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Abstract

I estimate a model in which new technology entails random adjustment
costs. Rapid adjustments may cause productivity slowdowns. These slow-
downs last longer when retooling is costly. The model explains why growth-
rate disasters are more likely than miracles, and why volatility of growth relates
negatively to growth over time. I estimate the model, and the estimates have
surprising implications. Firms seem to abandon technologies long before they
are perfected — current-practice TFP is 17 percent below best-practice.

1 Introduction

Technology shocks play a central role in most business cycle models of the last two
decades. We often take such shocks as exogenous and we then study how a model
economy responds to them. The present paper starts from the premise that the
shocks depend on the technologies we adopt. I study technology adoption in an “Ak”
growth model with endogenous shocks that can explain a few business-cycle facts. I
assume that a technology requires specific skills. The exact nature of these skills is
not known before a technology is adopted. Having committed to a technology, firms
may face unexpectedly large training costs.

The model generates left-skewed distributions for the growth rates of output,
consumption, investment, stock prices, and interest rates. Such skewness is seen in
U.S. and other data. The growth process obeys a simple difference equation and I
provide estimates of the model’s parameters. The model also generates growth-rates
that are more volatile in recessions than in booms. This explains the time-series
findings of Ramey and Ramey (1991) which I have updated.

∗NYU and the University of Chicago. I would like to thank G. Barlevy, S. Braguinsky, S. Chat-
terjee, J. Greenwood, J. Imbs, A. Jao, P. Krusell, L. Veldcamp, and G. Violante for comments, and
the NSF for support. Thanks to J. Glachant for comments and to A. Gavazza for help with the
research. A special thank you to P. Fève for his helpful discussion at the 2003 Toulouse Macroeco-
nomics Conference.

1



Technological adoption entails free riding incentives analyzed at the industry level
by Jovanovic and Lach (1999) and at the aggregate level by Eeckhout and Jovanovic
(2002). To keep things tractable here, however, I assume that technological informa-
tion is of transitory value so that a firm chooses the same technology that all others
have chosen. In spite of this, adjustment costs — incurred simultaneously by all firms —
play a role similar to diffusion lags and they deliver impulse responses similar to those
Lippi and Reichlin (1994) and Forni and Reichlin (1998) report as being induced by
diffusion lags.

The parameter estimates imply that firms abandon technologies long before they
are perfected. Current-practice TFP is 17 percent below best-practice TFP.

Plan of paper.–Section 2 starts with a sketch of the quantitative puzzle and the
intuition. Section 3 presents the model and compares it to some evidence. Section 4
discusses the literature and Section 5 concludes.

2 Intuitive explanation

The model assumes technological commitment and random adoption costs. The fol-
lowing example shows the intuition behind asymmetric growth rates and sluggish
responses to technology. In Figure 1, the vertical axis plots the log of TFP. For
technology A, log TFP is

A− λ

2
(sA − h)2 ,

where sA is the ideal skill-mix for technology A and where h is the actual skill mix
which we measure on the horizontal axis. Committing to a potential TFP-growth
rate of x exposes the adopter to uncertainty about sA+x. The law of motion for s is

sA+x = sA + xε,

and ε is unknown until after the commitment to technology A+x is made. The new
log TFP level would then be A + x − λ

2
(sA + xε− h)2. Suppose, however, that we

start with an initial level of expertise that is ideal for technology A. That is, suppose
h = sA. Then the new log TFP would be

A+ x− λ

2
x2ε2,

as illustrated in Figure 1. A large |ε| produces a growth disaster, whereas a miracle
is impossible because the largest possible TFP is A+ x.

Diffusion lags, learning, and slow adjustment of h.–In the model firms all choose
the same technology A. This violates the tendency for a technology to spread only
gradually among adopters. E.g., Lippi and Reichlin (1994), Jovanovic and Lach
(1997) and Forni and Reichlin (1998) argue that such diffusion lags help explain the

