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ABSTRACT

We present a dynamic quantity setting game, where players may continuously adjust their quantity

targets, but incur convex adjustment costs when they do so. These costs allow players to use quantity

targets as a partial commitment device. We show that the equilibrium path of such a game is hump-

shaped and that the final equilibrium outcome is more competitive than its static analog. We then

test the theory using monthly production targets of the Big Three U.S. auto manufacturers during

1965-1995 and show that the hump-shaped dynamic pattern is present in the data. Initially,

production targets steadily increase until they peak about 2-3 months before production. Then, they

gradually decline to eventual production levels. This qualitative pattern is fairly robust across a range

of similar exercises. We conclude that strategic considerations play a role in the planning phase in

the auto industry, and that static models may therefore under-estimate the industry's competitiveness.
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1 Introduction

Economists often model strategic interactions using simultaneous one-shot games. It is as if

decisions were taken in the blink of an eye and realized instantaneously. This is, of course, a

simplification. Complex decisions, such as entry, exit, or production are normally the result of a

long preparation process. If plans cannot be hidden from competitors and changing them is costly,

incentives to behave strategically during the preparation stage should be explicitly considered, as

they may be an important determinant of the final equilibrium outcomes.

Consider, for example, the automobile industry. Suppose that, ahead of time, an auto man-

ufacturer has planned a certain production target. In order to achieve it, the firm needs to take

certain actions, such as hiring labor, canceling vacations, purchasing parts from suppliers, etc. If

the firm then decided to change its desired production level, it would likely need to incur some

costs adjusting the previous actions. To the extent that such preparations are not or cannot be

fully hidden from competitors, they may play a strategic role. Given the costly nature of these

adjustments, the preparation stage acts as a gradual commitment device. Firms realize that their

planned production levels affect their rivals’ production plans, and use this to their advantage,

adjusting their own intentions strategically.

The main goal of the paper is to develop this argument in the context of a quantity setting

game, and to establish its empirical relevance using data from the U.S. auto industry. The first part

of the paper constructs a dynamic quantity setting game with a planning phase and adjustment

costs. In the second part, we use data on monthly production targets by the Big Three auto

manufacturers — General Motors, Ford, and Chrysler — and show that the empirical pattern is

consistent with the theoretical prediction.

The paper makes three separate contributions. First, we present new theoretical predictions

for quantity setting games regarding the non-monotone evolution of production targeting. Since

the framework is fairly simple and general, these predictions may be relevant in a wide range of

strategic interactions. Second, we present empirical evidence that shows a similar non-monotonic

pattern of production targets in the U.S. auto industry. Since this is one of the largest industries

in the U.S., we think that documenting this pattern is of interest, even in the absence of the

underlying theoretical framework. Finally, the match between the theory and the data suggests

two important implications for the auto industry: (i) adjustment costs and strategic considerations

may play an important role in the planning phase of production; and (ii) static models may under-

estimate the competitiveness of the industry.

Section 2 contains the theoretical part of the paper. We first present a benchmark model.

At some specified date in the future two symmetric firms engage in Cournot competition. At

date zero, each firm inherits a production structure, which serves as its initial production target.

From that point onwards, each firm can make continuous adjustments to its future production

structure, but incurs convex adjustment costs every time it does so. When inherited production

targets are not too high, both firms begin by gradually increasing their production plans. Firms
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use these intended plans as a commitment device; they want to commit to high production levels

in order to obtain a Stackelberg leadership position in the industry. In equilibrium, however, both

firms are provided with similar commitment opportunities, and thereby engage in a “Stackelberg

warfare,” each trying not to become a Stackelberg follower. As the horizon gets closer, however,

both firms become sufficiently committed to producing high quantities. Thus, at a certain point

before the final date, the (dynamic) commitment effect becomes less important, while the (sta-

tic) incentive to best respond to the opponent’s high production target increases and becomes

dominant. Therefore, from that point on both firms start to gradually decrease their production

plans in the direction of their static best-response levels. The eventual equilibrium outcome still

remains more competitive than its static analog.

