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ABSTRACT

We use U.S. patent records to examine the role of research personnel as a pathway for the diffusion

of ideas from university to industry. Appearing on a patent assigned to a university is evidence that

an inventor has been exposed to university research, either directly as a university researcher or

through some form of collaboration with university researchers. Having an advanced degree is

another indicator of an inventor's exposure to university research. We find a steady increase in

industry's use of inventors with university research experience over the period 1985-97, economy

wide and in the pharmaceutical and semiconductor industries in particular. We interpret this as

evidence of growth in the influence of university research on industrial innovation. Moreover,

during this period we find that firms with large research operations in both industries, and young and

highly capitalized firms in the pharmaceutical industry, are disproportionately active in the diffusion

of ideas from the university sector. Finally, we find that the patents of firms that employ inventors

with university research experience are more likely to cite university patents as prior art, suggesting

that this experience better enables firms to tap academic research.
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I.   Introduction 

 This paper examines the influence of university research on innovation in 

industry.  The results of university research disseminate along a number of pathways:  

through scholarly publications and the material published in universities’ patent 

applications, at conferences where scholarly work is presented and where industry and 

academic research personnel commingle, and via informal social networks.1  But firms 

also learn about university research after employing or collaborating with researchers 

who work or have worked in university laboratories.  In fact, social scientists who study 

innovation suspect that certain kinds of important knowledge become available to a firm 

only with sustained, close interaction with researchers who possess this knowledge as 

through an employment or collaborative research arrangement. 

 We use U.S. patent data to study the role of research personnel as a pathway for 

the diffusion of ideas from university to industry.  The inventors behind the patented 

invention are listed on each patent, as are the firms, government organizations, and 

universities to which the patents are assigned.  Using a procedure similar to one proposed 

by Trajtenberg (2004), we match names on patents to construct a panel data set of 

inventors that contains the patents in each year of the inventors’ careers.  We are thus 

able to identify for each inventor when and how often he or she is innovating for 

university and industry assignees.  For each patent assigned to industry we can tell 

whether its inventors had previously appeared as an inventor on a patent assigned to a 

university.  Appearing on a patent assigned to a university is evidence that the inventor 

had exposure to university research, either directly as a university researcher or through 

                                                 
1 See Cohen, Nelson and Walsh (2002) on the various means by which innovating firms access know-how 
developed externally.  See Agrawal, Cockburn, and McHale (2003) for evidence of the importance of 
social networks in promoting diffusion. 
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some form of collaboration with university researchers.  We also use data from the 

Dissertation Abstracts to establish whether the inventor has an advanced degree 

(doctorate or master’s), another measure of exposure to university research.  In this paper, 

we investigate how the influence of university research on industry innovation has 

evolved over the last two decades, through inventors’ university inventing and research 

experience.  In addition, we investigate how the trend of university influence can be 

attributed to various factors like the demand and the supply of university-affiliated 

scientists by decomposing the change in university influence into components 

representing various factors. 

We also use patent citations to infer the extent of industry access to university-

produced knowledge and how that access has changed.  Patent applicants are legally 

obligated to disclose any knowledge they have of previous relevant inventions.  The patent 

examiner may add to the application relevant citations omitted by the applicant.  Thus, 

through the patent citations each patent documents the “prior art” upon which the new 

innovation builds, and because we know each cited patent’s assignee type, we know 

whether the prior art originated in university laboratories.2  We also investigate if the 

presence of university-affiliated inventors instigates firms to cite university patents and 

access university research. 

Another objective of our paper is to identify factors that influence an innovating 

firm’s interaction with university R&D.  A focus of this analysis is the pharmaceutical 

and semiconductor industries, two industries that are especially prolific generators of 

innovations and patents.  After combining the inventor panel data with firm information 

                                                 
2 Other studies have examined citations to university patents (e.g., Jaffe and Trajtenberg, 2002), but to our 
knowledge, none have looked at how the phenomenon has been evolving. 
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in these industries, we relate various firm-level characteristics with our measures of 

exposure to university research to sort out the factors that influence an innovating firm’s 

interaction with university research.  We also repeat the analyses conducted on the 

comprehensive industry-wide data separately for the pharmaceutical and semiconductor 

industries to find how the influence of university research has evolved in these two 

industries.  

Our main findings are the following.  Over the period 1985-1997, we find 

industry increased its employment of inventors with experience on university research 

projects and with advanced university degrees.  For the decade of the 1990s we also find 

(1) the pharmaceutical industry made greater use of inventors with university 

backgrounds than the semiconductor industry, (2) the percentage of patents assigned to 

firms that involved inventors with university backgrounds increased substantially in both 

industries, (3) that firms with large research enterprises in both industries and young and 

highly capitalized firms in the pharmaceutical industry were disproportionately active in 

the diffusion of ideas from the university sector, and (4) the patents of firms that employ 

inventors with university patenting experience are more likely to cite university patents as 

prior art. 

 The paper is organized as follows.  The next section summarizes the literature on 

the various mechanisms for university technology transfer to industry, technology 

spillovers, scientist collaboration and mobility, and the use of patent citations to trace 

technological diffusion.  Section III describes our data, focusing on the construction of 

the inventor panel.  Section IV describes levels and trends in university involvement in 

all industries and by industry, and reports the decomposition results.  This section also 
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describes our empirical estimation of the determinants of firm use of university-

experienced inventors and inventors with advanced degrees, and of citations to university 

patents.  Section V offers concluding remarks. 

 

II.   Literature Review 

Two decades of empirical work suggests important and pervasive effects of 

university research on industry R&D and innovation (e.g., Jaffe, 1989; Adams, 1990; 

Mansfield, 1991, 1998; Nelson and Rosenberg, 1993; Cohen, Nelson, and Walsh, 2002).3  

Mansfield (1991) roughly estimates the annual social rate of return to university research 

over the years 1975 through 1978 to be 28 percent.  While the diffusion of technology 

from the academic to the industrial sector is thought to be important, little is known about 

the transmittal mechanisms.  Scholars writing in both the economics and sociology of 

innovation literatures argue that new technologies are frequently difficult to transmit to 

the uninitiated via spoken or written communication (see Polyani, 1958, for an early 

discussion of the ‘tacitness’ of knowledge).  Often the most efficient means of 

transmission across organizational boundaries for tacit knowledge is via person-to-person 

contact involving a transfer or exchange of personnel.  Recent findings that technological 

diffusion appears to be geographically limited (e.g., Jaffe, 1989; Jaffe, Trajtenberg, and 

Henderson, 1993; Zucker, Darby, and Brewer, 1998; and Mowery and Ziedonis, 2001) is 

often interpreted as evidence of the tacitness of knowledge. 