2



 

sA+x sA

h 

Technology A 

Log TFP Technology A+x 

A + x 

A 

22
2

ελ xxA −+  

t0

Log TFP 

A + x 

A 

2
2

xxA λ
−+  

t

Skill mix  

Figure 1: Asymmetric growth and the impulse response of technology
shocks

sluggish impulse responses to technology shocks. Yet sluggishness in h within each
firm can deliver a similar impulse response. We may think of h as organization capital
that the firm owns and that is costly to adjust, as Prescott and Visscher (1980) argue.
To see why, suppose a firm starts with expertise h = sA, so that its initial TFP is
A. Suppose it then permanently switches to technology A + x. It turns out that ht
follows a partial adjustment path from h towards sA+x:

ht+1 = αht + (1− α) sA+x, where h0 = sA

where α is estimated to be about 0.6. Since

ht = αtsA +
£
1− αt

¤
sA+x

= sA+x + αtxε

so that

ln (TFPt) = A+ x− α2t
λ

2
x2ε2

In other words lnTFP converges geometrically to its new high. The bottom panel
of Figure 1 shows the typical impulse response of ε.
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3 Model

The model has two types of capital. The first, k, is the quantity of capital. The
second, h, is a non-hierarchical index of expertise and physical-capital type, which I
think of as the skill mix.

Production function.–With k units of capital, firm has a potential output of

yp = zk.

The productivity parameter, z, is endogenous and given by

z = exp

½
A− λ

2
(sA − h0)

2

¾
. (1)

Here A is the firm’s technology, h0 is the firm’s skill mix, and sA is the skill-mix ideal
for technology A. The cost of technological imbalance is indexed by λ > 0.

Adoption of technology.–Adoption of a better technology is free. A firm can
choose a technology level by any amount, x, so that starting today at A, tomorrow’s
technology is

A0 = A (1− δ) + x. (2)

where δA represents obsolescence. The firm commits to using technology A for at
least one period. But A0 makes unpredictable demands on the skill mix. Assume that

sA0 = sA + xε, (3)

where ε is a zero-mean random variable with variance σ2. The parameter ε is time
specific. The firm chooses x before seeing ε. Assume x ≥ 0. I.e., once abandoned, a
technology cannot be recalled.

Adjustment of h.–The firm starts with skill mix h. Before producing, it can
adjust its skill mix from h to h0 at a cost of

C (yp, h, h0) ≡
∙
1− exp

½
−θ
2
(h− h0)

2

¾¸
yp

The cost of redressing technological imbalance is indexed by θ > 0. I refer to this
loosely as a retooling cost.

The firm’s decision problem.–Firms will choose their x and h0 so as to maximize
the productivity of the capital that they raised in the previous period. A firm produces
for one period and then liquidates. In the pre-pre-production period it

1. raises capital k from shareholders,

2. chooses x which commits it to using technology A0 as given by (2),
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3. freely inherits the prevailing skill mix h.

In the production period the firm does the following in sequence: It

1. observes sA0 as given by (3),

2. chooses h0,

3. produces and pays a dividend

y = yp − C (yp, h, h0)

4. liquidates; the salvage value of its k and h0 is zero.

Choice of h0.–Suppose that (having committed to A0 in the previous period) at
the start of the production period the firm has observed that sA0 = s0. The firm then
chooses h0 to solve

max
h0
{yp − C (y, h, h0)} = kmax

h0
exp

½
A0 − λ

2
(s0 − h0)

2 − θ

2
(h0 − h)

2

¾
(4)

The first-order condition is λ (s0 − h0)−θ (h0 − h) = 0 and at its solution, the second-
order derivative w.r.t. h0 is negative. The optimal h0 is a convex combination of
starting skill mix h, and ideal skill mix s0:

h0 = αh+ (1− α) s0 (5)

where

α =
θ

λ+ θ
. (6)

Substituting into (4), its maximized value is the firm’s output:

y = Z (A0, s0 − h) k

where

Z (A0, s0 − h) ≡ exp
µ
A0 − αλ

2
(s0 − h)

2

¶
(7)

is the average product of capital, or maximized TFP, which depends only on s0 − h,
the “skill-mix gap” that exists at the start of the production period, after s0 has been
drawn, but before the firm has adjusted h.