The rest of Section 2 extends the benchmark model along several dimensions and shows that

all these extensions retain the same qualitative predictions. We allow for more than two players,

various forms of asymmetries between players, time-varying adjustment costs, and uncertainty

(common across players). We then nest the benchmark model as the stage game of an infinitely

repeated game. We solve for the Markov Perfect Equilibrium of this game, and show that its

stationary equilibrium path exhibits the same non-monotonic pattern. Moreover, the repeated

game provides a natural way to endogenize the initial production plans, which are taken as given

in the benchmark model. It also takes the model one step closer to the reality of the empirical

application we study later in the paper.

There are three key assumptions that are important for our results. First, control variables are

strategic substitutes, leading to a commitment incentive. Second, adjustment costs are convex,

so commitment advantage monotonically increases with planned production levels. Third, all the

payoffs (net of adjustment costs) are collected in the end, leading to strong competitive effects

once the production date is sufficiently close. Other assumptions, we believe, are less important.

For example, all the results are obtained using a linear-quadratic structure. Namely, with linear

demand, constant marginal costs, and quadratic adjustment costs. This is done for tractability,

as solving for the equilibrium outside of the linear-quadratic framework is not feasible. Moreover,

linear-quadratic games can be viewed as second-order approximations to more general games. We

could also accommodate asymmetric costs, upwards and downwards, without affecting the results,

but this again would take us out of the linear-quadratic framework.1

The model we present is a model of endogenous commitment and is therefore related to

Caruana and Einav (2005), in which we mainly focus on discrete decisions, such as entry and

exit. The current work is also close to the dynamic quantity competition literature (Cyert and

DeGroot, 1970; Hanig, 1986; Fershtman and Kamien, 1987; Maskin and Tirole, 1987; Reynolds,

1987 and 1991; Lapham and Ware, 1994; and Jun and Vives, 2004). These papers focus on the

stationary equilibrium of an infinite-horizon model (or on the limit of a finite-horizon one, as

1Saloner (1987) and Romano and Yildirim (2005) study an extreme two-period version of such a model, in which

adjustement costs upwards are free while adjustment costs downwards are infinitely costly. Unfortunately, this

extreme version gives rise to a wide range of equilibria, and therefore does not provide sharp predictions.
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the horizon tends to infinity); they typically find that (when actions are strategic substitutes)

the stationary equilibrium is more competitive than its static analog, as players engage in a

“Stackelberg warfare.”2 Our model shares this feature, but unlike this literature our main focus

is on the non-stationary dynamic pattern of the planning phase. One advantage in studying the

dynamics of the planning phase is its strong non-stationarity; it provides clear testable prediction

with respect to an observed and exogenous state variable, namely time. Stationary dynamic

models are much harder to test, as the static benchmark is typically not available (for example,

marginal costs are typically not observed).

Section 3 tests the predictions of the model using data on monthly production targets by

the Big Three auto manufacturers in the U.S. during 1965-1995. These production targets are

published in a trade journal approximately every month starting as early as six months before

production. We normalize production targets by subsequent production, pool production tar-

gets from different production months, and estimate a kernel regression in order to describe the

evolution of these targets as the production date gets closer. The results show that, on aver-

age, production targets exhibit a non-monotonic pattern, which is consistent with the theoretical

prediction. Early targets, about six months prior to production, overstate eventual production

by about five percent. Then they start to slowly increase, until they peak at ten percent about

2-3 months before production. At this point, they start to gradually decline towards the even-

tual production levels. This result is robust to alternative measurements and across different

subsamples.

