uy, (1)

where y; reflects a change in an asset’s price during period ¢, z;_; is a lagged variable related
to asset prices at the end of period t — 1, and u, is the regression’s disturbance. Examples of
such a regression occur when y; is the return on a portfolio of common stocks, and z;_; is a
dividend yield or a function of current or lagged interest rates.! A regression as in (1) also
arises in studies of fixed-income markets, where y; is the excess return on a bond portfolio
or a change in an interest rate, and z,_, is an interest rate, yield spread, or forward rate.?
Investigations of the foreign-exchange market often include a regression as in (1), where y;
is the change in the spot rate of exchange, and x;_; is the spread between the forward and
spot exchange rates.?

A standard regression-model assumption maintained here is that u; is serially uncorre-
lated and has zero expectation conditional on {z;—y, Z¢—2,...}. An assumption that typically
fails to hold in the examples noted above is that u; has zero expectation conditional on
{zs, for all s}, and this is the assumption used to obtain finite-sample results in the stan-
dard setting. In particular, if z;_; depends on asset prices at the end of period ¢ —1, then the
value of that regressor at the end of period ¢ reflects changes in asset prices during period ¢,

as does y;, so E{us|z, x;-1} # 0. More generally,
E{utlxsa Iw} # 0, 5 < t S w, (2)

since a price change during period ¢ is correlated with the change in the regressor over an

interval that includes period ¢.

A consequence of (2) is that finite-sample estimation and inference become less straight-
forward, for at least two reasons. First, the ordinary least squares (OLS) estimators of the
coefficients in (1) are biased and have sampling distributions that differ from those in the

standard setting, and a classical or “frequentist” approach must account for such depar-

!There are many examples, including Fama and Schwert (1977), Rozeff (1984), Keim and Stambaugh
(1986), Campbell (1987), and Fama and French {1988). See Kothari and Shanken (1997) and Pontiff and
Schall (1998) for recent examples.

2A few examples include Shiller, Campbell, and Schoenholtz (1983), Fama (1984a), Keim and Stambaugh
(1986), and Fama and Bliss (1987).

3Early examples include Bilson (1981) and Fama (1984b).



tures.* Second, differences between classical and Bayesian methods become more apparent
in the presence of (2), whereas those approaches are distinguished less often in the stan-
dard regression setting. In the standard setting, classical confidence intervals correspond to
Bayesian highest-posterior-density regions under diffuse priors, and the p-value for a positive
one-tailed test of 3 = 0 is identical to the posterior probability that 3 < 0 (see Box and Tiao,
1973). That correspondence no longer obtains in the current setting, wherein a Bayesian
could, for example, assign low probability to 3 < 0 at the same time the frequentist accepts
that hypothesis because its associated p-value is large. Such an example is provided in this

study, which addresses both classical and Bayesian issues.

The example chosen for illustration is one in which y; is the return on the aggregate
stock-market portfolio and z,_; is that portfolio’s dividend yield. Such a regression has
received substantial attention in the finance literature, but an additional motivation for
selecting this example highlights another distinction sometimes made in contrasting classical
and Bayesian approaches: data description versus decision making. On one hand, a classical
p-value or confidence region conveys information about the data in an objective fashion, and
one might argue that the dependence on prior beliefs makes Bayesian analysis less effective
in communicating a description of the data (e.g., Stock, 1991). On the other hand, one might
argue that reporting implications for decisions describes the data in a more relevant manner,
and a Bayesian framework is better suited to that purpose. Kandel and Stambaugh (1996),
for example, use a Bayesian framework to explore the implications for a stocks-versus-cash
allocation associated with a regression as in (1), where y; is the excess stock return. They
find that such a characterization of the data often communicates a different message than
that delivered by p-values for the hypothesis 3 = 0. The regression of stock return on
dividend yield affords an exploration of the study’s Bayesian methods in an asset-allocation

context.

The paper proceeds as follows. Sections 2 through 4 underscore the finite-sample nature of
the regression problem along several dimensions. In Section 2, the finite-sample distribution
and moments of the OLS estimator of 3 are derived analytically and computed for the
regression of excess return on dividend yield. The exact moments and p-values can exhibit
large differences from their counterparts in the standard regression setting. For example,

in the overall 70-vear period from 1927-96, the bias equals one-third of the OLS estimate

4Early demonstrations of this point include Mankiw and Shapiro (1986) and Stambaugh (1986). Monte
Carlo or bootstrap simulations have been used for finite-sample inference in this problem by a number
of studies, including Nelson and Kim (1993), in an investigation of stock-return predictability, Bekaert,
Hodrick, and Marshall (1997), in an investigation of the expectations hypothesis of the term structure, and
Mark (1995), in an investigation of exchange-rate predictability.



for that period, and the correct p-value for the hypothesis 3 = 0 is roughly three times the

value based on the usual t-statistic.

Section 3 analyzes Bayesian posterior distributions for the regression coefficients and finds
that those distributions exhibit sensitivity to what some might view as minor differences in
the prior or the likelihood function. For example, treating the initial observation z; as
stochastic and drawn from the regressor’s stationary distribution, as opposed to treating
Ty as a fixed value, can produce a substantial difference in the posterior mean of 3 and in
the maximum-likelihood estimate, even in a 45-year sample. The posterior distribution of
3 is also sensitive to specification of the prior, even when the different specifications are all

intended to represent “noninformative” beliefs.

Section 4 considers an asset-allocation problem for an investor whose perceived distribu-
tion of future returns is given by the predictive distribution arising from one of the Bayesian
specifications analyzed in Section 3. For both short and long investment horizons, the
optimal stock allocation of a buy-and-hold investor exhibits sensitivity to the alternative
specifications of the prior and the likelihood. Also observed is the possibility that, at long
horizons, the investor might actually allocate more to stocks at lower levels of the current
dividend yield (lower expected returns). That behavior arises due to conditional skewness
in the predictive distribution of long-horizon returns. The skewness can be traced to effects
of finite-sample parameter uncertainty or “estimation risk,” particularly uncertainty about

the regressor’s persistence.

The analyses in Sections 2 through 4 focus on settings in which a single independent
variable appears on the right-hand side of the predictive regression in (1). This simplest
setting proves useful in developing analytical results as well as insights, but much of the
methodology can be extended to a setting with multiple predictive variables, as discussed in

Section 5. Section 6 reviews the conclusions.

2. Ordinary least squares in finite samples

It is assumed throughout that z, obeys a first-order autoregressive (AR(1)) process.

T = 0+ pri_1 + g (3)



The vector (u; vy) is assumed to be normally distributed, independently across ¢, with mean

zero and covariance matrix

cov{(ij),(utvt)}zzz{;j} iugv}_ (4)

This distributional assumption permits exact finite-sample results, both classical and Bayesian.?
In this section, it is also assumed that |p| < 1. The latter assumption implies stationarity of
the regressor, although, as in the regression of return on dividend yield, the value of p can

be close to 1. The OLS estimators of the coefficients in (1) are given by

a 1
{5 } = (X'X)"' X"y, (5)
where y = (y1 ... yr), X = [vr 2»), 2@y = (xo ... 27r-1)’, and ¢ denotes a T x 1 vector

of 1’s.

Before proceeding to a more formal treatment of finite-sample properties, it may be useful
to understand how 3 is biased under the simplest possible setting in which the estimator is
defined. That is, consider repeated samples of only two observations, (zo, y1) and (z1, y2).
so 3 in each sample is simply the slope of the line connecting those points. For this purpose
let 3 =0, p~1, and o,, < 0. First consider the samples in which z; > =z, or essentially
vy > 0 (since p = 1). On average across such samples, yo = E{y;} (since 3 =0), y1 < E{y:}
(since oy, < 0 implies u; is on average negative when v; > 0), and therefore 3is positive
(since yo > y1 and z; > o). On average across the samples in which z; < zp, or vy <0,
yo = E{y:} as before, but now y; > E{y:}, so again 3 is positive (y2 < 11 and z; < Tp).
Thus, on average across all samples, B > 0, i.e., 3 is upward biased. Note that if oy, > 0,
the same analysis leads to a downward bias in 3. Note also that the bias disappears as oy,
approaches zero, since the sign of v, then has no association with that of u;. Finally, note
that the bias shrinks as p approaches zero, since the sign of z; — 2y is then linked less tightly
to the sign of v; and, thereby, to the sign of y, — y; (although even with p = 0 there is still
some association and hence some bias). As shown below, oy, and p play similar roles in a
more general setting with T observations. Of course, as T increases, the scatter of points
essentially becomes a horizontal cloud of these two-point clusters (with 3 = 0), and the bias

in the fitted slope approaches zero.

The finite-sample properties of 3 can be derived by first recognizing that the estimator

can be represented as a ratio of quadratic forms:

5 Asymptotic approaches to inferences about 3 are developed under weaker distributional assumptions in
Elliott and Stock (1994) and Cavanagh, Elliott, and Stock (1995), where p is entertained as “local to unity”
in the sense that it approaches 1 as the sample size grows.

4



Proposition 1. The finite-sample distribution of 3-3 depends on p and ¥ but not on «.

3, or 8, and
B_‘B:wAw . (6)

w Bw
where w = (u' z| _/'LILI I,' LL:(U,l,...,UT ,,' ,U‘I:E:Et ,E'LU :O;
(£) T

2
CO’U{‘U),UJI} =0 =LL = | UuIT UuuG ] .

oG olH (7)

G is a T x T matriz whose (i, j) element is p? 7=t fori < j and zero otherwise, H is a T x T

matriz whose (1, j) element is [1/(1 — p?)]pli=7!,

1[0 M 0 0
Azihf OJ’B‘[OH’ (®)

M = Ir — (1/T)ipty, and Iy denotes the T x T identity matriz.

Proof: see the Appendiz.

The representation of 3-3in (6) allows the distribution and moments of 3 to be derived
analytically using results from the literature on quadratic forms. The cumulative distribution -
of 3, given by the following proposition, relies on a result by Imhof (1961).

Proposition 2. For any fized 3y,

M

. 1 1 o M 5 :
Prob{ > By} = 3 + ;/0 g ! H(l + 2% ™/t sin ( an tan™!( ) dq, (9)

where ¥;,i = 1,..., M, denote the M distinct nonzero eigenvalues of L'[A — (3o — 3)B|L,
and n; is the multiplicity of ;.

Proof: see the Appendizx.

The finite-sample moments of 3 given in the following proposition, are obtained by applying

a result from Magnus (1986) to the representation given in (6).

Proposition 3. For each integer s, 1 <s < (T — 1),

u oo s )
m, = B{(3 =8} =2 S nlw) [ ¢ A [ (e B (10)
i j=1
where the summation is over all vectors v; = (n;1, Mg, ..., Nis) whose s elements are non-

negative integers satisfying 325_; jnij = s,

H n'lJ 2] n” 17 (11)

J=1



and where the 2T x 2T matrices A and R are constructed as follows. Let P be a 2T x 2T
matriz such that P'P = Ivy and PPL' BLP = A, a diagonal matriz. Then A = (Top+2gA) Y2
and R = AP L’ALPA.

Proof: see the Appendiz.