The choice of x.–The firm chooses its technology in the pre-production period,
before knowing s0. The state-of-the-art technology is summarized by the pair (A, s),
and the skill mix is h. All firms face the same shock ε and so tomorrow’s aggregate
output and consumption will depend on ε. All firms will choose the same (x, h0) pair.
This means that the firm’s dividend will be correlated with tomorrow’s aggregate
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consumption. Let p (A, ε) be today’s price of a unit of consumption tomorrow if the
aggregate shock is ε. In (16) we shall see that if all other firms choose the value x∗,

p (A, ε, x∗) =
1

Z ([1− δ]A+ x∗, s+ x∗ε− h)
(8)

The optimal x maximizes the pre-production value of the firm per unit of k raised.
This value, v, depends on the firm’s pre-production state (A, s− h) as follows:

v (A, s− h, x∗) ≡ max
x

Z
p (A, ε)Z ([1− δ]A+ x, s+ xε− h) dF (ε) (9)

= 1.

The amount the market is willing to pay for a claim to the firm’s dividend in the
next period is v (A, s− h), which must equal unity because cost of capital is 1. At
this price and value, a firm breaks even on each unit of k that it raises.

As (9) shows, firms’ choices of x are interdependent. To find the equilibrium choice
of x we now differentiate the RHS of (9) w.r.t. x in and substituting from (8) into
the resulting expression. We then evaluate the FOC at the symmetric equilibrium
x = x∗, and obtain Z

[1− λαε (s+ xε− h)] dF (ε) = 0.

Since ε has mean zero and variance σ2, and since (x, s, h) are predetermined, this
reads 1− λαxσ2 = 0, so that

x =
1

λασ2
=
1

σ2

µ
1

λ
+
1

θ

¶
. (10)

where the second equality follows from the (6). Now we see clearly what the barriers
to technological adoption are. If λ or θ or σ2 were zero, x would be infinite.

Preferences.–Households are infinitely lived with preferences

E0

∞X
t=0

βt ln ct. (11)

Asset markets.–The number of households and the number of firms are both nor-
malized to unity. This double normalization is fine because firm-size is indeterminate.
Then y and k are output and capital per consumer. A household owns one-period
shares of firms, and dividends are its only income. Because the representative firm
grows over time, let us define shares in terms of pieces of capital rather than of firms.
That is, let n be the number of units of capital that the household owns. From (9),
the price of a share is unity.
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The behavior of the aggregate state.–The pricing of assets will not depend on the
capital stock so that for the consumer’s savings problem, at least, the aggregate state
will be (A, s, h−1). Let u = s − h−1. From (7) it follows that (s, h−1) matters for
aggregate output only through u. We shall show that u follows the Markov process

u0 = αu+ xε,

so that its transition function is

Φ (u0, u) = F

µ
u0 − αu

x

¶
,

where F is the C.D.F. of ε.

The savings decision.–If it owns n shares, a household’s wealth is Z (A, u)n. Its
budget constraint therefore is

n0 + c = Z (A, u)n. (12)

The consumer’s state is (n, u) , and the Bellman equation is

w (A, n, u) = max
n0

½
ln (Z (A, u)n− n0) + β

Z
w ([1− δ]A+ x, n0, u0) dΦ (u0, u)

¾
.

(13)
The first appendix shows that optimal consumption is

c = (1− β)Zn. (14)

and saving is
n0 = βZn

At equilibrium,
n = k. (15)

so that k0 = βZ (A, u) k and

U 0 (c0)

U 0 (c)
=

c

c0
=

(1− β)Zk

(1− β)Z 0 (βZk)
=

1

βZ (A0, u0)

=
1

βZ ([1− δ]A+ x∗, s+ x∗ε− h)
, (16)

which proves (8).
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3.1 The growth process

Since x is a constant, At converges monotonically to A∗ that uniquely solves

x = δA, (17)

as shown in Figure (2).In RBC analysis we often treat the technology parameter as
stationary, and I shall do the same and assume that A is at A∗.

I will also assume that the costs of adjusting h consist entirely of foregone output.
Measured output then is

y = Z (A∗, u) k.

Then (4) implies

ln y = ln k +A∗ − λ

2
(s0 − h0)

2 − θ

2
(h− h0)

2 (18)

= lnβ +A∗ + ln y−1 −
λ

2
(αu)2 − θ

2
([1− α]u)2

= ψ0 + ln y−1 − ψu2

where
ψ0 = lnβ +A∗ and1 ψ =

1

2
λα. (16)

The second line of (18) follows because (14) and (15) imply that k = βy−1, and upon
applying (5) and the definition u ≡ s− h−1. Thus letting ∆ ln yt ≡ ln yt+1 − ln yt,

∆ ln yt = ψ0 − ψu2t+1. (17)
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Long-run growth.–The long-run-average growth rate of output is gotten by taking
the unconditional expectation in (17) which leads to the following result (proved in
the appendix):

Proposition 1 The long-run growth rate has a mean of

E (∆ ln y) = lnβ +
1

λασ2

µ
1

δ
− 1

2 (1− α2)

¶
, (18)

and variance

V ar (∆ ln y) =

µ
1

λασ2

¶2
1

1− α4

µ
1

2
+

α2

1− α2

¶
. (19)

Long-run growth increases with β, and decreases with α, λ, and σ2.

