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ABSTRACT

Quantile regression(QR) fits a linear model for conditional quantiles, just as ordinary least

squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that it

gives the minimum mean square error linear approximation to the conditional expectation

function even when the linear model is misspecified. Empirical research using quantile

regression with discrete covariates suggests that QR may have a similar property, but the exact

nature of the linear approximation has remained elusive. In this paper, we show that QR can be

interpreted as minimizing a weighted mean-squared error loss function for specification error.

The weighting function is an average density of the dependent variable near the true conditional

quantile. The weighted least squares interpretation of QR is used to derive an omitted variables

bias formula and a partial quantile correlation concept, similar to the relationship between partial

correlation and OLS. We also derive general asymptotic results for QR processes allowing for

misspecification of the conditional quantile function, extending earlier results from a single

quantile to the entire process. The approximation properties of QR are illustrated through an

analysis of the wage structure and residual inequality in US Census data for 1980, 1990, and

2000. The results suggest continued residual inequality growth in the 1990s, primarily in the

upper half of the wage distribution and for college graduates.
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1 Introduction

The Quantile Regression (QR) estimator, introduced by Koenker and Bassett (1978), is an

increasingly important empirical tool, allowing researchers to fit parsimonious models to an

entire conditional distribution. Part of the appeal of quantile regression derives from a natural

parallel with conventional ordinary least squares (OLS) or mean regression. Just as OLS

regression coefficients offer convenient summary statistics for conditional expectation functions

(CEF), quantile regression coefficients can be used to make easily interpreted statements about

conditional distributions. Moreover, unlike OLS coefficients, QR estimates capture changes in

distribution shape and spread, as well as changes in location.

An especially attractive feature of OLS regression estimates is their robustness and inter-

pretability under misspecification of the CEF. In addition to consistently estimating a linear

CEF, OLS estimates provide the minimum mean square error (MMSE) linear approximation to

a CEF of any shape. The MMSE interpretation of OLS is emphasized by Chamberlain (1984)

and Goldberger (1991), while an average derivative interpretation of OLS features in Angrist

and Krueger (1999). This robustness property – i.e., the fact that OLS provides a meaningful

and well-understood summary statistic for multivariate conditional expectations under almost

all circumstances – undoubtedly contributes to the primacy of OLS regression as an empirical

tool. In view of the possibility of interpretation under misspecification, modern theoretical

research on regression inference typically also allows for misspecification when deriving limiting

distributions (see, e.g., White, 1980).

While QR estimates are as easy to compute as OLS regression coefficients, an important

difference between OLS and QR is that most of the theoretical and applied work on QR postu-

lates a true linear model for conditional quantiles. This raises the question of whether and how

QR estimates can be interpreted when the linear model for conditional quantiles is misspecified

(for example, QR estimates at different quantiles may imply conditional quantile functions that

cross). One interpretation for QR under misspecification is that it provides the best linear pre-

dictor for a response variable under asymmetric loss. This interpretation is not very satisfying,

however, since prediction under asymmetric loss is typically not the object of interest in em-

pirical work (see, e.g., Koenker and Hallock, 2001).1 Empirical research on quantile regression

with discrete covariates suggests that QR may have an approximation property similar to that

of OLS, but the exact nature of the linear approximation has remained an important unresolved
1An exception is the forecasting literature; see, e.g., Giacomini and Komunjer (2003).
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question (cf. Chamberlain, 1994, p. 181).

The first contribution of this paper is to show that QR can be interpreted as the best linear

predictor (BLP) for the conditional quantile function (CQF) using a weighted mean-squared

error loss function, much as OLS regression provides a MMSE fit to the CEF. The implied

QR weighting function can be used to understand which, if any, parts of the distribution of

regressors contribute disproportionately to a particular set of QR estimates. We also show how

the weighted mean-square error interpretation can be used to interpret QR coefficients as partial

quantile correlation coefficients and to develop an omitted variable bias formulae for QR.

A second contribution is to develop a distribution theory for the entire QR process that

applies under misspecification of the conditional quantile function. The approach developed

here has two advantages over current practice. First, we do not assume that the true quantile

function is linear. Second, some of the regularity conditions that would be required for a fully

nonparametric approach, such as multiple differentiability of the quantile function in regressors

and continuity of regressors, are not needed. Our analysis of the QR process extends the

results of Chamberlain (1994) and Hahn (1997), who derived the basic variance formula for a

particular quantile under misspecification. See also Koenker and Machado (1999), Gutenbrunner

and Jureckova (1992), and Gutenbrunner, Jureckova, Koenker, Portnoy (1993), who develop

inference procedures based on QR processes for the linear location shift model and linear Pitman

deviations from this model.

An important consequence of our analysis is that the currently used inference tools on the

QR process, such as those in Koenker and Machado (1999), are not robust to misspecification.

This is because the limit distribution of the QR process is not distribution-free under misspeci-

fication. Moreover, Khmaladzation techniques, as in Bai (1998) and Koenker and Xiao (2002),

cannot restore the distribution-free nature of the limit theory in this case. We therefore suggest

alternative methods that provide valid inference for the QR process under misspecification.

The approximation theorems and other theoretical ideas in the paper are illustrated with an

analysis of wage data from the 1980, 1990, and 2000 U.S. censuses. The analysis here is motivated

by similar studies in labor economics, where quantile regression has been widely used to model

changes in the wage distribution (see, e.g., Buchinsky, 1994 and Autor, Katz, and Kearney,

2004 for the US; Gosling, Machin, and Meghir, 2000, for the UK; Abadie, 1997, for Spain, and

Machado and Mata, 2003, for Portugal). In particular, we show that quantile regression, while

an inexact model for conditional quantiles, gives a good account of the relevant stylized facts.

An appealing feature of quantile regression in this context is that quantile regression coefficients
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can be used directly to describe “residual inequality,” i.e. the spread in the wage distribution

conditional on the variables included in the quantile regression model. Attempts to model

residual wage inequality have been of major substantive importance to labor economists since

Juhn, Murphy, and Pierce (1993).

The paper is organized as follows. Section 2 introduces assumptions and notation and

presents the main approximation theorems, followed by an empirical illustration. Section 3

provides the inference theory for QR processes under misspecification. Section 4 presents addi-

tional empirical results on the evolution of residual inequality using data from the 1980, 1990,

and 2000 censuses. Section 5 concludes with a brief summary.

2 Interpreting QR Under Misspecification

2.1 Notation and Framework

Given a continuos response variable Y and a d × 1 regressor vector X, we are interested in

the (population) conditional quantile function (CQF) of Y given X. The conditional quantile

function is defined as:

Qτ (Y |X) ≡ inf {y : FY (y|X) ≥ τ}, (1)

where FY (y|X) is the distribution function for Y conditional on X, with associated conditional

density fY (y|X). The CQF can also be defined as the solution to the following minimization

problem (assuming integrability throughout where needed):

Qτ (Y |X) ≡ arg min
q(X)

E [ρτ (Y − q(X))] , (2)

where ρτ (u) = (τ − 1(u ≤ 0))u and the minimum is over the set of measurable functions of X.

This is a potentially infinite-dimensional problem if covariates are continuous, and can be very

high-dimensional even with discrete X. It may nevertheless be possible to capture important

features of the CQF using a linear model. This motivates linear quantile regression.

The Koenker and Bassett (1978) linear quantile regression (QR) estimator solves the follow-

ing population minimization problem:

β(τ) ≡ arg min
β∈Rd

E
[
ρτ (Y −X ′β)

]
. (3)

If q(X) is in fact linear, the QR minimand will find it (just as if the CEF is linear, OLS regression

will find it). More generally, QR provides the best linear predictor for Y under the asymmetric
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loss function, ρτ . As noted in the introduction, however, prediction under asymmetric loss

is rarely the object of empirical work. Rather, the conditional quantile function is of intrinsic

interest. For example, labor economists are often interested in comparisons of conditional deciles

as a measure of how the spread of a wage distribution changes conditional on covariates, as in

Katz and Murphy (1992) and Juhn, Murphy, and Pierce (1993). Thus, we would like to establish

the nature of approximation that QR provides.

2.2 The QR Approximation Property

Our principal theoretical result is that the population QR vector minimizes a weighted sum

of squared specification errors. This is easiest to show using notation for a quantile-specific

specification error and for a quantile-specific residual. For a given quantile τ , we define the QR

specification error as:

∆τ (X, β) = X ′β −Qτ (Y |X). (4)

Similarly, let ετ be a quantile-specific residual, defined as the deviation of the response variable

from the conditional quantile of interest:

ετ = Y −Qτ (Y |X), (5)

with conditional density fετ (e|X) at ετ = e. The following theorem shows that QR is the

weighted least squares approximation to the unknown CQF.

Theorem 1 (Approximation Property) Suppose that (i) the conditional density fY (y|X)

exists a.s., (ii) Qτ (Y |X) is uniquely defined by (2), and (iii) β(τ) is uniquely defined by (3).

Then

β(τ) = arg min
β∈Rd

E
[
wτ (X,β) ·∆2

τ (X, β)
]
, (P1)

where

wτ (X, β) =
∫ 1

0
(1− u)fετ (u∆τ (X, β)|X) du (6)

=
∫ 1

0
(1− u) · fY

(
u ·X ′β + (1− u) ·Qτ (Y |X)|X)

du > 0. (7)

This result says that the population QR coefficient vector β(τ) minimizes the expected

weighted mean squared approximation error, i.e. the square of the difference between the true

CQF and the linear approximation, with weighting function wτ (X,β). The weights involve an

integral in either the conditional density of the quantile residual, or, by a change of variables using
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Y = Qτ (Y |X)+ ετ , the conditional density of the response variable. The latter representation

shows the weighting function to be given by the average density of the response variable over

a line from the point of approximation, X ′β, to the true conditional quantile, Qτ (Y |X). Pre-

multiplication by the term (1− u) in the integral results in more weight being applied at points

on the line closer to the true CQF.

We refer to the function wτ (X,β) as defining importance weights, since this function de-

termines the importance the QR minimand gives to points in the support of X for a given

distribution of X. In addition to the importance weights, the probability distribution of X also

determines the ultimate weight given to different values of X in the least squares problem. To

see this, note that we can also write the QR minimand as

β(τ) = arg min
β∈Rd

∫
wτ (x, β) ·∆2

τ (x, β) dP (x), (8)

where P (x) is the CDF of X (with associated probability or density function p(x)). Thus, the

overall weight varies in the distribution of X according to

wτ (x, β) · p(x). (9)

The sense in which QR approximates a nonlinear CQF can be seen for an empirical wage

equation in Figure 1. This figure plots an estimate of the CQF for log-earnings given education

for the 0.10, 0.25, 0.50, 0.75 and 0.90 quantiles, using data for US-born black and white men

aged 40-49 from the 1980 census (see Appendix for details concerning data). Here we take

advantage of the discreteness of the schooling variable and the large census sample to compare

QR estimates with the true (sample) CQF evaluated at each point in the support of X. In

addition to the dots plotting Qτ (Y |X) against X, the figure also shows the (solid) QR regression

line.

To compare the consequences of combined importance- and histogram-weighting, as in The-

orem 1, to a weighting scheme using the X histogram only, the figure also shows a graphical

representation of a minimum distance (MD) estimator suggested by Chamberlain (1994). The

MD estimator is the sample analog of the vector β̃(τ) solving

β̃(τ) = arg min
β∈Rd

E
[
(Qτ (Y |X)−X ′β)2

]
= arg min

β∈Rd
E

[
∆2

τ (X, β)
]
. (10)

In other words, β̃(τ) is the slope of the linear regression of Qτ (Y |X) on X, weighted only by

the probability distribution of X, p(x). The dashed line in the figure has the slope determined

by Chamberlain’s estimator. Note that unlike QR, the MD estimator relies on the ability to
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nonparametrically estimate Qτ (Y |X) in a nonparametric first step. This is facilitated here

by the discreteness of X and our large census samples, but would otherwise require additional

restrictions and regularity conditions. Chamberlain (1994) observes that, in general, the MD

estimator is likely to be attractive only when X is low dimensional and the sample size is large.