The end of Section 3 is devoted to a careful discussion of the relationship between the data

analyzed and the theory previously developed. First, we discuss potential sources of adjustment

costs in the production planning phase of the industry. In particular, we emphasize the nature and

timing of contracts with suppliers of parts. Second, we discuss the link between the real production

plans held by firms and the published figures in the study. We argue that these are likely to be very

related. Finally, we discuss some relevant differences between the stylized theoretical model and

the nature of competition in the industry (e.g. inventories and product differentiation), and argue

that these gaps are unlikely to change the qualitative results. Thus, establishing the relationship

between the empirical pattern and the theoretical predictions allow us to conclude that adjustment

costs and strategic considerations play an important role in the planning phase of production and

that static models may therefore under-estimate the competitiveness of the industry.

At some general level, this work can be classified within the recent empirical studies of dynamic

oligopolies (e.g. Benkard, 2004; and Ryan, 2004). In contrast to these studies, which primarily

focus on estimating the parameters associated with a given theoretical framework, which is as-

sumed, our theoretical framework provides testable implications. Therefore, the primary objective

here is testing the qualitative prediction of the theoretical framework. Once validated, the next

obvious step, which is outside of the scope of this paper, is to parameterize the model and estimate

2This can also be viewed as a dynamic extension of a “top dog” strategy within the Fudenberg and Tirole (1984)

taxonomy of strategic behavior.
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structural parameters.

The data we use in this work is also used in Doyle and Snyder (1999), who investigate the role

of the published production targets as an information sharing device by focusing on the positive

correlation among manufacturers in the revisions to their production targets. Our results are

consistent with their theoretical framework, which provides no restrictions on the way production

targets evolve over time. Their results are also consistent with ours, as the model of this paper

predicts that manufacturers would follow similar patterns over time, thereby creating positive

correlation in revisions of production targets. Therefore, we view the two studies as complemen-

tary; the observed pattern of production plans may well be driven by both information-sharing

motives as well as strategic commitment considerations. In fact, we pool observations from differ-

ent periods in order to average out the period-specific “noise.” The period-specific patterns vary

quite substantially and may be driven by different realizations of uncertainties. Our framework

is therefore more relevant for the average pattern rather than for the period-by-period pattern,

while information-sharing motives are more likely to be important and observed within produc-

tion periods. We believe that any attempt to quantify either effect, by, for example, estimating

structural parameters, should take both effects of strategic considerations and uncertainty into

account.

2 Theory

2.1 The benchmark model

There are two players. At time t = 0, they start with exogenously inherited initial production

plans of (q1(0), q2(0)). At all points t ∈ [0, T ] each player i chooses xti ∈ R, which controls the rate
at which she changes her production plan, i.e. q0i(t) = xti. Note that x

t
i can be either positive or

negative. If a player changes her plans at a rate of xi, she has to pay adjustment costs of ci(xi, t).

At time T , and given their final plans, q1(T ) and q2(T ), players compete in quantities and collect

final payoffs of πi(qi(T ), qj(T )).

In order to make the model more tractable, we use a linear-quadratic structure. Thus, we

assume that inverse demand is linear, given by p = a− b(q1+ q2), and marginal costs are constant

and given by c. Thus, we have that

πi(qi(T ), qj(T )) = (a− bqi(T )− bqj(T ))qi(T )− cqi(T ) = (1)

= (a− c)qi(T )− bq2i (T )− bqi(T )qj(T )

In addition, we assume that adjustment costs are quadratic and take the form of

ci(xi, t) =
θ

2
x2i (2)

Note that adjustment costs are constant over time,3 symmetric across players, and symmetric for

3For simplicity, there is no time discounting. Time discounting is a special case of the extension of the model to

time-varying adjustment costs, which we analyze later.
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positive and negative rates. None of these properties is important for the main results.

