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ABSTRACT
A growing empirical and theoretical literature argues in favor of specifying monetary policy in the
form of Taylor-type interest rate feedback rules. That is, rules whereby the nominal interest rate is
set as an increasing function of inflation with a slope greater than one around an intended inflation
target. This paper shows that such rules can easily lead to chaotic dynamics. The result is obtained
for feedback rules that depend on contemporaneous or expected future inflation. The existence of
chaotic dynamics is established analytically and numerically in the context of calibrated economies.
The battery of fiscal policies that has recently been advocated for avoiding global indeterminacy

induced by Taylor-type interest-rate rules (such as liquidity traps) are shown to be unlikely to

provide a remedy for the complex dynamics characterized in this paper.
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1 Introduction

In much of the recent literature on monetary economics it is assumed that monetary policy
takes the form of an interest-rate feedback rule whereby the central bank sets the nominal
interest rate as a function of some measure of inflation and the level of aggregate activity.
One justification for this modeling strategy is empirical. Several authors, beginning with
Taylor (1993) have documented that the central banks of major industrialized countries im-
plement monetary policy through interest-rate feedback rules of this type.! These empirical
studies have further shown that since the early 1980s interest-rate feedback rules in devel-
oped countries have been active in the sense that the nominal interest rate responds more
than one for one to changes in the inflation measure. For example, Taylor (1993) finds that
for the U.S. during the post-Volker era, the inflation coefficient of the interest-rate feedback
rule is about 1.5.

In his seminal paper, Taylor (1993) also argues on theoretical grounds that active interest-
rate feedback rules—which have become known as Taylor rules—are desirable for aggregate
stability. The essence of his argument is that if in response to an increase in inflation
the central bank raises nominal interest rates by more than the increase in inflation, the
resulting increase in real interest rates will tend to slowdown aggregate demand thereby
curbing inflationary pressures. Following Taylor’s influential work, a large body of theoretical
research has argued in favor of active interest rate rules. One argument in favor of Taylor-
type rules is that they guarantee local uniqueness of the rational expectations equilibrium.?

The validity of the view that Taylor rules induce determinacy of the rational expectations
equilibrium has been challenged in two ways. First, it has been shown that local determinacy
of equilibrium under active interest-rate rules depends crucially on the assumed preference
and technology specification and as well as on the nature of the accompanying fiscal regime
(Leeper, 1991; Benhabib, Schmitt-Grohé and Uribe, 2001b, Carlstrom and Fuerst, 2000 and
2001a, and Dupor, 1999). Second, even in cases in which active interest-rate rules guarantee
uniqueness of the rational expectations equilibrium locally, they may fail to do so globally.
Specifically, Benhabib, Schmitt-Grohé, and Uribe (2001a) and Schmitt-Grohé and Uribe
(2000a,b) show that interest-rate rules that are active around some inflation target give rise
to liquidity traps. That is, to unintended equilibrium dynamics in which inflation falls to
a low and possibly negative long-run level and the nominal rate falls to a low and possibly
zero level.

In this paper, we identify a third form of instability that may arise under Taylor-type
policy rules. Specifically, we show that active interest-rate rules may open the door to
equilibrium cycles of any periodicity and even chaos. These equilibria feature trajectories
that converge neither to the intended steady state nor to an unintended liquidity trap.
Rather the economy cycles forever around the intended steady state in a periodic or aperiodic
fashion. Interestingly, such equilibrium dynamics exist precisely when the target equilibrium
is unique from a local point of view. That is, when the inflation target is the only equilibrium
level of inflation within a sufficiently small neighborhood around the target itself.

We establish the existence of periodic and chaotic equilibria analytically in the context

1See for instance Clarida, Gali, and Gertler (1998), Clarida and Gertler (1997), and Taylor (1999).
2See, for example, Leeper (1991), Rotemberg and Woodford (1999), and Clarida, Gali, and Gertler (2000).



of a simple, discrete-time, flexible-price, money-in-the-production-function economy. For
analytical convenience, we restrict attention to a simplified Taylor rule in which the nominal
interest rate depends only on inflation. We consider two types of interest rate feedback rules.
In one the argument of the feedback rule is a contemporaneous measure of inflation and in the
other the central bank responds to expected future inflation. We show that the theoretical
possibility of complex dynamics exists under both specifications of the interest rate feedback
rule. To address the empirical plausibility of periodic and chaotic equilibria, we show that
these complex dynamics arise in a model that is calibrated to the U.S. economy.

The remainder of the paper is organized in four sections. Section 2 presents the basic
theoretical framework and characterizes steady-state equilibria. Section 3 demonstrates the
existence of periodic and chaotic equilibria under a forward-looking interest-rate rule. Sec-
tion 4 extends the results to the case of Taylor-type rules whereby the nominal interest rate
depends upon a contemporaneous measure of inflation. Finally, section 5 discusses the ro-
bustness of the results to a number of variations in the economic environment. It shows that
periodic equilibria also exist when the Taylor rule is globally linear and does not respect
the zero bound on nominal rates. In addition it considers the consequences of assuming
that money affects output with lags. The section closes with a brief discussion about learn-
ability of the equilibria studied in the paper and the design of policies geared at restoring
uniqueness.