The moments in Proposition 3 are noncentral, since E{j} # 3. but the central moments
are easily obtained using standard relations between central and noncentral moments (e.g.,
Kendall and Stuart, 1977, p. 58):

Corollary. Letm, denote the central moment E{(B— my)}, where my = E{S’} =mj+3.
Forl<s< (T-1)

me= 35 (5 ) moy(om, (12)

and, in particular,

my = my - m'f, (13)
ms = my— 3mim,+2m?, and (14)
ma = ml, —4m\mj + 6m2ml — 3m*. (15)

Table 1 reports finite-sample properties of 3, under the normality assumption, for a
regression in which y; is the continuously compounded excess return during month ¢ on the
value-weighted portfolio of NYSE stocks, and z;-; is that portfolio’s dividend yield, defined
as dividends paid during months ¢ — 12 through ¢ — 1 divided by the portfolio’s value at the
end of month ¢t — 1. The portfolio’s “excess” return is its rate of return minus the rate on
a one-month Treasury bill, where both returns are continuously compounded. Results are
shown across four sample periods. Part A of Table 1 reports the finite-sample bias, standard
deviation, skewness (ms/ m3'?), and kurtosis (my/m3) of 3, as well as the p-value for a test of
3 = 0 versus 8 > 0. The moments are computed using Proposition 3, and the “true” p-value
is computed as the probability in Proposition 2 with 3 set to zero and 3y set equal to the
sample value of 3.5 Computing the quantities in Part A requires the true (unknown) values
of p and ¥. For each sample period, p is set equal to that period’s least-squares estimate
from equation (3), and ¥ is set equal to the sample covariance matrix of the least-squares
residuals from (1) and (3). Those values for p and ¥, as well as the sample size T and

the realized sample value of 3, are given in Part C of Table 1. Part B of the table reports

6The required integrals are computed using standard numerical integration methods.



the corresponding moments and p-values implied by the standard regression model. The
standard deviations in Part B depend on ¢2 and are conditioned on the sample values of

Z¢_,, which are assumed to be held fixed in repeated samples in the standard setting.

The results in Table 1 reveal marked differences between the true finite-sample properties
of 3 and those implied by the standard setting. In this application, 3 is biased upward, posi-
tively skewed, and has higher variance and kurtosis than the (normal) sampling distribution
of the OLS estimator in the standard setting. Even for the overall 70-year period (T = 840),
the bias (0.07) is about one-third of the OLS estimate (0.21), and the skewness and kurtosis
are 0.7 and 3.8. For the shortest and most recent period, still twenty years long (T = 240),
3 has a bias (0.42) nearly as large as its standard deviation (0.45) and more than twice
its realized value (0.19). When computed using the t-statistic for the standard regression
model, the one-tailed p-values for the hypothesis 3 = 0 are equal to 0.06 for the overall 70
year period and 0.02 for the 45-year period from 1952-96, whereas the true p-values for those
periods are equal to 0.17 and 0.15.

The bias in 3 is related to the bias in p, the sample first-order autocorrelation of .7
Define

[ i } = (X'X)' X'z, (16)
where z = (z1 ... z7)".
Proposition 4.
B3 - B} = 25 E{p— p} ()

v

Proof: see the Appendiz.

The bias in p is negative, and since price appears in the denominator of dividend yield,
the unexpected return, u;, is negatively correlated with the innovation in dividend yield,
v;. In the regressions of return on dividend yield used to construct Table 1, the value of
Ouw/02 Tanges between —13.6 and —22.3 across the four sample periods. Thus, from (17),
the magnitude of the positive bias in 3 is many times that of the negative bias in p. At
the same time, 3 can be of the same or smaller magnitude as p: the values of 3 in Table 1
are all less than 0.5, whereas the values of p range between 0.94 and 0.99. As a result, the
bias in p can be only a small fraction of p, but the bias in 5’ can be a substantial fraction

of 8. Exact first and second finite-sample moments of p, when lo| < 1 and v; is normal,

"The results in (17) and (18) appear in Stambaugh (1986).
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are derived and analyzed by Sawa (1978) and Nankervis and Savin (1988). The latter study
reports, for example, that when 7 = 200 and p = 0.99, the bias in p is equal to —0.024, or
only about 2.4% of p. With a,,/02 = —15, equation (17) gives the corresponding bias in
[3’ as 0.36, which can be a substantial fraction of 3. For both p and 3 in this example. the
standard deviations of the OLS estimators are of similar magnitudes to their biases, so the

biases in p and 3 are more comparable when viewed in that sense.

Under the normality assumption, a well-known approximation for the bias in 4. to order
1/T, is given by —(1 + 3p)/T, as shown by Marriott and Pope (1954) and Kendall (1954).
Thus, Proposition 4 yields a similar approximation for the bias in 3:

Corollary.

Tuv <1 + 3p

> +O(1/T?). (18)

The error in the approximation in (18) can be nontrivial, even for values of T' that seem large
for many purposes. In the regression of return on dividend yield, the true bias in 3 is equal
to 0.42 for the 1977-96 period (T = 240), as reported in Table 1, whereas (18) gives a value
of 0.35, which understates the bias by roughly 16%. The relative error in the approximation
is decreasing in T, and (18) understates the true bias by about 4% for the example based on
the 1927-96 period (T = 840).

As explained previously, the exact finite-sample moments and p-values in Table 1 depend
on p and &. The true values of those parameters are unknown in practice, so in any given
application one cannot know precisely the exact finite-sample moments of 3 The finite-
sample properties in Table 1 are computed using the values of p and X obtained in the OLS
estimation. Many of those computations are relatively insensitive to small changes in the
parameters. For example, if the value of p is increased from p to p + (1 + 3p)/T, a bias
correction of order (1/T), the p-values and the biases of 5’ reported for the first three sample
periods in Part A of Table 1 are changed by no more than 0.01. The standard deviations
decline slightly, by 10% or less, whereas the skewness and kurtosis both increase, typically
by around 10%.

In the fourth subperiod, increasing p by the bias in p (conditional on p = p) produces
a value greater than 1, so that bias-adjusted estimate cannot be used as a value of p in
applying Propositions 2 and 3. Such an outcome illustrates a potentially unappealing aspect
of estimating S and p by applying bias corrections. Suppose one assumes lp| < 1 and

estimates p by adding the bias correction to the OLS estimator p. This procedure can

8



produce a value greater than 1, as illustrated here, and one might be reluctant to accept
such an estimate as a sensible value of p, even with the knowledge that this bias-corrected
estimator would have the correct average across hypothetical repeated samples. Given the
link in (17) between the biases in p and 3, applying the corresponding bias correction to 3
might then also be unappealing. Alternative approaches for obtaining estimates of 3 and p

from the sample at hand are pursued in the next section.

3. Bayesian approaches

Finite-sample inferences about the parameters in (1) can also be pursued in a Bayesian
setting. The results of the previous section indicate that, based on correctly computed
p-values, the hypothesis that dividend yields fail to predict monthly stock returns would
not be rejected at conventional significance levels. As mentioned earlier, in the standard
Bayesian regression model with diffuse priors, the one-tailed p-value for the hypothesis 3 = 0
is identical to the posterior probability that 3 < 0. In the presence of (2), that finite-
sample equivalence between p-values and posterior tail probabilities no longer obtains. In
the standard setting, 3 is the mean of the sampling distribution of 3 , and 3 is the mean
of the posterior distribution of 3. In the current setting, 3 is no longer the sampling mean
of 3, as discussed in the previous section, although B is still the posterior mean of 3 for a
particular specification of the prior and likelihood, as will be explained below. In general,
however, the estimates and inferences delivered by a Bayesian approach to the regression

problem considered here depart from their classical counterparts.

3.1. Methodology

Let b= (o 36 p)’. A posterior density for b and ¥ is computed as
p(b, Z|D) o< p(b, T)L(b, &; D), (19)

where p(b, L) denotes the prior density, L denotes the likelihood function, and D denotes
the available data, which consist of z = (y' #')’ and the initial observation of the regressor,
zo. The marginal posterior p(3|D) is obtained by integrating (19) with respect to > and
the other elements of b. The mean of the posterior density is commonly proposed as an

estimator in a Bayesian setting, and values of E{3|D} are reported here for several alternative



specifications of the prior and the likelihood.® In addition, the posterior density yields
probabilities for composite hypotheses, such as prob{3 < 0}, and. as will be observed. the
inferences associated with such probabilities can contrast with those provided by frequentist

p-values.

Recall that the disturbance vector (u; v;)' is assumed to obey a bivariate normal distri-
bution. It is well known that the OLS estimators in (5) and (16) are then also maximum-
likelihood estimators (MLE’s) when the initial observation of the regressor, o, is assumed
to be nonstochastic. The likelihood function under the latter assumption, the “conditional”

likelihood, is given by
Lc(b,3; D) = p(z]zo, b, £) = (27|Z[) "7/ exp {~ %(z — Zb)'(S7' ® Ir)(z — Zb)} . (20)
where Z = I, ® X, and (20) is maximized at

b=(a360p) =227 (21)

As explained below, b is also the posterior mean of b when the likelihood function is given by
(20) and p(b, ) follows the standard specification for a noninformative prior in a multivariate

regression model.

A common approach to specifying a noninformative or “diffuse” prior follows from Jeffreys
(1961). If & denotes a vector containing the unknown parameters, then an application of

Jeffreys’s invariance arguments leads to the specification

p(6) o |-5{ 2

1/2
, (22)

where the expectation is with respect to p(D|d). The likelihood function in (20) also arises in
the standard multivariate regression model, wherein Z is essentially viewed as nonstochastic.
In that model, the prior is derived under the assumption p(b,X) = p(b)p(X), and (22) is then
applied separately for b and £. That procedure leads to the diffuse prior

p(b, L) o || 2. (23)

If the prior in (23) is combined with the conditional likelihood function in (20), then the
resulting posterior density for b, a matrix ¢ distribution, is given by standard results for the

Bayesian multivariate regression model.® That posterior has the property that E{3|D} = 3,

8The posterior mean has minimum posterior expected loss under a squared-error loss function (see Berger,
1985).

9For a Bayesian analysis of the standard multivariate regression model, including a discussion of the
Jeffreys prior and the resulting posterior densities, see Zellner (1971, pp. 41-53 and pp. 224-233.)
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even though, as discussed in the previous section, E{j} # 3 (where p(D]b. Z) is used to take

the latter expectation).

Although b emerges as the posterior mean of b with the likelihood in (20) and the prior
in (23), that specification has several characteristics to which some might object. The like-
lihood function in (20) is subject to the criticism that treating the initial observation zy as
non-stochastic can be inappropriate. If zy is non-stochastic, then that observation provides
essentially no information about the unknown parameters of the model, but additional in-
formation can be provided by zj if it is instead a realization of the same stochastic process
generating x1, ..., 7. The latter scenario seems more likely in finance and economics, where
z; is often a dividend yield, interest rate, or similar economic variable. If, for example, |p| < 1
and the process for x; has run for a substantial time prior to the sample period, then z; is a
realization of a normal variate with mean 6/(1 — p) and variance o2/(1 — p?), so zp provides
information about 8, p, and ¢,. In essence, if zg is stochastic, then p(b, ¥|zg) can differ from
p(b, ), so using the latter prior with the conditional likelihood in (20) can be inappropriate.

When it is assumed that |p| < 1, the density of zy given b and X is given by

1—p? H2 1 - p? o\’
b,Y) = ) - - — ) 24
p(zolb, ) ( 2mo? > xp 202 o 1—p (24)

The resulting “exact” likelihood function, which reflects the stochastic nature of zg, is

Le(bv Zv D) = p(Z, CE()Ib, Z) = p(zlea ba E)p(l‘0|b’ 2)7 (25)
where p(z|zg, b, ¥) is given in (20).1°

A possible objection to the prior in (23) is that non-stationary processes for z; are en-
tertained, i.e. nonzero prior probability is assigned to |p| > 1. Stationarity of the predictive
variable is a property that one might wish to impose a priori in many applications. In (23),
the implied prior density on p is “flat,” i.e., p(p)dp x dp, so each fixed-length interval for p is
assigned equal prior mass. A flat prior is one specification for noninformative beliefs about p,
and the analysis below considers an alternative to (23) that preserves a flat marginal prior on
p but simply confines that parameter to the stationary region, i.e., p(p) = 1/2, p € (-1, 1).
If the marginal priors on the remaining parameters remain as in (23), then the joint prior is
simply restated as

p(b, L) x |Z|7%2, pe (-1, 1). (26)

19For moving-average and autoregressive processes, Box and Jenkins (1970) derive “exact” likelihood
functions that incorporate the stochastic nature of the initial observations.
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The priors in both (23) and (26) are flat with respect to p. The issue of flat versus
non-flat priors has received substantial attention in the context of the AR(1) model in (3).
As Sims (1988) and Sims and Uhlig (1991) observe, conditional on zy, a flat prior for p and a
normal likelihood imply a posterior for p that is symmetric around p. whereas the sampling
distribution of p is not symmetric around p. Sims and and Uhlig (1991) use such a frame-
work to demonstrate contrasts between Bayesian posterior tail probabilities and frequentist
p-values. Phillips (1991) argues that a flat prior for p does not appropriately represent igno-
rance and suggests a Jeffreys prior be used instead.!' Box and Jenkins (1970) also suggest
the use of Jeffreys priors in Bayesian estimation of time series models. Citing earlier work
by Perks (1947) and Welch and Peers (1963), Phillips notes that one characterization of a
Jeffreys prior as representing “ignorance” is that it assigns higher density to regions of the
parameter space where asymptotic confidence regions have lower anticipated volume. These
priors also possess a well known invariance property, as noted by Jeffreys (1961). That is,
if an alternative set of parameters is obtained as a one-to-one transformation of the original
set, a Jeffreys prior on the alternative set results in a posterior density that is equivalent,
under the change of variables, to the posterior resulting from a Jeffreys prior on the original

set.