We solve for the Markov Perfect Equilibrium of the model. Thus, strategies only depend on

the state variables, q1 and q2 and time t. Let V t
i (qi, qj) be the value function for player i at time t,

with state variables qi and qj . If V t
i (qi, qj) exists and is continuous and continuously differentiable

in its arguments, then it satisfies the following Bellman equation

max
xti

µ
−θ
2

¡
xti
¢2
+

∂V t
i

∂qi
xti +

∂V t
i

∂qj
xtj +

∂V t
i

∂t

¶
= 0 (3)

The first order condition for xti implies that

xti =
1

θ

∂V t
i

∂qi
(4)

We can now substitute this back into equation (3), and obtain the following differential equation

1

2θ

µ
∂V t

i

∂qi

¶2
+
1

θ

µ
∂V t

i

∂qj

¶Ã
∂V t

j

∂qj

!
+

∂V t
i

∂t
= 0 (5)

The linear-quadratic structure is attractive. It is known that in this case, if one restricts the

strategies to be analytic functions of the state variables, there exists a unique equilibrium of the

game, which is also the limit of its discrete-time analog. Moreover, in such a case the unique

value function is a quadratic function of the state variables.4 Note that due to the inherent

non-stationarity of the model, the parameters of this quadratic equation will depend on t in an

unspecified way. We can express the value function as

V t
i (qi, qj) = At +Btqi + Ctqj +Dtq

2
i +Etq

2
j + Ftqiqj (6)

which, using equation (4), implies that

xti(qi, qj) =
1

θ
(Bt + 2Dtqi + Ftqj) (7)

Given that players are symmetric, we can substitute equations (6) and (7) into equation (5)

and obtain

0 =
1

2θ
(Bt + 2Dtqi + Ftqj)

2 +
1

θ
(Ct + 2Etqj + Ftqi) (Bt + 2Dtqj + Ftqi) + (8)

+
¡
A0t +B0tqi + C0tqj +D0

tq
2
i +E0tq

2
j + F 0tqiqj

¢
This is a polynomial in qi and qj . Since it has to be satisfied for all values of qi and qj , all its

six coefficients (which are functions of t) have to be equal to zero. This gives the following set of

ordinary differential equations. To ease notation, we can just think of time as going backwards.

4See Kydland (1975), who shows uniqueness for a discrete-time version, and Lukes (1971), Papavassilopoulos

and Cruz (1979), and Papavassilopoulos and Olsder (1984) for analysis of existence and uniqueness in finite-horizon

linear-quadratic differential games.
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This is convenient as our boundary condition is for t = T . Thus, all derivatives with respect to

time (A0, B0, etc.) reverse signs, and the law of motion for the parameters is given by

A0

B0

C 0

D0

E0

F 0


=
1

θ



1
2B

2 +BC

2BD +BF + CF

BF + 2BE + 2CD

2D2 + F 2

1
2F

2 + 4DE

4DF + 2EF


(9)

with boundary condition (for t = T )

AT

BT

CT

DT

ET

FT


=



0

a− c

0

−b
0

−b


(10)

which is provided by the profit function in equation (1).

2.2 Illustration

The system of ordinary differential equations given by equation (9), with its boundary condition,

defines the solution. It defines the value function at any point in time, which in turn allows us

to compute the equilibrium strategies using equation (7). Unfortunately, the system cannot be

solved analytically, so we approximate the equilibrium through the solution of the discrete-time

analog of the game for very small time intervals.

Throughout this section, unless otherwise specified, we set a = b = 1, c = 0, θ = 1, and T = 10.

This implies that marginal costs are zero and that inverse demand is given by p = 1 − q1 − q2.

Adjustment costs are ci(xi, t) = 1
2x
2
i .
5 For later comparison, it is useful to observe that, for this

choice of parameters, the static Nash equilibrium of this game involves each player producing her

Cournot quantity of q = 1
3 , while the Stackelberg leader and follower production levels are q =

1
2

and q = 1
4 , respectively.