2 The economic environment

2.1 Households

Consider an economy populated by a large number of infinitely lived agents with preferences
described by the following utility function:

e 1-0o
Zﬁt?_—g; c>0,8¢€(0,1) (1)
t=0

where ¢; denotes consumption in period t. Agents have access to two types of financial
asset: fiat money, M;, and government bonds, B;. Government bonds held between periods
t and t + 1 pay the gross nominal interest rate R;. In addition, agents receive a stream of
real income y; and pay real lump-sum taxes 7;. The budget constraint of the representative
household is then given by

M, + By + Piey + Pory = My + Ry_1 By + Py,

where P, denotes the price level in period t. Letting a; = (M; + B;)/ P, denote real financial

wealth in period ¢, m; = M,/ P, denote real money balances, and m, = P,/ P,_; the gross rate

of inflation, the above budget constraint can be written as
(1= Riy) Ry

a+c+1 = —"""my_1 +
Tt Tt

A1 + Yt (2)
To prevent Ponzi games, households are subject to a borrowing constraint of the form

lim — > 0. (3)
—oo [[i2o(Ry/mj41)
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We motivate a demand for money by assuming that real balances facilitate firms trans-
actions as in Calvo (1979), Fischer (1974), and Taylor (1977). Specifically, we assume that
output is an increasing and concave function of real balances. Formally,

ye = f(my). (4)

Households choose sequences {ci, my, yi, a:}5°, S0 as to maximize the utility function (1)
subject to (2)-(4), given a_;. The first-order optimality conditions are constraints (2)-(4)
holding with equality and

—0 —0 Rt
¢’ = pe i — (5)
Tt41

(6)

The first optimality condition is a standard Euler equation requiring that in the margin
a dollar spent on consumption today provides as much utility as that dollar saved and
spent tomorrow. The second condition says that the marginal productivity of money at the
optimum is equal to the opportunity cost of holding money, (R; — 1)/R;.

2.2 The monetary /fiscal policy regime

Following a growing recent empirical literature that has attempted to identify systematic
components in monetary policy, we postulate that the government conducts monetary policy
in terms of an interest rate feedback rule of the form

Ry = p(my4); j=0or 1. (7)

We consider two cases: forward-looking interest rate feedback rules (j = 1) and contem-
poraneous interest rate feedback rules (j = 0). Under contemporaneous feedback rules the
central bank sets the current nominal interest rate as a function of the inflation rate between
periods t — 1 and t. We also analyze the case of forward-looking rules because a number of
authors have argued that in the post-Volker era, U.S. monetary policy is better described as
incorporating a forward-looking component (see Clarida et al., 1998; Orphanides, 1997).

We impose four conditions on the functional form of the interest-rate feedback rule: First,
in the spirit of Taylor (1993) we assume that monetary policy is active around a target rate
of inflation 7* > [3; that is, the interest elasticity of the feedback rule at 7* is greater than
unity, or p'(7*)7*/p(7*) > 1. Second, we impose the restriction p(7*) = 7* /3, which ensures
the existence of a steady-state consistent with the target rate of inflation. Third, we assume
that the feedback rule satisfy (strictly) the zero bound on nominal interest rates, p(m) > 1
for all 7. Finally, we assume that the feedback rule is nondecreasing, p/(7) > 0 for all 7.

Government consumption is assumed to be zero. Thus, each period the government faces
the budget constraint M; + By = M;_1 + R;_1B;_1 — P,7;. This constraint can be written in
real terms in the following form:

R Ri1—-1
i la,t_l — Lmt_l + 7| . (8)
T T
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This expression states that total government liabilities in period t, a;, are given by liabilities
carried over from the previous period, including interest, R; i/ma;—1, minus total consol-
idated government revenues, given by the expression in square brackets on the right-hand
side. Consolidated government revenues, in turn, have two components: seignorage revenue,
[(Ri—1 — 1)/mmy_1, and regular taxes, 7.

We assume that the fiscal regime consists of setting consolidated government revenues as
a fraction of total government liabilities. Formally,

R, -1

M1 + 7 = was_1; w > 0. (9)
Tt

Combining the above two expressions, (8) and (9), we obtain:

a; = (R’*‘l — w) a1 (10)

Given our maintained assumption that w > 0, this expression implies that

lim @
fo0 H;:)(Rj/ﬁjﬂ)

Therefore, the assumed fiscal policy ensures that the household’s borrowing limit holds with
equality under all circumstances.

~0. (11)

2.3 Equilibrium
Combining equations (2) and (8) implies that the goods market clears at all times:

Yt = Ct- (12)
We are now ready to define an equilibrium real allocation.

Definition 1 An equilibrium real allocation is a set of sequences {my, Ry, ¢, T, Y 152 Satis-
fying Ry > 1, (4)-(7) and (12).

Given a_; and any pair of equilibrium sequences { Ry, m}5°,, equation (10) gives rise to a
sequence {a;}:°, that, as shown above, satisfies the transversality condition (11).