For every quantile, the QR and MD regression lines are remarkably close, supporting the

conclusion reached in Theorem 1 – that QR is a weighted MD approximation to the unknown

CQF – and suggesting the extra weighting by the importance weights wτ (x, β) does not induce

big differences between MD and QR. In fact, for some quantiles, the MD and QR lines are

not discernible different. Under either weighting scheme, the linear fits appear to describe the

actual conditional quantiles reasonably well.

By way of comparison and to provide a visual standard for the goodness of fit of QR to the

CQF, the figure also incorporates a panel illustrating the fit of an OLS regression line to the

CEF. This panel (bottom, right position in the figure) shows points on the CEF plotted as

dots, along with the dashed OLS regression line and the solid generalized least squares (GLS)

regression line. To compute the GLS slope, E[Y |X] was regressed on X, weighted by the inverse

of the conditional variance of Y given X. The OLS fit to the CEF is similar to the QR fit to

the CQF at the median. The estimated median QR and OLS regression slopes are also similar,

at 6.39 and 6.98 in percentage terms. Panel A of Table 1 reports the slopes of the lines plotted

in each panel of Figure 1.

To further investigate the nature of the QR weighting function in the schooling example,

Figure 2 plots wτ (x, β(τ))p(x) against the regressor X. The solid line in the figure shows the

product wτ (x, β(τ))p(x), along with the histogram of education, p(x), the weights used in the

Chamberlain MD estimator. The figure also shows normalized kernel density estimates of the

importance weights, wτ (x, β(τ)), plotted with a dashed line.2 Consistent with the comparison

of estimators in Figure 1, the importance weights are reasonably flat for the quantiles considered

here, so that most of the variation in the overall weighting function comes from the X histogram.

As in Figure 1, Figure 2 again includes an analogous panel for mean regression and the CEF. The

CEF analog of the QR importance weights is the inverse of V [Y | X], since the latter plays the

role of importance-weighting in GLS estimation. Here too, the importance weighting function

is reasonably flat.
2See Appendix B for a detailed description of the procedure used for kernel density estimation of the weights.
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2.3 Conditional Density as Primary Determinant of Importance Weights

What features of the joint distribution of Y and X determine the theoretical shape of the

importance weighting function for QR? Suppose initially that the linear model for conditional

quantiles is correct, so the approximation error is zero and ∆τ (X, β(τ)) = 0. In this case, the

weighting function when evaluated at β = β(τ) simplifies to

wτ (X, β(τ)) = 1/2 · fY (Qτ (Y |X)|X) , (11)

i.e., the weights are proportional to the conditional density of the response variable at the

relevant conditional quantile. More generally, for response data with a smooth conditional

density around the relevant quantile, we have for β in the neighborhood of β(τ):

wτ (X, β) = 1/2 · fY (Qτ (Y |X)|X) + rτ (X), where |rτ (X)| ≤ 1/6 · |∆τ (X,β)| ∣∣f̄ ′∣∣ . (12)

Here, rτ (X) is a remainder term and the density fY (y|X) has a first derivative in y bounded

a.s. by a constant, denoted f̄ ′.3 This argument demonstrates that we can in most cases think of

the density weights 1/2 · fY (Qτ (Y |X)|X) as being the primary determinant of the importance

weights.4 This interpretation applies when the degree of misspecification is modest or the

variability of conditional density fY (y|X) in y near the true CQF is not substantial.

For the empirical example considered in this section, the weighting function wτ (X,β(τ))

and the density-based approximation are remarkably close. This can be seen in Figure 3, which

plots estimates of both importance and density weights constructed using a kernel method. The

previous argument suggests there are two reasons for this: the approximation error ∆τ (X,β(τ))

is mostly small and the conditional density fY (y|X) does not vary much in y near the true

quantiles. The figure also shows that both the weighting function and its first order approxima-

tion are fairly stable, suggesting that the conditional density of y is stable across the levels of

X at each quantile.

3The remainder term is |rτ (X)| =
��wτ (X, β)− 1

2
· fετ (0|X)

�� =
���
R 1

0
(1− u)(fετ (u ·∆τ (X, β)|X)− fετ (0|X))du

��� ≤
|∆τ (X, β)| ·

��f̄ ′
�� · R 1

0
(1− u) · u · du = 1

6
· |∆τ (X, β)| ·

��f̄ ′
�� .

4Powell (1994, p. 2473) notes that an efficient weighted QR estimator (in the sense of attaining the relevant

semiparametric efficiency bound) is obtained by weighting the original Koenker and Bassett QR minimand by

fετ (0|X). Since the variance of the sample analog of Qτ (Y |X) is proportional to 1/f2
ετ

(0|X), Powell’s estimator

is equivalent to a GLS (efficient) estimator for conditional quantiles under correct specification. The first order

asymptotic equivalence of the GLS fit and Powell’s estimator under correct specification is noted by Knight (2002).
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2.4 Partial Quantile Correlation

The least squares interpretation of QR has a practical payoff in that we can use it to develop a

regression-decomposition scheme and an omitted variables bias formula for QR. The idea here

is to express each QR coefficient as a coefficient in a bivariate LS projection of the unknown

CQF on each regressor, after the effects of other regressors have been “partialled out.” Since

these derivations rely on least-squares algebra, a pre-requisite for the development of this de-

composition is a version of the LS approximation property with weights that are fixed in the

optimization problem. This version of the QR minimand is given in the theorem below.

Theorem 2 (Iterative Approximation Property) Under the conditions of Theorem 1, QR

coefficients satisfy the equation

β(τ) = arg min
β∈Rd

E
[
w̃τ (X) ·∆2

τ (X, β)
]
, (P2)

where

w̃τ (X) =
1
2

∫ 1

0
fετ (u ·∆τ (X, β(τ))|X) du (13)

=
1
2

∫ 1

0
fY

(
u ·X ′β(τ) + (1− u)Qτ (Y |X)|X)

du. (14)

Theorem 2 differs from Theorem 1 in that the weights are defined ex post, i.e., they are defined

using the solution vector to the QR problem. Theorem 2 complements Theorem 1 in that it

characterizes the QR coefficient as a fixed point to an iterated minimum distance approximation.5

The relationship between the weighting functions in Theorems 1 and 2 is analogous to the

relationship between the weights used to compute a continuously updated GMM Estimator and

the corresponding iterated estimator (see Hansen, Heaton, and Yaron, 1996).

The weighting function w̃τ (X) is again related to the conditional density of the dependent

variable. In particular, for a response variable with smooth conditional density around the

relevant quantile, we have

w̃τ (X) = 1/2 · fY (Qτ (Y |X)|X) + r̃τ (X), where |r̃τ (X)| ≤ 1/4 · |∆τ (X, β(τ))| ∣∣f̄ ′∣∣ , (15)

5In other words, given weights defined in terms of β(τ), the solution to the weighted minimum distance

approximation is β(τ). It is easy to show that this fixed point property defines β(τ) uniquely whenever β(τ) is

the the unique solution to the original QR problem.
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where r̃τ (X) is a remainder term and the density fY (y|X) has a first derivative in y bounded

a.s. by a constant, denoted f̄ ′.6 When either ∆τ (X, β(τ)) or f̄ ′ is small,

w̃τ (X) ≈ wτ (X, β(τ)) ≈ 1
2
fY (Qτ (Y |X)|X), (16)

so the approximate weighting function is the same as before when the QR coefficient vector is

evaluated at its solution value.

Partial quantile correlation is defined with regard to a partition of the regression vector into

a variable, X1, and the remaining d− 1 variables X2, along with the corresponding partition of

the QR coefficients. Thus,

X = [X1, X
′
2]
′, β(τ) = (β1(τ), β2(τ)′)′. (17)

We can now decompose Qτ (Y |X) and X1 using orthogonal projections onto X2 weighted by

w̃τ (X), just as can be done for weighted least squares mean regression:

Qτ (Y |X) = X ′
2πQ + qτ (Y |X), such that E[w̃τ (X) ·X2 · qτ (Y |X)] = 0, (18)

X1 = X ′
2π1 + V1, such that E[w̃τ (X) ·X2 · V1] = 0. (19)

In this decomposition, qτ (Y |X) and V1 are residuals created by a weighted linear projection

of the CQF, Qτ (Y |X), and X1 on X2, respectively, using w̃τ (X) as weight.7 Then, standard

mathematics for least squares gives

β1(τ) = arg min
β1

E
[
w̃τ (X) (qτ (Y |X)− V1β1)2

]
, (20)

and also

β1(τ) = arg min
β1

E
[
w̃τ (X) (Qτ (Y |X)− V1β1)2

]
. (21)

This shows that β1(τ) can be interpreted as the “partial quantile correlation coefficient” in

the sense that it can be obtained from a regression of the CQF, Qτ (Y |X), on X1, once we have

partialled out the effect of X2. Both the partialling-out and second-step regressions are weighted

by the QR weighting function.

Figure 4 shows partial quantile correlation plots for the effect of schooling on wages, adjusting

for the effect of a quadratic function of potential experience.8 For this example the sample age

6The remainder term is |erτ (X)| =
��w̃τ (X)− 1

2
· fετ (0|X)

�� =
��� 12
R 1

0
(fετ (u ·∆τ (X, β(τ))|X) du− fετ (0|X))du

��� ≤
1
2
· |∆τ (X, β(τ))| ·

��f̄ ′
�� · R 1

0
u · du = 1

4
· |∆τ (X, β(τ))| ·

��f̄ ′
�� .

7Thus, πQ =E [w̃τ (X)X2X
′
2]
−1E [w̃τ (X)X2Qτ (Y |X)] and π1 =E [w̃τ (X)X2X

′
2]
−1E [w̃τ (X)X2X1].

8Potential experience is defined in the standard way as age - years of schooling - 6.
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range is extended to 30-54 to increase the range of variation of potential experience, and the

sample is restricted to white men.9 The points in the figure correspond to the scatterplot of

the partial residuals of the CQF of log-earnings and schooling for the 0.10, 0.25, 0.50, 0.75 and

0.90 quantiles, i.e. qτ (Y |X) plotted against V1; while the solid line represents the partial QR

slope. In this example, the partial CQF of log-earnings given schooling looks to be close to

linear for every quantile. The dashed line is a counterfactual QR with the same slope as for

schooling without controls. As for conventional least squares estimates (see bottom right panel),

the omission of experience causes downward bias in the coefficient of schooling for every quantile,

since experience and schooling are negatively correlated and experience raises wages.

2.5 Omitted Variables Bias

The previous discussion suggests we can use a reasoning process much like that for OLS when

analyzing omitted variables bias in the context of QR. Here we use the least squares interpre-

tation of QR to construct formal relationship between “long” QR coefficients and “short” QR

coefficients. In particular, suppose we are interested in a quantile regression with explanatory

variables X = [X ′
1, X ′

2]
′, but X2 is not available, e.g. ability in the wage equation. We run QR

on X1 only, obtaining the coefficient vector

γ1(τ) = arg min
γ1

E[ρτ (Y −X ′
1γ1)]. (22)

The long regression coefficient vectors are (β1(τ), β2(τ)), defined by

(β1(τ)′, β2(τ)′)′ = arg min
β1,β2

E[ρτ (Y −X ′
1β1 −X ′

2β2)]. (23)

Finally, it is useful to define a remainder term

Rτ (X) = Qτ (Y |X)−X ′
1β1(τ), (24)

equal to the residual of the CQF, given both X1 and X2, not explained by the linear function

of X1 in the long QR. If the CQF is linear, then Rτ (X) = X ′
2β2(τ).

The following theorem describes the relationship between γ1(τ) and β1(τ).

Theorem 3 (Long and Short Coefficients) Suppose that the conditions of Theorem 1 hold

and γ1(τ) is uniquely defined by (22). Then, 1.