Recall that, in using (22) to derive (23), in which the prior on p is flat, the regressors
in Z are treated as fixed. As Phillips (1991) explains, this conditioning is innocuous for the
standard regression model but not for a time-series model, in which the expectation in (22)
should reflect the stochastic nature of Z. For the two-equation model considered here, as in
the AR(1) model, an exact Jeffreys prior depends on the sample size T and is complicated.

As T grows large and |p| < 1, the limiting form of the Jeffreys prior is given by
p(b, ) < (1= p)'op|T 2, pe (-1, 1), (27)

as shown in the Appendix. For cases in which it is assumed that |p| < 1 and the exact
likelihood in (25) is used to obtain posterior distributions, the limiting or “approximate”

Jeffreys prior in (27) is entertained as an alternative to the flat prior in (26).

Whether or not a Jeffreys prior appropriately represents ignorance has long been a point
of contention in Bayesian statistics, and this study has nothing to add in that regard. In
any event, though, the prior in (27) assigns greater probability to values of p near 1 than

does the flat prior on p in (26).1? In applications where z; is believed a priori to be highly

UPhillips explores the use of a Jeffreys prior for models in which stationarity is not imposed.

12Since p? appears in (27), greater prior probability is also assigned to values of p near —1. In the
application considered here, modifying that prior with the restriction 0 < p < 1 has essentially no effect no
the results, since the values of the likelihood function are extremely small for p near —1.
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autocorrelated, which is perhaps a reasonable belief for variables such as dividend yields
and interest rates, the prior in (27) might be favored over one that is flat with respect to p.
Leamer (1991), for example, discusses how aspects of such a non-flat prior can be appealing,

even if one does not necessarily embrace the usual justifications for Jeffreys priors.

In the empirical analysis below, posterior distributions are computed for various combi-
nations of the prior densities in (23), (26), and (27) and the likelihood functions in (20) and
(25). The bounded flat prior in (26) can be combined with both the conditional likelihood in
(20) and the exact likelihood in (25), whereas the unbounded flat prior in (23) is used only
with the conditional likelihood, since the exact likelihood requires |p| < 1. The prior in (27)
is combined only with the exact likelihood, since combining that prior with the conditional

likelihood results in a non-integrable posterior density.!®

3.2. Results

Table 2 reports moments of the posterior distributions for 3 obtained under the various
combinations of priors and likelihoods described above. Also reported for each specification
is the posterior probability that 3 < 0. Results are reported for the same four sample periods

used in constructing Table 1. Details of the calculations are provided in the Appendix.

For the specification in Part A, which combines the prior in (23) with the conditional
likelihood in (20), the posterior mean of 3 is equal to 3, and the posterior probability that
B < 0 is virtually identical to the p-value in Table 1 computed in the standard regression
setting. (There is a minor difference in the degrees of freedom.) In other words, even though
the frequentist sampling moments and p-values computed under the standard assumptions
depart substantially from the correct values, they nevertheless admit the standard Bayesian
interpretation when the prior and likelihood are given by (23) and (20). Thus, for example,
although the correct p-value for the hypothesis 3 = 0 is equal to 0.17 for the 1927-96 period
(Table 1), the posterior probability that 5 < 0 is only 0.06. This observation is analogous
to a similar point made by Sims (1988) for the AR(1) model.

The posterior probability that 3 < 0 can differ across the specifications in Parts A through

BFor a, 3, 6, and T set to any values (with ¥ positive definite), let L denote the minimum value of the
right-hand side of (20) for p € [—1,1]. (Since the likelihood, given the other parameters, is proportional to a
normal density in p, L occurs at one of the endpoints.) Then the integral of the product of the right-hand
sides of (27) and (20), with respect to p € (—1, 1), is bounded below by ¢2|£|=5/2L f_ll(l -3~ ldp = .
An integrable posterior density can (in principle) be obtained by instead using the conditional likelihood to
obtain an exact Jeffreys prior, which depends on zg and T and is more complicated.
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D of Table 2. For example, those probabilities range from 0.05 to 0.28 in Part D. whereas
three of the four probabilities are 0.05 or less in Part C. In the 1977-96 period, the posterior
probability that 3 < 01is 0.26 in Part A but only 0.05 in Part C. Recall from Table 1, however.
that the frequentist p-value for that period is 0.64. In general, although differences in the
Bayesian posterior tail probabilities are clearly evident across the alternative specifications,

none of those probabilities is nearly as large as the p-value for the same period.

The posterior means of 3 range between 0.19 and 0.23 for the overall 70-year period,
but those differences seem modest, at least when compared to that period’s bias in 3 (0.07).
Larger differences emerge in the shorter periods. For example, in the 45-year period from
1952-96, the posterior mean in Part A exceeds that in Part D by 0.16 (0.44 versus 0.28),
which is about the same as the bias in 3 for that period (0.18). In the 20-year period from
1977-96, although the differences across methods are not as large as the bias in 3 for that
period (0.42), the posterior mean of 3 in Part C is twice the posterior mean in Part A (0.38

versus 0.19).

The posterior means of 3 obey a simple relation to the posterior means of p within a

period. For all four Bayesian specifications,

E{3|p,Z,D} = 5+

UHU

o2 (P - ﬁ), (28)

as shown in the Appendix. Taking expectations of (28) with respect to p and ¥ gives
O-'U.’U

E{mD}zB+E{;2—

v

D} (E{plD} - ). (29

The approximation error, which is equal to the posterior covariance between (o,,/02) and
p, is small for the samples used here, and the posterior mean of o,,/c? is very similar
across methods within a given sample period. For the regression of stock return on dividend
yield, the posterior mean of o,,/c2 ranges roughly between —14 and —22 across the four
sample periods. The negative relation in (28) produces a strong negative posterior correlation
between 3 and p: that correlation ranges from —0.89 to —0.94 across the various methods

and periods.

The relation in (29) links differences across methods in the posterior means of 3 to differ-
ences in the posterior means of p, and the latter differences can be traced to the alternative
specifications of priors and likelihoods. For example, one regularity in Table 2 is that the
posterior mean of 3 in Part C exceeds that in Part D in every period. Therefore, from (29),
the posterior mean of p is lower for the specification in Part C than in Part D, and that

ordering is consistent with the fact that the flat prior in Part C assigns less mass to regions
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near p = 1 than does the approximate Jeffreys prior used in Part D. Another regularity
suggested by (29) is that the posterior mean of 3 in Part B should be no less than that
in Part A. Those specifications essentially differ only in that Part B rules out values of p
above 1.0, so the posterior mean of p is lower than when such values are permitted in Part
A. Given (29), the posterior mean of 3 should then be higher in Part B. In the first three
sample periods, the differences between the posterior means in Parts A and B are neglibible,
although consistent with the prediction. In the 1977-96 period, the posterior mean in Part
B exceeds that in Part A by about 40% (0.27 versus 0.19).

The ordering of the posterior means in Parts B and C varies across sample periods. Those
specifications share the same prior but have different likelihoods. The conditional likelihood
used in Part B is multiplied by the density of the initial observation zy, in (24), to obtain
the exact likelihood in Part C. Including the density of xy, which contains the parameters
p, 8, and o,, affects the posterior mean of p, and thereby the posterior mean of 3, in an
unpredictable direction. As a result, the overall ordering of the posterior means of 3 differs
across subperiods. For example, the posterior mean in Part A is greater than or equal to
the other three posterior means in the 1952-96 period, but it is less than the other three in
the 1977-96 period.

Figure 1 plots, for each sample period, the posterior mean of 3 versus the posterior mean
of p based on the four specifications for the prior and likelihood used in Table 2. Also plotted
are the MLE’s of 3 and p based on the exact likelihood in (25) as well as bias-corrected OLS
estimates. The latter are constructed by adjusting 3 for its bias, using Proposition 3, and
then adjusting p for its bias, using Proposition 4. (As before, the values of p and ¥ used in
those calculations are set equal to the quantities obtained in the OLS estimation for each
period.) Observe that, within a sample period, the six alternative estimates of 3 plot as a
nearly perfect linear relation to the corresponding estimates of p. This result is predicted by
(29) as well as two similar relations that govern the bias-corrected OLS estimates and the
MLE’s. The first of these follows directly from (17), which implies

O-’U.'U

B=5+750-0), (30)

where “7 denotes a bias-corrected OLS estimator. The second relation, governing the MLE's

based on the exact likelihood function L., is given by

B=08+=2(p-p) (31)

where “7 denotes an exact-likelihood MLE. (The Appendix contains a derivation.) The
MLE for o,,/02 in (31) is close to the posterior mean for that quantity in (29) as well as the
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OLS-based estimate of that quantity used in applying (30). Thus, equations (29), (30), and
(31) all represent essentially the same linear relation between estimates of 3 and p across

A

methods. (Also note that the point (p, 3) obeys all three equations.)

As illustrated in Figure 1, differences across the methods in estimates of 3 can be ascribed
to differences in estimates of p. The latter differences, often less than 0.01, might be viewed as
negligible for many purposes, but when they are multiplied by ¢,, /02, whose estimates range
between —14 and —22 across the sample periods, the resulting differences in the estimates of
(3 can be substantial. In 1952-96 period, for example, the posterior means of p lie between
0.980 and 0.988, while the posterior means of 3 range from 0.28 to 0.44. Similarly, in the
1977-96 period, the posterior means of p lie between 0.978 and 0.985, while the posterior
means of 3 range from 0.19 to 0.38.

Observe also from Figure 1 that, in all four sample periods, the bias-corrected OLS esti-
mate of 3 (point F) is less than any of the Bayesian posterior means (points A through D).
The linear relation between estimates of 3 and p therefore implies that the bias-corrected
estimate of p is greater than any of the posterior means of p. Even for the Bayesian speci-
fication in which |p| < 1 but much of the prior mass is assigned to values near unity (point
D), the posterior mean of p is still less than the OLS estimate adjusted upward for its bias,
which is also derived assuming |p| < 1. As noted in the previous section, the bias-corrected
estimate of p in the last subperiod exceeds 1.0, while such an outcome is impossible for the
posterior mean of p under any of the four Bayesian specifications entertained. The poste-
rior mean under specification D is closest to the bias-corrected value in the 1952-96 sample

period, which is the period used in the next section to analyze the asset-allocation decision.