For analytical and computational purposes, we will focus on the following specific para-
meterizations of the monetary policy rule and the production function:

R plm) =1+ (& = 1) (T22) ™7 Ry 13
and )
f(my) =lami + (1 —a)y"]*; wp<1,a€(0,1]. (14)

We assume that A/R* > 1, so that at the target rate of inflation the feedback rule satisfies
the Taylor criterion p'(7*)7*/p(7*) > 1. In other words, at the target rate of inflation, the
interest-rate feedback rule is active. The parameter g is meant to reflect the presence of a
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Figure 1: Steady State equilibria

o o :

fixed factor of production. Under this production technology one may view real balances
either as directly productive or as decreasing the transaction costs of exchange.?

With these particular functional forms, an equilibrium real allocation is defined as a set
of sequences {my, Ry, ¢, m, yi }7°, satisfying R; > 1, (5), (6), and (12)-(14).

2.4 Steady-state equilibria

Consider constant solutions to the set of equilibrium conditions (5), (6), (12), (13), and
(14). Because none of the endogenous variables entering in the equilibrium conditions is
predetermined in period ¢ (i.e., all variables are ‘jump’ variables), such solutions represent
equilibrium real allocations. We refer to this type of equilibrium as steady-state equilibria.
By equation (5), the steady-state nominal interest rate R is related to the steady-state
inflation rate as R = B~ !'7. In addition, the interest-rate feedback rule (13) implies that
R = p(m). Combining these two expressions, yields the steady-state condition

B = p(n).

Figure 1 depicts the left- and right-hand sides of this condition for the particular functional
form of p(m) given in equation (13). Clearly, one steady-state value of inflation is the target

31t is also possible to replace the fixed factor 7 with a function increasing in labor, and add leisure to the
utility function. The current formulation then would correspond to the case of an inelastic labor supply.



inflation rate 7*. The slope of p(m) at 7* is S7'A/R* which is greater than the slope of
the left-hand side, 37!. This means that at this steady state monetary policy is active. We
therefore refer to this steady-state equilibrium as the active steady state, and denote the
associated real allocation by (y*, ¢*, m*, R*, 7*). The particular functional form assumed for
the interest-rate feedback rule implies that p(7) is strictly convex, strictly increasing, and
strictly greater than one. Consequently, there exists another steady state value of inflation,
7P, which lies between § and 7*. Thus, the steady-state interest rate associated with 77,
RP = 7P /3 is strictly greater than one. Further, at this second steady state, the feedback
rule is passive. To see this, note that p/(7?) < 37!, which implies that p'(7?)7?/p(7P) =
p'(mP)3 < 1. Thus, we refer to this steady-state equilibrium as the passive steady state and
denote the implied real allocation by (y, P, mP, RP, 7iP).*

3 Equilibrium Dynamics Under Forward-Looking Interest-
Rate Feedback Rules

Consider the case in which the central bank sets the short-term nominal interest rate as a
function of expected future inflation, that is, 7 = 1 in equation (13).
Combining 6) and (14) yields the following negative relation between output and the

nominal interest rate

This expression together with (5), (12), and (13), implies a first-order, non-linear difference
equation in output of the form:

p~H (B (v

where p~!(-) denotes the inverse of the function p(-). Finding an equilibrium real allocation
then reduces to finding a real positive sequence {y;}5°, satisfying (16).5

1/o
Yer1 = Fy) = By, [%] ; (16)

3.1 Local Equilibria

Consider perfect-foresight equilibrium real allocations in which output remains forever in an
arbitrarily small neighborhood around a steady state and converges to it. To this end, we
log-linearize (16) around y* and y*. This yields

Gus = {1 L (1 - i)} i (17)

o €p

4For the steady-state levels of output and real balances to be well defined (i.e., positive real values), it is
necessary that (RP — 1)/RP > a/* when u > 0 and that (R* —1)/R* < a'/* when p < 0. Given all other
parameter values, these restrictions are satisfied for a sufficiently small.

®An additional restriction that solutions to (16) must satisfy in order to be able to be supported as equi-

—1/n - -1/n
) g >y > (1 —a)/"g when p > 0 and (w) y

1_gl/(=w) j<
ye < (1— a)l/ "y when p < 0. These constraints ensure that R; > 1 and that m; is a positive real number.

librium real allocation is that ( T
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where ¥; denotes the log-deviation of y; from its steady-state value. The parameter ez < 0
denotes the elasticity of the function R(-), defined by equation (15), with respect to y;
evaluated at the steady-state value of output. Finally, ¢, > 0 denotes the elasticity of the
interest-rate feedback rule with respect to inflation at the steady state.

Consider first the passive steady state. As shown above, in this case the feedback-rule is
passive, that is, €, < 1. It follows that the coefficient of the linear difference equation (17) is
greater than one. With y, being a non-predetermined variable, this implies that the passive
steady state is locally the unique perfect-foresight equilibrium.