γ1(τ) = arg min
γ1

E[w̃∗τ (X) ·∆2
τ (X, γ1)], (25)

9The inclusion of black men complicates estimation of the weights and CQF because of small cells.
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where ∆τ (X, γ1) = X ′
1γ1 −Qτ (Y |X), ετ = Y −Qτ (Y |X), and

w̃∗τ (X) =
1
2

∫ 1

0
fετ (u ·∆τ (X, γ1(τ))|X)du . (26)

2. If E[w̃∗τ (X) ·X1X
′
1] is invertible, γ1(τ) = β1(τ) + B1(τ), where

B1(τ) = E[w̃∗τ (X) ·X1X
′
1]
−1E[w̃∗τ (X) ·X1Rτ (X)]. (27)

As with OLS short and long calculations, the omitted variables formula in this case shows the

short QR coefficients to be equal to the corresponding long QR coefficients plus the coefficients

in a weighted projection of omitted effects on included variables. While the parallel with OLS

seems clear, there are two complications in the QR case. First, the effect of omitted variables

appears through the remainder term, Rτ (X). In practice, it seems reasonable to think of this

as being approximated by the omitted linear part, X ′
2β2(τ). Second, the regression of omitted

variables on included variables is weighted by w̃∗τ (X), while for OLS it is unweighted.10

3 Large Sample Properties of QR and Robust Inference Under

Misspecification

In this section, we study the consequences of misspecification for large sample inference on the

quantile regression process

β̂(τ) = arg min
β∈Rd

1
n

n∑

i=1

ρτ (Yi −X ′
iβ), τ ∈ T ≡ closed subinterval of (0, 1). (28)

The QR process β̂(•), viewed as a function of the probability index τ , is a regression general-

ization of the quantile processes and quantile-quantile plots used in univariate and two-sample

treatment control problems, cf. Doksum (1974). To see this, suppose the regressor is a dummy

for receiving a treatment, denoted D, so we have X = (1, D)′. Then, the components of the

quantile regression process β̂(•) = (β̂1(•), β̂2(•))′ measure easily interpreted quantities. In par-

ticular, the intercept β̂1(•) measures the quantile function in the control group, and the slope

β̂2(•) measures the quantile treatment effect (as a function of the probability τ). When the

regressors are continuous, β̂2(•) measures the quantile treatment effect as a response to a unit
10Note that the omitted variables bias formula derived here can be used to determined the bias from measure-

ment error in regressors, by identifiying the error as the omitted variable. For example, classical measurement

error is likely to generate an attenuation bias in QR as well as OLS estimates. We thank Arthur Lewbel for

pointing this out.
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change in the treatment. Under misspecification, the QR slope process, β̂2(•), should be inter-

preted as approximating the quantile treatment effect, while β̂1(•) approximates the quantile

function in the control group, in the sense stated in Theorem 1.

Previous studies of the QR process β̂(•) focused on the linear location or scale shift mod-

els, or Pitman deviations from these models. See especially Koenker and Machado (1999),

Gutenbrunner and Jureckova (1992), Gutenbrunner, Jureckova, Koenker, Portnoy (1993). The

first purpose of this section is to extend previous limit theory for the QR process to allow for

misspecification of any type. The second purpose is to analyze the consequences of misspecifica-

tion for currently used inference tools, and derive inference procedures that remain valid under

misspecification.

3.1 Basic Large Sample Properties

The following conditions are used to insure consistency:

A.1 (Yi, Xi, i ≤ n) are iid on the probability space (Ω,F , P ) for each n.

A.2 The conditional density fY (y|X = x) exists P -a.s.

A.3 E ‖X‖ < ∞, and for all τ ∈ T , β(τ) defined to solve

E
[
(τ − 1{Y ≤ X ′β(τ)})X]

= 0 (29)

is the unique solution in Rd.

Theorem 4 (Consistency of QR Process) Under conditions A.1-A.3,

sup
τ∈T

‖β̂(τ)− β(τ)‖ = op(1). (30)

The following additional conditions are imposed to obtain asymptotic normality:

A.4 The conditional density fY (y|X = x) is bounded and uniformly continuous in y, uniformly

in x over the support of (Y, X).

A.5 J(τ) ≡ E fY (X ′β(τ)|X)XX ′ is positive definite and finite for all τ , and E ‖X‖2+ε < ∞
for some ε > 0.

12



Theorem 5 (Gaussianity of QR Process) Under A.1-A.5, we have that

J(•)√n
(
β̂(•)− β(•)

)
= − 1√

n

n∑

i=1

(• − 1{Yi ≤ X ′
iβ(•)}) Xi + op(1)

converges weakly to a tight zero mean Gaussian process z(•), in the space of bounded function

`∞(T ), where z(•) is defined by its covariance function Σ(τ, τ ′) ≡ E {z(τ)z(τ ′)′}, where

Σ(τ, τ ′) = E [
(
τ − 1

{
Y < X ′β(τ)

}) (
τ ′ − 1

{
Y < X ′β(τ ′)

})
XX ′]. (31)

When the model is correctly specified, i.e. Qτ (Y |X) = X ′β(τ), then

Σ(τ, τ ′) = Σ0(τ, τ ′) ≡ [min(τ, τ ′)− ττ ′] · E [XX ′]. (32)

In general, Σ(·, ·) 6= Σ0(·, ·).

The proof of this result (in the appendix) is of independent interest, since it does not rely on

either convexity arguments, which are not applicable for the process case, or explicit chaining

arguments, which are case-specific and therefore difficult to establish for all QR problems (see

e.g. Portnoy, 1991). In contrast, the proof relies primarily on the fact that the functional class

{1{Y ≤ X ′β}, β ∈ Rd} is Donsker. Thus, the theorem easily extends to a wide range of cases

where a uniform central limit theorem holds for this functional class. In particular, extensions

to strong, uniformly mixing, and various Markovian data are immediate.

Theorem 5 allows for misspecification and imposes little structure on the underlying con-

ditional quantile function Qτ (Y |X). For example, smoothness of Qτ (Y |X) in X, which is

needed to pursue the fully nonparametric estimation approach, is not needed. Theorem 5

also has important consequences for general inference on the QR process, since it implies that

(EXX ′)−1Σ(τ, τ ′) is not proportional to the covariance function of the standard d-dimensional

Brownian bridge [min(τ, τ ′)− ττ ′] · I, unlike in the correctly specified case, where

(EXX ′)−1Σ0(τ, τ ′) = [min(τ, τ ′)− ττ ′] · I, (33)

which in turn implies that the conventional inference methods developed in Koenker and Machado

(1999) do not apply under misspecification. Moreover, the problem of a nonstandard covariance

function cannot be alleviated by the Khmaladzation techniques implemented in Koenker and

Xiao (2002). We therefore rely on Theorem 5 to develop general inference methods on the QR

process that are robust to misspecification.

An important though previously known corollary of Theorem 5 is that the conventional

standard errors used for basic pointwise inference are not robust to misspecification. This follows
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from the fact that the covariance kernel Σ(τ, τ ′) generally differs from Σ0(τ, τ ′). In particular,

we have:

Corollary 1 (Finite-Dimensional Limit Theory) Under A.1-A.5, for a finite collection

τk ∈ T , k = 1, ..., K, the regression quantile statistics
√

n(β̂(τk)−β(τk)) are asymptotically jointly

normal, with asymptotic variance given by J(τk)−1Σ(τk, τk)J(τk)−1 and asymptotic covariance

between the k-th and l-th subsets equal to J(τk)−1Σ(τk, τl)J(τl)−1. Under correct specification

Σ(·, ·) is replaced with Σ0(·, ·) in these expressions.

Chamberlain (1994) and Hahn (1997) give this result for a single quantile, that is for a given

τ ∈ T ,
√

n(β̂(τ)− β(τ)) d−→ N
(
0, V (τ) ≡ J−1(τ)Σ(τ, τ)J−1(τ)

)
.11 Under correct specification

the variance formula simplifies to V0(τ) ≡ J−1(τ)τ(1− τ)E [XX ′]J−1(τ). Hence commonly re-

ported estimates of V0(τ) are inconsistent for V (τ) under misspecification except for the median,

i.e. τ = 0.5. (In this case, the two formulae coincide because [τ − 1{Y ≤ X ′β(τ)}]2 = 1/4 =

τ(1− τ) for τ = 0.5). Also, since the difference between V0(τ) and V (τ) is

(1− 2τ) · J(τ)−1 · E ((1{Y ≤ X ′β(τ)− 1{Y ≤ Qτ (Y |X)}) ·XX ′) · J(τ)−1, (34)

we have that, for the same degree of misspecification, the difference grows as we move away

from the median and it can be positive or negative depending on the sign of specification error

and its correlation with the elements of XX ′. For example, if X is one-dimensional and Y

is positive, then for τ < 1/2 the difference between V (τ) and V0(τ) will be positive if the

corresponding conditional quantile is lower than the linear approximation for higher absolute

values of the regressor, and negative otherwise, i.e. if the conditional quantile is above the linear

approximation for these values.

Table 1 illustrates these basic implications by reporting estimates of the schooling coefficients

and their asymptotic standard errors, using the two alternative formulae V0(τ) and V (τ), for the

empirical example considered in the previous section. Panel A reports QR and OLS coefficients

from regressions of log-earnings on schooling for the 1980, 1990 and 2000 census samples, while

Panel B presents the same schooling coefficients from a model that also controls for race and a

quadratic function of potential experience. The standard errors were estimated using equations

(44)-(46), below. The alternative estimates of the standard errors are fairly close, with the

biggest differences for tail quantiles (0.10 and 0.90). Here, the commonly reported standard

error is biased downwards since, for the high levels of schooling where misspecification is more

severe, the conditional quantile is below the linear approximation for the 0.10 quantile, while it

is above the linear approximation for the 0.90 quantile.
11See also Kim and White (2002).
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3.2 Simultaneous (Uniform) Inference

An alternative to pointwise inference is Kolmogorov-type uniform inference on the QR pro-

cess. Uniform inference provides a parsimonious strategy for the study of changes in an entire

response distribution. Here we derive robust uniform confidence regions that allow us to si-

multaneously test, in the Scheffé sense, a variety of potentially multi-faceted hypotheses about

conditional distributions without compromising significance levels. Examples include specifica-

tion tests (omission of variables), stochastic dominance, constant treatment effects, and changes

in distribution.

Of course, a finite number of quantile regression coefficients are always estimated in prac-

tice. Nevertheless, it is still convenient to treat the quantile-specific estimates as realizations

of a stochastic process rather than as a large vector of parameters. To see this, consider the

construction of joint confidence intervals for, say, d = 2 of the coefficients from a quantile regres-

sion, estimated at K = 20 different quantiles (i.e., increments of .05). The number of variance

and covariance terms to be estimated is dK(dK + 1)/2 = 820. The functional limit result in

Theorem 5 allow us to avoid this high-dimensional estimation problem.12 This approach also

leads to a convenient graphical inference procedure, illustrated below.