 More direct evidence exists that person-to-person interaction is important for the 

diffusion of technology.  Cohen, Nelson, and Walsh (2002) surveyed R&D managers on 

the means by which they gather and assimilate new technologies.  They find that firms 
                                                 
3 See Cohen, Florida, Randazzese, and Walsh (1998) for a survey of this evidence. 
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access externally-located technology partly through the hiring of and collaboration with 

researchers from the outside.  Moreover, they find that hiring/collaboration with outside 

scientists is complementary to other means of accessing externally produced knowledge, 

such as through informal communications with outsiders and more formal (such as 

consulting) relationships with outsiders.  Almeida and Kogut (1999) find that scientific 

references that firms cite in their patent applications reflect the employment histories of 

their inventors, suggesting that ideas in the semiconductor industry are spread by the 

movement of key engineers among firms, especially within a geographical area.4  Zucker, 

Darby, and Armstrong (2001) find evidence of a pay-off to firms that seek interactions 

with outside researchers.  They find a positive impact on patent productivity for biotech 

firms that collaborate with university researchers on research and scholarly publications. 

 We therefore anticipate that the evidence, while presently incomplete, will 

eventually show that the migration of university-experienced scientific personnel to 

industry is an important means of technology transfer and that it complements other 

mechanisms.  Assuming this to be the case, we use measures of the industrial 

employment of university-experienced researchers to track the extent to which industry is 

accessing university technologies.   

 We also use patent citations to track the diffusion of university innovations.  

Some scholars have used citations to university and industrial patents to compare the 

relative importance of innovations arising from these sectors and to examine how 

changes in patent law have influenced the importance of university patents (Henderson, 

Jaffe, and Trajtenberg, 1998; Sampat, Mowery, and Ziedonis, 2003).  Others have looked 

                                                 
4 See also the (indirect) evidence of a link between scientific mobility and technological diffusion in Kim 
and Marschke (2005) and Moen (2005). 
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at the determinants of a university patent’s likelihood of being cited (Jaffe and 

Trajtenberg, 2002) and the trend in citations of industry patents to university research 

publications (Narin et al., 1997).  To our knowledge, ours is the first study that examines 

the extent to which industrial patents cite university patents. 

 

III.   Data Description 

Our data are derived from six sources: (1) Patent Bibliographic data (Patents BIB) 

released by the U.S. Patent and Trademark Office (USPTO) that contain bibliographic 

information for U.S. utility patents issued from 1975 to 2002; (2) the ProQuest Digital 

Dissertation Abstracts database which contains information on the date, field, and type of 

degree for those who earned degrees in all natural science and engineering fields between 

1945-2003; (3) the Compact D/SEC database since 1989 which contains firm information 

taken primarily from 10-K reports filed with the Securities and Exchange Commission; 

(4) the Standard & Poor’s Annual Guide to Stocks-Directory of Obsolete Securities 

which include a history of firm name changes; (5) the Thomas Register, Mergent, and 

Corptech data which report a firm’s founding year, and finally (6) the NBER Patent-

Citations data collected by Hall, Jaffe and Trajtenberg (2001) which contain all citations 

made by patents granted in 1975-1999.  To create our database from these sources, we 

first match inventor names in the Patents BIB and Dissertation Abstracts databases.  We 

then match firms in the Compact D/SEC database to assignees in the Patent BIB database 

with founding information added.  Finally, we combine the two databases from the first 

two steps and add information from the citation data.  

 



 7

Inventor name matching 

Since the 1960’s researchers have extensively used the information contained in 

patent data to investigate various issues such as technology spillovers and R&D 

productivity at the industry or firm level.  The information on inventors contained in 

patent data, however, has not been fully utilized possibly because of the difficulty in 

identifying whether two names in the inventor name field from two patents belong to the 

same inventor.  Using inventor’s name (last, first, and middle), address, city, state, zip 

(often missing), and country at the time of grant of the patent, we attempt in this paper to 

match inventor names and produce each inventor’s life-cycle productivity in patenting.  

There are various potential problems in name matching in the patent data.  First, 

full middle names are reported in some cases while only their initials are spelled out or 

they are missing in other cases.  Second, there is a risk of two inventors with the same 

common names being mistakenly matched.  Third, there can be a problem of name 

misspelling, especially for non English names.  As an attempt to circumvent these 

potential problems, we rely on other information available from the patent data such as 

inventors’ addresses, citation records, and postal zip codes.  Our methodology for 

inventor name matching is similar to that in Trajtenberg (2004), which is the only other 

attempt for inventor name matching to our knowledge.   

To start, we treat each entry that appears in the inventor name field of every 

patent in the Patents BIB data as a unique inventor.  Given, let’s say, N number of names 

in this name pool, we pair each name with all other names, which generates N(N-1)/2 

number of unique pairs.  In fact our data have 5.1 million names in total (2.05 inventors 

per patent) and thus 13 trillion unique pairs.  For each pair, we consider the two names as 
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belonging to the same inventor if the SOUNDEX codes of their last names and their full 

first names are the same, and at least one of the following three conditions is met: (1) the 

full addresses for the pair of names are the same; (2) one name from the pair is an 

inventor of a patent that is cited by another patent whose inventors include the other 

name from the pair; or (3) the two names from the pair share the same co-inventor.  

These three criteria in our name matching method are similar to the “Strong” criteria of 

Trajtenberg (2004).   

The SOUNDEX is a coded index for last names (surnames) based on the way a 

surname sounds rather than the way it is spelled.  Surnames that sound the same, but are 

spelled differently, like SMITH and SMYTH, have the same SOUNDEX code.  We use 

the SOUNDEX coding method to expand the list of similar last names to overcome the 

potential for misspellings and inconsistent foreign name translations to English; 

misspellings are common in the USPTO data as are names of non-Western European 

origin (see Appendix A for the detailed SOUNDEX coding method).   

We also consider a pair of names as a match if two have the same full last and 

first names, and at least one of the following two conditions is met: (1) the two have the 

same zip code; or (2) they have the same full middle name.  These two criteria 

correspond to the “Medium” criteria of Trajtenberg (2004).   