Figure 1 shows how the parameters of the (symmetric) value function, as given in equation (6),

evolve over time. As the horizon becomes longer (i.e. as T →∞) A0 converges to approximately
0.0925 and all other parameters approach zero. Thus, for games with long horizon the equilibrium

profits converge to 0.0925, which are approximately 17% lower than the static Cournot profits of
1
9 (14% is due to higher production and lower equilibrium prices, while 3% is due to adjustment

5One should note that some of these restriction are not important. The effect of a and c only enters through their

difference a − c, so setting c = 0 is only a normalization. Similarly, optimal strategies are invariant to monotone

transformations of the objective function, so, for example, setting b = 1 is a normalization.
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costs). This is the first illustration of how the dynamic interaction leads to a reduction in profits.

If they could, the two parties would have liked to avoid the “preparation race” and commit to the

static Cournot outcome throughout.

Figure 2 presents the symmetric equilibrium path for the game in which both players inherit

an initial production plan at the static Cournot level. The two parties begin by increasing their

targets, each trying to become a Stackelberg leader, or at least not to fall behind and become

a Stackelberg follower. As the deadline gets closer, both firms realize that they are sufficiently

committed to high output, but that they are much above their static best responses, and optimally

decide to gradually adjust towards it. Given that adjusting is costly, the parties do not adjust all

the way to the static Nash equilibrium.6 In this particular example, the equilibrium outcome is

about 0.37, compared to the static outcome of 13 . Finally, we also depict one off-equilibrium-path

strategy for each player. Suppose that player i receives an unexpected shock to her intended plan

at t = T −4 and has her plan reverted to the Cournot level. Both players realize that player j has
achieved a leader position in the market. Player j capitalizes on this advantage by increasing her

own plans even further. Meanwhile, player i’s best response is to rebuild its size. Nevertheless, the

advantageous position acquired by player j never fully diminishes and is kept until the production

date.

Figure 3 presents the symmetric equilibrium path for different initial production plans. If these

are not too high, one observes the same pattern as in the previous figure. If initial production

plans are sufficiently high (greater than about 0.44 in this particular example), both parties are

sufficiently committed to high production from date zero and do not need to engage in further

increases of production targets. The rate at which they decrease their production targets over

time is not constant, however, due to the commitment effect. They first decrease quantities slowly,

so they remain committed to high quantities, and only later they speed up adjustments in the

direction of their static best response levels.7

Figures 4 and 5 present comparative statics with respect to the length of the horizon and

with respect to the size of the adjustment cost parameter. An inspection of equation (9) reveals

that these two exercises are similar. A proportional increase in the adjustment cost can be

viewed as a slowdown in the evolution of the value function. Loosely speaking, it is a horizontal

stretch of Figure 1. Thus, changes in the adjustment cost parameter are similar to a rescaling of

time.8 Figure 4 shows how the length of the horizon affects the equilibrium path. As the horizon

6With convex adjustment costs, the optimal strategy always leads to partial adjustments. This is because the

static profit function is flat at the static best response level. Thus, the marginal cost of adjustment is zero for small

adjustments and higher for greater ones, while the marginal benefit is strictly positive for small adjustments but

zero for full adjustments.
7Note that if the initial targets were very low and the adjustment parameters high, one could also see a fully

increasing equilibrium path.
8 It is similar but not identical. Think of the game in discrete time. A lower θ is similar to increasing the length

of a period, without changing the number of periods. Increasing T is similar to increasing the number of periods,

without changing their length. Thus, loosely speaking, stretching of time allows for more opportunities to adjust
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gets longer, there is more time to build up commitment. Similarly, Figure 5 shows that as the

adjustment costs decrease, building commitment becomes cheaper. In both cases this leads to

higher targets and an ultimate faster decline.

2.3 Intuition from a two-period model

The key qualitative prediction of the model, namely that players have an incentive to exaggerate

their production intentions as a way to achieve commitment, can be obtained within the context

of a simple two-period model. Suppose that firms start with inherited production targets of y.