The simplest use of the quantile regression process is to test linear hypotheses of the form:

H0 : R(τ)′β(τ) = r(τ) for all τ ∈ T . (35)

For example, we might want to test whether the coefficient corresponding to the variable j is

zero over the whole quantile process, i.e. whether

βj(τ) = 0 for all τ ∈ T . (36)

This corresponds to R(τ) = [0, ..., 1, ...0]′ with 1 in the j − th position and r(τ) = 0. Similarly,

we may want to construct uniform or simultaneous confidence intervals for parameters or for

linear functions of parameters of the form

R(τ)′β(τ)− r(τ) for all τ ∈ T . (37)

The following corollaries facilitate both hypotheses testing and the construction of confidence

intervals in this framework:
12Formally, this is because the empirical quantile regression process

√
n(β̂(•) − β(•)) asymptotically behaves

continuously, so that
√

n(β̂(•)−β(•)) is approximately equivalent to a large finite collection of regression quantiles
√

n(β(τk)− β(τk)), k = 1, ..., K, for a suitably fine grid of quantile indices TK = {τk, k = 1, ..., K} ⊂ T .
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Corollary 2 (Kolmogorov Statistic) Under the conditions of Theorem 5, and (35), for any

V̂ (τ) = V (τ) + op(1) uniformly in τ ∈ T ,

Kn = sup
τ∈T

∣∣∣∣
[
R(τ)′V̂ (τ)R(τ)

]−1/2√
n

(
R(τ)′β̂(τ)− r(τ)

)∣∣∣∣ →d K, (38)

where |x| denotes the sup norm of a vector, i.e. |x| = maxj |xj |, and K is a random variable

with an absolutely continuous distribution, defined as

K ≡ sup
τ∈T

∣∣∣
[
R(τ)′V (τ)R(τ)

]−1/2
R(τ)′J(τ)−1z(τ)

∣∣∣ . (39)

Corollary 3 (General Uniform Inference) Then, for κ(α) denoting the α-quantile of K and

κ̂(α) any consistent estimate of it,

lim
n→∞P

{√
n

(
R(τ)′β(τ)− r(τ)

) ∈ În(τ), for all τ ∈ T
}

= 1− α, (40)

where

În(τ) =
[
u(τ) :

∣∣∣[R(τ)V̂ (τ)R(τ)′]−1/2√n
(
R(τ)′β̂(τ)− r(τ)− u(τ)

)∣∣∣ ≤ κ̂(1− α)
]
. (41)

For example, when R(τ)′β(τ)− r(τ) is scalar, we have

În(τ) =
[

R(τ)′β̂(τ)− r(τ)± κ̂(1−α)[R(τ)V̂ (τ)R(τ)′]1/2
√

n

]
. (42)

The critical values κ̂(α) can easily be obtained by subsampling in cross-sectional applications of

the sort considered here. Let I1, ..., IB be B randomly chosen subsamples of (Yi, Xi, i ≤ n) of

size b, where b → ∞, b/n → 0, B → ∞ as n → ∞. First, compute the test statistic for each

subsample

KIj ,b = sup
τ∈T

∣∣∣
[
R(τ)′V̂ (τ)R(τ)

]−1/2√
bR(τ)′

(
β̂Ij ,b(τ)− β̂(τ)

) ∣∣∣, (43)

where β̂Ij ,b(τ) is the QR estimate using subsample Ij . Then, define κ̂(α) as the α-quantile of

the subsampling sequence {KI1,b, ..., KIB ,b}. If recomputation of quantiles is not desirable, one

can replace
√

b(β̂Ij ,b(τ)− β̂(τ)) by its first order approximation, which is a re-centered one-step

estimator: ÂIj ,b(τ) = −Ĵ(τ)−1 1√
b

∑
i∈Ij

(τ − 1(Yi ≤ X ′
iβ̂(τ))Xi.

Corollary 4 (Consistent κ̂(α)) The estimator κ̂(α), described above, is consistent for κ(α).

As noted above, in practice we replace the continuum of quantile indices T by a finite-

grid TKn , where the distance between adjacent grid points goes to zero as n → ∞. Since the
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inference processes considered are stochastically equicontinuous, this replacement does not affect

the asymptotic theory.

To make previous inference methods operational, we also need uniformly consistent estima-

tors for the components of the variance formulae:

Σ̂(τ, τ ′) =
1
n

n∑

i=1

(τ − 1{Yi ≤ X ′
iβ̂(τ)})(τ ′ − 1{Yi ≤ X ′

iβ̂(τ ′)}) ·XiX
′
i, (44)

Σ̂0(τ, τ ′) =
[
min(τ, τ ′)− ττ ′

] · 1
n

n∑

i=1

XiX
′
i, (45)

Ĵ(τ) =
1

2nhn

n∑

i=1

1{|Yi −X ′
iβ̂(τ)| ≤ hn} ·XiX

′
i, (46)

where hn is such that hn → 0 and h2
nn → ∞.13 The next result establishes the uniform

consistency of these estimators.

Corollary 5 The estimators shown in equations (44)-(46) are uniformly consistent in (τ, τ ′) if

E‖X‖4 < ∞.

Figure 5 illustrates uniform inference in our empirical example. The figure shows robust

pointwise and uniform 95% confidence intervals for the schooling coefficient β̂(•) from quantile

regressions of log-earnings on schooling, race and a quadratic function of experience, using data

from the 1980, 1990 and 2000 censuses. The horizontal lines indicate the corresponding OLS

estimates. The uniform bands were obtained by subsampling using 200 repetitions (B = 200)

with subsample size b = 5n2/5, and a grid of quantiles TKn = {.1, .15, ..., .9}.14

The figure suggests the returns to schooling were low and essentially flat across quantiles

in 1980, (except for τ > .85, where they shift up), a finding similar to Buchinsky’s (1994)

using Current Population Surveys (CPS) for this period. On the other hand, the returns

increased sharply and became more heterogeneous in 1990 and especially in 2000, a result we

also confirmed in the CPS. Since the uniform confidence bands do not contain a horizontal line,

we can reject the hypothesis of homogeneous returns to schooling for 1990 and 2000. Moreover,

the uniform band for 1990 does not overlap with the 1980 band, suggesting a marked and

statistically significant change in the relationship between schooling and the conditional wage

distribution in this period.15 A variety of other hypotheses regarding the returns to schooling

can similarly be tested using Figure 5. Note also that the uniform bands are not much wider than
13Following Koenker (1994), we use Hall and Sheather’s (1988) rule setting hn = c · n−1/3.
14Chernozhukov (2002) discusses subsampling for QR inference in greater detail.
15Using Bonferoni bounds, our graphical test that looks for overlap in two 95% confidence bands has a sig-
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the corresponding pointwise bands due to the high correlation between individual coefficients in

the QR process.

4 Estimates of Changing Residual Inequality

One of the most significant and widely-studied developments in the American economy in the

last three decades is the changing wage structure. The broad pattern has been one of increasing

inequality, as measured by either the variance or the gap between upper and lower quantiles of

the wage distribution. For example, Katz and Autor (1999) note that the 90-10 ratio (i.e. the

ratio of the .9 and .1 quantiles) increased by 25 percent from 1979 to 1995. Wage inequality

appears to have continued to increase since 1995, though the recent inequality trend is less

clear-cut due in part to changes in the way US wage data are collected (Lemieux, 2003).

The increase in wage inequality is typically described as arising in two ways: increasing wage

differentials associated with observed worker characteristics such as education and experience,

and increased dispersion conditional on these characteristics. The first, known as “between-

group inequality,” has increased as a consequence of changes in the distribution of characteristics,

and especially changes in the economic returns to these characteristics. For example, increases

in the economic return to schooling have been an important factor working to increase overall

wage dispersion. The second, known as within-group or “residual inequality,” is – by definition

– not directly linked to changes in the distribution of covariates or their returns, though increases

in residual inequality are sometimes said to reflect increasing returns to “unobserved skills” (as

in Juhn, Murphy, and Pierce, 1993).

An appealing feature of quantile regression as a tool for understanding wage inequality is that

QR coefficients can easily be used to construct a measure of within-group or residual inequality.

To see this, note that if we approximate Qτ (Y |X) by X ′β(τ), with log wages as the dependent

variable, then the within-group τ to τ ′ ratio is provided by X ′[β(τ)−β(τ ′)]. This fact highlights

a key difference between quantile regression and mean regression: a ceteris paribus increase in

an OLS regression coefficient increases a variance-based measure of between-group inequality,

without changing within-group inequality as measured by the residual variance. In contrast,

a ceteris paribus increase in any non-central quantile, τ, increases within-group inequality as

measured by the spread from the τ to 1− τ quantiles.

nificance level of approximately 10% (1 − .952). A test with exactly 5% size can be obtained by constructing

confidence bands for the difference in estimated quantiles across years, again using the procedure outlined in

section 3.2.
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4.1 The QR Summary Picture

Our goal in this brief empirical section is to use linear QR to measure changing residual in-

equality in the 1980, 1990, and 2000 censuses. To mitigate the impact of changes in labor force

participation, we continue to focus on a prime-age sample consisting of US-born white and black

men aged 40-49.

Figure 6 provides a compact QR-generated summary of the evolution of residual inequality

from 1980 through 2000. The figure plots the averaged (across covariates) conditional quantiles

of earnings, as predicted from a QR model controlling for schooling, race, and a quadratic

function of potential experience. The leftmost panel shows the unconditional quantiles, i.e., the

marginal earnings distribution; the middle panel conditions on covariate means for each year;

the third panel fixes the covariate means at their 1980 values.16 Each panel shows quantiles for

the three census years, plotted using a line-width determined by the uniform inference bands for

fitted values derived from our QR estimates of the quantile process. To facilitate a comparison

of inequality while holding location fixed, the line for each year is centered at median earnings

for that year.

The largest shift in unconditional distributions occurred between 1980 and 1990, primarily

in the lower half of the earnings distribution. This shift is statistically significant, as can be

seen from the fact that the bands for these two years do not overlap. A comparison of Panels B

and C with Panel A shows the residual distribution shifting more smoothly than the marginal

distribution. This is because conditioning smooths out some of the heaping commonly found in

survey-based earnings data. Panel B shows a clear increase in residual inequality from 1980 to

1990, with a continuing increase from 1990 to 2000. An interesting feature of the latter increase,

however, is that it appears to have occurred only in the upper half of the wage distribution.

Below the median, the conditional quantiles for 1990 and 2000 overlap. Panel C shows a similar

pattern when the covariate distribution is held fixed. Autor, Katz, and Kearney (2004) report

a similar asymmetry in their analysis of CPS data, with virtually all inequality growth in the

1990s in the upper half of the wage distribution.

4.2 Accuracy of the QR Picture

While Figure 6 provides a useful distillation of the QR results, we are especially interested in

whether the linear QR model accurately captures key features of changing residual inequality in

this period, both overall and for specific groups. The large census data sets allow us to compare
16Panel C uses a slightly different schooling recode to maximize comparability; see the appendix for details.
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QR estimates with the corresponding non-parametric estimates of the CQF. Paralleling the

analysis of 1980 census data in the previous section, we begin our analysis of changing residual

inequality by assessing the quality of the QR fit to the CQF for 1990 and 2000 census data.

Figures 7 and 8 show the QR fit to the CQF in both census data sets, for a model where the sole

regressor is years of schooling. As for 1980, the fit is reasonably good at all quantiles, though

somewhat worse at the .75 and .9 quantiles than lower down, especially for 2000. Again, the

corresponding QR coefficient estimates are reported in Panel A of Table 1.

The figures also compare the QR regression line to the Chamberlain MD line, obtained from

a histogram-weighted fit of the linear model to the CQF. Again, as for 1980, the MD and QR

lines are almost indistinguishable, suggesting the importance weights are flat and/or the true

CQF is not too far from linear. More evidence on the nature of the weighting function can be

seen in Figures 9 and 10, which plot importance weights and histogram weights, and Figures 11

and 12, which plot the importance weights and density weights. These figures establish that

the conditional density of Y given X, and hence the QR importance weights, are indeed fairly

flat at all quantiles and in both years.

To assess the performance of QR as a tool for measuring residual inequality, Table 2 reports

alternative inter-quantile spreads constructed from the CQF and QR. Panel A reports estimates

for the whole sample, averaged using the sample distribution of the covariates. This panel shows

an important overall increase in wage inequality, which cannot be totally explained by changes

in the distribution of and returns to the covariates. The QR 90-10 spread tracks the CQF 90-10

spread remarkably well; the latter runs from 1.20 to 1.43, while QR implies a 90-10 spread

ranging from 1.19 to 1.45 in the model that controls for schooling, race and experience. Results

are equally good for the inter-quartile range and the two-half-spreads, and for the model that

only controls for schooling. The asymmetry of residual inequality growth since 1990 can be

seen by comparing the change in the 90-50 and 50-10 spreads.

The evolution of residual inequality for specific schooling groups provides a more stringent

test of the QR approach. Panels B and C of Table 2 report results from a model that includes

schooling with and without potential experience and race, evaluated for specific schooling groups.