Given all pairs of names that are considered as matches by the preceding 

procedures, we impose an additional matching criterion that a pair of names is not treated 

as a match if their middle name initials are different.  We then impose transitivity in the 

following sense: If name A is matched to name B and name B is matched to name C, 

name A is then matched to name C.  We iterate this process until all possible transitivity 
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matches are completed.  At this point we assign the same inventor ID number for all the 

names matched.5   

Trajtenberg (2004) assigns scores for each matching criteria and considers a pair 

matched only if its total score from all matching criteria exceeds a threshold.  We do not 

use this score method in our data construction because different scores given to each 

criterion and the threshold score can be quite arbitrary.  Our methods also differ in that 

we do not match the pair of names with the same assignee because name matching based 

on this criterion can produce data with a bias in mobility among inventors.  Instead we 

apply the criterion that a pair of names is not treated as a match if their middle name 

initials differ.  From our experience with the patent data, imposing this criterion is 

necessary because the SOUNDEX coding system sometimes so loosely specifies names 

that apparently different last names are considered a match.   

In the end, because of these differences the number of distinct inventors identified 

with our procedure is a little higher than the number of distinct inventors produced by 

Trajtenberg’s method.  We identified 2.3 million unique inventors (45%) out of 5.1 

million names in the entire patent data while Trajtenberg (2004) found 1.6 million 

distinctive inventors (37%) out of 4.3 million names.  Note that our patent database is 

larger because it includes additional years, 2000-2002.  

After name matching in the patent data, we match the Dissertation Abstract data 

to the inventors in the patent data.  Each inventor identified through the preceding 

                                                 
5 Imposing transitivity after our name matching procedure, however, poses a possibility of name mismatch.  
Suppose, for example, Adam E. Smith and Adam Smith are matched based on our criteria in one pair, and 
the same Adam Smith and Adam J. Smith are matched in another pair. According to our transitivity 
procedure, Adam E. Smith and Adam J. Smith are identified as a match although their middle name initials 
are different.  We thank Adam Jaffe for raising this issue. See Appendix B for the magnitude and the 
correction of this problem in our data.  
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procedure may have a list of names matched to him or her (for example, John Maynard 

Keynes, John M. Keynes, John Keynes) due to names linked to each other by satisfying 

the criteria described above.  Since the Dissertation Abstract data contain for each 

individual a full name in a string instead of separate last, first and middle name fields, we 

convert all the names under each inventor ID number in the patent data to strings to 

search for them within the Dissertation Abstract data.6  On rare occasions when multiple 

names from the Dissertation Abstract data are matched to one ID number in the patent 

data, we randomly pick one name.  Out of 2.3 million unique inventors in our patent data, 

3 percent (64,507) are identified as holders of advanced degrees.  

 

Firm-assignee matching 

We choose all firms whose primary SIC code is 2834 (pharmaceutical 

preparation) or 3674 (semiconductor and related devices) in the Compact D/SEC data.7  

We select these two industries for our study because the firms in these industries are 

active in patenting and produce homogenous products relative to other industries.  By 

focusing on two relatively homogenous industries, we avoid problems due to the 

incomparability in utility and marketability of innovations, and in patent propensities 

across industries.  Note that we select only the years 1989 through 1997 for our study, 

because the Compact D/SEC data before 1989 are unavailable to us and we found that 

                                                 
6 In addition, we impose conditions regarding the timeframe of the inventor’s patenting history, wherein the 
inventor’s last patent is no later than forty years following the dissertation date, and the first patent is no 
more than twenty years before the dissertation date. 
7 Because the Compact D/SEC database contains only publicly traded firms that have at least $5 million in 
assets, our sample contains firms that are on average larger and more successful than the firms in the 
general population in these industries.  Also, most biotech firms are not included in our pharmaceutical 
industry sample because we selected only those firms under one SIC code of pharmaceutical preparation. 
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starting with application year 1998 the patent time series tailed off due to the review lag 

at the USPTO. 

Because parent firms patent sometimes under their own names and at other times 

under the names of their subsidiaries, merging the Patents BIB data with firm-level data 

in the Compact D/SEC data is not straightforward.  Mergers and acquisitions at both the 

parent firm and subsidiary levels, common in these two industries during the 1990s, and 

name changes further complicate linking the patent to firm-level data.  (The USPTO does 

not maintain a unique identifier for each patenting assignee at the parent firm level nor 

does it track assignee name changes.)  Thus, to use the firm-level information available in 

the Compact D/SEC data, the names of parent firms and their subsidiaries and the 

ownership of firms must be tracked over the entire period of the study, which is 

accomplished based on the subsidiary information in the Compact D/SEC data.  

Since the Compact D/SEC data do not report old names of the firms that change 

their names (in many cases, after mergers), we use the S&P data to track the history of 

name changes of each assignee and link firm level information in the Compact D/SEC 

data before and after a name change.  Finally, we merge information on firms’ founding 

years to the firm database.  

 

Combining databases from the preceding steps 

As the final step, we link the patent inventor database from the first step to the 

firm database from the second step to produce a data set on inventors and patents that 

includes firm-level data (e.g., R&D expenditures, sales, and employment level) on the 

patents’ assignees.  Because patents are typically assigned to the firm (the assignee) that 
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employs the inventors, we identify the inventors’ employers in the Patents BIB data by 

patent assignees.  We then add information on all citations from the NBER Patent-

Citations data collected by Hall, Jaffe and Trajtenberg (2001) where each citing patent 

that was granted between 1975 and 1999 is matched to all patents cited by the patent.   

 

IV.   Results 

Trends 

Figures 1A, B, and C show the annual percentage of industry-assigned patents 

that list at least one inventor who had previously been named an inventor on a university-

assigned patent applied for sometime in the previous ten years (UNIV).8  Because our 

data included patents granted in 1975 and later, we imposed a cut-off for the patents used 

to define whether an inventor was university-experienced at the time of the industry 

patent’s application.  We chose to consider only those university-assigned patents on 

which the inventor appeared in the ten years prior to the date of the industry patent’s 

application because ten years still leaves us a long period over which to conduct our 

analysis and because skills or knowledge acquired in a university setting far in the past 

may not be very valuable.  Figure 1A shows this measure for all patents granted to U.S. 

industry assignees by application year for the years 1985 through 1997.  Figures 1B and 

C isolate the pharmaceutical and semiconductor industries, respectively, for the period 

1989 through 1997.   