The process for u.–From (5), h0 = αh+ (1− α) s0, so that

u0 = s0 − h = s+ xε− αh−1 − (1− α) s = α (s− h−1) + xε.

Since ε is independent of u we adopt the convention of dating it at t + 1 and we
therefore have the time-series process

ut+1 = αut + xεt+1. (20)

The case where ε is normally distributed.–If εt is normally distributed, the sta-
tionary distribution of ut is also normal with mean zero an variance

σ2u =
x2σ2

1− α2
. (21)

Now, the stationary distribution of the square of a standard normal variate, is χ2(1).
Denote by v the square of such a variable, i.e.,

v =

µ√
1− α2

xσ
u

¶2
(22)

Then v has a Chi-squared distribution with 1 degree of freedom:

v−
1
2
1

2π
exp

µ
−1
2
v
1
2

¶
≡ g (v) , (23)

for v ≥ 0.
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Figure 3: χ2 distribution of ∆ ln y when ε is normal.

Figure 3 shows the long-run distribution of output growth (given in [17]). It is
also distributed χ21, except that the tail is on the left. Output growth is negative if
u2t > ψ0/ψ. And why is ut missing in (17)? It is because savings exactly offset the
influence of ut: Savings are proportional to yt so that fluctuations in yt do not affect
the growth rate — a drop in yt simply translates into an equal percentage drop in kt+1.
On the other hand, fluctuations in yt+1 do get into the growth rate between t and
t+1, and the distribution of the level yt+1 is skewed to the left. Hence the asymmetry
in the growth rate of y. This asymmetry should also show up in consumption and
investment growth.

The distribution of growth rates in U.S. GDP per capita.–The top panels of Figure
4 show the frequency distribution of growth rates of per-capita output at a five-year
frequency. The labeling refers to the last year of a five-year interval so, for example,
the growth rate for 1940 means ln y1940 − ln y1935. With the three observations the
three wars (Civil 1860-65, WW1 1915-20, WW2 1940-45) taken out, the numbers are
decidedly skewed to the left. Omitted were those 5-year intervals that most naturally
contain the most intense war-time years). The two histograms look a little different
because the number of bins in both histograms is the same — 25 bins. As a result,
bin size is slightly different and, hence, the 2 left-most observations are paired in the
right histograms and not paired in the left one. The kernel density estimates are also
reported in the bottom panels.

The distribution of conditional TFP levels in U.S. plants.–TFP levels are non-
stationary, but their distribution conditional on lagged values should also be skewed
to the left. Now, in the model firms are identical, and each uses the same technology.

10



Figure 4: Distributions of five-year growth rates with and without wars

In fact, however, while technology has an aggregate component, there also are firm-
specific technological differences. Stretching the model somewhat, we may thus look
for a left skew in the distribution of firm-level TFP. Such asymmetries have been
found in the frontier-production-function literature (Caves and Barton, 1990). Figure
reproduces the results reported in Figure 2 of Baily Hulten and Campbell (1993). The
six histograms pertain to plants’ TFP levels in 1987 conditional on their values in
1982. Each histogram pertains to a separate productivity range in 1982. In other
words there are six conditioning sets in 1982, and the sets are monotonically increasing
as we move down and to the right in the panel. The means rise monotonically, which
implies that TFP levels are positively autocorrelated

Table 1: Plant TFP moments
Mean Variance Skewness
−.29 .19 −.016
−.08 .12 −.009
−.04 .14 .016
.08 .09 −.023
.12 .16 −.071
.28 .12 −.023
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Figure 5: Conditional distributions of plant TFP

3.2 Growth and retooling

Recessions are retooling episodes here in the sense that h adjusts most when output
is low. Let r denote the retooling cost relative to potential output:

r ≡ 1

yp
C (yp, h, h0) .