The 90-10 spread based on the CQF for high school graduates (12 years of schooling) moves from

1.09 in 1980 to 1.26 in 1990 to 1.29 in 2000, when race and experience are included. QR fitted

values similarly show an increase from 1.17 in 1980 to 1.31 in 1990 and 1.32 in 2000. Thus, like

the CQF for high school graduates, QR shows an increase in residual inequality of around .14

in the first decade, with essentially no change in the second. The results are similar without
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controlling for race and experience. The evolution of the inter-quartile range appears to have

been broadly similar to that of the 90-10 spread for the high school group.

While residual inequality grew little for high school graduates in the 1990s, college graduates

(16 years of schooling) saw a substantial increase in wage dispersion. This echoes Autor, Katz,

and Kearney’s (2004) comparison of college and high school graduates using the CPS. Again,

QR captures the essential features of this pattern remarkably well. The 90-10 spread estimated

from the CQF for college graduates increased from 1.26 to 1.44 in the 1980s and then to 1.55 in

the 1990s. The corresponding QR estimates imply an increase from 1.19 to 1.38 in the 1980s,

and then to 1.57 in the 1990’s. The QR estimates also capture about two-thirds of the growth

in residual inequality over the entire period for the other spreads considered. The ability of

QR to track these changes seems especially impressive given the changes (detailed in the data

appendix) in the underlying schooling variable across censuses.

4.3 QR-based measures of inequality

As with variance-based measures of dispersion, we can use quantile spreads and their QR approx-

imations to provide convenient summary measures of residual inequality. A natural measure al-

ready discussed is the inter-quantile range: IQRτ,τ ′ [Y |X] ≈ X ′β(τ)−X ′β(τ ′) = X ′[β(τ)−β(τ ′)],

where τ is some high index, for example 90%, and τ ′ is some low index, for example 10%. A

summary or typical measure of residual inequality is the median IQR,

RIτ,τ ′ = Med
{
IQRτ,τ ′ [Y |X]

} ∼= Med
{
X ′β(τ)−X ′β(τ ′)

}
. (47)

On the other hand, a reasonable measure of between-group inequality can be given by the

inter-quantile range of the conditional median:

BIτ,τ ′ = IQRτ,τ ′{Med[Y |X]} ∼= IQRτ,τ ′{X ′β(1/2)}, (48)

which measures the variation in the central location of the conditional distribution.

To grade the relative importance of within and between-group inequality, we can define the

following “residual-to-total” ratio and its QR approximation:

RTRτ ,τ ′ =

[
Med

{
IQRτ,τ ′ [Y |X]

}]2

[
Med

{
IQRτ,τ ′ [Y |X]

}]2 +
[
IQRτ,τ ′{Med[Y |X]}]2 (49)

∼= [Med {X ′β(τ)−X ′β(τ ′)}]2
[Med {X ′β(τ)−X ′β(τ ′)}]2 +

[
IQRτ,τ ′{X ′β(1/2)}]2 . (50)
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The RTR measure can be motivated by an analogy to traditional analysis of variance models,

where the ratio of residual to total variance is “1−R2”, i.e.

E{V [Y |X]}
E{V [Y |X]}+ V {E[Y |X]} . (51)

RTR replaces standard deviation with inter-quantile range as a measure of dispersion and means

with medians as a measure of location. In fact, in the classical normal location-shift model,

Y = X ′β + U, the two measures coincide (this is the reason why the squares are present in the

definition of RTR), but they would be different in general.17 RTR is nonnegative by construction

and satisfies the natural restrictions

0 ≤ RTRτ ,τ ′ ≤ 1. (52)

RTR necessarily equals 1 if Y is independent of X (no between-group inequality) and equals 0

when conditional dispersion is zero (no within-group inequality).

Table 3 compares ANOVA and quantile-based estimates of between-group inequality, within-

group inequality, and the relative importance of within-group inequality for both a non-parametric

and a linear model of log-earnings that includes schooling, race and potential experience as co-

variates. QR and CQ-based measures are generally closer for within-group inequality than for

between-group inequality. Both QR and CQ-based measures suggest a sharp increase in within-

group and between-group inequality, especially in the upper tail. For example, RI90,50 and

BI90,50 grew much faster than RI50,10 and BI50,10. On the other hand, there is no clear trend

in the relative importance of within-group inequality. For example, the QR-based RTR90,10

go from 80% to 81% between 1980 and 1990, and then back to 78% in 2000. Some of these

general trends are also captured by the standard ANOVA-based measures, but the latter does

not capture the asymmetric changes in the upper and lower tails.

5 Summary and conclusions

We have shown how linear quantile regression provides a weighted least squares approximation

to an unknown and potentially nonlinear conditional quantile function, much as OLS provides

a least squares approximation to a nonlinear CEF. The QR approximation property leads to

partial quantile plots and an omitted variables bias formula, analogous to standard specification

tools for OLS.
17An alternative choice for the denominator is the marginal interquantile range Qτ (Y )−Qτ ′(Y ). However, this

leads to a relative measure that can exceed 1.
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A natural question raised by the relationships explored here is the sensitivity of QR to

changes in sample design. Unlike a postulated-as-true linear model, the nature of the QR

approximation changes in stratified samples. Of course, an OLS regression line has this feature

as well. Like the OLS approximation to a nonlinear CEF, the nature of the weights underlying

the QR approximation to a nonlinear CQF change as the histogram of X changes (though

not otherwise, since the importance weights are a function of X). The role played by the QR

weighting scheme seems like an empirical, application-specific question. In practice, it may be

of interest to use stratification weights to improve the linear QR fit for subpopulations of special

interest. This is a topic we plan to explore in future work.

While misspecification of the CQF functional form does not affect the usefulness of QR, it

does have implications for inference. We have presented a misspecification-robust distribution

theory for the QR process. This provides a foundation for uniform confidence intervals and a

basis for global tests of hypotheses about distribution. The interpretation of such tests is more

subtle, however, when the assumption of correct specification is dropped. The results of a global

test may change as the nature of the QR approximation changes.

Finally, we used the tools here to describe the wage distribution in three censuses, proposing

summary measures of between and within-group inequality. For the most part, linear QR cap-

tures the evolution of the conditional wage distribution remarkably well. Of particular interest

is the finding that the growth of within-group inequality between 1990 and 2000 is largely due to

an expansion of the upper half of the conditional wage distribution and the growing inequality

in the wage distribution of college graduates. Traditional regression-based inequality measures

miss these developments.
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A Appendix: Proofs

A.1 Proof of Theorem 1.

We have that

β(τ) = arg min
β∈Rd

E[ρτ (Y −X ′β)]. (53)

Then, we can subtract E[ρτ (Y − Qτ (Y |X))], without affecting the optimization, because it does not

depend on β and is finite by condition (ii):

β(τ) = arg min
β∈Rd

{E[ρτ (Y −X ′β)]− E[ρτ (Y −Qτ (Y |X))]} . (54)

Write

E [ρτ (ετ −∆τ (X, β))]− E [ρτ (ετ )]

= E [(τ − 1{ετ < ∆τ (X, β)}) (ετ −∆τ (X, β))]− E [(τ − 1{ετ < 0}) ετ ]

= E [(1{ετ < ∆τ (X, β)} − τ)∆τ (X,β)]︸ ︷︷ ︸
I

−E [(1{ετ < ∆τ (X, β)} − 1{ετ < 0}) ετ ]︸ ︷︷ ︸
II

.

(55)

Now, write

I = E [(1{ετ < ∆τ (X, β)} − τ)∆τ (X,β)]

(a)
= E [E [(1{ετ < ∆τ (X, β)} − τ)|X]∆τ (X, β)]

= E [[Fετ (∆τ (X, β)|X)− Fετ (0|X)] ∆τ (X, β)]

(b)
= E

[(∫ 1

0

fετ (u∆τ (X,β)|X)∆τ (X,β)du

)
∆τ (X, β)

]

(c)
= E

[(∫ 1

0

fετ (u∆τ (X, β)|X)du

)
∆2

τ (X, β)
]

(56)

where (a) is by the law of iterated expectations, (b) is by condition (i) (a.s. existence of conditional

density), and (c) is by linearity of the integral. Similarly,

II = E [1{ετ ∈ [0,∆τ (X,β)]} · |ετ |] + E [1{ετ ∈ [∆τ (X, β), 0]} · |ετ |]
= E [1{uτ ∈ [0, 1]} · uτ · |∆τ (X, β)|]

(57)

where
uτ ≡ ετ/∆τ (X, β) if ∆τ (X, β) 6= 0,

uτ ≡ 1 if ∆τ (X, β) = 0.
(58)

Next, note that for the case ∆τ (X, β) 6= 0

fuτ (u|X) · du = fετ (u∆τ (X,β)|X) · |∆τ (X,β)| · du, so (59)

E[1{uτ ∈ [0, 1]}uτ |X] · |∆τ (X,β)| =
[∫ 1

0

ufuτ (u|X)du

]
· |∆τ (X,β)| (60)

=
[∫ 1

0

ufετ (u∆τ (X, β)|X)du

]
·∆2

τ (X, β). (61)
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For cases when ∆τ (X, β) = 0

E[1{uτ ∈ [0, 1]}uτ |X] · |∆τ (X, β)| = 0. (62)

Thus, it follows that

II = E [1{uτ ∈ [0, 1]}uτ |∆τ (X, β)|] = E [E[1{uτ ∈ [0, 1]}uτ |X] |∆τ (X, β)|]

= E

[[∫ 1

0

ufετ
(u∆τ (X,β)|X)du

]
·∆2

τ (X,β)
]

.¥
(63)

A.2 Proof of Theorem 2.

We have to prove that β(τ) that solves

β(τ) = arg min
β∈Rd

E[ρτ (Y −X ′β)], (P1)

is equal to β∗(τ) that solves

β∗(τ) = arg min
β∈Rd

E
[
w̃τ (X) ·∆2

τ (X, β)
]
. (P2)

The FOC for program (P2) is given by

2 E [w̃τ (X) ∆τ (X, β∗(τ)) X] = 0, (64)

where

w̃τ (X) =
1
2

∫ 1

0

fετ (u ·∆τ (X, β(τ))|X) du. (65)

The FOC for program (P1) is given by

I ′ = E [(1{ετ < ∆τ (X,β(τ))} − τ) X] = 0, (66)

which by calculations similar to those in (56) can be written as

I ′
(a)
= E [E [(1{ετ < ∆τ (X, β(τ))} − τ) |X] ·X]

= E [(Fετ (∆τ (X,β(τ))|X)− Fετ (0|X)) ·X]

(b)
= E

[(∫ 1

0

fετ (u∆τ (X,β(τ))|X)∆τ (X,β(τ))du

)
·X

]

(c)
= E

[(∫ 1

0

fετ (u∆τ (X, β(τ))|X)du

)
∆τ (X, β(τ)) ·X

]

(67)

where (a) is by the law of iterated expectations, (b) is by a.s. existence of conditional density, and (c) by

linearity of the integral. By the definition of w̃τ (X)

I ′ = 2 E [w̃τ (X) ∆τ (X,β(τ)) X] = 0. (68)

Finally, note that this is precisely the FOC for program (P2).

Both program (P1) and program (P2) are convex. (P1) has unique solution β(τ) by assumption, which

means it uniquely solves the FOC. Hence since the (P1) and (P2) have the same first order condition, it

follows that β∗(τ) = β(τ) uniquely solves the FOC for both programs. ¥.
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A.3 Proof of Theorem 3.