The higher-order posterior moments in Table 2 reveal further characteristics of the wedge
separating classical and Bayesian results in the current regression setting. Recall from Table 1
that the finite-sample distribution of [3’ exhibits marked positive skewness and excess kurtosis
in the regression of stock return on dividend yield. In contrast, although the posterior
distribution of 3 has skewness in the 1952-96 and 1977-96 periods as high as 0.37 and 0.53
(part D), those values are still only one-third to one-half of the corresponding values in Table
1. Similarly, the kurtosis values for 3 in Table 2 all lie between 2.84 and 3.18, whereas the
kurtosis values for B in Table 1 range from 3.84 to 5.83. In brief, the higher-order moments
of the Bayesian posterior distributions in Parts B through D depart only modestly from the
standard Bayesian-regression-model values (which are virtually identical to those in Part A),
whereas the higher-order sampling moments of IB depart substantially from their standard

values.
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4. Predictive distributions and asset allocation

4.1. Framework

A posterior distribution for the parameters in (1) and (3) implies a “predictive” distribution
for future excess returns. Recall that yr is the sample’s most recent one-month excess return

(continuously compounded), so the excess return over the K following periods is

K
YT+K(K) = Z YT+k- (32)
k=1
The predictive distribution of the K-period excess return is given by

p(Yr+k, (x| D) = /bzp(yﬂK,(K)[b,E,D)p(b,Z}D)dde, (33)

1

where p(b, £|D) is the posterior density of b and ¥. In other words, p(yr+x k)| D) gives
the probability distribution for the K -period excess return perceived by an investor at the
end of period T If the investor knew b and X, then the only relevant item from the sample
would be x7, the most recent observation of the predictive variable. When b and X are
unknown, however, the investor uses all of the sample information to update his beliefs
about those parameters, and the remaining parameter uncertainty, known as “estimation

risk,” is reflected in the predictive distribution of yri k)

In this section, the posterior distributions of b and X are explored in terms of their
implied predictive distributions. An economic perspective on the predictive distributions
is provided by exploring implications for asset allocation. For each posterior distribution,
predictive distributions are obtained for hypothetical samples that have different values of
x7 but produce the same posterior distribution for b and ¥ as the actual sample. For each
such hypothetical sample, the predictive distribution is unique. Varying the hypothetical
samples in this manner and calculating the optimal asset allocation for each sample gives
an economic characterization the sample evidence on return predictability. (The Appendix

discusses details of the calculations involving the predictive distributions.)

Consider a hypothetical buy-and-hold investor who allocates invested wealth between
stocks and cash (which earns a riskless interest rate). The investor faces one of the predictive
distributions obtained here and is assumed to maximize the expected utility of wealth at the

end of K periods. Utility is given by the iso-elastic function,

1
U(WT+K) = ;W%+K: (34>
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with v # 0. Kandel and Stambaugh (1996) suggest that the sensitivity of such an investor’s
stock allocation to a set of predictive variables provides an economically relevant metric
by which to assess the strength of the empirical evidence on predictability. Kandel and
Stambaugh confine their analysis to a single-period investment horizon, while Barberis (1999)
extends their framework to analyze long-horizon asset allocations. The Bayesian econometric
model used in both studies corresponds to the first of the specifications entertained here,
in which the prior in (23) is combined with the conditional likelihood function in (20).'
The asset allocations computed here for investment horizons of various lengths provide an

economic perspective on the differences across the alternative Bayesian specifications.

For simplicity, the continuously compounded riskless return on cash in each future month
is assumed to be known and equal to ir, the current rate. The optimal stock allocation, w.

as a fraction of current wealth Wy, is the solution to
m&xE{U(WT+K)\ D}, (35)

where
Wrix = Wr [w exp{yr+x k) + Kir} + (1 —w) exp{K-iT}] ) (36)

The expectation is taken with respect to the predictive distribution in (33). The stock
allocation w is confined to the interval (0, 1), i.e., short sales of stock or the riskless asset
are precluded. The coefficient of relative risk aversion, 1 — 7, is set equal to 7. This value is
chosen simply because it yields substantial allocations to stock while avoiding an excessive

number of corner solutions at w = 100%.

4.2. Results

Table 3 reports the optimal stock allocations implied by predictive distributions based on the
45-year period from 1952-96. The buy-and-hold investment horizons range from 1 month
(K =1) to 20 years (K = 240), and optimal stock allocations are computed for five different
values of the most recent dividend yield, zr, ranging from 1% to 6%. (The average dividend
yield for the 1952-96 period is 3.8%.) Results are shown for three of the four specifications
analyzed in Table 2. The results in Parts A and B of Table 2 are virtually identical for the
1952-96 period, so only the results using the specification in Part A are reported here. Also
reported are optimal allocations for the case in which b and ¥ are assumed to be known

with certainty and set equal to the MLE’s from the conditional likelihood (i.e., based on the

14Both of those studies include cases in which x; is a vector of regressors, and that extension is discussed
in the next section.
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OLS estimation). This last case, provided for comparison, ignores estimation risk. Ignoring
estimation risk has a substantial impact on the optimal stock allocation of a buy-and-hold
investor at longer horizons, as observed previously by Barberis (1999). Note that, at a
20-year horizon, an investor with relative risk aversion equal to 7 who ignores estimation
risk allocates 100% to stocks at all dividend vields, whereas an investor with the same risk

aversion who incorporates estimation risk allocates at most 65% to stocks.

At horizons of one year or less, the stock allocation is increasing in the dividend yield
for all methods that incorporate estimation risk, although there are substantial differences
across methods. For example, at a current dividend yield of 5%, the one-year stock allocation
is 100% in Part A but only 70% in Part C. The differences across methods can be nontrivial
at the longer horizons as well. For example, when the current dividend vield is 5%, the stock
allocation for a 10-year horizon is 76% in Part B but only 60% in Part C. At low values of the
dividend yield, the stock allocation is generally increasing in the investment horizon, whereas
that allocation is generally decreasing in the horizon at higher dividend yields. This effect is
also noted by Barberis (1999). A result not previously reported is that, when estimation risk
is incorporated, the optimal stock allocation is not monotonically increasing in the dividend
yield at longer investment horizons. The various patterns in the optimal stock allocations

can be understood to some degree by examining moments of the predictive distributions of

YT+ K, (K)-

Tables 4 through 6 report the first three moments of the predictive distributions of
yr+k (k). The means and standard deviations in Tables 4 and 5 are expressed on an “an-
nualized” basis. Specifically, the values in Table 4 are equal to (12/K) times the mean of
Yr+k,(k), and the values reported in Table 5 are equal to (/12 /K times the standard devi-
ation of yryk (k). Observe that the expected returns in Table 4 are increasing in the most
recent dividend yield, zr. Because the degree of predictability of returns in more distant
future months is less than in nearby months, the effect of the current dividend yield on fu-
ture expected returns diminishes as the investment horizon grows. Even for 20-year returns,
though, the differences between expected returns for z7 = 3% and zr = 5% are typically
200 basis points per annum. That is, the persistence in dividend yield is sufficiently high
so as to make the current dividend vield informative about expected returns well into the
future. The patterns in the mean returns, by themselves, tend to make the optimal alloca-
tion increase in the dividend yield, with less sensitivity at longer horizons. As noted above,
however, the optimal allocation need not increase in dividend yield at the longer horizons.

A more complete explanation involves skewness, as will be discussed later.
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The various methods that incorporate estimation risk produce different expected returns,
although the differences are larger at the shorter investment horizons. At short horizons, the
expected returns in Part C of Table 4 exhibit the least sensitivity to dividend yield, and those
in Part A exhibit the greatest sensitivity. The lower sensitivity in Part C essentially reflects
the lower posterior mean of 3 for that method in the 1952-96 period, as reported in Table 2.
Even in that case, however, differences in the current dividend yield produce large differences
in expected returns: increasing the dividend yield from 3% to 5% raises the expected 1-year
return from 2.1% to 8.2%. Dividend yield affects even the 20-year expected return, as noted
above, but the differences across methods are smaller than at shorter horizons. This closer
agreement across methods at long horizons reflects in part the fact that future expected
returns revert to their long-run unconditional mean, but it also reflects the negative relation
between the posterior means of 3 and p discussed in the previous section. A lower value of 3
reduces the importance of z7 at all horizons, but a higher value of p increases the importance
of z7 at longer horizons. Therefore, the negative association between the posterior means of

3 and p tends to mitigate the expected-return differences across methods at longer horizons.

The conditional likelihood function is used to obtain the predictive expected returns in
Part A of Table 4, and that same conditional likelihood is used to obtain the MLE’s used in
constructing Part D. Comparing the results in Parts A and D reveals that estimation risk
plays a negligible role in determining predictive expected returns. In contrast, a comparison
of Parts A and D in Table 5, which reports predictive standard deviations, reveals nontrivial
estimation risk, particularly at longer horizons. For example, when the current dividend
yield zr is 4%, the annualized standard deviation of the 20-year rate of return is more than
9% in Part A but only 6.5% in Part D. Moreover, in Part A, the effects of estimation risk are
greater as the current dividend vield assumes extreme values. The latter effect reflects the
fact that, although zr enters the conditional expected return with greater importance when
it is extreme, conditional on 3 and p, the uncertainty about those parameters also results in

greater uncertainty about the conditional mean when z7 assumes more extreme values.

Comparing the standard deviations in Part A of Table 5 to those in Parts B and C reveals
another effect of differences in prior beliefs about whether |p| < 1. In Parts B and C, where
it is assumed that |p| < 1, the predictive distribution of future returns is stationary, and
the annualized standard deviation decreases with the investment horizon. In Part A, the
predictive distribution of future returns is nonstationary, because the posterior density of
p assigns positive mass to |p| > 1. Moreover, for the sample analyzed, sufficient posterior
mass is assigned to p > 1 so as to make the effects of nonstationarity evident at the 20-year

horizon. Observe in Part A that, for some values of zr, the standard deviations for the
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20-year horizon are higher than for the 10-year horizon, in contrast to the results in Parts B
and C.

Recall that when estimation risk is incorporated, the stock allocation is often decreasing
in dividend yield at the 20-yvear horizon, even though the expected 20-year return is mono-
tonically increasing in dividend yield. The standard deviations in Table 5 do not appear to
resolve this seeming contradiction, since the 20-vear standard deviations are U-shaped with
respect to dividend yield. That is, in all three methods that incorporate estimation risk,
the stock allocation at a dividend yield of 3% is higher than the allocation at a yvield of 5%.
even though the latter value is associated with a higher mean and, in Parts B and C, a lower

standard deviation of yrix (k)

4.3. Skewness and the role of uncertainty about p

A clue to the patterns in the long-horizon stock allocations is provided by the skewness
coefficients in Table 6. Observe that, at the longer horizons, the predictive skewness of
Yr+x, (k) i1s positive at low dividend yields and negative at high yields. In Part C, for
example, the 20-year return has skewness equal to 0.6 at a 2% dividend yield and —0.8 at a
6% dividend yield. A similar pattern occurs in Parts A and B, except that the magnitudes

are much larger in Part A, where values of |p| greater than 1 are permitted.

Positive skewness in yrix (k) can lead to a higher stock allocation than obtained with
negative skewness, holding other moments constant. If r denotes the continuously com-
pounded return on the investor’s overall portfolio, so Wy, x = Wy exp(r), then a third-order
approximation for expected utility is given by

B{UWrys)} = 2L explor] |1+ Jvartr} + T8 = 77 + B0l -7}, 67
where 7 = E{r}. Thus, expected utility is increasing in the skewness of r. For a given stock
allocation w, the skewness in yr .k x) does not necessarily translate to skewness in 7. In
the current problem, it appears from numerical investigation that, for a given value of zr,
the skewness of r at long horizons is decreasing in w. With low values of zp, for which
Yr+k (k) has positive skewness, the skewness of r is positive at all levels of w but largest at
the smallest w values. With high values of zr, for which yr.x (k) is negatively skewed, the
skewness of r is also positive for small values of w but then becomes negative as w increases.
In general, the pattern in the skewness of yr.k k) in Table 6 tends to work in opposition

to the pattern in the expected return, and the result is an optimal stock allocation that
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can actually be higher at lower values of the current dividend yield. i.e.. at lower expected

returns.