Then we have

Proposition 2
r = 1− exp {(1− α) (∆ ln yt − ψ0)} (24)

Proof. From the definition of C () ,

r = 1− exp
½
−θ
2
(h− h0)

2

¾
= 1− exp

½
−θ
2
(1− α)2 u2

¾
Then (17) implies

r = 1− exp
½
θ

2
(1− α)2

∙
∆ ln yt − ψ0

ψ

¸¾
.
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But
θ

2ψ
(1− α)2 =

θ (1− α)2

λα2 + θ (1− α)2
=

θλ2

λθ2 + θλ2
=

λ

λ+ θ
= 1− α.

∆ln y

r = (1-α)(ψ0 -∆ln y)

ψ0= maximal 
growth

Reallocation cost

0.01

0.02

0.02 0.04 0.06

Costs of adjusting h as a percentage of output
The costs of growth are in the form of lower output due to the adjustment of

h. These costs depend mainly on α. The above Figure plots the relation in (24)
evaluated at the estimated parameter values (5 yrs no war) in column 4 of the Table
of estimates below: α = 0.6 and ψ0 = 0.05 (the annualized value of ψ̂0).

3.3 Growth vs. volatility of ∆yt over time

When θ > 0, and hence when α > 0, the model predicts a negative correlation between
output growth and output-growth variability over time. This is seen intuitively in
Figure 3. The conditional variance is higher if we know that ∆ ln y is likely to be
low. The latter, in turn, follows because u us autocorrelated – when u strays far
from the origin, it will probably remain far from the origin in the next period as well.
Conditional on u, this implies lower expected growth but, because u2 is an increasing
and convex function of |u|, it also implies a higher variance of growth. Formally,
Proposition 3 The time-series relation between growth and its variability is nega-
tive.

Proof. In (17) we condition the mean and variance of ∆ ln yt on the lagged value
of u, i.e., on ut. As ut varies over time, the conditional mean and variance of ∆ ln yt
shift. Showing that the two move in opposite ways when ut shifts is equivalent to
showing that the conditional mean and conditional variance of u2t+1 move in the same
direction as ut changes. Note that

E
¡
u2t+1 | u

¢
= [E (ut+1 | u)]2 + V ar (ut+1 | u) (25)

= α2u2 + σ2
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On the other hand

V ar
¡
u2t+1 | u

¢
= E

¡
u4t+1 | u

¢
−
£
E
¡
u2t+1 | u

¢¤2
But

E
¡
u4t+1 | u

¢
= [E (ut+1 | u)]4 + 3 [V ar (ut+1 | u)]2 + 6 [E (ut+1 | u)]2 V ar (ut+1 | u)
= α4u4 + 6α2σ2u2 + 3σ4.

Thus, as long as α > 0, the mean and variance of u2 are both increasing in lagged
u2.
Figures 4 and 5 report the relation between mean and variance of growth at 5-

year and 10-year frequencies. Wartime observations are denoted by hollow squares.
A negative relation emerges for 5-year intervals with and without wars. For decades,
the relation is negative only if we exclude wars. Generally, decades do not support
the model well as 5-year periods and there are fewer observations at that frequency.
Figure A1 of the appendix reports the entire growth-rate series in decade and 5-
year form, along with the standard deviations.2The negative time-series relation is
confirmed in Figures 7 and 8 of Ramey and Ramey (1991) for annual data.

The trade-off between growth and its variability is an equilibrium relation, how-
ever, and not one that policy can exploit. Raising x would raise volatility, and raising
the savings rate would leave volatility unchanged.

3.3.1 The cross-section relation between growth and its variance.

As it stands the model has only one sector. It does not explain cross-section facts.
But as I argued in Section 2.1, when firms use different technologies the model would
lead us to expect that the cross-section distributions of plants’ TFP should be skewed
to the left. And the logic of the preceding proposition leads one to expect that, plants
with low-TFP last period should have a greater variance of TFP this period. This
was true in the Baily et al (1993) sample, as Table 1 and Figure 8 show, though one
cannot make much of just six observations.
Less favorable is the cross-sector evidence. Imbs (2002) finds that the cross-

sector correlation between growth and volatility is positive. This could happen in
the model if technological opportunity, as expressed, e.g., in the parameter λ, were
to vary over sectors. For instance, (10) implies that a fall in λ raises x and it raises
volatility of output so that growth and volatility both rise Imbs also finds that the
correlation remains substantial even after controlling for investment, suggesting that
the explanation is technological, such as the one advanced here.