Now consider the local equilibrium dynamics around the active steady state. By assump-
tion, at the active steady state €, is greater than 1. This implies that the coefficient of the
difference equation (17) is less than unity. For mildly active policy rules, that is, €, close
to one, the coefficient of (17) is less than one in absolute value. Consequently, in this case
the rational expectations equilibrium is indeterminate. It follows from our analysis that the
parameter value €, = 1 is a bifurcation point of the dynamical system (17), because at this
value the stability properties of the system changes in fundamental ways.

For sufficiently active policy rules, a second bifurcation point might emerge. In particu-
lar, if €eg/0 < —2, then there exists an €, > 1 at which the coefficient of the linear difference
equation (17) equals minus 1. Above this value of €, the coefficient of the difference equa-
tion is greater than one in absolute value and the equilibrium is locally unique, as in the
neighborhood of the passive steady state.

One might conclude from the above characterization of local equilibria that as long as
the policymaker peruses a sufficiently active monetary policy, he can guarantee a unique
equilibrium around the inflation target 7*. In this sense active monetary policy might be
viewed as stabilizing. However, this view can be misleading. For the global picture can look
very different. We turn to this issue in the next subsection.

3.2 Chaos

Consider the case of a sufficiently active monetary policy stance that ensures that the inflation
target of the central bank, 7*, is locally the unique equilibrium. Formally, assume that at
the active steady state €, > 1/(1+20/eg).% Such a monetary policy, while stabilizing from a
local perspective, may be quite destabilizing from a more global perspective. In particular,
there may exist equilibria other than the active steady-state, with the property that the
real allocation fluctuates forever in a bounded region around the target allocation. These
equilibria include cycles of any periodicity and even chaos (i.e., non-periodic deterministic
cycles). To address the possibility of these disturbing equilibrium outcomes, we first establish
theoretically the conditions under which periodic and chaotic dynamics exist. We then show
that these conditions are satisfied under plausible parameterizations of our simple model
economy.

6We are implicitly assuming that the second bifurcation point exists, that is, that the condition eg /o < —2
is satisfied.



3.2.1 Existence

To show the existence of chaotic fluctuations, we apply a theorem due to Yamaguti and
Matano (1979) on chaotic dynamics in scalar systems. To this end, we introduce the following

change of variable:
—puln (2
Gy = )

Q1 = H(q; ) = ¢ + ah(q), (18)

Equation (16) can then be written as

where the parameter o and the function h(-) are defined as
(=)
a=|—
o

h(g:) = (—p) [In(p™ (R(y"e™/*)) —In § — In R(yPe/*)] .

We restrict attention to negative values of . As we discuss below, this is the case of greatest
empirical interest. The function A is continuous and has two zeros, one at ¢ = 0 and the other
at ¢* = pln(y*/y?) > 0. Further h is positive for ¢; € (0,¢*) and negative for ¢ ¢ [0,q*].
To see this, note that h(q) is simply the natural logarithm of [ﬁ_lﬂ/p(ﬂ)](_“) and that
is a monotonically increasing function of ¢. As can be seen from figure 1, 3717 is equal to
p(m) at the passive and active steady states (7? and 7*), is greater than p(m) between the
two steady states (m € (7P, 7%)), and is smaller than p(7) outside this range (7 ¢ [P, 7%]).
It follows that the differential equation © = h(x) has two stationary (steady-state) points, 0
and ¢*. In addition, the stationary point ¢* is asymptotically stable.
We are now ready to state the Yamaguti and Matano (1979) theorem.

and

Theorem 1 (Yamaguti and Matano (1979)) Consider the difference equation
Q1 = H(qs o) = g + ah(q). (19)

Suppose that (a) h(0) = h(q*) = 0 for some ¢* > 0; (b) h(q) > 0 for 0 < q < ¢*; and (c)
h(q) < 0 for ¢* < q < Kk, where the constant k is possibly +oc. Then there exists a positive
constant c¢; such that for any o > ¢ the difference equation (19) is chaotic in the sense of
Li and Yorke (1975).

Suppose in addition that kK = +o00. Then there exists another constant ¢, 0 < ¢1 < ¢,
such that for any 0 < a < co, the map H has an invariant finite interval [0,v(a)] (i.e., H
maps [0, y(a)] into itself) with v(a)) > ¢*. Moreover, when ¢; < o < ¢q, the above-mentioned
chaotic phenomenon occurs in this invariant interval.

The application of this theorem to our model economy is immediate. It follows that there ex-
ist parameterization of the model for which the real allocation cycles perpetually in a chaotic
fashion, that is, deterministically and aperiodically. According to the theorem, chaotic dy-
namics are more likely the larger is the intertemporal elasticity of substitution, 1/0. We
next study the empirical plausibility of the parameterizations consistent with chaos.
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3.2.2 Empirical plausibility

To shed light on the empirical plausibility of the existence of chaotic equilibria under active
monetary policy, consider the following calibration of the model economy. The time unit is a
quarter. Let the intended nominal interest rate be 6 percent per year (R* = 1.06'/%), which
corresponds to the average yield on 3-month U.S. Treasury bills over the period 1960:Q1
to 1998:Q3. We set the target rate of inflation at 4.2 percent per year (7* = 1.0421/4).
This number matches the average growth rate of the U.S. GDP deflator during the period
1960:Q1-1998:Q3. The assumed values for R* and 7* imply a subjective discount rate of 1.8
percent per year. Following Taylor (1993), we set the elasticity of the interest-rate feedback
rule evaluated at 7* equal to 1.5 (i.e., A/R* = 1.5).