The skewness in yrig (k) can be traced to estimation risk. For a given value of z7. a

draw from the predictive distribution of y74x (k) can be written as

Yr+x, (k) = ¢ +d(zr — ) + 57, (38)

where Z denotes the sample mean of z; (= (1/T)t7z(s)), and 7 is a standard normal (0, 1)
variate that is independent of b and X. The coefficients ¢, d, and s are functions of the
unknown parameters b and ¥, which are drawn from the posterior distribution p(b, ¥|D),
and ¢ also depends on the known sample quantity . (Expressions for ¢, d, and s are provided

in the Appendix.) Denote the conditional mean of yr,x (k) given b, &, and z7 as
e=c+d(zr — ), (39)
and define that quantity’s deviation from its posterior mean as

é = [c—E{c[D}] +[d—-E{d|D}|(zr — )
= e—E{e|D}. (40)

The predictive third moment of yr. x (k) can then be written as
E{(yr+x.ux) — E{yrsx|D}*ID} = E{e’|D} + 3E{és*| D}, (41)

relying on the properties of 7 stated above. Since each skewness value reported in Table 6
is simply the third moment in (41) divided by the predictive variance to the power 3/2, the
sign of the skewness is the same as that of (41).

Uncertainty about p plays a key role in explaining the skewness patterns. Consider the
specification in Part A of Table 6, where skewness and its effects on asset allocation (in
Table 3) are most pronounced. Figure 2 displays the marginal posterior density of p (upper
left graph) as well as graphs that plot draws of p versus draws of the various quantities in
equation (38) for K = 240 (20 years). As before, the quantities are annualized, so that ¢, d,
and e are multiplied by (12/K) and s is multiplied by /12/K (but the scales are decimal
values, not percents). For relatively high draws of p, especially those greater than 1, observe
that d takes large negative values (middle left graph). As a result, for high draws of p, e
takes large positive values for low values of 7 and large negative values for high values of zr
(by equation (39)). These two scenarios are illustrated in Figure 2 for z7 = 2% (bottom left
graph) and zr = 6% (bottom right graph). In other words, E{&3|D}, the first term on the
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right-hand side of (41), is positive for low x7’s and negative for high z7’s, and this pattern is
the same as that observed for the predictive skewness in Table 6. The use of T (about 3.8%)
as the reference value in (38) is somewhat arbitrary, but with this simple choice the intercept
¢ exhibits only minor skewness for large values of p, thereby allowing the slope coefficient d

to isolate the main effect of uncertainty about p.

The posterior uncertainty about p can be sufficient to assign small but nontrivial proba-
bility to high values of p, even values above 1 in the specification used to construct Figure 2.
A higher value of p implies that zr has a more persistent effect on future mean returns, so
the absolute value of d is then larger, given 3. To understand why the extreme d values are
typically negative, as illustrated in Figure 2, recall that the posterior correlation between p
and [ is strongly negative, equal to -0.94 in this example. Hence, if p is high, 3 is likely to
be low, negative in fact, so the extreme values of d tend to be negative. Of cdurse, d has a
positive posterior mean, which is computed by averaging over all posterior draws of p and 3.
Thus, when zr is low, the predictive mean of yr, k (k) is also low, as demonstrated in Table
4. If there is a chance, however, that the value of p is higher than, say, its posterior mean,
there is also a chance that the true mean e of the long-horizon return is substantially higher
than its (low) posterior mean, so e is positively skewed. Similarly, when z7 is high, there
is a chance that e is substantially lower than its (high) posterior mean, so e is negatively

skewed.

Also observe in Figure 2 (middle right graph) that high values of p produce large values
of s in (38), where s is the standard deviation of yrk (k) conditional on b, ¥, and z7. When
x7 is low, high values of p produce high volatility accompanied by large positive values of
the conditional mean, thereby adding to the positive skewness in the predictive distribution.
In other words, a low zr produces a positive value for E{és?|D}, which is proportional to
the second term on the right-hand side of (41). Similarly, a high x; produces a negative
value for E{és?|D}. Thus, the positive association between p and the conditional volatility

amplifies the skewness effect produced by the behavior of the conditional mean.

The explanation for the skewness patterns in Parts B and C of Table 6 follows the same
lines as detailed above for Part A. Precisely the same reasoning applies, except that p cannot
exceed 1 in Parts B and C. The effects are hence weaker but nevertheless present. (Note
that truncating the graphs in Figure 2 at p = 1 still leaves some of the patterns.) In general,
uncertainty about p produces positive skewness for low values of dividend yield and negative

skewness for high values.



5. Extensions to multiple predictive variables

The predictive regressions considered in the preceding sections contain a single independent
variable, but much of the analysis can be generalized to settings in which z; in (1) is a vector
instead of a scalar. A tractable model for such a generalization assumes the NV x 1 vector h;

follows a first-order vector autoregression (VAR),
he = o + Phiy + ey, (42)

where e; is an independent realization from a multivariate normal distribution with mean
zero and covariance matrix ¥ (now N x N). With multiple predictive variables, the excess
return y; is simply the first element of h;, so the vector of predictive variables, in general,
can contain the lagged value of 3;. The first row of & contains the slope coefficients in
the regression of y; on the N predictive variables. Note that E{e;|ht_1, ht—a,...} = 0 but
E{eslhs, hw} # 0 for s < t < w, and the latter condition corresponds to (2). The two-
equation model comprising (1) and (3) can be represented as a special case of (42) in which
hy = (ys z:)', ec = (us v¢)', do = (a 0)’, and ® has zeros in the first column and (1, 2) and
(2, 2) elements equal to 8 and p.

The first Bayesian specification, in which the prior in (23) is combined with the condi-
tional likelihood in (20), extends immediately to the above VAR with the quantities appro-
priately redefined. Specifically, let

z = vec ([hy hy -+ hr)), (43)
X = [LT (ho hl . hT—l),L (44)
b = vec (g0 @), (45)
and
Z=(Iy®X), (46)

where vec( ) forms a column vector by stacking successive columns of the matrix. The
right-hand side of (20) is then the conditional likelihood for the VAR in (42), under the
assumption that the vector of initial observations hq is nonstochastic.'’®> When modified for

the case of N equations, the prior in (23) becomes

p(b, %) o |Z|TVFI2, (47)

1575 explained by Hamilton (1994, p.358), for example, a model with lagged dependent variables (such
as the VAR) can be analyzed as a standard Bayesian multivariate regression model if the “pre-sample”
observations are assumed to be deterministic.
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This Bayesian VAR specification with multiple predictive variables is used in the analyses
of asset allocation by Kandel and Stambaugh (1996) and Barberis (1999) and in an analysis
of currency hedging by Bauer (1998). In this specification. the prior for each element of ®
is flat over the real line, as is the prior for p under the corresponding specification in the
single-variable setting. That is, the prior in (47) does not impose covariance-stationarity,
since that condition requires the eigenvalues of ® to lie inside the unit circle (e.g., Hamilton,
1994, p. 259). The latter condition, represented here by the notation ||®|| < 1. is equivalent

to requiring |p| < 1 with one predictive variable.

Recall that in the single-variable setting in Section 3, two alternative Bayesian speci-
fications are considered, each of which imposes covariance-stationarity and uses the exact
likelihood in (25). In the N-variable setting, the exact likelihood is defined by the assump-
tion that hg is drawn from its unconditional distribution. From (42), that distribution has
mean

pun = (In — @) " og (48)

and variance-covariance matrix V} satisfying V; = ®V,®’ + ¥, which can be solved in terms
of b and ¥ (Hamilton, 1994, p. 265) to yield

vec (Vi) = [In2 — (& ® ®)] Fvec (). (49)
The exact likelihood in the N-variable case is
Le(b, 35 D) = p(z, holb, ) = p(z|ho, b, ¥)p(hold, T), (50)

where p(z|ho, b, L) is given by the right-hand side of (20) and

plholb, %) = (2m)2{VA| 2 exp { - %(ho = ) Vi o = an) | (51)

The prior in (26), which keeps a flat prior on p but simply imposes the stationarity restriction
on the prior on (23), can be similarly adapted here. That is, the prior in (47) can be
applied to the regions of the parameter space in which ||®]| < 1, so that the prior density is
zero elsewhere. The approximate Jeffreys prior in (27), when generalized to the N-variable
setting, becomes

p(b, T oc |[Va| V2|V, (52)

as shown in the Appendix. The techniques described in the Appendix for obtaining the
posterior and predictive distributions in the single-variable case extend in a straightforward

manner to the N-variable case.



Extending the analytical results for the finite-sample properties of the OLS estimator is
less straightforward, since Propositions 1 through 4 do not appear to generalize easily to
N lagged stochastic variables. The problem in the V-variable case can be characterized as

analyzing the finite-sample distribution of the OLS estimator
(g0 &) =X'X)"'X'H, (53)

where H = [hy hy ---hr]. Note that the first row of ® contains the OLS estimates of
the slope coefficients in a multiple regression of the return (y;) on the N lagged predictive
variables. When ||®|| < 1 and e; obeys the normal distribution as above, Nicholls and Pope

(1988) show that an approximation to the bias in ® is given by

E{0} -0 =3 |(Iy —®) "+ 0y -0 + > Ay —20)7H Vit + O(T™%), (54)
Aes(P)
where the notation }-,¢,s) denotes summation over the eigenvalues of ®, with each term

repeated as many times as the multiplicity of the eigenvalue A.

6. Conclusions

When the innovation in a lagged stochastic regressor is correlated with the regression dis-
turbance, the OLS estimator can exhibit finite-sample properties that deviate sharply from
those in the standard regression setting. One example of such a regression occurs when the
aggregate stock portfolio’s excess rate of return is regressed on its lagged dividend yield. In
that application, the bias in the OLS slope coefficient ranges from one-third of the OLS esti-
mate in the 1927-96 period to more than three times the OLS estimate in the 1977-96 period.
The finite-sample p-values for a one-tailed test of the zero-slope hypothesis range between
0.17 and 0.64 across the various periods considered, and those p-values are substantially

larger than the p-values computed incorrectly using the standard regression model.

In the results obtained here for the dividend-yield regression, the p-value for the zero-
slope hypothesis exceeds the Bayesian posterior probability that the regression slope is less
than or equal to zero. In the 1952-96 period, for example, the p-value equals 0.15, so
a classical test would accept the zero-slope hypothesis at conventional significance levels.
In contrast, the posterior probability that the slope is less than or equal to zero ranges
between 0.01 and 0.05, depending on the specification of the likelihood and prior. The
potential conflict between frequentist and Bayesian inference assumes greater prominence
with a lagged stochastic regressor, since the p-value and the posterior tail probability coincide

in the standard regression setting.
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Bayesian posterior distributions for the parameters of the regression model exhibit sensi-
tivity to whether (i) the initial observation of the regressor is viewed as fixed or stochastic,
(ii) the regressor is assumed to be stationary, and (iii) a “flat” prior or a Jeffreys prior is
employed. The OLS estimator of the regression coefficient vector is also the posterior mean
when the initial observation is fixed and the prior for the autoregressive coeflicient of the
regressor is flat over the real line (allowing nonstationarity). One alternative specification
employs a Jeffreys prior and assumes that the initial observation is a stochastic realization
from a stationary process for the regressor. The Jeffreys prior, also intended to be nonin-
formative, assigns higher posterior density to autoregressive coefficients near unity. In the
1952-96 period, the posterior mean of the regression slope is more than 50% higher with
the first specification than with the second. Such sensitivity underscores the finite-sample
nature of the regression problem considered here. Moreover, this sensitivity is not limited
to a Bayesian setting. In the same 1952-96 period, for example, the OLS slope estimate is
27% higher than the maximum-likelihood estimate computed under the assumption that the

initial observation of the regressor is a stochastic realization from a stationary process.