2The statistical program used required the shading of the wars to be shifted to the left by 2.5
years.
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Figure 6: The five-year-interval sample

Figure 7: The Decades Sample
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Figure 8: Mean vs. variance in the distribution of plant TFP

3.4 Estimates of the parameters

I shall use per-capita GDP data from 1790 until the present. This model is bet-
ter suited to low frequencies because firms choose their technologies relatively infre-
quently. We need a long time series, at least while we deal with one country only.
The 4 parameters are ψ0, λ, θ, and σ2, but not all 4 are identified:

Claim 4 The model’s likelihood function depends on (λ, θ, σ2) only through the two
parameters ¡

λσ2, θσ2
¢
.

Proof. The expressions in (6) and (10) do not change. From (21) the variance
of u is proportional to σ2, so that the distribution of u/σ is invariant to changes
in σ. Therefore the variance of ψu2 is of order ψ2σ4 = (ψσ2)

2. But from (19), ψ
is homogeneous of degree 1 in (λ, θ) , and this implies that the distribution of ψu2

depends only on (λσ2, θσ2).
In other words, if we double the penalties λ and θ but halve the variance σ2 of the

innovations, the equilibrium remains the same. We shall measure λ and θ in units of
σ2 by imposing:

σ2 = 1.

I fit the model to both 5-year and 10-year frequencies. With its assumption of
100% depreciation of k, the model seems inappropriate for frequencies higher than
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that. The estimates come from data on per-capita GDP since 1790, and no other
series were used. The estimates are reported in Table 1.

Let us concentrate on the last column, the five-year intervals excluding wars. The
estimates of α = θ/ (λ+ θ) range between 0.52 and 0.68.

Table 1: Parameter estimates, 5-year and 10-year periods: 1790-2000
Standard errors in parentheses

___________________________

10 yrs
−−−−

10 yrs no war
−−−−−−−−−−

5 yrs
−−−

5 yrs no war
−−−−−−−−−

ψ0
.

0.41
(0)

0.28
(0)

0.49
(0)

0.26
(0)

α
.

0.64
(0.05)

0.52
(0.10)

0.68
(0.02)

0.60
(0.05)

λ
.

5.84
(0.47)

11.28
(2.15)

3.42
(0.06)

7.25
(0.32)

θ
.

10.41
(1.73)

12.08
(3.64)

7.16
(0.69)

10.87
(2.56)

δ
.

0.29
(0.02)

0.22
(0.03)

0.58
(0.02)

0.45
(0.05)

−−

N obs.

−−

20

−−

17

−−

41

−−

38

From (17), ∆ ln yt = ψ0−ψu2t+1. Conditional on u, then, the percentage by which
output is reduced by technological imbalance is ψu2t+1. Since ψ = 1

2
λα and since,

by (21), under the steady state distribution of u Eu2 = x2/ (1− α2) , (recall that we
cannot identify σ2 and therefore we set σ2 = 1), the expected loss therefore is

ψEu2t+1 =
1

2λα

1

1− α2
=

1

2 (7.5) (0.6)

1

0.64
= 0.17

Therefore the level of output is 17 percent below its maximal level — i.e., the level that
would result if the technologies in question were operated at their maximal efficiency.

From this it follows that a rise in technological uncertainty (e.g., in σ which is
being held at unity in the above calculations) will give rise to lower growth as well
as a lower level. Comin (2000) argued that the productivity slowdown of the 70s and
80s was the result of a rise in technological uncertainty in the 1970’s which raised the
demand for less productive but more flexible capital. I get a similar effect from a rise
in σ2 that reduces x and, hence, TFP.
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4 Related theory

With so much written on the subject it helps to group the papers by topic. Any model
that delivers sharper downturns than recoveries is related to the present model. There
many such models.

Exogenous shocks and growth.–Jones, Manuelli and Stacchetti (1999) and Fatas
(2000) study how the shock process to productivity influences growth, and Scott and
Uhlig (1999) study the growth effects of a change in the volatility of investment.
Acemoglu and Scott (1997) look at level effects in a model with dynamic increasing
returns and show asymmetries

Adoption and free riding.–Chamley and Gale (1993) and Caplin and Leahy (1994)
focus on incentives to delay adoption. Chalkley and Lee (1998) and Veldcamp (2002)
argue cycles are asymmetric because firms can more quickly detect negative shocks
than positive ones.