There is a great deal of uncertainty about the value of the intertemporal elasticity of
substitution 1/0. In the real-business-cycle literature, authors have used values as low as
1/3 (e.g., Rotemberg and Woodford, 1992) and as high as 1 (e.g., King, Plosser, and Rebelo,
1988). In the baseline calibration, we assign a value of 1.5 to 0. We will also report the
sensitivity of the results to variations in the value assumed for this parameter.

Equations (6) and (14) imply a money demand function of the form

R 1\ VD)
= () (20)

Using U.S. quarterly data from 1960:Q1 to 1999:Q3, we estimate the following money demand
function by OLS:”

R, —1

t

Inm; = 0.0446 + 0.0275Iny; — 0.0127 In ( ) + 1.5423Inmy_q — 0.5918 In m;_»

t-stat = (1.8,4.5, —4.7,24.9, —10.0)
R?*=10.998; DW =2.18.

We obtain virtually the same results using instrumental variables.® The short-run log-log
elasticity of real balances with respect to its opportunity cost (R, — 1)/R; is -0.0127, while
the long-run elasticity is -0.2566. The large discrepancy between the short- and long-run
interest rate elasticities is due to the high persistence of real balances in U.S. data. This
discrepancy has been reported in numerous studies on U.S. money demand (see, for example,
Goldfeld, 1973; and Duprey, 1980). Our model economy does not distinguish between short-
and long-run money demand elasticities. Thus, it does not provide a clear guidance as to
which estimated elasticity to use to uncover the parameter p. Were one to use the short-run
elasticity, the implied value of p would be -77. The value of p falls to -3 when one uses the
long-run money demand elasticity. In the baseline calibration of the model, we will assign
a value of —9, which implies a log-log interest elasticity of money demand of -0.1. We will
also show results for a variety of other values within the estimated range.’

"We measure m; as the ratio of M1 to the implicit GDP deflator. The variable y¢ is real GDP in chained
1996 dollars. The nominal interest rate R; is taken to be the gross quarterly yield on 3-month Treasury bills.

8 As instruments we choose the first three lags of Iny; and In(R; — 1)/R;, and the third and fourth lags
of Inmg.

9An alternative strategy would be to build a model where lagged values of real balances emerge endoge-
nously as arguments of the liquidity preference function. However, such exercise is beyond the scope of this

paper.



Table 1: Calibration
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Figure 2: Forward-Looking Taylor Rules: Three-Period Cycles
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To calibrate the parameter a of the production function, we solve the money demand
equation (20) for a and obtain
Rt —1 (mt) L=
Ry Yt .

We set my /y, = 4/5.8 to match the average quarterly U.S. M1 to GDP ratio between 1960:Q1
and 1999:Q3. We also set R to 1.06'/* as explained above. Given the baseline value of y, the
implied value of a is 0.000352.1° Finally, we set the fixed factor ¢ at 1. Table 1 summarizes
the calibration of the model.

Figure 2 shows the first three iterates of the difference equation (16), which describes the
equilibrium dynamics of output, for the baseline calibration. In all of the three panels, the
straight line is the 45° degree line and the range of values plotted for output starts at the
active steady state, y*, and ends at the passive steady state, y?. The figure shows that the
second- and third iterates of F' have fixed points other than the steady-state values y* and
yP. This means that there exist two- and three-period cycles. The presence of three-period
cycles is of particular importance. For, by Sarkovskii’s (1964) theorem, the existence of
period-three cycles implies that the map F' has cycles of any periodicity. Moreover, as a
consequence of the result of Li and Yorke (1975), the existence of period-three cycles implies
chaos. That is, for the baseline calibration there exist perfect-foresight equilibria in which
the real allocation fluctuates perpetually in an aperiodic fashion.

a =

0Tn calibrating a, we do not use the estimated constant in our money demand regression. The reason is
that the model features a unit income elasticity of money demand whereas the regression equation does not.

10



Indeed, three-period cycles emerge for any value of ¢ below 1.75. This finding is line
with theorem 1, which states that there exists a value for o below which chaotic dynamics
necessarily occur. On the other hand, for values of o greater than 1.75, three-period cycles
disappear. This does not mean, however, that for such values of ¢ the equilibrium dynamics
cannot be quite complex. For example, for o between 1.75 and 1.88, we could detect six-
period cycles. Sarkovskii’s theorem guarantees that if six-period cycles exist, then cycles of
periodicities 2"3 for all n > 1 also exist. For o between 1.88 and 2 period-four and period-two
cycles exist. !