Figure 1A shows a steady increase in UNIV between 1985 and 1995, from 0.9 to 

2.6 percent.  UNIV then drops from 2.6 percent in 1995 to 1.9 percent in 1996 before 

                                                 
8 Our university assignees include domestic universities, hospitals, research laboratories (non-government), 
and non-profit organizations in the U.S. 
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recovering somewhat in 1997.  This precipitous rise and fall of UNIV is puzzling—we 

observe this phenomenon in the other figures discussed below—but may be related to a 

change in patent law in 1995.  Until 1995, successful patent applicants received a 17 year 

monopoly on the use of their invention from the date the patent was granted.  For 

applications filed after June 8, 1995, patented applicants received a 20 year monopoly 

commencing from the date of the patent application.  This new law may have changed the 

duration of the monopoly for many patent holders, affording longer monopoly periods for 

patents that are approved quickly, and shorter periods for patents whose review procedure 

is delayed, as by an appeal or an interference proceeding.  In addition, the new law 

provided that patents applied for prior to June 8, 1995 and issuing on or after June 8 

would expire either 17 years from issuance, or 20 years from the date of original 

application, whichever generated the longer monopoly period (Radack, 1995; Elman, 

Wilf, and Fried, 1995).  These relatively generous terms may have for the short 

transitional period made some marginal innovations worth the opportunity cost of 

patenting.  The figure in appendix C shows the patent applications by application year 

over the period 1985 through 1997.  The applications time series show a distinctive blip 

in 1995 that may reflect a rush to file applications before the June 7 expiration date to 

take advantage of the opportunity to lock in an extended monopoly period.  Moreover, 

because basic research has a longer shelf life, firms with inventions constituting basic 

research may have been especially keen to obtain the longer monopoly period.  Thus it 

seems to us natural to see an increase in university influence in our figures during the 

transition period.9 

                                                 
9 Another possibility we considered was a truncation effect.  Our data set may exclude some patents applied 
for in the late 1990s that had not been granted by February 2002, the end date of our data.  Thus, if the 
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Figures 1B and C show the measure UNIV for firms in the pharmaceutical and 

semiconductor industries, respectively, for the period 1989 through 1997.  First, note in 

this period in both industries an increase in the percentage of patents that name at least 

one inventor who has invented for university-assigned patents.  Second, note that patents 

in the pharmaceutical industry were more likely than those in the semiconductor industry 

to include an inventor who had university patent experience: over this period, about 6.6 

percent of patents in the pharmaceutical industry included at least one inventor with 

university patenting experience compared to about 1.9 percent in the semiconductor 

industry.  Also note that the rate of increase was greater for the semiconductor industry.  

Finally, note the blip centered on 1995 in the pharmaceutical time series, which is absent 

in the semiconductor time series.  For the pharmaceutical industry the length of time of 

the monopoly may be more important as pharmaceutical patents typically still earn 

substantial revenues at the end of the monopoly period (Elman et al, 1995), suggesting 

the deadline may have provoked a greater behavioral response in the pharmaceutical 

industry.  

One concern is that firms may have been interacting with university-experienced 

inventors in earlier years at the same rate as in later years but because universities 

infrequently patented before the 1980s we do not detect it.  Figure 1D reports the fraction 

of inventors with university patenting experience in the last 10 years who appear on 

industry patents by application year; this measure does not suffer from the 

aforementioned problem.  Figure 1D shows that between 1985 and 1997 the alternative 

                                                                                                                                                 
more complicated patent applications tend also to be the patent applications involving university-
experienced inventors, than our time series might trail off at the end of the period, as depicted in Figure 1A.  
We tested this hypothesis by using the patent granting dates to truncate the data artificially; we tossed out 
all patents that had not been granted as of (the arbitrarily chosen year) 1994.  This failed to produce a blip 
leading us to conclude this phenomenon is not caused by truncation. 
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measure exhibits similar dynamics, more or less rising through 1995, then falling 

precipitously.   

Figures 2A, B and C show the percentage of industry patents that include at least 

one inventor with an advanced degree (ADVDEG).  Figure 2A shows this figure for all 

patents granted to U.S. industry assignees. Figures 2B and C show the pharmaceutical 

and semiconductor industries, respectively.  Figure 2A shows a steady increase in 

ADVDEG from 6.9 percent in 1985 to 13.9 percent 1995, where it dips slightly in 1996, 

and then begins to rise again, reaching 14.7 percent in 1997.  ADVDEG averages 33 

percent for the pharmaceutical industry and 19 percent for the semiconductor industry.  

This indicates that both industries are especially reliant on highly-educated labor for 

research as the averages in both industries are higher than the overall average in the full 

data set during the same period.  Figures 2B and C confirm the findings in Figures 1B 

and C in that (1) both time series increase through the period, (2) the level is higher in the 

pharmaceutical industry, but the rate of increase is higher for the semiconductor industry, 

and (3) the time series for the pharmaceutical industry demonstrate a blip centered at 

1995. 

Similar to Figure 1D, Figure 2D reports the number of inventors named in 

industry patents with advanced degrees (in science and engineering awarded by U.S. and 

Canadian universities within the last 20 years) by application year as a percentage of the 

stock of inventors holding advanced degrees.10  We produce Figure 2D because we are 

concerned that the upward trend in the percentage of patents that name inventors with 

advanced degrees is only a consequence of the fact that there are more inventors with 

                                                 
10 Ideally we would like the stock of degree holders who are still in the labor market. Due to data 
availability, however, we use the stock of degrees awarded in the last 20 years. 
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advanced degrees.  The measure in Figure 2D attempts to capture how active firms are in 

recruiting inventors with advanced degrees. This measure exhibits a similar pattern as the 

measure in Figure 1D, rising over the period of 1985 and 1997, with a hump, albeit small, 

in 1995.   

Figures 3A, B, and C show the annual percentage of industry-assigned patents 

that cite as prior art a university patent applied for within the previous ten years (UCITE).  

Figure 3A displays UCITE for all industries for the period 1985 through 1997.  Figures 

3B and C display UCITE for the pharmaceutical and semiconductor industries, 

respectively.  Figure 3A shows a steady increase in UCITE between 1985 and 1995, from 

3.1 percent to 8.4 percent, followed by a decline through the end of the period.  

Qualitatively, Figures 3B and C display similar patterns to those displayed by Figures 1B 

and C and 2B and C: UCITE’s average level is higher for the pharmaceutical industry 

and in both industries UCITE rises over time.  In both industries, UCITE peaks in 1995, 

but the drop off is more striking in the pharmaceutical industry.  Figures 3B and C show 

an approximately two-fold increase in the relative importance of university patents in 

both industries. 