Endogenous technology and cycles.–Greenwood, Hercowitz and Huffman (1988)
allow shocks to the marginal efficiency of investment, while Aghion and Howitt (1992),
Barlevy (2002) and Comin and Gertler (2003) model technology as a random function
of research. Martin and Rogers (2000) relate learning by doing to growth and its
volatility.

Costs of business cycles.–Lucas (1987) argued the getting rid of cycles would
yield tiny benefits. But when cycles are related to trend as is the case in Benhabib
and Nishimura (1984), Shleifer (1986), Matsuyama (1999) and Ellis and Francois
(2001), the question is not well posed. Caballero and Hammour (1994) argue that
recessions are reallocative, for reasons similar to those I have modelled. Other related
papers are Barlevy (2001), Krebs (2002), and Rampini and Eisfeldt (2003).

My defense for adding yet another model to this long list is that I solve for
everything analytically.

5 Conclusion

This paper has explained a couple of business-cycle regularities. The left-skewed
distribution of growth rates and the negative time-series relation between growth
rates and their variance. It seems that firms abandon technologies long before they
are perfected — current-practice TFP is 17 percent below best-practice.

The policy implication is certainly not that business cycles should be stabilized.
Rather, the opposite is true, in the sense that technological adoption — and hence
technological risk — are too low. Because the model assumes that there are inter-
generational spillovers in technology and expertise, both sorts of investments are
likely, in equilibrium, to be below their socially optimal levels.
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6 Appendix

Several arguments are listed in separate Appendixes.

6.1 The proof of Proposition 1

Proof of (19).–We begin with

Lemma 5

V ar
¡
u2
¢
=

x4σ4

1− α4

µ
2 + 4

α2

1− α2

¶
(26)

Proof. Since
ut+1 = αut + xεt+1, (27)

it follows that
u2t+1 = α2u2t + x2ε2t+1 + 2αxεt+1ut. (28)
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Then since εt+1 and ut are uncorrelated, since V ar (ε2) = 2σ4, since V ar (εt+1ut) =
σ2σ2u and since σ

2
u = x2σ2/ (1− α2),

V ar
¡
u2
¢
=

1

1− α4

µ
x42σ4 + x44α2

σ4

1− α2

¶
from which the claim follows
Substituting into (26) from (10), and using (19)

ψ2V ar
¡
u2
¢
=

µ
1

2
λα

¶2µ
1

λασ2

¶4
σ4

1− α4

µ
2 + 4

α2

1− α2

¶
=

µ
1

λασ2

¶2
1

1− α4

µ
1

2
+

α2

1− α2

¶
,

which is (19).
Proof of (18).–Taking the unconditional expectation in (17),

ψ0 − ψE
¡
u2t+1

¢
= lnβ +A∗ − ψ

x2σ2

1− α2
.

From (19) and (10), ψ = 1
2
λα = 1

2xσ2
, so that ψ x2σ2

1−α2 =
1
2

x
1−α2 =

1
2λασ2

1
1−α2 . So, using

(17),

ψ0 − ψE
¡
u2t+1

¢
= lnβ +A∗ − 1

2λασ2
1

1− α2

= lnβ +
1

δαλσ2
− 1

2λα

σ2

1− α2

= lnβ +
1

αλσ2

µ
1

δ
− 1
2

1

1− α2

¶
i.e., (18).

6.2 Estimation procedure

To estimate ψ0 defined in (19) we use the consistent estimate

ψ̂0 = max
t

∆ ln yt. (29)

For the other parameters we proceed as follows: (17) says that

∆ log yt = ψ0 − ψu2t+1. (30)

so that u2t+1 =
∆ log yt−ψ0

−ψ . Substituting into (30) for u2t+1 from (28),

∆ log yt − ψ0
−ψ = α2

∆ log yt−1 − ψ0
−ψ + x2ε2t+1 + 2αxεt+1ut
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Then
∆ log yt − ψ0 = α2 (∆ log yt−1 − ψ0)− ψηt+1, (31)

where
ηt+1 = x2ε2t+1 + 2αxεt+1ut.