We find that for values of i less than -7.5, the economy has three-period cycles when all
other parameters take their baseline values. On the other hand, for values of p greater than
-7.5 three-period cycles cease to exist. Therefore, the more inelastic is the money demand
function, the more likely it is that chaotic dynamics emerge.

4 Equilibrium dynamics under contemporaneous Tay-
lor rules

Consider the case that the interest-rate feedback rule depends on a contemporaneous measure
of inflation, that is, j = 0 in equation (13). For simplicity, in this section we focus on a
special parameterization of the production function given in (14). Specifically, we assume
that the elasticity of substitution between real balances and the fixed factor of production
is one, 1/(1 — p) = 1 and normalize the fixed factor to unity. Then the production function
can be written as:

Yo =my. (21)
An equilibrium real allocation is then defined as a set of sequences {my, R, ct, T, Y1152,
satisfying R, > 1, (5), (6), (12), (13) (with j = 0), and (21). Combining these equilib-
rium conditions yields the following first-order non-linear difference equation describing the
equilibrium law of motion of the nominal interest rate:

E lRt—l}% _ ( R -1 )“**‘”/A [Rtﬂ —1}% (22)
R, | R Ry —1 Ry ‘

4.1 Local equilibria

To characterize local equilibrium dynamics, we log-linearize (22) around the steady state
R*® where R*® takes the values R* or RP. This yields:

ﬁt-ﬁ-l - eﬁta
where
0= (R*) —1
() — L

HFor ¢ > 1.71, the aforementioned cycles occur in a feasible invariant interval. That is, in a feasible
interval A such that F(A) € A. The interval A contains both steady states. The upper end of the interval
coincides with y? and the lower end is below y*. In terms of the notation of the Yamaguti and Matano
(1979) theorem, the values of 1/0 of 1/1.75 and 1/1.71 correspond to the constants ¢; and ¢z, respectively.
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and
oa 1

6(R):1—G,R58—1>0' (23)
The variable R, = In(R;/R*®) denotes the log-deviation of R; from its steady-state level.
We are interested in parameter specifications for which the intended steady-state R* is
locally unique, or |#| > 1. Because of our maintained assumption that A/R* > 1, the local
uniqueness of the active steady-state equilibrium R* requires that 6(R*) < 1. Then, the
active steady state is locally unique if:'?

1+ R*/A

I(R") < 5

(24)
This condition implies that the equilibrium is locally unique at the active steady state when
a tends to zero, that is, when the interest elasticity of output vanishes. This type of deter-
minacy result is the one emphasize in the recent literature favoring active (or Taylor-type)
interest rate rules. On the other hand, when the interest elasticity of output is sufficiently
large, equilibrium is locally indeterminate under active interest rate rules. This latter case re-
flects a more general result stressed in Benhabib, Schmitt-Grohé, and Uribe (2001b). Namely,
that whether an active monetary stance will bring about local stability hinges crucially on
the precise way in which money is assumed to affect aggregate demand and supply.

Under the baseline calibration presented in the previous section, the active steady state is
locally indeterminate.!®> More generally, given all other parameter values, the active steady-
state equilibrium is locally unique for o < 1.21 and locally indeterminate for o > 1.21. As
under forward-looking rules, under contemporaneous rules values of o for which the target
steady state is locally unique need not be associated with global stability. For in this case
periodic and even chaotic dynamics easily arise. This issue is the focus of the next section.

4.2 Periodic and chaotic dynamics

In this section, we characterize equilibrium fluctuations in which the real allocation remains
bounded but does not converge to either steady state. Equation (22) implicitly defines the
correspondence F' such that

R = F(Ry). (25)

We construct the graph of this correspondence with the help of figure 3. Consider first the
left hand side (LHS) of (22) as a function of R;. This relation is shown in the bottom right
quadrant of figure 3. The function LHS is nonnegative and continuous in R; for all R; > 1.
It takes the value 0 at R; = 1 and as R; approaches infinity. Moreover, for R; > 1, LHS has a
single critical point at Ry = Ry yg = 1+ {7~ > 1, where it reaches a maximum. The top left
quadrant of figure 3 shows the right hand side (RHS) of equation (22) as a function of R;,.
The function RHS is positive and continuous for all R;y; > 1. At R,y; = 1, RHS equals
0 if 6(R*) > 1/A or infinity if 6(R*) < 1/A. Figure 3 is drawn under the assumption that

d(R*) > 1/A. We will maintain this assumption throughout this section. In this case, RHS

12Note that at the active steady state 6 is not defined when §(R*) = R*/A.
I3Note that the calibrated value of a depends on the particular value chosen for . When p = 0 we have
that a = 0.010.
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Figure 3: Contemporaneous Interest-Rate Rules: Graph of Equilibrium Correspondence
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is singled peaked at R;11 = R%yq = 0(R*)A. Further, we will assume that the maximum of
LHS is less than the maximum of RHS (i.e., LHS(RS ;¢) <RHS(R%pyg)). Then, for values
of Ry > 1 the correspondence F' assigns for each value of R; two values of Ry, which define
the pair of continuously differentiable functions f and f depicted in the top right quadrant
of figure 3.1 Clearly, a sufficient condition for the steady state values R? and R* to lie on
f (rather than on f) is that R* < R%yg. We will assume that this sufficient condition is
satisfied. Summarizing, to ensure that the correspondence F' has the form shown in figure 3,
we assume that:

d(R*)A > R* (26)
and
RHS(Rpys) > LHS(RY ) (27)