Firms may have been influenced by university research in earlier years, but 

because university research was patented at lower rates industry access was not as 

apparent.  Thus we create a measure of the likelihood that a university patent is cited by 

industry.  Figure 3D shows the percentage of 10-year old and younger university patents 

that are cited, by application year.  Like UCITE, this new measure generally increases 

from 1985 through 1995, after which it falls precipitously.  
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Decomposition of university influence 

 An increase in the presence of university-experienced persons among the firm’s 

inventors results either from an increase in their representation in the pool of available 

scientific personnel from which it (perhaps randomly) hires, or from an increase in the 

firm’s propensity to hire such workers.  In fact, the purpose of Figures 1D, 2D and 3D is 

to show a time trend in the contribution of the latter factor.  While both of these factors 

mix elements of demand and supply, measuring their separate contributions is still 

informative of the channels through which the changes are operating.  Thus in this 

section, we attempt to decompose the change in university influence into components 

representing various factors, including these two. 

We decompose an increase over our entire sample period in industry patents with 

university-experienced inventors in the following way. 

 Ut = (Ut/It) (It/Mt) (Mt/Pt) Pt,               (1) 

where Ut denotes the number of industry patents in year t that have at least one inventor 

with university patent experience in the last 10 years, It denotes the number of inventors 

of industry patents in year t with university patent experience, Mt denotes the number of 

all inventors that appear in university patents in the last 10 years, and Pt denotes the 

number of industry patents in year t.   

 Taking the logarithm of both sides of equation (1) and taking the difference 

between year s and t, we have 

 logUs − logUt = [log(Us/Is) − log(Ut/It)] + [log(Is/Ms) − log(It/Mt)]        (2) 

+ [log(Ms/Ps) − log(Mt/Pt)] + [logPs − logPt]. 
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This equation illustrates that the change in Ut is the sum of the changes in (a) the patent 

productivity of university-experienced inventors in industry (Ut/It), (b) the probability 

that university patent inventors later appear in industry patents (It/Mt), (c) the average 

number of university inventors available for an industry patent (Mt/Pt), and (d) the 

number of industry patents (Pt).  The second ratio (It/Mt) can be loosely interpreted as an 

indicator of firms’ propensity to hire university-experienced inventors (shown in Figure 

1D) while the third ratio (Mt/Pt) as a measure of the prevalence of university-experienced 

inventors in the pool of inventive talent.11   

In a similar fashion, we can decompose an increase in industry patents with 

advanced-degree holding inventors.  In this case, Ut is the number of industry patents in 

year t that have at least one inventor with an advanced degree, It is the number of 

inventors with advanced degrees on industry patents in year t, and Mt is defined as the 

stock of inventors in year t holding advanced degrees (see footnote 10). 

In decomposing an increase in industry patents that cite university patents, Ut 

denotes the number of industry patents that cite university patents granted within the last 

10 years, It denotes the number of unique university patents cited, and Mt denotes the 

stock of 10-year old and younger university patents citable. 

Figure 4 presents the decompositions of the increase in industry patents that name 

inventors with university patents in their past, that name inventors with advanced 

degrees, and that cite university patents.  In examining these three decompositions, one 

sees that the increase in patenting during the sample period explains much of the increase 

in these variables, as one would expect.  Because we are interested ultimately in 

                                                 
11 We were unable to perform the decomposition exercise separately for our two industries because the 
number of inventors that appear in university patents in the pharmaceutical or semiconductor field (that is 
Mt) is not available. 
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understanding better the dynamics of U/P, however, we focus the discussion on the other 

explanatory factors.   

Consider first decomposition (a).  An increase in M/P—the stock of inventors 

with university patenting experience relative to the flow of patents—explains most of the 

increase in the number of industry patents naming university experienced inventors that is 

not explained by P.  Note also that decomposition (c) shows that the increase in industry 

patents that cite university patents is largely driven by the growth in the stock of 

university assigned patents that is available to cite.  Thus, both the increase in UNIV and 

in UCITE appears to be driven by the growth in university patents.  The increased 

likelihood of an inventor with university patenting experience appearing on a patent does, 

however, explain some of the growth in UNIV.  Finally, the increased likelihood of an 

inventor with an advanced degree appearing on an industry patent is the largest factor in 

the growth of patents naming inventors with an advanced degree (decomposition b).  The 

size of the available group of inventors with advanced degrees per industry patent 

actually fell over the sample period.  In all cases of decomposition, the change in the 

patent productivity term (U/I) had a minimal explanatory power in the patent increase. 

 

Determinants of university influence 

We are interested in learning which firms access university research.  For 

example, are there scale or scope economies in exploiting university research that favor 

large or diversified firms?  Do young firms that are developing and using new 

technologies make greater use of university research than older firms?  Tables 2, 3, and 4 

present the results of our estimation of the determinants of accessing university research.  
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These regressions relate measures of the firm’s access to university research in year t and 

firm characteristics.  The dependent variables in Tables 2, 3, and 4 are the logit transform 

of the fractional form of the variables defined in Figures 1, 2, and 3, that is, of UNIV, 

ADVDEG, and UCITE, respectively.  We should note, however, that these variables in 

our regressions are defined at the firm level, not at the economy or industry level.  All 

models are estimated with random (firm) effects. 

 The means and standard deviations of the independent and dependent variables, 

along with their definitions, are described in Table 1.12  All right-hand side variables are 

logged. The base specification includes a measure of the size of the research operation, 

proxied by the number of inventors of patents (INVENTOR), to examine the effect of 

economies of scale at the R&D enterprise level.  Alternatively, we use the number of 

employees (EMPLOYEE) as a measure of organizational size at the firm level.  The base 

specification also includes the R&D-inventor ratio (R&D/INV) and the number of 

business lines in the firm (NSIC), measured by the number of secondary SIC’s identified 

with the firm.  We include the R&D-inventor ratio (R&D/INV) as a regressor because a 

highly capitalized firm may rely on more advanced technology, which may be reflected 

in the nature of its innovation, or lead the firm to use skilled labor more intensively (see 

Griliches, 1969, Goldin and Katz, 1998, for evidence on capital-skill complementarity).  

We include NSIC as a regressor to estimate the impact of economies of scope on how a 

firm’s reliance on university-originated research.   