Now

E
¡
−ψηt+1∆ log yt−1

¢
= ψ2E

¡
ηt+1u

2
t

¢
= ψ2

£
E
¡
x2ε2t+1u

2
t

¢
+ 2E

¡
αxεt+1u

3
t

¢¤
= ψ2x2E

¡
u2t
¢
E
¡
ε2t+1

¢
= ψ2x2

x2σ2

1− α2
σ2

= ψ2
x4σ4

1− α2

Therefore the expectation of the OLS estimate α̂2 in (31) is

E
¡
α̂2
¢
= α2 +

E
¡
−ψηt+1∆ log yt−1

¢
E
¡
(∆ log yt−1)

2¢
= α2 + ψ2

x4σ4

1− α2
1

E
¡
(∆ log yt−1)

2¢ .
Now

E
¡
(∆ log yt−1 − ψ0)

2¢ = ψ2E
¡
u4t
¢
= 3ψ2

x4σ4

1− α4
.

Therefore

E
¡
α̂2
¢
= α2 + ψ2

x4σ4

1− α2
1

3ψ2 x
4σ4

1−α4
= α2 +

1 + α2

3
=
4

3
α2 +

1

3

so that OLS estimates are biased upward.
For the second restriction on moments,

−ψ = E (∆ log yt)− ψ0
E
¡
u2t+1

¢ =
¡
1− α2

¢ E (∆ log yt)− ψ0
x2σ2

.

From (19) and (10) ψ = 1
2
λα = 1

2xσ2
, and so ψ x2σ2

1−α2 =
1
2

x
1−α2 =

1
2λασ2

1
1−α2 . Therefore,

these two moment conditions are

m (α, λ) =

½
0 = E

¡
∆ log yt − ψ0 +

1
2λασ2

1
1−α2

¢
, and

0 = E
¡
∆ log yt − ψ0 −

¡
4
3
α2 + 1

3

¢
(∆ log yt−1 − ψ0)

¢
(∆ log yt − ψ0) = 0.

So our GMM procedure criterion minimizes

m̂ (α, λ)0W−1m̂ (α, λ)
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where m̂ (β) is the empirical counterpart ofm (α, λ) andW−1 is the optimal weighting
matrix as in Hansen (1982). Having estimated α, we then obtain δ as follows: Using
(17) and (10),

δ̂ =
1

A∗
1

λα
=

µ
1

ψ0 − T lnβ

¶
1

λα
,

where β = 0.95 and T = 5 or T = 10, depending on whether the time-interval is five
or ten years. Table 1 reports the estimates.

6.3 Derivation of optimal savings

Let us now analyze the savings problem defined in (13) and derive the optimal con-
sumption rule expressed in (14). To save space I do it only under the assumption
that A = A∗ so that we can drop A from the vector of states.

Lemma 6 (13) has a solution of the form

w (n, u) =W (u) +
1

1− β
lnn,

where

W (u) = max
ξ

½
ln (Z (u)− ξ) +

β

1− β
ln ξ + β

Z
W (u) dΦ (u0, u)

¾
. (32)

Proof. We can change variables and let ξ = n0/n so that substituting into the
RHS an equation of the form w (n, u) =W (u) +B lnn, (13) becomes

w (n, u) = max
ξ

½
ln (nZ [u]− nξ) + β [B lnn+B ln ξ] + β

Z
W (u0) dΦ (u0, u)

¾
= lnn+ β [B lnn] + max

ξ

½
ln (Z − ξ) + βB ln ξ + β

Z
W (u0) dΦ

¾
which works if

B = 1 + βB,

i.e., if B = 1/ (1− β). Since the right hand side is a contraction operator on a
complete metric space, there exists exactly one function W (u) such that (32 holds.

Then the FOC for ξ in (32) is

− 1

Z − ξ
+

β

1− β

1

ξ
= 0, (33)

Proposition 7 Optimal consumption is

c = (1− β)Zn.
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Proof. (12) implies
c

n
= Z − ξ. (34)

Since shares are one-period, consumer wealth is the same as aggregate output. We
posit consumption to be a constant fraction of wealth

c = ωZn,

Together with (34) this implies

ξ = Z − c

n
= Z (1− ω) .

Substituting for ξ into (33), we find that it holds if and only if

ω = 1− β.
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