The regression of excess stock returns on dividend yield is used as an illustration here in
part because the posterior distributions for the parameters can be used to compute predictive
distributions for future excess stock returns. The predictive distribution, which incorporates
“estimation risk” arising from parameter uncertainty, can then be used to compute the
optimal portfolio for a buy-and-hold investor facing a stocks-versus-cash allocation decision.
These computations provide an economic setting for comparing the various econometric
specifications, and the differences across specifications can be economically important. In an
example using the 1952-96 period, if the most recent dividend yield is 5%, an investor with
a 5-year horizon and relative risk aversion equal to 7 chooses a stock allocation between 68%

and 86%, depending on the specifications of the prior and the likelihood.

The asset-allocation results also reveal a new insight into the potential role of estimation
risk in long-horizon investing. In particular, at longer investment horizons, the optimal buy-
and-hold stock allocation can be higher at low values of the current dividend yield than at
high values, even though the long-horizon stock return has a lower mean at the low dividend
yield and can have at least as high a variance. This result can be traced to skewness
in long-horizon stock returns arising from uncertainty about parameters, particularly the
autoregressive coefficient of dividend yield. The skewness in the predictive distribution of
returns is positive at low dividend yields and negative at high yields, and the effect of this
skewness can be strong enough to produce a negative association between the optimal stock

allocation and dividend yield.



Appendix

A.1. Proof of Proposition 1

Define z = (1/T)vr2 (s, and observe that

5 (T — rT)y
(@) — ) (2(0) — 11T
TinMy

_ 54 Ty Mu
II(Z)IV[x(g)

(@) — pztr) Mu
(z(y = potr) M (T — ptr)
w Aw

- 3+ (A1)

w' Bw’
The second equation uses the property M? = M, and the fourth equation uses the property
vpM = 0. Clearly E{w} = 0, and it is straightforward to verify that cov{w, w'} = Q, as
defined in the proposition. Note that «, 3, and ¢ do not affect the distribution of 3 — 3,

since those parameters do not enter 2, A, or B.

A.2. Proof of Proposition 2

From (3) and the definition of w in Proposition 1, normality of (u, v;)’ for all ¢ implies

normality of w. Observe, using (6), that

w Aw

Prob{3 > 8} = Prob{3+ B 5o}
= Prob{w'Aw > (8, — B)w'Bw}
= Prob{w'Cw > 0}, (A.2)

where C' = A — (8 — 8)B. Imhof (1961) gives a method, based on inversion of the char-
acteristic function, for computing Prob{w'Cw > ¢}, where w obeys a multivariate normal
distribution, possibly with nonzero mean, and C is an indefinite matrix. The result in (9) is

a direct application of Imhof’s equation (3.2).

A.83. Proof of Proposition 3

Magnus (1986, Theorem 6) derives E{[w' Aw/w Bw]*}, where A is a symmetric matrix,

B is a positive semidefinite matrix of rank » > 1, and the n x 1 vector w obeys a normal
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distribution with mean p and positive definite covariance matrix 2 = LL’. His theorem
is as follows. Let P be an orthogonal n x n matrix and A a diagonal n x n matrix such
that PPL’BLP = A and P'P = I,,. Then, provided the expectation exists (see below), for
s=1,2,...,

wAw |’ s
E{{M,Bw} } = s2exp{-3 uQu}Z% (v:)

< [T nlep (e [T B + € R dg, (A3
0 2 i

where A = (I, +2gA)"Y?, R = AP'L'ALP, € = AP'L™'y, and the summation is over
all vectors v; = (n;,n,...,n) whose s elements are non-negative integers satisfying
Z;:l jnij =S, with

H ni;1(25)™9] 7 (A.4)
The result in (10) then follows directly from Proposition 1, with n = 27T and p = 0.

Ifr<n-—1and ¢ is an n x (n — r) matrix of full column rank n — r such that
L'BLQ =0, (A.5)

then E{[w’Aw/w Bw]°} exists for 0 < s < r under the condition Q'L’ALQ = 0 (Magnus,
1986, Theorem 7).'® In this application, the rank of B equals T — 1 (the rank of M), so Q is
a 2T x (T + 1) matrix. Let L' = [L} L], where L; and L, are both T" x 27" matrices. From
(8), L'BL = LyM Lo so (A.5) implies LM Lo@) = 0, and since L, has full row rank,

ML,Q =0. (A.6)
From (8),
L'AL = (1/2)(LYM Ly + LiM L) (A.7)
o (A.6) implies Q'L’ALQ = 0.
A.4. Proof of Proposition /
Let by = (o 3)', by = (0 p)', by = (& 3)', and by = (8 p)’. Equations (5) and (16) imply
131 —b = (X'X)"' X'y (A.8)
and
by — by = (X' X) 71X "0, (A.9)

16Ma\,gnus’s theorem contains an alternative condition for moments to exist for s > r as well, but that
condition is not satisfied here.
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where u is defined previously and v = (v; ... vr)". Decompose u as

O-U’U
u = p v+e, (A.10)

with E{e

v} = 0 implied by the i.i.d. normality assumption, so
E{E'z‘{} == E{E!IQ,'Ul,...,UT_l} = 0. (f\ll)

Substituting from (A.10) into (A.8) gives

GUU

by —b = > (X' X)X + (X' X)) X e
- (;“2” (by — ba) + (X'X) "1 Xe, (A.12)

where the second equality uses (A.9). Taking expectations, using (A.11), gives

g

E{b, — b} = ;;E{BQ — by}, (A.13)

and (17) is the second row of the vector equation in (A.13).

A.5. Derwation of the Jeffreys prior in (27)

For the stationary AR(1) model, Zellner (1971, pp. 216-220) obtains an “approximate”
Jeffreys prior by retaining only the terms that are of the highest order of T’ when applying (22)
to the exact likelihood.!” Such an approach is equivalent to computing the Jeffreys prior for
the conditional likelihood and taking the expectation in (22) with the initial observation zg
assumed to be stochastic and drawn for its unconditional distribution. The same equivalence
occurs for the two-equation model analyzed here. In implementing the latter approach, it is
convenient to derive the joint prior p(b, £!) and then make the transformation from X! to
Y. The log-likelihood for (20) is given by

1
t=logL.(b,%; z,2¢) = — %log 12| - 5(2 - Zb)' (Tt @ I7)(z — Zb). (A.14)
Let ¢ = (¢! 0% 02%)', where 0%/ denotes the (i,j) element of X~. Following (22),
o2 % ) |M?
p(b, 71 o |- E{ T } (A.15)
38y BCoC
Observe
or 1 1
<o oy — 7b
% 22(2 ® It)(z — Zb)
- %z/(z*@m { 'ﬁ } (A.16)

17See Uhlig (1994) for exact Jeffreys priors for the AR(1) model.
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Taking the expectations of (A.17) and (A.18) with respect to p(z, zo|b, 22) gives

52 T o
E{ababf}:‘i(z ov).

where

@:%E{X'X}:{ 6/(1~0) }

1
0/(1—p) oy/(1=p*)+0%/(1-p)

0%
E{ e =0

E 0% |\ 0% _  Tdlog|y
acoc |~ aco¢ 2 acoc
Substituting from (A.19), (A.21), and (A.22) into (A.15) gives

and

Also observe

>lgy o0 |V
p(b,E_l) X ‘ 0 5% log|E
5Cac
1/2
-1 1/2| 9 log |X|
x [T ey e
> 1/2 1/2
= (I=2e?) 7 (12P)
=[O

Il

(1= ") g5

(A.21)

(A.22)

(A.23)

The Jacobian of the transformation from 7! to ¥ is |X| = (see Box and Tiao, 1973, p. 474),

and multiplying (A.23) by that quantity gives (27).1

In a standard multivariate regression setting, a common practice is to apply (22) sepa-
rately for b and ¥ (e.g., Zellner, 1971, chapter 8), following the suggestion by Jeffreys (1961)

to treat location and scale parameters separately in multiparameter settings. As Jeflreys

notes, treating location and scale parameters jointly can result in unappealing degrees-of-

freedom properties, such as the observation that, in the simplest i.i.d. normal univariate

18The Jacobian of the transformation from £~! to £, as well as the determinant of the derivative matrix

for log |Z| in (A.23), follow from results in Box and Tiao (1973, pp. 474-475).
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setting, the degrees of freedom in the posterior for the variance is unaffected by whether the
mean is known or unknown (see, for example, Bernardo and Smith, 1994, chapter 5). In
a time-series setting, the dichotomy between location and scale parameters is blurred. For
example. p affects the conditional mean as well as the unconditional variance of z;. Phillips
(1991) argues that, in the AR(1) model, the usual degrees-of-freedom criticism does not
apply to the multiparameter Jeffreys prior. In the current setting, applying (22) separately
for b and % results in the prior

p(b, %) o (1 - p*)HZ| 72, (A.24)

and the use of this alternative prior produces only negligible changes from the results obtained

using (27), which has the same marginal prior on p.

A.6. Calculation of the posterior distributions

With the likelihood in (20) and the prior in (23), the posterior distribution for b and
¥ follows from standard results for the multivariate regression model (e.g., Zellner, 1971,
chapter 8). Specifically, £¥~! obeys a Wishart distribution with 7' — 2 degrees of freedom and
parameter matrix S, where S = (Y — XB)(Y — XB), Y = [y z], B is a 2 x 2 matrix with
first row (o 6) and second row (3 p), and B is the same reshaping of b. The conditional
distribution of b given ¥ is normal with mean b and covariance matrix ¥ ® (X'X)~'. Those
distributions are used to generate 100,000 independent draws of b and ¥, which are in turn
used in generating draws from the predictive distribution of multiperiod returns (explained

below). The marginal posterior distribution for 3 is Student ¢ with T'— 3 degrees of freedom,

E{3|D} = 5. (A.25)

(81D} = = % (426
var =755 .

skewness equal to zero, and kurtosis equal to 3[1 +2/(T ~7)], where 62 = (1/T) 7, (z4-1 —
7)? and 62 = (1/T) L, (y: — & — Bz,_1)?. The values in Part A of Table 2 are based on the

latter results.

With the likelihood in (20) and the prior in (26), the joint posterior density for b and ¥ is
proportional to the joint density described in the first case above multiplied by an indicator
function equal to 1.0 if |p| < 1 and zero otherwise. Draws of (L¥7!, b) are generated from
the Wishart and conditional normal distributions described above and then retained only if
|p| < 1. The values in Part B of Table 2 are based on 100,000 retained draws.
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With the likelihood in (25) and the prior in (26), the joint posterior density for b and %

is given by

p(b,T|D) o |77 2exp {—— %(z - Z0Y ('@ Ir)(z - Zb)}

1_/02 1/2 1—p2 9 2
><< g ) eXp § = 53 | Fo ~ 5 . pEe(—=1, 1). (A.27)

Integrating (A.27) analytically to obtain the marginal posterior density p(3|D) does not ap-

pear to be feasible. Instead, that posterior density is obtained using the Metropolis-Hastings
(MH) algorithm, a Markov chain Monte Carlo procedure introduced by Metropolis et al.
(1953) and generalized by Hastings (1970).!° A sequence of values for (b ¥) is constructed
by making “candidate” draws from a “proposal” density and then accepting a new candidate
or retaining the previous value based on the MH rule that assures the resulting sequence for

(b, ) forms a Markov chain whose invariant distribution is the “target” posterior density
in (27).