                                                 
12 Note that the means of the patent percentages in the figures for the two industries are not equal to those 
reported in Table 1 because in Table 1 we average the percentages of patents for firms in each industry 
while the figures show the total number of university-influenced patents in an industry as a ratio to the total 
number of patents assigned to the industry. 
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 The results for the basic specification are included in the first column of each 

panel.  They consistently show a positive effect of size of the R&D enterprise on the use 

of inventors with university patenting experience (Table 2) and on the use of inventors 

with advanced degrees (Table 3), in both industries.  The size of the R&D enterprise also 

increases the likelihood that a firm’s patents cited university-assigned patents.  On the 

other hand, the size at the firm level shows no effect on the use of university research: 

EMPLOYEE has insignificant effects in all tables.  The coefficient estimate on 

logR&D/INV is generally positive but insignificant in all regressions.  The coefficient 

estimate on log NSIC is never significant by conventional criteria of significance.  

The second column in each panel describes the results from estimations that 

include two additional regressors: median experience of all inventors in a firm (MEXP) 

and years elapsed since the founding year of a firm (FIRMAGE).  These variables are 

excluded from our base specification because we lack these data for many firms in our 

sample.  The coefficient estimate on log MEXP is positive and significant for both 

industries for the UNIV regressions.  This may partly reflect that inventors who are more 

experienced are also more likely to have invented for a university assignee.  We also 

observe a positive but insignificant relationship between median experience and 

ADVDEG or UCITE.  The coefficient estimate on log FIRMAGE is negative in most 

cases and is negative and significant in the pharmaceutical regressions with UNIV as the 

dependent variable.  That is, we find evidence that older firms in the pharmaceutical 

industry employ fewer inventors with university patenting experience.  The marginal 

effects of the regressors in the second column are reported in Table 5. 
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The key variables in our estimation may be time trended, in which case the 

estimated effect of our independent variables on our measures of university research 

influence could be spurious.  To test the sensitivity of our result to a time trend effect, we 

introduce the time trend as an additional right-hand side variable.  These results are 

reported in the third column of each panel.  The addition of a time trend does not 

generally change the inference; where coefficient estimates are significant in the time 

trend’s absence, they are significant in its presence.   

Does the presence of university-experienced scientists in the firm increase the 

firm’s ability to access university research?  Or, do firms with more university-

experienced inventors produce more patents that cite university patents?  Table 6 

addresses the question on the mechanisms of spillovers.  The first two columns for each 

industry panel show the estimates of the determinants of the firm’s citing of at least one 

university patent (ANYUCITE is the binary dependent variable).  The results reported are 

from a random-effects probit model.  The next two columns report the estimates of the 

determinants of the number of the firm’s patents that cite university patents (UCITE is 

the dependent variable).  The results reported are from a random-effects regression 

model.  The key regressors in this table are binary variables for whether a firm has at 

least one university-experienced inventor (ANYUSCI) or at least one inventor with an 

advanced degree (ANYPHD).   

 The results in Table 6 show that firms with more university-experienced inventors 

in both industries are more likely to have patents that cite university patents: ANYUSCI 

has a significantly positive effect in both models.  Having inventors with advanced 
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degrees is not shown to lead to more citations to university patents, as ANYPHD has an 

insignificant, albeit positive, effect.  

 

V.  Conclusion 

 Our results suggest that economy-wide and in the pharmaceutical and 

semiconductor industries individually, industry’s use of inventors with past experience 

conducting university research, and of inventors with advanced degrees, has increased.  

This may mean that R&D-doing firms have increased their access to university-produced 

knowledge through the knowledge imbedded in inventors’ human capital.  That industry 

is making greater use of university-produced knowledge is also reflected in the citation 

data.  Economy-wide and in the pharmaceutical and semiconductor industries 

individually we observe an increase in the citing of university patents.  Using our 

inventor-based measures, we find a faster increase in access to university research in the 

semiconductor industry.  Using the citation-based measure, we find roughly equivalent 

increases.  The pharmaceutical industry shows greater access to university research (by 

any of our three measures) than the semiconductor industry. 

 The decomposition offers additional insight into the increase in industrial patents’ 

naming of inventors with university patenting experience and with advanced degrees, and 

industrial patents’ citing of university patents.  First, the growth in university patenting 

may explain most of the increase in the fraction of industry patents that name inventors 

with university patenting experience and the fraction of industry patents that cite 

university patents—at least at the level of the economy.  The increased likelihood of an 

inventor with university patenting experience appearing on a patent does, however, 
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explain some of the growth of industry patents by inventors with university patenting 

experience.  The increase in the fraction of industry patents that name inventors with 

advanced degrees appears to be almost entirely due to the likelihood of inventors with 

advanced degrees appearing on industry patents (i.e., it is not due to an increase in the 

stock of inventors with advanced degrees). 

In our firm-level analyses, we find that firms with large research operations are 

more likely to access university research than firms with small ones.  Pharmaceutical 

firms with higher R&D-inventor ratios are more likely to utilize inventors on their patents 

who had previous university research experience.  Firms in both industries with more 

experienced inventors were more likely to utilize inventors with university research 

experience.  Younger pharmaceutical firms were more likely to utilize inventors with 

university research experience.  Finally, we find evidence that employing scientists with 

university research experience may better enable firms to access university-produced 

knowledge.  Specifically, we find that inventors with university patenting experience 

increases the extent that the patents of a firm cite university patents as prior art.  

Needless to say, we recognize a number of shortcomings in our analysis that we 

plan to address in future work.  For example, our name matching procedure undoubtedly 

is subject to error, sometimes treating different inventors as a single inventor, and other 

times treating the same inventor as different inventors.  These matching errors are likely 

more important in the analysis of levels of involvement with university research, as 

opposed to the analysis of trends.  Nonetheless future work will attempt alternative 

matching rules for the sensitivity of our findings.   
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 An interesting question which is not investigated in this paper is how the use of 

university research affects the productivity of R&D in firms.  Another interesting 

question is how start-up firms utilize university research.  In future work, we plan to 

explore theses issues. 
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Appendix A.  SOUNDEX coding system 

A SOUNDEX code for a surname is an upper case letter followed by 6 digits.  For 

example the SOUNDEX code for Kim is K500000, while that for Marschke is M620000. 