At t = 1 they can revise their plans to z1 and z2, but pay a quadratic adjustment cost when they

do so. Then, in period t = 2 firms have a final opportunity to revise the quantities they want

to produce and set them to q1 and q2, paying the corresponding adjustment costs. Given these

production levels, market price is given by p = 1− q1− q2. There is no discounting, so payoffs are

the final Cournot profits (with zero marginal costs) minus any adjustment costs incurred in the

process.

We can solve for the Subgame Perfect Equilibrium of the game using backward induction. In

period t = 2 each player i chooses qi to solve

max
qi
(1− (qi + qj))qi − θ

2
(qi − zi)

2 (11)

Best response functions are

qi =
1− qj + θzi
2 + θ

(12)

and the second period equilibrium strategies are

qi(zi, zj) =
1 + θ (1 + (2 + θ)zi − zj)

(θ + 3) (θ + 1)
(13)

One can easily observe that if firms target the Cournot quantities, zi = zj =
1
3 , then setting

qi = zi for each i is an equilibrium. In general, the first order conditions define a best-response

function which is a rotation of the static best-response at the previously targeted production level

(see Figure 6). Each player’s response to a change in her opponent’s quantity is not as strong as

in the absence of adjustment costs. Thus, if zi = zj are greater (less) than 1
3 the players end up

adjusting in the direction of their static best responses, but not fully, thereby ending up in a more

(less) competitive equilibrium.

In period t = 1 firms choose zi and zj , accounting for the equilibrium strategies at t = 2.

Thus, each player i chooses zi to solve

max
xi
(1− qi(zi, zj)− qj(zi, zj))qi(zi, zj)− θ

2
(qi(zi, zj)− zi)

2 − θ

2
(zi − y)2 (14)

implying the following first order condition for each player:

∂qi
∂zi
(1− qi − qj)− qi

µ
∂qi
∂zi

+
∂qj
∂zi

¶
− θ(qi − zi)

µ
∂qi
∂zi
− 1
¶
− θ(zi − y) = 0 (15)

behavior.
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This yields a solution z(y, θ) and q(y, θ).9 For example, if y = 1
3 , i.e. firms’ inherited targets are

at the Cournot level, their final productions would be

q(
1

3
, θ) =

1

3
+

θ

3θ3 + 30θ2 + 78θ + 54
(16)

which are always above 1
3 for any θ > 0. When θ = 1, for example, equilibrium targets at t = 1

are z ≈ 0.357 and final productions are q ≈ 0.339. Thus, the qualitative conclusions are the same
as in the continuous time case: planned production levels increase first, and decrease later.

2.4 Extensions to the benchmark model

Here we present some of the most natural extensions to the benchmark model. The main message

is that all of them retain the same qualitative predictions of the model. The derivations are

provided in the appendix.

N players: The benchmark model is constructed for two players only for convenience. Results

remain unchanged with more than two players. The value function has one additional element,P
j 6=i
P

k 6=i,j qjqk, which results in an additional equation in the system of differential equations.

We computed the equilibrium for different sets of parameters and the equilibrium patterns are

qualitatively identical to those obtained for the two-player model.

Asymmetric players: Asymmetries among firms can be introduced either through the final

payoff function (for example, firms may vary in their marginal costs) or through the adjustment

costs (for example, labor may be more unionized in one firm than the other). In the appendix we

treat them jointly, but we do comparative statics on each dimension separately.

Figure 7 illustrates the case of asymmetric marginal costs. In particular, it uses the same

parameter values as in Section 2.2, but introduces a (constant) marginal cost of 0.2 for player 2.

The figure presents the equilibrium paths for different (but symmetric) initial conditions. The

general pattern is similar to the benchmark case. Now the more efficient player produces more

than her opponent, and more than her static Nash equilibrium quantity (q1 = 0.4 and q2 = 0.2).