Figure 3 shows that in the model under study, contemporaneous interest-rate rules may
give rise to instantaneous indeterminacy, or non-uniqueness of the temporary equilibrium,
in the sense that for a given value of R; there might exist two distinct values of R, con-
sistent with an equilibrium real allocation. This is a type of instability that is absent under
forward-looking rules. We will limit our analysis to pointing the possibility of instantaneous
multiplicity without characterizing it in further detail.'®

In what follows, we focus on equilibrium real allocations generated by iterates of the map
f. That is, we will characterize the dynamics of R; generated by the difference equation

Rt—i—l = f(Rt)7 Ry > 1. (28)

Under the maintained assumptions (26) and (27), the map f is continuously differentiable,
bounded below by unity, unimodal, and satisfies limp_; f(R) = 1, f(RP) = RP, f(R*) = R",
and limp_, f(R) = 1.1 As mentioned earlier, we wish to restrict attention to situations
in which the intended steady state R* is locally unique. Thus, we assume that condition
(24) holds. This condition in combination with (26) implies that f'(R*) < —1. Because f is
continuous, it is clear that at the passive steady state RP it must be the case that f'(RP) > 1.
We will assume that f'(RP) is strictly greater than one. Indeed, one can show that if (24)
and (26) are satisfied and R* € (1,2), then f'(RP) = 1 can be ruled out, for in this case
limR_,l f’(R) = 0.

It follows that f has a cycle of period 2. To see this, let f2 = f o f be the second
iterate of f. Then f2(RP) = RP and f?>(R*) = R*. Moreover, f*'(R?) = [f/(R")]?> > 1 and
Y (R*) = [f'(R")]? > 1. Thus, by continuity we have that there must exist an interest rate
R € (RP, R*) for which f?(R) = R. That is, f? has a fixed point different from R* or RP.
We summarize this result in the following proposition:

141f RHS is monotonically decreasing, which is the case when §(R*) < 1/A, then the correspondence F
is singled valued, continuous, converges to infinity as R; approaches either 1 or infinity, and has a unique
critical point that is a global minimum at R{ ;.

15We also conjecture that equilibria in which the nominal interest rate visits both branches of the corre-
spondence F' may feature interest rate trajectories with a lim inf equal to one. Moreover, even if the nominal
interest rate remains forever on the lower branch f, the nominal interest rate may converge to one. That is,
equilibria in which the nominal interest rate is asymptotically equal to zero (liquidity traps) may be possible.

16Recall, however, that R = 1 cannot be supported as an equilibrium real allocation.
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Figure 4: Contemporaneous Taylor rules: Three-Period Cycles
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Proposition 1 (Period 2 cycles) If conditions (24), (26), and (27) are satisfied and R* €
(1,2), then the map f defined in (28) has a cycle of period 2.

In the calibration presented in the previous subsection, we established that, given all other
parameter values, the intended equilibrium R* is locally unique for values of ¢ < 1.21. The
conditions of proposition 1 are satisfied for all values of o such that § < —1 (or, equivalently,
f'(R*) < —1). This is the case if o € (0.97,1.21).

But 2-period cycles are not the only type of periodic equilibria that may arise in this
economy. Indeed, for some ranges of ¢ in the interval (0.97,1.21) there exist cycles of any
periodicity. Figure 4 shows the first, second, and third iterates of f for o is equal to 1.1. All
other parameters take the values given in the previous subsection. The bottom left panel of
the figure shows that the map f®: Ry 3 = f3(R;) has four fixed points in the open interval
(RP, R*). Thus, the map f has cycles of period 3. It then follows from Sarkovskii (1964)
that f has cycles of any periodicity and from Li and Yorke (1975) that f is chaotic. We have
been able to check numerically that period-3 cycles appear for values of ¢ between 1.02 and
1.13.47

We conclude that for the case of greatest empirical interest, that is, an intertemporal
elasticity of substitution less than one (or ¢ > 1), the real allocation is always indeterminate;
either it is locally indeterminate (o > 1.21) or it is locally determinate but cycles of various

17Tt is difficult to numerically compute the third iterate of f for values of o below 1.02. However, we
suspect that f displays period-3 cycles for values of o as low as unity.
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periods and even chaos exist.

5 Discussion and Conclusion

In this paper we illustrate by means of specific economic environments the point that even
if an active interest-rate feedback rule can ensure that the target rate of inflation is locally
the unique equilibrium, it may still allow for complex equilibrium dynamics. Specifically,
we study a number model economies in which active interest-rate feedback rules give rise to
equilibrium cycles of any periodicity and even chaos.