The first letter is always the first letter of the surname. The rules for generating a 

SOUNDEX code are:  

1. Take the first letter of the surname and capitalize it. 

2. Go through each of the following letters giving them numerical values from 1 to 6 if 

they are found in the Scoring Letter table (1 for B, F, P, V; 2 for C, G, J, K, Q, S, X, Z; 3 

for D, T; 4 for L; 5 for M, N; 6 for R; 0 for Vowels, punctuation, H, W, Y). 

3. Ignore any letter if it is not a scoring character. This means that all vowels as well as 

the letters h, y and w are ignored. 

4. If the value of a scoring character is the same as the previous letter then ignore it. Thus 

if two ‘t’s come together in the middle of a name they are treated exactly the same as a 

single ‘t’ or a single ‘d’. If they are separated by another non-scoring character then the 

same score can follow in the final code. The name PETTIT is P330000. The second ‘T’ is 

ignored but the third one is not since a nonscoring ‘I’ intervenes.  

5. Add the number onto the end of the SOUNDEX code if it is not to be ignored. 

6. Keep working through the name until you have created a code of 6 characters 

maximum. 

7. If you come to the end of the name before you reach 6 characters, pad out the end of 

the code with zeros. 

8. Optionally you can ignore a possessive prefix such as ‘Von’ or ‘Des’. 

See "Using the Census SOUNDEX," General Information Leaflet 55 (Washington, DC: 

National Archives and Records Administration, 1995) for the detailed method. 

 

Appendix B.  Problem of Transitivity 

Imposing transitivity can create a possibility of name mismatch in that two 

inventors with different middle names are matched.   

 We found, however, that there are a trivial number of inventors with this problem: 

126 inventors out of 2.3 million uniquely identified inventors.  Upon further investigation 

of these cases, we found they are typically due to the following three reasons.  First, some 
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middle names in the Patent BIB data are incorrectly coded.  For instance, our transitivity 

procedure matched inventors named Laszlo Andra Szporny and Laszlo Eszter Szporny, 

but we found that these two are the same inventor without middle name and those middle 

names are in fact the first names of the next co-inventors in their patents.  Second, an 

inventor with two middle names is coded in the Patent BIB data with one middle name in 

some cases and with the other middle name in other cases.  The only case that can be 

apparently identified as a mismatch is that when two inventors with the same last and 

first name but different middle names appear in the same patent.  However, it is not 

simple to separate them because it can be rather arbitrary.  For example, we can either 

assign the records of Adam Smith to Adam J. Smith or Adam E. Smith.   

 

Appendix C.  Number of Patent Applications 
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Figure 1  Patents by Inventors with University Patent Experience 
A. All Industries 
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B. Pharmaceutical Industry 
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Figure 1  (continued) 
C. Semiconductor Industry 
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D. Inventor Ratio for All Industries 
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Figure 2  Patents by Inventors with Advanced Degrees 
A. All Industries 
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B. Pharmaceutical Industry 

25
30

35
40

P
at

en
ts

 w
ith

 in
ve

nt
or

s 
w

ith
 a

dv
an

ce
d 

de
gr

ee
 (%

)

1989 1991 1993 1995 1997
Application year

Pharmaceutical Industry

 



 34

Figure 2 (continued) 
C. Semiconductor Industry 
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D. Inventor Ratio for All Industries 
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Figure 3  Patents with Citations to University Patents 
A. All Industries 
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Figure 3 (continued) 
C. Semiconductor Industry 
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D. Citation Ratio for All Industries 

30
35

40
45

50
C

ita
tio

ns
 to

 u
ni

v.
 p

at
en

ts
 in

 th
e 

la
st

 1
0 

ye
ar

s 
(%

)

1985 1987 1989 1991 1993 1995 1997
Application year

All Industries

 



 37

Figure 4  Decomposing the Increase in Patents  
(a) that name inventors with university patent experience, (b) that name 

inventors with advanced degrees, and (c) that cite university patents 
(1985-1997) 
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Table 1.  Variable Definition and Sample Statistics 

 Definition Mean (Standard Deviation) 
  Pharmaceutical Semiconductor 
UNIV Fraction of patents that involve inventors who have university 

patenting experience 
0.1287 

(0.2632) 
0.0344 

(0.1458) 
ADVDEG Fraction of patents that have inventors on them who have 

advanced degrees 
0.2988 

(0.3277) 
0.1707 

(0.2597) 
UCITE Fraction of patents citing past university-assigned patents 0.3036 

(0.3567) 
0.0797 

(0.1849) 
INVENTOR Number of Inventors  60.23 

(114.5) 
74.74 

(246.8) 
EMPLOYEE Number of Employees  9,046 

(17,249) 
4,508 

(14,876) 
R&D/INV Real R&D expenditures in 1996 constant dollars over the 

number of inventors 
31.36 

(55.74) 
22.88 

(39.96) 
NSIC Number of secondary SIC’s assigned to a firm  2.3456 

(1.716) 
1.702 

(1.214) 
MEXP Median experience of all inventors in a firm 5.4796 

(3.555) 
4.550 

(3.107) 
FIRMAGE Years elapsed since the founding year of a firm  29.88 

(39.81) 
19.50 

(19.74) 
ANYUCITE Binary variable for whether a firm has at least one citation to 

university patents in year t 
0.6897 

(0.4629) 
0.4017 

(0.4907) 
ANYUSCI Binary variable for whether a firm has at least one inventor 

with university patenting experience inventor in year t 
0.4347 

(0.4961) 
0.1983 

(0.3991) 
ANYPHD Binary variable for whether a firm has at least one inventor 

with advanced degree in year t 
0.6221 

(0.4852) 
0.5034 

(0.5004) 
 
 



  

Table 2  Determinants of Firm Use of Inventors with University Patenting Experience 
 
Dependent variable = logit transform of UNIV 

 Pharmaceutical Semiconductor 
       
Log INVENTOR 2.5045 2.1970 2.1777 1.4853 1.3832 1.1757 
 6.91 5.00 4.89 6.74 5.98 4.69 

Log EMPLOYEE -0.5381 -0.1871 -0.1571 -0.1034 -0.0088 0.1427 
 -1.97 -0.46 -0.38 -0.48 -0.04 0.56 

Log R&D/INV 0.1258 0.1550 0.1482 0.0555 0.0641 0.0324 
 1.58 1.72 1.59 0.66 0.72 0.35 

Log NSIC -0.2018 -0.3801 -0.3881 0.3815 0.4732 0.7109 
 -0.28 -0.46 -0.47 0.69 0.82 1.21 

Log MEXP  3.0469 3.0339  0.8233 0.8648 
  5.52 5.48  2.31 2.43 

Log FIRMAGE  -1.4772 -1.5380  -0.2913 -0.5002 
  -2.03 -2.05  -0.66 -1.09 

Time trend   0.0438   0.2115 
   0.30   2.14 

Observations 631 505 505 576 556 556 
R2 0.1436 0.1940 0.1931 0.1789 0.1873 0.1930 
Note: All models are estimated with random (firm) effects.   
 