Taking claim 1 as given, claim 2 is immediate:

γ1(τ) = E [w̃∗τ (X)X1X
′
1]
−1E [w̃∗τ (X)X1(X ′

1β1(τ) + Rτ (X))] (69)

= β1(τ) + E [w̃∗τ (X)X1X
′
1]
−1E [w̃∗τ (X1) X1Rτ (X)] . (70)

It remains to prove claim 1. The first order condition of the quantile regression of Y on X1 in the

population is given by

E [(1{Y ≤ X ′
1γ1(τ)} − τ) X1] = 0, (71)

or for ετ = Y −Qτ (Y |X) and ∆τ (X, γ1(τ)) = X ′
1γ1(τ)−Qτ (Y |X),

E [(1{ετ ≤ ∆τ (X, γ1(τ))} − τ) X1] = 0. (72)

This can be rewritten as

E [E[1{ετ ≤ ∆τ (X, γ1(τ))} − 1{ετ ≤ 0}|X1] X1] = 0, (73)

since P{ετ ≤ 0|X1} = E[P{ετ ≤ 0|X1, X2} |X1] = E[τ |X1] = τ. Write

E[1{ετ ≤ ∆τ (X, γ1(τ))} − 1{ετ ≤ 0}|X1]
(a)
= E[E[1{ετ ≤ ∆τ (X, γ1(τ))} − 1{ετ ≤ 0}|X]|X1]

= E[[Fετ (∆τ (X, γ1(τ))|X)− Fετ (0|X)]|X1]

(b)
= E

[(∫ 1

0

fετ (u∆τ (X, γ1(τ))|X) ∆τ (X, γ1(τ))du

) ∣∣∣X1

]

(c)
= E

[(∫ 1

0

fετ (u∆τ (X, γ1(τ))|X)du

)
∆τ (X, γ1(τ))

∣∣∣X1

]
,

(74)

where (a) is by the law of iterated expectations, (b) is by a.s. existence of conditional density, and (c)

by linearity of the integral. Defining w̃∗τ (X) = 1
2

∫ 1

0
fετ (u∆τ (X, γ1(τ))|X)du, we can rewrite the previous

first order condition as

2 E [E [w̃∗τ (X) ∆τ (X, γ1(τ))|X1] ·X1] = 0, (75)

or, by the law of iterated expectations

2 E [w̃∗τ (X) ∆τ (X, γ1(τ)) ·X1] = 0. (76)

Finally, note that this is precisely the first order condition for the program

γ1(τ) = arg min
γ1∈Rd1

E[w̃∗τ (X) · (X ′
1γ1 −Qτ (Y |X))2].¥ (77)

A.4 Notation for Proofs of Theorems 4 and 5

We use the following empirical processes in the sequel, for W ≡ (Y,X)

f 7→ En [f(W )] ≡ 1
n

n∑

i=1

f(Wi), f 7→ Gn [f(W )] ≡ 1√
n

n∑

i=1

(f(Wi)− E [f(Wi)]). (78)
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If f̂ is an estimated function, Gn

[
f̂(W )

]
denotes 1√

n

∑n
i=1(f(Wi) − E [f(Wi)])f= bf . Other basic nota-

tion and stochastic convergence concepts, such as weak convergence in the space of bounded functions,

stochastic equicontinuity, Donsker classes, and Vapnik-C̆ervonenkis (VC) classes, are used and defined as

in van der Vaart (1998).

A.5 Proof of Theorem 4

Observe that, for each τ in T , β̂(τ) minimizes

Qn(τ, β) ≡ En [ρτ (Y −X ′β)− ρτ (Y −X ′β(τ))] . (79)

Define

Q∞(τ, β) ≡ E [ρτ (Y −X ′β)− ρτ (Y −X ′β(τ))] . (80)

By A.2 and A.3, Q∞(τ, β) is uniquely minimized at β(τ) for each τ in T .

Since by Knight’s identity ρτ (u − v) − ρτ (u) = −(τ − 1{u < 0})v +
∫ v

0
[1{u ≤ s} − 1{u ≤ 0}]ds, we

have, by setting u = Y −X ′β(τ) and v = X ′(β − β(τ)), that

ρτ (Y −X ′β)− ρτ (Y −X ′β(τ)) = −(τ − 1{Y ≤ X ′β(τ)})X ′(β − β(τ))

+
∫ X′(β−β(τ))

0

[1{Y ≤ X ′β(τ) + s} − 1{Y ≤ X ′β(τ)}]ds.
(81)

Thus, it follows that for any β ∈ Rd

|Q∞(τ, β)| ≤ 2 · E|X ′(β − β(τ))| ≤ 2 · E‖X‖ · ‖β − β(τ)‖ < ∞. (82)

We can also show that for any compact set B

Qn(τ, β) = Q∞(τ, β) + op∗(1), uniformly in (τ, β) ∈ T × B. (83)

This statement is true pointwise by the Khinchin LLN. The uniform convergence follows because

|Qn(τ ′, β′)−Qn(τ ′′, β′′)| ≤ C1 · |τ ′ − τ ′′|+ C2 · ‖β′ − β′′‖, (84)

where

C1 = 2 · E‖X‖ · sup
β∈B

‖β‖ < ∞ and C2 = 2 · E‖X‖ < ∞. (85)

Hence the empirical process (τ, β) 7→ Qn(τ, β) is stochastically equicontinuous, which implies the uniform

convergence.

Consider a collection of closed balls BM (β(τ)) of radius M and center β(τ), and let βM (τ) = β(τ) +

δM (τ) · v(τ), where v(τ) = (v1(τ), ..., vd(τ))′ is a direction vector with unity norm ‖v(τ)‖ = 1 and δM (τ)

is a positive scalar such that δM (τ) ≥ M . Then uniformly in τ ∈ T ,

M

δM (τ)
(Qn(τ, βM (τ))−Qn(τ, β(τ)))

(a)

≥ Qn(τ, β∗M (τ))−Qn(τ, β(τ))

(b)

≥ Q∞(τ, β∗M (τ))−Q∞(τ, β(τ)) + op∗(1)

(c)
> εM + op∗(1),

(86)
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for some εM > 0, where (a) follows by convexity in β, for β∗M (τ) on the line connecting βM (τ) and β(τ),

(b) follows by the uniform convergence established in (83), (c) follows by the assumption that β(τ) is the

unique minimizer of Q∞(β, τ) uniformly in τ ∈ T . Hence for any M > 0, the minimizer β̂(τ) must be

within M from β(τ) uniformly for all τ ∈ T , with probability approaching to one. That is, we have that

for any M > 0, ‖β̂(τ)− β(τ)‖ ≤ M uniformly for all τ ∈ T with probability approaching to one. ¥

A.6 Proof of Theorem 5

First, by the computational properties of β̂(τ), for all τ ∈ T , cf. Theorem 3.3 in Koenker and Bassett

(1978): ∥∥∥En

[
ϕτ (Y −X ′β̂(τ))X

] ∥∥∥ ≤ const ·
(

supi≤n ‖Xi‖
n

)
, (87)

where ϕτ (u) = τ − 1{u < 0}. Note that E‖Xi‖2+ε < ∞ implies supi≤n ‖Xi‖ = op∗(n1/2), since

P

(
sup
i≤n

‖Xi‖ > n1/2

)
≤ nP (‖Xi‖ > n1/2) ≤ nE‖Xi‖2+ε/n

2+ε
2 = o(1). (88)

Hence uniformly in τ ∈ T ,

En

[
ϕτ (Y −X ′β̂n(τ))X

]
= op∗

(
n−1/2

)
. (89)

Second, (τ, β) 7→ Gn [ϕτ (Y −X ′β) X] is stochastically equicontinuous over B × T , where B is any

compact set, with respect to the L2(P ) pseudometric

ρ((τ ′, β′), (τ ′′, β′′)) ≡ max
j∈1,...,d

√
E

[
(ϕτ ′ (Y −X ′β′) Xj − ϕτ ′′ (Y −X ′β′′)Xj)

2
]
, (90)

for j ∈ 1, ..., d indexing the components of the vector X. This is because the functional class F =

{1{Y ≤ X ′β}, β ∈ B} is a VC subgraph class and hence also Donsker class, with envelope 2. Hence

the functional class T − F is also Donsker with envelope equal 2, by Theorem 2.10.6 in Van der Vaart

and Wellner (1996). The product of T − F with X also forms a Donsker class with a square integrable

envelope 2 · maxj∈1,..d |X|j , by Theorem 2.10.6 in Van der Vaart and Wellner (1996). The stochastic

equicontinuity then is a part of being Donsker.

The uniform consistency supτ∈T ‖β̂(τ)− β(τ)‖ = op∗(1) implies

sup
τ∈T

ρ
(
(τ, b(τ)), (τ, β(τ))

)∣∣∣∣
b(τ)=β̂(τ)

= op∗(1), (91)

and therefore by stochastic equicontinuity of (τ, β) 7→ Gn [ϕτ (Y −X ′β)X] we have that

Gn

[
ϕτ (Y −X ′β̂(τ))X

]
= Gn [ϕτ (Y −X ′β(τ))X] + op∗(1), uniformly in τ . (92)

In order to show (91) note that for f̄ denoting the upper bound on fY (y|X = x), application of the
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Hölder’s inequality, a Taylor expansion and Cauchy-Schwarz inequality, give the series of inequalities:

sup
τ∈T

ρ
(
(τ, b(τ)), (τ, β(τ))

)

= sup
τ∈T

max
j∈1,...,d

√
E

[
(ϕτ (Y −X ′b(τ)) Xj − ϕτ (Y −X ′β(τ))Xj)

2
]

≤ sup
τ∈T

max
j∈1,...,d

((
E

[
|ϕτ (Y −X ′b(τ))− ϕτ (Y −X ′β(τ))|

2(2+ε)
ε

])ε

·
(
E

[
|Xj |2+ε

])2
) 1

2(2+ε)

≤ sup
τ∈T

max
j∈1,...,d

(E |1{Y ≤ X ′b(τ)} − 1{Y ≤ X ′β(τ)}|) ε
2(2+ε) ·

(
E |Xj |2+ε

) 1
2+ε

≤ sup
τ∈T

(
E

∣∣f̄ ·X ′(b(τ)− β(τ))
∣∣) ε

2(2+ε) · (E‖X‖2+ε)
1

2+ε

≤ const · sup
τ∈T

(
f̄ · (E‖X‖2)1/2 · ‖b(τ)− β(τ)‖

) ε
2(2+ε)

,

(93)

where the second inequality follows by binomiality of |ϕτ (Y −X ′b(τ))− ϕτ (Y −X ′β(τ))|. Then, eval-

uating at b(τ) = β̂(τ)

sup
τ∈T

ρ
(
(τ, b(τ)), (τ, β(τ))

)∣∣∣∣
b(τ)=β̂(τ)

≤ const · sup
τ∈T

‖β̂(τ)− β(τ)‖ ε
2(2+ε) = op∗(1), (94)

by uniform convergence and ε > 0.

Third, by a Taylor expansion, uniformly in τ ∈ T

E [ϕτ (Y −X ′β)X]
∣∣∣

β=β̂(τ)
= E [fY (X ′b(τ)|X)XX ′]

∣∣∣
b(τ)=β∗(τ)

(β̂(τ)− β(τ)), (95)

where β∗(τ) is on the line connecting β̂(τ) and β(τ) for each τ . β̂(τ) is uniformly consistent by Theorem

4, hence β∗(τ) is also uniformly consistent. Thus by A5, i.e. the uniform continuity and boundedness of

the mapping y 7→ fY (y|x), uniformly in x over the support of X, it follows that

E [fY (X ′b(•)|X)XX ′]
∣∣∣
b(•)=β∗(•)

= E [fY (X ′β(•)|X)XX ′]︸ ︷︷ ︸
J(•)

+o(1) in `∞(T ). (96)

Indeed, by A5 for any compact K, E [fY (X ′b(•)|X)XX ′1{X ∈ K}]
∣∣∣
b(•)=β∗(•)

= E [fY (X ′β(•)|X)XX ′1{X ∈ K}]+
o(1). Then, for Kc = Rd\K, E [fY (X ′b(•)|X)XX ′1{X ∈ Kc}]

∣∣∣
b(•)=β∗(•)

and E [fY (X ′β(•)|X)XX ′1{X ∈ Kc}]
can be made arbitrarily small in large samples. This follows by setting the set K sufficiently large and

using E‖XX ′‖ < ∞ and fY (X ′β(•)|X) < f̄ a.s.