In this case the less efficient player may produce less than her static Nash quantity. This is shown

in the thin solid line. The reason for this is that asymmetric marginal costs introduce asymmetries

in the commitment opportunities. Given that the more efficient player is producing more, her

static payoff function is steeper around the equilibrium. This allows her to enjoy higher levels of

commitment and attain a Stackelberg advantage. In all cases, however, overall quantity is higher

(more competitive) than the static equilibrium level of 0.6. This might hint a welfare improvement,

due to both higher consumer surplus and more efficient allocation of resources among the firms,

but one has to include the adjustment costs in the analysis to obtain a definitive answer.

9The solution is z(y, θ) = 4+4θ+θ2+y(θ+1)(θ+3)2

(26θ+10θ2+θ3+18)
and q(y, θ) = (yθ+2)(θ+1)(θ+3)

(26θ+10θ2+θ3+18)
.
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Figure 8 presents the case of asymmetric adjustment costs for different values of the θ coef-

ficients. The shape of the equilibria is the same as before. It is interesting to notice that it is

the more flexible player who is able to end up producing more. When adjustment costs are high

(θ1 = 1 and θ2 = 5) this is simply because player 2 cannot afford to increase her plans so rapidly

(recall that initial plans and the length of the horizon are fixed in this exercise). When the costs

are lower the leadership position is achieved through the higher ability of the flexible player to

increase her plans further as a way to commit to high output.10

Time-varying adjustment costs: One may argue that adjustment costs may vary over time.

One reason may be discounting, which would result in declining adjustment costs. It is also

reasonable to consider that adjustments become more expensive as the production date gets

closer. As an example, hiring temporary labor three months before production may be cheap,

while labor availability one day before production is scarce, and will require higher wages or higher

search costs on the employer part.11

It is straightforward to incorporate such effects into the benchmark model. The adjustment

cost function would be

ci(xi, t) =
θ(t)

2
x2i (17)

where no restrictions are imposed on θ(t). The derivation of the system of ordinary differential

equations is the same as in equation (9), with θ replaced by θ(t). Notice that θ enters into the

system in a proportional way. Therefore, replacing it by θ(t) is similar to a rescaling of time.

When θ(t) is low the coefficients on the value function change fast, and when θ(t) is high the

coefficients change slow. Qualitatively, the predictions of the model remain unchanged.

Uncertainty: In the presence of uncertainty, there is a general trade-off between commitment

and flexibility, as remaining flexible would allow firms to adjust to unexpected events. The

precise impact of considering uncertainty within the context of this work will depend on the type

of uncertainty explored. In the appendix we consider a model with a natural source of common

uncertainty within the linear-quadratic framework. Suppose that final demand can be high or

low depending on whether the state of the economy is either high (H) or low (L). The economy

(symmetrically) fluctuates between the two states following a Poisson process: at each point, at

hazard rate λ the state changes.

Initially, with the horizon far enough in the future, the current state is not particularly infor-

mative about the final state of demand. Given that firms only care about the eventual realization

of demand, on equilibrium they start by having a similar behavior independently of the actual

state. As the production date draws near, however, firms become more responsive to changes in

10Note that if the initial inherited positions were higher, say q0 = 0.4, and the adjustment costs high as well, the

previous result could be reversed. In this case the non-flexible player would be at a credible position not to change

her plans far away from 0.4, which would force the flexible player to adjust downwards.
11This second case is closer to the framework studied in Caruana and Einav (2005).
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the state of the economy. This typically results in upwards (downwards) adjustments to produc-

tion targets in response to changes into the high (low) state. As firms foresee this happening,

they are more reluctant to adjust early, compared to the benchmark model, and therefore build up

commitment more slowly. While the equilibrium path is random as it depends on the realization

of uncertainty, the expected equilibrium path (computed numerically) exhibits a non-monotonic

pattern as in the benchmark model.

2.5 Repeated interaction

Many real-world situations, like the monthly production decisions in the auto industry we study

later, are repeated in nature. Here we consider an infinitely repeated game in which the benchmark

model is the stage game and there are adjustment costs between stages. These costs between

stages capture the fact that firms are constrained in their future plans by their actual production

infrastructure.