The MH algorithm is implemented with b and 3 drawn in separate blocks. For each step
in the chain, a new b is drawn from a proposal density that depends on X, and that draw
is accepted according to the MH rule applied to the target density p(b|2, D). A new X is
then drawn from a proposal density that depends on b and accepted according to the MH
rule applied to the target density p(3}b, D). The conditional density p(b|X, D) is obtained
by rewriting (A.27) and retaining factors involving only b:

(B[S, D) exp{— —;-(b—é)’(Z‘l(@X’X)(b—B)}

2\1/2 1—02 4 :
X(1—p“)/*exps — 52 xo—m , p€(—1,1). (A.28)

The proposal density for b is specified as multivariate normal with mean b and covariance
matrix ¥ ® (X'X)~!. In drawing ¥, it is more convenient to work with the conditional
density of ¥~! than ¥, and the Jacobian of that transformation is |X|3. Multiplying (A.27)

by that quantity, rewriting the result, and then retaining factors involving only ¥ 7! gives

p(E7Yp, D) x (o' VST 2 exp {— %tr S+ (B-BYX'X(B - B)]z—l}

1 2
< exp {_ (1_"2/;2_2?_| (mo _ %) } | (A.29)

For an introduction to the MH algorithm, see Chib and Greenberg (1995) or Gilks, Richardson, and
Spiegelhalter (1996).
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2

The relation 02 = ¢'!|X1|~! is used in obtaining (A.29). The proposal density for £

is specified as Wishart with 7"+ 1 degrees of freedom and parameter matrix (S + (B —
B)YX'X(B — B)]"!. The derivations of the conditional densities from the joint density in
(A.27) are aided by the observations that
(z = Zb) (X' @ I7)(z — Zb)
= b= (E'®X'X)(b—b) + terms without b  (A.30)
= tr(Y - XB)(Y - XB)X™!
= tr[S+(B-B/X'X(B-B)x}, (A.31)
where (A.30) is used in obtaining (A.28), and (A.31) is used in obtaining (A.29).

With the likelihood in (25) and the prior in (27), the joint posterior density for b and X
is given by

p(b, S|z, ) o oy |T|"T T 2exp {— %(z - Zb) (X7t @ Ir) (2 — Zb)}

2y-1/2 1-p° o\’ :
X(1—p°) " exp{ — el C ke - .pe (=1, 1). (A.32)

Draws from the posteriors are again obtained using the MH algorithm. The proposal densities

are identical to those used above, and the conditional densities are given by

pBIT, 2, 79) o exp{— %(b—é)'@*@X'Xxb—z})}

2—1/2 1-p° 0\’ ,
X(l - p ) eXp y — 202 Ty — Tt—p' s PE (—11 1)'(A33)

and

p(E7Hb, 2, z0) o (o'H)V2ETL T2 2 exp {— —;—tr [S+(B-B)X'X(B - B)}E‘l}

2yl 2
xexp{— —(—%—’ (xo— T%) } (A.34)

All of the results reported based on the MH algorithms discussed above are based on
100,000 draws of b and X, obtained by retaining every 200th draw from a total of 20,000,000
draws after discarding an initial 40,000 “burn-in” draws. The acceptance rates for b range
from 35% to 88%, depending on the sample period, while the acceptance rates for ¥ are
94% or more. The 100,000 draws are used to compute the results in parts C and D of Table
2, and those same draws are used in generating draws from the predictive distribution of

multiperiod returns (explained below).
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A.7. Derivations of equations (28) and (51)

[f b, and ¥ are set equal to their MLE’s, then maximizing (25) with respect to b, gives
the MLE for that quantity. Observe from (20) that the value of b; that maximizes (25) must
also minimize the term on the left-hand side of (A.30), given by and ¥ set equal to their
MLE’s. The first term on the right-hand side of (A.30) can be rewritten as

(b—b)Y(27'® X'X)(b—b)

/
7 Oy 7 ’ 7 Ouy 7
= b= by 2y - b:»)} (0" X'X) {bl by - Dy~ by
+ terms without by, (A.35)
using the relation o1?/o!! = —¢,, /02, The result in (31) then follows immediately.

From the joint posteriors for b and ¥ in (A.27) and (A.32), the conditional mean of b;

given by and X is normal with mean

au v

E{by1|by, T, D} = by + =2 (by — by), (A.36)

2
Ty

which is obtained by again making use of (A.30) and (A.35). The same result obtains for
the posterior obtained by combining the likelihood in (20) and the priors in (23) and (26),
since the differences in the joint posteriors, involving by and X, drop out in the conditional
posterior for b;. Equation (28) is the second row of the above vector equation (noting that,

g, the first element of b, does not enter the conditional mean for 3).

A.8. Calculations involving the predictive distribution of yrik (k)

Conditional on b, 3, and z7, it follows from (1), (3), (32), and the i.i.d. joint normality
assumption for (u; v;) that the distribution of yr K,(k) 1s normal with mean and variance as

follows. If p # 1, then the mean is given by

E{yrsk,)lb. X, 21} = ax + dxzr, (A.37)
where K1 . X
ax = Ko+ 0 | KL _(?_“p()z" p”) (A.38)
e g = gL (A.39)
l-p
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The variance is given by

var{yr+x, k) |b. L, 7}

/ 2 _ K-l 201 _ A2(K—1)
_ Ka§+(13 ) {K_l_%(l P A=y )] 2

— 1-p 1 - p? °
e[ A=A s
If p =1 (an event with zero posterior measure), then
ag = Ka + ,895—@—2—:2, (A.41)
dx = K3, (A.42)

and
var{yryk (x)|b, L, or} = Kai + (1/6)K(K — 1)(2K — 1),3203 + BK(K — Doy, (A.43)

In (38), d = dk, ¢ = ax + dZ, and s equals the square root of the right-hand side of (A.40)
or (A.43).

To compute the optimal stock allocation for a given K and zr, 1 million draws from the
predictive distribution of yr; g (k) are generated by using (38) to draw 10 values of yr.x, (k)
for each of the 100,000 values of b and ¥ drawn from the posterior distribution (as explained
previously). The average utility for these 1 million draws is computed for values of w ranging

from 0 to 1 in increments of .005, and the maximizing value of w is reported in Table 3.

The moments in Tables 4 through 6 are computed using the 100,000 draws from the
posterior distribution of b and X. The mean of yr k k) is the average of the right-hand
side of (A.37). The variance of yr. k) is computed as the average of the right-hand side
of (A.40) plus the variance of the right-hand side of (A.37). The third moment is computed
by averaging the quantities appearing in the expectations on the right-hand side of (:41).

A.9. Derivation of the Jeffreys prior in (52)

Since the conditional likelihood function remains in the same form as in the single-
variable case, the earlier derivation of (27) requires only minor changes. The derivation

proceeds virtually identically up to the first line of (A.23). That is

slew o |M?
p(bs 2_1> X 0 8% log|n ) (A44)
acac
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except that ¥ in (A.20) becomes

1 1 7y
U==E{X'X[hL}= A A5
T { b5 [Mh ‘/h‘*‘/ih,uhjl (A-45)
Proceeding as before, taking account of the fact that ¥ is now Nx N and ¥ is (N +1)x(N+1),
gives
_ _ 1/2 |8%log |Z| 12
b 1 1 N i =N et |
p(b,5) « 2 @ Y| Seac
— (|E|—(N+1)|\IJ|N)1/2 <|Z|N+1)1/2
= [
= VM2 (A.46)

The last equality follows from the formula for the determinant of a partitioned matrix (e.g.,
Anderson, 1984, Theorem A.3.2). The Jacobian of the transformation from Yl to ¥ s
1¥|~V+1 | and multiplying (A.46) by that quantity gives (52). If (22) is applied separately
for b and ¥, as discussed at the end of section A.5, then the prior for 4 is simply the first
factor in the second line of (A.46), with |Z|~(¥+1)/2 absorbed in the proportionality constant.

In that case, the approximate Jeffreys prior is instead

p(b, £) o [Vi|MAm|m IR, (A.47)
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Table 1

Finite-sample properties of 3

The table reports finite-sample properties of the ordinary least squares (OLS) estimator 3 in the
regression,

Yt = o+ Bz + us.

The sampling properties are computed under the assumption that x; obeys the process
zt =0+ pzs-1 + vty

where p? < 1 and [us v¢] is distributed N(0,%), identically and independently across t. The
true bias and higher-order moments depend on p and ¥ (with distinct elements o2, 02, and oy).
For each sample period, those parameters are set equal to the estimates obtained when y; is the
continuously compounded return in month ¢ on the value-weighted NYSE portfolio, in excess of the
one-month T-bill return, and x; is the dividend-price ratio on the value-weighted NYSE portfolio
at the end of month . The moments in the standard setting are conditioned on zg,...,z7-1. The
p-values are associated with a test of 8 =0 versus 8 > 0.

Sample Period
1927-96 1927-51 1952-96 1977-96

A. True properties

bias 0.07 0.18 0.18 0.42
standard deviation 0.16 0.33 0.27 0.45
skewness 0.71 0.83 0.98 1.29
kurtosis 3.84 4.14 4.62 5.83
p-value for 3 =0 0.17 0.42 0.15 0.64
B. Properties in the standard regression setting
bias 0 0 0 0
standard deviation 0.14 0.27 0.20 0.30
skewness 0 0 0 0
kurtosis 3.00 3.00 3.00 3.00
p-value for 3 =0 0.06 0.22 0.02 0.26
C. Sample characteristics and parameter values
6] 0.21 0.21 0.44 0.19
T 840 300 540 240
0 0.972 0.948 0.980 0.987
o2 x 10* 30.05 54.46 16.42 17.50
o2 x 104 0.108 0.247 0.029 0.033
Oup X 10* -1.621 -3.360 -0.651 -0.715
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Table 2

Posterior distributions for 3
The table reports Bayesian posterior moments for the slope coefficient in the regression,
Yt = a + B8z-1 + ue,

where y; is the continuously compounded return in month ¢ on the value-weighted NYSE portfolio,
in excess of the one-month T-bill return, and z; is the dividend-price ratio on the value-weighted
NYSE portfolio at the end of month t. Also reported is the posterior probability that 8 < 0. It is
assumed that z; obeys the process

¢ = 0+ pxy-1 + v,

where [u; v¢] is distributed N (0, X), identically and independently across ¢. The method in Part A
permits all elements of b = (a 3 6 p)’ to take values in the interval (—o0,0c), whereas the methods
in Parts B through D restrict p to the interval (—1,1). The methods in Part A and B are based on
the “conditional” likelihood, which treats the initial observation zg as fixed. The methods in Parts
B and C are based on the “exact” likelihood, which treats zg as a realization from its unconditional
distribution.

Sample Period
1927-96  1927-51 1952-96 1977-96

A. Conditional likelihood; p(b, &) o |S|73/2, p € (—oc, <)

Mean 0.21 0.21 0.44 0.19
Std. Dev. 0.14 0.28 0.20 0.30
Skewness 0 0 0 0
Kurtosis 3.01 3.02 3.01 3.03
Prob.{3 < 0} 0.06 0.22 0.02 0.26
B. Conditional likelihood; p(b, £) o |Z]7%2, p € (=1, 1)
Mean 0.21 0.21 0.44 0.27
Std. Dev. 0.14 0.27 0.20 0.25
Skewness 0.02 0.04 0.12 0.45
Kurtosis 2.98 2.96 2.90 3.04
Prob.{8 < 0} 0.06 0.22 0.01 0.13
C. Exact likelihood; p(b,¥) o |E]7%2, p € (—1, 1)
Mean 0.23 0.26 0.38 0.38
Std. Dev. 0.14 0.26 0.18 0.24
Skewness 0.03 0.08 0.24 0.36
Kurtosis 2.97 2.95 2.93 3.02
Prob.{3 < 0} 0.05 0.16 0.01 0.05
D. Exact likelihood; p(b, 2) o (1 = p?)"'e?|Z|7%2, p e (=1, 1)
Mean 0.19 0.17 0.28 0.24
Std. Dev. 0.14 0.28 0.18 0.24
Skewness 0.00 0.04 0.37 0.53
Kurtosis 2.95 2.90 2.84 3.18
Prob.{8 < 0} 0.10 0.28 0.05 0.16
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Table 3

Optimal stock allocation (in percent) in a buy-and-hold strategy for
various investment horizons and current dividend yields

The table reports optimal stock allocations implied by the predictive distribution for long-horizon
returns. The investor is assumed to maximize the expected value of an iso-elastic utility function of
terminal wealth with a coefficient of relative risk aversion is equal to 7. The predictive distribution
is obtained using the two-equation model,

yw=a+ 81+
T =0+ pTi + vy,

where ¢ is the continuously compounded return in month ¢ on the value-weighted NYSE portfolio,
in excess of the one-month T-bill return, and z; is the dividend-price ratio on the value-weighted
NYSE portfolio at the end of month ¢. It is assumed [u; v¢]’ is distributed N(0,Y), identically
and independently across ¢t. Define b = (o 3 € p)’. The method in Parts A and D, based on the
“conditional” likelihood, treat the initial observation zg as fixed. The methods in Parts B and C,
based on the “exact” likelihood, restrict p to the interval (—1, 1) and treat zg as a realization from
its unconditional distribution.