It is important to note that the complex dynamics we identify in this paper cannot be
ruled out by “non-Ricardian” fiscal and monetary policies, like a commitment to a strong
fiscal stimulus or a switch to a high money growth rate that is automatically activated when
inflation begins to decelerate, that have been suggested as being effective in eliminating
liquidity traps in the recent literature (see, for example, Woodford, 1999; and Benhabib,
Schmitt-Grohé, and Uribe, 2001c). The reason is that the effectiveness of the suggested
policies relies on the fact that the interest rate moves permanently below its intended level.
By contrast, the equilibria identified in this paper feature trajectories in which the nominal
interest rate is bounded away from zero and infinity and cycles above and below the target. It
follows that the design of policies capable of eliminating chaotic dynamics remains a subject
for future research.!®

We conclude by pointing out that the main result of this paper is robust to a number of
modifications in the underlying theoretical framework. For example, it is noteworthy that
the local properties of the "active” steady state do not depend on the assumption that the
interest-rate feedback rule is non-linear and respects the zero lower bound on interest rates.
Specifically, local indeterminacy with convergence either to an active steady state or to a
cycle surrounding it may arise even when the interest-rate rule is linear. To see this, consider

the interest-rate rule:
* Ti+1 — L
T

At the intended inflation rate 7*, this interest-rate feedback rule has the same inflation
elasticity, A/R*, as the non-linear Taylor rule given by (13), which respects the zero lower
bound on the nominal rate. All other elements of the model are as in section 3. The economy
now features a single steady state y*. The linearized version of the equilibrium law of motion
of output around y* is given by equation (17). Let the feedback rule be active around the
steady state, €, > 1, and consider the local stability properties of the system as one varies
the intertemporal elasticity of substitution 1/0. Clearly, there is a critical value of o, o€,
at which the coefficient of the linear system equals —1. For values of o below ¢¢, the slope
of the difference equation (17) is greater than one in absolute value and the equilibrium is
locally unique. For value of o greater than ¢¢, the coefficient has modulus less than one and
hence the equilibrium is locally indeterminate. Thus, at ¢ = ¢¢ the equilibrium has a flip
bifurcation, implying the existence of period-two cycles. Interestingly, it can be shown that

8Note however the suggestion by Christiano and Rostagno (2001) for implementing a Taylor rule only
in a small neighborhood of the target inflation rate with a commitment to switch to a money growth rule
outside that neighborhood in order narrow down the range of possible indeterminacy.
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when all parameters other than o take their baseline values given in table 1, asymptotically
stable periodic equilibria emerge when the steady state is unique, that is, when ¢ < ¢¢. For
this calibration, ¢¢ is 2.42 and we were able to detect stable cycles of period two for values
of o between this critical value and 2.35.

Complex equilibrium dynamics may also emerge under alternative timing conventions
regarding the specification of the production technology.'® Thus far, we have assumed that
money balances chosen in period t affect output in that same period. Alternatively, one
could assume that the production function in period ¢ depends on money balances carried
over from the previous period. Formally:

(M
yt_f(Pt)'

Under a forward-looking interest-rate feedback rule, like the one given in equation (13) with
7 =1, the equilibrium law of motion of output may display non-uniqueness of the temporal
equilibrium. At the same time, if the interest-rate rule depends on a contemporaneous
measure of inflation, as in equation (13) with j = 0, the equilibrium dynamics take the form
of a difference equation of second order and the solution can be complicated.

Recently, the issue of the learnability of rational expectations equilibria has acquired
renewed vigor, particularly in monetary economics. The argument of learnability has been
used to question the relevance of unintended equilibria that may arise when the central
bank follows a Taylor-type interest-rate rule. For example, Bullard and Mitra (2001) find in
the context of a sticky-price model a la Woodford (1996) that under an active interest-rate
feedback rule the intended equilibrium is learnable if it is determinate under rational expec-
tations. Honkapohja and Mitra (2001) show that the sunspot equilibria that emerge in this
class of models when the rational expectations equilibrium is indeterminate are not learn-
able. However, Carlstrom and Fuerst (2001b) have shown that the Honkapohja and Mitra
result is fragile to changes in the way money demand is motivated and in the assumed degree
of informational asymmetry between the central bank and the private sector. Specifically,
Carlstrom and Fuerst show that under a cash-in-advance transactions technology or when
only the central bank but not the private sector is subject to learning, then sunspot equilibria
become learnable. These sunspot equilibria emerge when the perfect foresight equilibrium is
indeterminate, which in the Woodford sticky-price model that they analyze is the case either
when the interest-rate rule is passive or when it is highly active. Recent theoretical work by
Evans and Honkapohja (2001) derives conditions under which near an indeterminate steady
state k-state Markov sunspot equilibria exist that are learnable. Applying their result to
our money-in-the-production economy in the case that an active monetary policy renders
the equilibrium locally indeterminate, we can establish the existence of learnable sunspot
equilibria. An interesting question for future research is to characterize the learnability of
the periodic equilibria unearthed in the present study.

YFor a general discussion of various timing assumptions regarding the transaction technology and their
impact on local determinacy properties, see Carlstrom and Fuerst (2001a).
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