Fourth, since

the left hand side (lhs) of (89) = lhs of (95)+ n−1/2 lhs of (92), (97)

we have by using (96)

op∗
(
n−1/2

)
= J(•)(β̂(•)− β(•)) + op∗

(
sup
τ∈T

∥∥∥β̂(τ)− β(τ)
∥∥∥
)

(98)

+n−1/2Gn[ϕ•(Y −X ′β(•))X] + op∗(n−1/2) in `∞(T ).
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Since mineig (J(τ)) > λ > 0, uniformly in τ ∈ T

sup
τ∈T

∥∥∥n−1/2Gn [ϕτ (Y −X ′β(τ))X] + op∗(n−1/2)
∥∥∥

= sup
τ∈T

∥∥∥J(τ)(β̂(τ)− β(τ)) + op∗
(

sup
τ∈T

‖β̂(τ)− β(τ)‖)
∥∥∥

≥ (λ + op∗(1)) · sup
τ∈T

‖β̂(τ)− β(τ)‖.

(99)

Fifth, by the stated assumptions, the mapping τ 7→ β(τ) is continuous. In fact, it is continuously dif-

ferentiable, since by the implicit function theorem, for β(τ) defined as solution to E [(τ − 1{Y ≤ X ′β})X] =

0, we have that dβ(τ)/dτ = J(τ)−1E [X] . Hence τ 7→ Gn [ϕτ (Y −X ′β(τ))X] is stochastically equicon-

tinuous over T by continuity of the mapping τ 7→ β(τ) for the pseudo-metric given by ρ(τ ′, τ ′′) ≡
ρ((τ ′, β(τ ′)), (τ ′′, β(τ ′′))). Then, stochastic equicontinuity of τ 7→ Gn [ϕτ (Y −X ′β(τ))X] and ordinary

CLT imply that

Gn [ϕ•(Y −X ′β(•))X] ⇒ z(•) in `∞(T ), (100)

where z(•) is a Gaussian process with covariance function Σ(•, •) specified in the statement of Theorem

5. Therefore, the lhs of (99) is Op(n−1/2), implying

sup
τ∈T

‖√n(β̂(τ)− β(τ))‖ = Op∗(1). (101)

Finally, by (99)-(101)

√
n(β̂(•)− β(•)) = −J−1(•)Gn [ϕ•(Y −X ′β(•))] + op∗(1) in `∞(T )

⇒ J−1(•) · z(•) in `∞(T ). ¥
(102)

A.7 Proof of Corollaries

Proof of Corollary 1. The result is immediate from the definition of weak convergence in `∞(T ). ¥
Proof of Corollary 2. The result follows by the continuous mapping theorem in `∞(T ). ¥
Proof of Corollary 3. The result is immediate from Corollary 2. ¥
Proof of Corollary 4. The result is immediate from Politis, Romano and Wolf (1999), Theorem 2.2.1

and Corollary 2.4.1, for the case when the rescaling matrices are known. For the case when the matrices

are consistently estimated the proof follows by an argument similar to the proof of Theorem 2.5.1 in

Politis, Romano and Wolf (1999). Finally, we also need that K has an absolutely continuous distribution.

This result follows from Theorem 11.1 in Davydov, Lifshits, and Smorodina (1998). ¥
Proof of Corollary 5. Note that this corollary is not covered by the results in Powell (1986) or

Buchinsky and Hahn (1998) for consistency of Ĵ(τ), because their proofs apply only pointwise in τ ,

whereas we require a uniform result.

First, recall that

Ĵ(τ) =
1

2hn
En

[
1{|Yi −X ′

iβ̂(τ)| ≤ hn} ·XiX
′
i

]
. (103)

We will show that

Ĵ(τ)− J(τ) = op∗(1) uniformly in τ ∈ T . (104)
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Note that 2hnĴ(τ) = En

[
fi(β̂(τ), hn)

]
, where fi(β, h) = 1{|Yi−X ′

iβ| ≤ h}·XiX
′
i. Next, for any compact

set B and positive constant H, the functional class {fi(β, h), β ∈ B, h ∈ (0,H]} is a Donsker class with

square integrable envelope by Theorem 2.10.6 in Van der Vaart and Wellner (1996), since this is a product

of a VC class {1{|Yi − X ′
iβ| ≤ h}, β ∈ B, h ∈ (0,H]} and a square intergrable random matrix XiX

′
i

(recall E‖Xi‖4 < ∞ by assumption). Therefore, (β, h) 7→ Gn [fi(β, h)] converges to a Gaussian process

in `∞(B × (0,H]), which implies that

sup
β∈B,0<h≤H

∥∥∥En [fi(β, h)]− E [fi(β, h)]
∥∥∥ = Op∗(n−1/2). (105)

Letting B be any compact set that covers ∪τ∈T β(τ), this implies

sup
τ∈T

∥∥∥En

[
fi(β̂(τ), hn)

]
− E [fi(β, h)]

∣∣
β=β̂(τ),h=hn

∥∥∥ = Op∗(n−1/2). (106)

Hence (104) follows by using that 2hnĴ(τ) = En

[
fi(β̂(τ), hn)

]
and noting that 1/2hn·E [fi(β, h)]

∣∣bβ(τ),h=hn
=

J(τ) + op(1) by an argument similar to that used in (96) and the assumption h2
nn →∞.

Second, we can write

Σ̂(τ, τ ′) = En

[
gi(β̂(τ), β̂(τ ′), τ, τ ′)XiX

′
i

]
, (107)

where gi(β′, β′′, τ ′, τ ′′) = (τ − 1{Yi ≤ X ′
iβ
′})(τ ′ − 1{Yi ≤ X ′

iβ
′′}) ·XiX

′
i. We will show that

Σ̂(τ, τ ′)− Σ(τ, τ ′) = op∗(1) uniformly in (τ, τ ′) ∈ T × T . (108)

Note that {gi(β′, β′′, τ ′, τ ′′), (β′, β′′, τ ′, τ ′′) ∈ B × B × T × T } is Donsker and hence a Glivenko-Cantelli

class, for any bounded set B. Indeed, Fβ = {1{Yi ≤ X ′
iβ}, β ∈ B} is a VC class, and hence is Donsker.

Then, T −Fβ is also a bounded Donsker class with envelope 2, by Theorem 2.10.6 in Van der Vaart and

Wellner (1996). Next, the product of two bounded classes (T − Fβ) × (T − Fβ) is a bounded Donsker

class with envelope 4, by Theorem 2.10.6 in Van der Vaart and Wellner (1996). Last, the product of a

bounded Donsker class with a square integrable random matrix XX ′
i gives a Donsker class, by Theorem

2.10.6 in Van der Vaart and Wellner (1996).

This implies that uniformly in (β′, β′′, τ ′, τ ′′) ∈ (B ×B × T × T )

En [gi(β′, β′′, τ ′, τ ′′)XiX
′
i]− E [gi(β′, β′′, τ ′, τ ′′)XiX

′
i] = op∗(1). (109)

By inspection, E [gi(β′, β′′, τ ′, τ ′′)XiX
′
i] is continuous in (β′, β′′, τ ′, τ ′′) over (B×B×T ×T ). Letting B

cover ∪τβ(τ), continuity and (109) imply (108).

A similar argument applies to Σ̂0(τ, τ ′) .¥

B Appendix: Estimating the QR Weighting Function

We calculate the importance weights using equation (7). The integral was estimated with a grid of 101

points between the non-parametric estimates of the CQF (Q̂τ (Y |X)) and the QR approximation (X ′β̂(τ)),
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for each cell of the covariates X. This gives rise to the following discrete approximation formula for the

importance weights

ŵτ (x, β̂(τ)) =
1

101

101∑
u=1

(1− u− 1
100

) · f̂Y

(
u− 1
100

· x′β̂(τ) + (1− u− 1
100

) · Q̂τ (Y |X = x)|X = x

)
. (110)

We used kernel density estimates of fY (y|X = x) with a Gaussian kernel and bandwidth (h) determined

by

m = min

[√
V ar[Y − Q̂τ (Y |X = x)|X = x],

IQR0.25,0.75[Y − Q̂τ (Y |X = x)|X = x]
1.349

]
, (111)

h =
0.9 ·m
n1/5

. (112)

This bandwidth choice is optimal in the sense that it minimizes mean integrated square error with

Gaussian data and a Gaussian kernel (Silverman, 1986). The density weights were calculated similarly.

Sampling weights were used in the estimation of conditional densities for the 2000 census sample.

To calculate weights for partial quantile correlation, w̃τ (X), we also use a discrete approximation of

the average density of the response variable representation. In particular, we have

̂̃wτ (x) =
1

101

101∑
u=1

1
2
· f̂Y

(
u− 1
100

· x′β̂(τ) + (1− u− 1
100

) · Q̂τ (Y |X = x)|X = x

)
, (113)

where the conditional densities are estimates using the same kernel method as for the importance weights.

C Appendix: Sampling Weights

In order to take into account the weighted structure of the census 2000 sample, the estimators for the

components of the variance formulae in Table 1 were modified as follows

Σ̂(τ, τ ′) =
1
n

n∑

i=1

w2
i · (τ − 1(Yi ≤ X ′

iβ̂(τ))(τ ′ − 1(Yi ≤ X ′
iβ̂(τ ′)) ·XiX

′
i, (114)

Σ̂0(τ, τ) = [min(τ, τ ′)− ττ ′] · 1
n

n∑

i=1

w2
i ·XiX

′
i, (115)

Ĵ(τ) =
1

2nhn

n∑

i=1

wi · 1(|Yi −X ′
iβ̂(τ)| ≤ hn) ·XiX

′
i. (116)

where wi are the sampling weights (normalized to add to n). Other calculations involving the 2000 sample

use sampling weights in the standard way.

D Appendix: Data

The data were drawn from the 1% self-weighting 1980 and 1990 samples, and the 1% weighted 2000

sample, all from the IPUMS website (Ruggles et al., 2003). The sample for most of the calculations
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consists of US-born black and white men with age 40-49 with at least 5 years of education, with positive

annual earnings and hours worked in the year preceding the census, and with nonzero sampling weight.

Individuals with imputed values for age, education, earnings or weeks worked were also excluded from

the sample. After this selection process, the final sample sizes were 65,023, 86,785 and 97,397 for 1980,

1990 and 2000.

The log-earnings variable is the average log weekly wage and was calculated as the log of the reported

annual income from work divided by weeks worked in the previous year. Annual income is expressed in

1989 dollars using the Personal Consumption Expenditures Price Index.