  

Table 3  Determinants of Firm Use of Inventors with Advanced Degrees 
 
Dependent variable = logit transform of ADVDEG 

 Pharmaceutical Semiconductor 
       
Log INVENTOR 2.7368 2.6377 2.4313 2.4983 2.3655 2.2626 
 6.62 5.31 4.86 7.02 6.31 5.56 

Log EMPLOYEE -0.3520 -0.2187 0.0568 -0.4034 -0.3539 -0.2796 
 -1.18 -0.50 0.13 -1.11 -0.87 -0.66 

Log R&D/INV 0.1589 0.0939 0.0220 0.0391 0.0055 -0.0147 
 1.73 0.92 0.21 0.28 0.04 -0.10 

Log NSIC -0.5999 -1.1006 -1.2289 -0.2679 -0.2634 -0.1500 
 -0.72 -1.17 -1.31 -0.30 -0.29 -0.16 

Log MEXP  0.7651 0.6985  0.2133 0.2435 
  1.22 1.12  0.39 0.44 

Log FIRMAGE  -0.5259 -0.9577  -0.2985 -0.4422 
  -0.67 -1.20  -0.40 -0.57 

Time trend   0.4469   0.1060 
   2.69   0.69 

Observations 631 505 505 576 556 556 
R2 0.1365 0.1226 0.1280 0.1786 0.1716 0.1739 
Note: All models are estimated with random (firm) effects.   
 



  

Table 4  Determinants of Citations to University Patents  
 
Dependent variable = logit transform of UCITE 

 Pharmaceutical Semiconductor 
       
Log INVENTOR 1.3889 1.0221 0.9042 2.2396 2.1427 1.7774 
 2.63 1.64 1.43 6.99 6.57 4.97 

Log EMPLOYEE -0.7168 -0.5055 -0.3751 -0.3376 -0.3517 -0.1033 
 -1.90 -0.93 -0.68 -1.02 -0.99 -0.28 

Log R&D/INV 0.0656 0.0656 0.0335 0.0247 0.0060 -0.0629 
 0.60 0.53 0.26 0.19 0.05 -0.46 

Log NSIC 0.4175 0.3283 0.2993 -0.0938 -0.4115 -0.0429 
 0.42 0.29 0.27 -0.12 -0.53 -0.05 

Log MEXP  0.3585 0.3768  0.4991 0.5751 
  0.45 0.47  1.05 1.21 

Log FIRMAGE  -0.2034 -0.3948  0.5248 0.0590 
  -0.21 -0.41  0.79 0.09 

Time trend   0.2078   0.3196 
   1.03   2.42 

Observations 586 470 470 556 538 538 
R2 0.0394 0.0319 0.0376 0.2108 0.2298 0.2348 
Note: All models are estimated with random (firm) effects.   
 



  

Table 5  Marginal Effects of Regressors in Tables 2-4 
 

 Pharmaceutical Semiconductor 

Dependent variable UNIV ADVDEG UCITE UNIV ADVDEG UCITE 
       
 

Log INVENTOR 0.2464 0.5526 0.2161 0.0459 0.3349 0.1572 

Log EMPLOYEE -0.0210 -0.0458 -0.1069 -0.0003 -0.0501 -0.0258 

Log R&D/INV 0.0174 0.0197 0.0139 0.0021 0.0008 0.0004 

Log NSIC -0.0426 -0.2306 0.0694 0.0157 -0.0373 -0.0302 

Log MEXP 0.3417 0.1603 0.0758 0.0273 0.0302 0.0366 

Log FIRMAGE -0.1656 -0.1102 -0.0430 -0.0097 -0.0423 0.0385 

       

Note: All the numbers in this table are based on the coefficients reported in the second column of each panel in tables 2-4.  The 
marginal effect is calculated by ym(1-ym)β where ym is the sample mean of the dependent variable and β is the estimated coefficient.      
 



  

Table 6  Effect of University Affiliation on Citations to University Patents  

 Pharmaceutical Semiconductor 
Dependent variable ANYUCITE UCITE ANYUCITE UCITE 

Model Probit Regression Probit Regression 

ANYUSCI 0.8538  4.8418  0.7960  2.4361  
 3.98  3.93  3.45  2.60  

ANYPHD  0.2933  2.5764  0.2400  0.9853 
  1.47  1.86  1.39  1.32 

Log INVENTOR 0.4394 0.4893 0.1668 0.5024 0.6130 0.6490 1.8428 1.9605 
 4.32 4.48 0.26 0.74 7.45 7.28 5.35 5.54 

Log EMPLOYEE -0.0417 -0.0335 -0.4846 -0.4879 -0.1441 -0.1392 -0.3423 -0.3518 
 -0.58 -0.45 -0.91 -0.90 -2.03 -1.89 -0.96 -0.98 

Log R&D/INV 0.0293 0.0326 0.0289 0.0720 -0.0223 -0.0164 -0.0058 -0.0005 
 1.48 1.65 0.24 0.59 -0.78 -0.57 -0.04 0.00 

Log NSIC 0.0434 0.0532 0.2847 0.5269 -0.0645 -0.0219 -0.5106 -0.3965 
 0.24 0.29 0.26 0.47 -0.37 -0.12 -0.66 -0.51 

Log MEXP 0.0371 0.1330 -0.1107 0.2697 0.0762 0.1061 0.4176 0.4851 
 0.33 1.22 -0.14 0.34 0.65 0.88 0.88 1.02 

Log FIRMAGE 0.0103 -0.0239 0.0510 -0.1438 0.0600 0.0650 0.4983 0.5506 
 0.08 -0.19 0.05 -0.15 0.49 0.51 0.75 0.82 

Observations 505 505 470 470 556 556 538 538 
Log Likelihood or R2 -216.54 -223.83 0.0919 0.0469 -259.50 -264.51 0.2509 0.2341 
Note: All models are estimated with random (firm) effects.   