Current dividend yield (z7)

Investment horizon 2% 3% 4% 5% 6%
A. Conditional likelihood; p(b,¥) o |£17%/2, p € (—o0, 0)
1 month 0 22 61 97 100
1 year 0 27 65 100 100
5 years 11 50 81 36 81
10 years 37 69 71 63 55
20 years 63 58 52 44 38
B. Exact likelihood; p(b, 8)  |E|~%/2, p € (=1, 1)
1 month 0 15 46 79 100
1 year 0 18 51 82 100
5 years 4 37 67 33 35
10 years 27 57 73 76 71
20 years 57 65 62 59 54
C. Exact likelihood; p(b, £) (1 — p?)~202|2|~%2, p € (=1, 1)
1 month 0 21 45 68 91
1 year 1 24 48 70 86
5 years 13 37 57 68 69
10 years 29 51 60 60 56
20 years 50 55 52 47 42
D. Conditional MLEs as true parameters (ignore estimation risk)
1 month 0 22 60 98 100
1 year 0 27 68 100 100
5 years 7 55 100 100 100
10 years 45 92 100 100 100
20 years 100 100 100 100 100
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Table 4

Expected excess return (in percent) for various investment
horizons and current dividend yields

The table reports the mean of the predictive distribution for the long-horizon excess stock return,
YT+K,(K) = Zle YT+k, Where ; (1) = y¢ and K is the length of the investment horizon (in months).
The predictive distribution is obtained using the two-equation model,

Ye = o+ BTy +ug
Ty =0+ pTi_1 + v,

where y; is the continuously compounded return in month ¢ on the value-weighted NYSE portfolio,
in excess of the one-month T-bill return, and z; is the dividend-price ratio on the value-weighted
NYSE portfolio at the end of month ¢. It is assumed [u; v¢]’ is distributed N(0,Z), identically
and independently across t. Define b = (a 8 6 p)’. The method in Parts A and D, based on the
“conditional” likelihood, treat the initial observation xg as fixed. The methods in Parts B and C,
based on the “exact” likelihood, restrict p to the interval (—1,1) and treat zy as a realization from
its unconditional distribution.

Current dividend yield (z7)

Investment horizon 2% 3% 4% 5% 6%
A. Conditional likelihood; p(b, &) o |Z|~%/2, p € (=00, x0)
1 month -3.2 2.0 7.3 12.5 17.7
1 year -2.3 2.4 7.0 11.6 16.2
5 years 0.4 3.2 6.1 9.0 11.9
10 years 1.9 3.7 5.6 7.4 9.3
20 years 3.1 4.1 5.2 6.2 7.2
B. Exact likelihood; p(b, &) < |Z7%/2, p € (—1, 1)
1 month -3.5 1.0 5.5 10.0 14.5
1 year -2.7 1.4 5.4 9.4 13.5
5 years -0.2 2.4 5.1 7.8 10.4
10 years 1.3 3.1 4.9 6.7 8.5
20 years 2.7 3.7 4.7 5.8 6.8
C. Exact likelihood; p(b, L) o (1 — p?) 128|732, p € (=1, 1)
1 month -1.4 1.9 5.2 8.5 11.9
1 year -0.9 21 5.2 8.2 11.2
5 years 0.7 2.8 5.0 7.1 9.2
10 years 1.8 3.3 4.8 6.3 7.8
20 years 2.9 3.8 4.7 5.6 6.5
D. Conditional MLEs as true parameters (ignore estimation risk)
1 month -3.2 2.0 7.3 12.5 17.8
1 year -2.4 2.3 7.0 11.7 16.4
5 years 0.0 3.1 6.1 9.2 12.3
10 years 1.6 3.6 5.6 7.6 9.6
20 years 2.9 4.0 5.1 6.2 7.3
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Table 5

Standard deviation of the excess return (in percent) for various
investment horizons and current dividend yields

The table reports the standard deviation of the predictive distribution for the long-horizon excess

stock return, yrig (k) = 21§=1yT+k, where y; (1) = yt and K is the length of the investment
horizon (in months). The predictive distribution is obtained using the two-equation model,

Y = Q + ‘Bl't_l + Ut
xy = 0 + pxi1 + v,

where y; is the continuously compounded return in month ¢ on the value-weighted NYSE portfolio,
in excess of the one-month T-bill return, and z is the dividend-price ratio on the value-weighted
NYSE portfolio at the end of month t. It is assumed [u; v;]" is distributed N(0,X), identically
and independently across t. Define b = (o 8 8 p)’. The method in Parts A and D, based on the
“conditional” likelihood, treat the initial observation z( as fixed. The methods in Parts B and C,
based on the “exact” likelihood, restrict p to the interval (—1,1) and treat zg as a realization from
its unconditional distribution.

Current dividend yield (zr)

Investment horizon 2% 3% 4% 5% 6%
A. Conditional likelihood; p(b, &) o |Z|7%/2, p € (=00, 0)
1 month 14.1 14.1 14.1 14.1 14.2
1 year 13.5 13.1 13.0 13.2 13.7
5 years 114 10.7 10.5 10.7 11.4
10 years 10.2 9.6 9.3 9.4 9.9
20 years 10.8 9.7 9.1 9.2 9.9
B. Exact likelihood; p(b,¥) o |X|7%/2, p € (-1, 1)
1 month 14.2 14.2 14.1 14.2 14.2
1 year 13.6 13.3 13.2 13.4 13.8
5 years 114 10.9 10.8 11.1 11.7
10 years 9.9 9.6 9.5 9.7 10.2
20 years 8.9 8.7 8.7 8.8 9.1
C. Exact likelihood: p(b,¥) o (1 — p?)~1a2|%|~%/2, p € (—1, 1)
1 month 14.2 14.1 14.1 14.2 14.2
1 year 13.9 13.5 13.5 13.7 14.1
5 years 12.5 11.8 11.6 12.0 12.9
10 years 114 10.7 10.6 10.9 11.8
20 years 10.5 10.1 9.9 10.2 10.9
D. Conditional MLEs as true parameters (ignore estimation risk)
1 month 14.0 14.0 14.0 14.0 14.0
1 year 12.8 12.8 12.8 12.8 12.8
5 years 9.6 9.6 9.6 9.6 9.6
10 years 7.8 7.8 7.8 7.8 7.8
20 years 6.5 6.5 6.5 6.5 6.5
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Table 6

Skewness of the excess return for various investment
horizons and current dividend yields

The table reports the skewness of the predictive distribution for the long-horizon excess stock
return, yry (x) = Z,[f:l YT+k, Where y; 1y = y¢ and K is the length of the investment horizon {in
months). The predictive distribution is obtained using the two-equation model,

Ye = a+ Brio +u
zt = 0+ pzi—1 + U1,

where y; is the continuously compounded return in month ¢ on the value-weighted NYSE portfolio,
in excess of the one-month T-bill return, and z; is the dividend-price ratio on the value-weighted
NYSE portfolio at the end of month ¢. It is assumed [u; v;]’ is distributed N(0,3), identically
and independently across ¢t. Define b = (a 3 8 p)’. The method in Parts A and D, based on the
“conditional” likelihood, treat the initial observation zg as fixed. The methods in Parts B and C,
based on the “exact” likelihood, restrict p to the interval (—1, 1) and treat zg as a realization from
its unconditional distribution.

Current dividend yield (z7)

Investment horizon 2% 3% 4% 5% 6%
A. Conditional likelihood; p(b, £) o |£|7%/2, p € (~0c0, 00)
1 month 0.0 0.0 0.0 0.0 0.0
1 year 0.1 0.0 0.0 0.0 -0.1
5 years 0.4 0.2 0.0 -0.2 -0.4
10 years 0.8 0.5 0.1 -0.3 -0.7
20 years 6.1 3.1 0.6 -2.2 -6.1
B. Exact likelihood; p(b, ¥) x 12]7%/2, pe (-1, 1)
1 month 0.0 0.0 0.0 0.0 0.0
1 year 0.0 0.0 0.0 0.0 -0.1
5 years 0.3 0.1 0.0 -0.2 -0.3
10 years 0.3 0.2 0.0 -0.2 -0.4
20 years 0.3 0.2 -0.1 -0.2 -0.4
C. Exact likelihood; p(b,T) (1 — p?)~ 1628|752, p € (-1, 1)
1 month 0.0 0.0 0.0 0.0 0.0
1 year 0.0 0.0 0.0 0.0 -0.1
5 years 0.3 0.1 0.0 -0.2 -0.4
10 years 0.5 0.2 -0.1 -0.4 -0.6
20 years 0.6 0.3 -0.1 -0.5 -0.8
D. Conditional MLEs as true parameters (ignore estimation risk)
1 month 0.0 0.0 0.0 0.0 0.0
1 year 0.0 0.0 0.0 - 00 0.0
5 years 0.0 0.0 0.0 0.0 0.0
10 years 0.0 0.0 0.0 0.0 0.0
30 years 0.0 0.0 0.0 0.0 0.0
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Figure 1. Estimates of 8 and p. The figure plots, for various methods and subperiods, the estimate of
3 versus the estimate of p for the two-equation model,

Y =0+ 0z 1 +u
Tt =9+p$t_1 + vy,

where y; is the continuously compounded return in month ¢ on the value-weighted NYSE portfolio, in excess
of the one-month T-bill return, and z, is the dividend-price ratio on the value-weighted NYSE portfolio at
the end of month t. It is assumed [u; v, is distributed N(0,), identically and independently across t.

Define
A

b= (a 30 p). The estimation methods are denoted as follows:

Bayesian posterior mean based on the conditional likelihood and p(b,£) « |E|73/2, p € (—o0,c);
also the ordinary least squares estimator; also the maximum-likelihood estimate (MLE) based on the
conditional likelihood (treating zq as fixed).

Bayesian posterior mean based on the conditional likelihood and p(b, ) o |Z|7%/2, p € (—1. 1).

: Bayesian posterior mean based on the exact likelihood (z¢ stochastic and drawn from its unconditional

distribution) and p(b, L) « |Z|7%/2, p € (-1, 1).
Bayesian posterior mean based on the exact likelihood and p(b, ) o (1—p2)~02|Z|~%/2, p € (-1, 1).

MLE based on the exact likelihood (which assumes p? < 1 and zg is drawn from the unconditional
distribution)

OLS estimates corrected for bias, where the bias is evaluated using p and ¥ obtained from the OLS
estimation.
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Figure 2. The role of p in the posterior distributions of long-horizon parameters. The upper
left graph displays the posterior density of p, the slope coefficient in the relation z; = 8 + px¢—1 + v, where
z; is the dividend yield in month ¢ and v; has zero mean conditional on z;—;. The remaining five graphs
display plots based on 100,000 draws {rom the joint posterior distribution of the model parameters. Each
graph plots p versus one of the quantities in the relation

YT+, (k) = ¢+ d(zr — T) + 51,

where 7 is a normal (0, 1) variate,
e=c+d(zr — T),

YT+ K,(k) is the K-month excess return through month 7'+ K, and Z is the sample mean of ;. The sample
period is 1952-96, the return horizon is K = 240 (20 years), and the posteriors are obtained under the prior
specification in which p(p) x 1, p € (—o0,20). The return quantities are annualized, so that ¢, d, and ¢ are
multiplied by (12/K) and s is multiplied by (12/K)'/2. The scales are decimal values (not percents).
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