The education variable for 1980 corresponds to the highest grade of school completed, coded as

follows:
Years of schooling Highest grade of school completed

5 5th grade of Elementary School

6 6th grade of Elementary School

7 7th grade of Elementary School

8 8th grade of Elementary School

9 9th grade of High School

10 10th grade of High School

11 11th grade of High School

12 12th grade of High School

13 1st year of College

14 2nd year of College

15 3rd year of College

16 4th year of College

17 5th year of College

18 6th year of College

19 7th year of College

20 8th or more year of College

For the purposes of Figure 5 and most of the empirical work, years of schooling for 1990 and 2000 censuses
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were imputed from categorical schooling variables as follows:

Years of schooling Educational attainment

8 5th, 6th, 7th, or 8th grade

9 9th grade

10 10th grade

11 11th or 12th grade, no diploma

12 High school graduate, diploma or GED

13 Some college, but no degree

14 Completed associate degree in college, occupational program

15 Completed associate degree in college, academic program

16 Completed bachelor’s degree, not attending school

17 Completed bachelor’s degree, but now enrolled

18 Completed master’s degree

19 Completed professional degree

20 Completed doctorate

For the purposes of Panel C in Figure 6, we modify this slightly, coding 5th-8th grade as 8 and 2-3 years

in college as 14 in 1980, and coding the categories associate college degree, occupational program, and

associate degree, academic program, as 14 in 1990. These changes generate schooling variables with the

same range and points of support in all 3 years.
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Table 1: Human capital earnings function:
Estimates of schooling coefficients and standard errors (%)

Desc. Stats. Quantile Regression Estimates OLS Estimates
Census Obs. Mean SD 0.1 0.25 0.5 0.75 0.9 Coeff. Root MSE

A. Without controls

1980 65,023 6.40 0.67
7.48
(0.223)
[0.239]

7.13
(0.078)
[0.081]

6.39
(0.067)
[0.067]

6.56
(0.069)
[0.070]

7.42
(0.100)
[0.110]

6.98
(0.080)
[0.087]

0.63

1990 86,785 6.46 0.69
10.04
(0.130)
[0.135]

9.57
(0.119)
[0.121]

8.93
(0.075)
[0.075]

9.23
(0.108)
[0.107]

11.59
(0.169)
[0.178]

9.78
(0.082)
[0.087]

0.64

2000 97,397 6.50 0.75
9.80
(0.201)
[0.208]

10.57
(0.129)
[0.133]

11.05
(0.109)
[0.109]

11.89
(0.115)
[0.115]

15.51
(0.624)
[0.669]

11.71
(0.092)
[0.113]

0.69

B. Controlling for race and quadratic function of potential experience

1980 65,023 6.40 0.67
7.35
(0.190)
[0.199]

7.35
(0.120)
[0.123]

6.83
(0.099)
[0.099]

7.01
(0.104)
[0.106]

7.91
(0.145)
[0.153]

7.20
(0.120)
[0.127]

0.63

1990 86,785 6.46 0.69
11.15
(0.274)
[0.285]

10.96
(0.123)
[0.126]

10.62
(0.104)
[0.104]

11.08
(0.149)
[0.148]

13.69
(0.252)
[0.263]

11.36
(0.117)
[0.122]

0.64

2000 97,397 6.50 0.75
9.16
(0.195)
[0.204]

10.49
(0.120)
[0.122]

11.13
(0.126)
[0.126]

11.95
(0.134)
[0.134]

15.73
(0.385)
[0.401]

11.44
(0.117)
[0.141]

0.69

Notes: US-born white and black men aged 40-49. Standard Errors in parentheses. Standard Errors robust to mispecification
in brackets. Sampling weights used for 2000 Census.



Table 2: Comparison of CQF and QR-based Interquantile Spreads

Interquantile Spread
90-10 75-25 90-50 50-10

Census Obs. Controls CQ QR CQ QR CQ QR CQ QR

A. Overall

1980 65,023
No
Yes

1.20
1.20

1.20
1.19

0.56
0.56

0.56
0.55

0.51
0.52

0.52
0.51

0.69
0.68

0.68
0.67

1990 86,785
No
Yes

1.37
1.35

1.36
1.35

0.65
0.64

0.65
0.64

0.61
0.60

0.61
0.61

0.76
0.75

0.75
0.74

2000 97,397
No
Yes

1.45
1.43

1.45
1.45

0.71
0.70

0.70
0.68

0.68
0.67

0.69
0.70

0.77
0.76

0.76
0.75

B. High School Graduates

1980 25,020
No
Yes

1.10
1.09

1.20
1.17

0.51
0.52

0.57
0.55

0.42
0.44

0.51
0.50

0.67
0.65

0.69
0.67

1990 22,837
No
Yes

1.27
1.26

1.33
1.31

0.64
0.63

0.66
0.64

0.51
0.52

0.56
0.55

0.76
0.74

0.77
0.76

2000 25,963
No
Yes

1.32
1.29

1.34
1.32

0.68
0.66

0.67
0.66

0.60
0.59

0.61
0.60

0.72
0.70

0.73
0.72

C. College Graduates

1980 7,158
No
Yes

1.25
1.26

1.19
1.19

0.60
0.59

0.54
0.53

0.58
0.61

0.55
0.54

0.67
0.65

0.64
0.64

1990 15,517
No
Yes

1.49
1.44

1.40
1.38

0.68
0.66

0.64
0.63

0.69
0.70

0.67
0.66

0.77
0.74

0.73
0.72

2000 19,388
No
Yes

1.57
1.55

1.57
1.57

0.73
0.74

0.72
0.71

0.75
0.75

0.78
0.80

0.82
0.80

0.78
0.78

Notes: US-born white and black men aged 40-49. Average measures calculated using the distribution
of the covariates in each year. The covariates are schooling (controls = No) or schooling, race and a
quadratic function of experience (controls = Yes). Sampling weights used for 2000 Census.



Table 3: Measures of Between-group (Model) and Within-group (Residual)
Inequality and Linear (Quantile) Regression Approximations

Quantile-based Measures ANOVA
90-10 75-25 90-50 50-10 Cond. OLS

Census Obs. CQ QR CQ QR CQ QR CQ QR Mean Fit

A. Between-group Inequality

1980 65,023 0.60 0.59 0.15 0.23 0.35 0.32 0.25 0.27 0.24 0.23

1990 86,785 0.63 0.65 0.33 0.35 0.37 0.41 0.27 0.24 0.28 0.27

2000 97,397 0.66 0.75 0.51 0.43 0.42 0.53 0.24 0.22 0.30 0.29

B. Within-group Inequality

1980 65,023 1.14 1.17 0.52 0.54 0.49 0.51 0.65 0.66 0.63 0.63

1990 86,785 1.32 1.35 0.62 0.63 0.57 0.59 0.73 0.75 0.63 0.64

2000 97,397 1.38 1.41 0.67 0.67 0.64 0.66 0.73 0.75 0.68 0.69

C. Relative Importance of Within-group Inequality (RTR and 1-R2)

1980 65,023 78 80 93 85 65 72 87 86 87 88

1990 86,785 81 81 78 76 71 68 88 90 84 85

2000 97,397 82 78 63 71 70 61 90 92 84 85

Notes: US-born white and black men aged 40-49. Measures calculated in a model that includes
schooling, race and experience. Relative measures calculated as the square of Panel B divided
by the sum of the square of Panel A and the square of Panel B. Sampling weights used for 2000
census.



5 10 15 20

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

A. tau = 0.10

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

5 10 15 20

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

B. tau = 0.25

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

5 10 15 20

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

C. tau = 0.50

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

5 10 15 20

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

D. tau = 0.75

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

5 10 15 20

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

E. tau = 0.90

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

5 10 15 20

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

F. mean

Schooling

Lo
g-

ea
rn

in
gs

CEF
WLS
OLS

Figure 1: CQF and CEF in 1980 Census (US-born white and black men aged 40-49).
Panels A - E plot the Conditional Quantile Function, Koenker and Basset’s Quantile
Regression fit and Chamberlain’s Minimum Distance fit for weekly log-earnings given
years of schooling. Panel F plots the Conditional Expectation Function (CEF),
Weighted LS fit and OLS fit for weekly log-earnings given years of schooling.
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Figure 2: Weighting Functions in 1980 Census (US-born white and black men aged 40-49).
Panels A-E plot the histogram of years of schooling, QR weighting function and importance
weighting function for QR’s of log-earnings on years of schooling. Panel F plots the
histogram of years of schooling, WLS weighting function and inverse of the conditional
variance for the linear regression of log-earnings on years of schooling.
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Figure 3: Importance and Density Weights in 1980 Census (US-born white and black
men aged 40-49).
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Figure 4: Partial Quantile Correlation Plots in 1980 Census (US-born white men aged 30-54).
Panels A-E plot the Partial Conditional Quantile Function and Partial QR fit of log-earnings on
years of schooling, controlling for a quadratic function of experience. The dashed line has the
same slope as a QR line of log-earnings on years of schooling without controlling for experience.
Panel F plots the Partial Conditional Expectation Function and Partial OLS fit of log-earnings
on years of schooling, controlling for a quadratic function of experience. The dashed line has
the same slope as a OLS line of log-earnings on years of schooling without controlling for
experience.
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Figure 5: Schooling coefficients in 1980, 1990 and 2000 censuses (US-born white and black men aged 40-49). Panels
A, B and C plot the Quantile Process for the coefficient of schooling in the QR of log-earnings on years of schooling,
race and a quadratic function of experience, and 95% robust pointwise and uniform confidence intervals for 1980, 1990
and 2000, respectively. Uniform bands obtained by subsampling using 200 repetitions with subsample size b = 5n2/5.
The horizontal lines correspond to the OLS estimates of the schooling coefficient.
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Figure 6: Unconditional quantiles and conditional quantiles of log-earnings in 1980, 1990 and 2000 censuses (US-born white
and black men aged 40-49). Distributions are centered at median earnings for each year. Panel A plots 95 % uniform bands
for unconditional quantiles. Panels B and C plot 95% uniform bands for the QR approximation to the conditional quantile
function given schooling, race and a quadratic function of experience. In Panel B covariates are evaluated at sample mean
values for each year and schooling is coded using IPUMS categories for each year. In Panel C covariates are evaluated at
sample mean values for 1980 and schooling is recoded using 2000 IPUMS categories.
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Figure 7: CQF and CEF in 1990 Census (US-born white and black men aged 40-49).
Panels A - E plot the Conditional Quantile Function, Koenker and Basset’s Quantile
Regression fit and Chamberlain’s Minimum Distance fit for weekly log-earnings given
years of schooling. Panel F plots the Conditional Expectation Function (CEF),
Weighted LS fit and OLS fit for weekly log-earnings given years of schooling.



8 10 12 14 16 18 20

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

A. tau = 0.10

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

8 10 12 14 16 18 20

4.
5

5.
0

5.
5

6.
0

6.
5

7.
0

B. tau = 0.25

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

8 10 12 14 16 18 20

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

C. tau = 0.50

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

8 10 12 14 16 18 20

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

D. tau = 0.75

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

8 10 12 14 16 18 20

6.
0

6.
5

7.
0

7.
5

8.
0

8.
5

E. tau = 0.90

Schooling

Lo
g-

ea
rn

in
gs

CQ
KB QR
C QR

8 10 12 14 16 18 20

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

F. mean

Schooling

Lo
g-

ea
rn

in
gs

CEF
WLS
OLS

Figure 8: CQF and CEF in 2000 Census (US-born white and black men aged 40-49).
Panels A - E plot the Conditional Quantile Function, Koenker and Basset’s Quantile
Regression fit and Chamberlain’s Minimum Distance fit for weekly log-earnings given
years of schooling. Panel F plots the Conditional Expectation Function (CEF),
Weighted LS fit and OLS fit for weekly log-earnings given years of schooling.
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Figure 9: Weighting Functions in 1990 Census (US-born white and black men aged 40-49).
Panels A-E plot the histogram of years of schooling, QR weighting function and importance
weighting function for QR’s of log-earnings on years of schooling. Panel F plots the
histogram of years of schooling, WLS weighting function and inverse of the conditional
variance for the linear regression of log-earnings on years of schooling.
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Figure 10: Weighting Functions in 2000 Census (US-born white and black men aged 40-49).
Panels A-E plot the histogram of years of schooling, QR weighting function and importance
weighting function for QR’s of log-earnings on years of schooling. Panel F plots the
histogram of years of schooling, WLS weighting function and inverse of the conditional
variance for the linear regression of log-earnings on years of schooling.



8 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

A. tau = 0.10

Schooling

W
ei

gh
t

Imp. weights
Den. weights

8 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

B. tau = 0.25

Schooling

W
ei

gh
t

Imp. weights
Den. weights

8 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

C. tau = 0.50

Schooling

W
ei

gh
t

Imp. weights
Den. weights

8 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

D. tau = 0.75

Schooling

W
ei

gh
t

Imp. weights
Den. weights

8 10 12 14 16 18 20

0.
00

0.
05

0.
10

0.
15

0.
20

E. tau = 0.90

Schooling

W
ei

gh
t

Imp. weights
Den. weights

Figure 11: Importance and Density Weights in 1990 Census (US-born white and black
men aged 40-49).
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Figure 12: Importance and Density Weights in 2000 Census (US-born white and black
men aged 40-49).