Formally, each stage of the game is played as follows. Given last period production of (y1, y2),

players first decide simultaneously on their initial production plans q1(0) and q2(0) for next period,

but pay a cost of ϕ
2 (qi(0)− yi)

2 when they do so. For the next T units of time they play the

benchmark model with inherited initial plans of (qi(0), qj(0)) and quadratic adjustment costs with

parameter θ. That is, they can continuously adjust their production targets, paying an adjustment

cost of θ
2 (q

0
i(t))

2 if they do so (where t is the time elapsed since the beginning of the period). At

the end of each stage, production takes place and the stage payoffs are collected. Players discount

profits with a common discount factor β per period. For simplicity we assume that players do not

discount payoffs within a period.

We solve for a symmetric Markov Perfect Equilibrium (MPE). Thus, the state variables are the

most recent production plans and the elapsed time t. Given that the game has a linear-quadratic

structure, we guess that the value function is quadratic in the state variables. We search for an

equilibrium satisfying this assumption and find one, justifying the initial guess. The solution to

the value function within each stage follows the same law of motion as in the benchmark model

and thus satisfies equation (9). The boundary condition is different: in this case, it is determined

endogenously as part of the equilibrium. In particular, there is a relationship between the value

function at the beginning of the stage game and the value function at the end of it. We establish

this relationship below.

In equilibrium, players set initial production plans to satisfy

max
qi

¡
A0 +B0qi + C0qj +D0q

2
i +E0q

2
j + F0qiqj

¢− ϕ

2
(qi − qi(T ))

2 (18)

which leads to the following first order condition:

B0 + 2D0qi + F0qj − ϕ (qi − qi(T )) = 0 (19)

Equation (19), together with its analog for qj , provides a closed-form relationship between (q1(0),
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q2(0)) and (q1(T ), q2(T )). Since, by construction

V T
i (qi(T ), qj(T )) = πi(qi(T ), qj(T ))− β

ϕ

2
(qi(0)− qi(T ))

2 + βV 0i (qi(0), qj(0)) (20)

we can substitute the relationship between (q1(0), q2(0)) and (q1(T ), q2(T )) into equation (20). As

this has to be satisfied for any qi(T ) and qj(T ) we can equate coefficients, and obtain a system

of six equations that provides a closed-form relationship between A0, ..., F0 and AT , ..., FT . This

is the boundary condition that substitutes equation (10) of the benchmark game. The solution

to equation (9) and this new boundary condition constitutes the MPE of the repeated game.

Finally, we focus on the steady state of the equilibrium, in which the production decisions (but

not production plans) are constant at every stage.

The equilibrium is computed by numerically searching for a solution. One starts with a guess

for AT , ..., FT , and then iterates the law of motion in equation (9) to obtain A0, ..., F0. Then,

using the boundary condition one obtains new values for AT , ..., FT . We iterate this procedure

until convergence. Although, in general, one cannot establish uniqueness (or even existence) for

this game, the problem seems to be well behaved. The procedure converges extremely rapidly to

the same values for a wide range of initial conditions. Thus, on numerical grounds, we believe

that the repeated interaction game has a unique symmetric MPE, or at least a unique symmetric

linear-quadratic MPE.

In Figure 9 we show the equilibrium path for the usual benchmark parameter values (a = b = 1,

c = 0, θ = 1, T = 10), a discount factor of β = 0.9, and ϕ = 0.1. As one can see, the equilibrium

stage pattern exhibits the same hump shape as in the benchmark model. The production levels

are now higher than what would be produced in the benchmark model if the inherited plans were

the ones from the steady state equilibrium. This is because, in addition to the commitment effect

already described, there is a dynamic effect of commitment through the adjustment costs between

stages. This second effect is the same that is present in all dynamic quantity games with sticky

controls analyzed in the literature (Maskin and Tirole, 1986; Reynolds, 1987 and 1991; Jun and

Vives, 2004). Its importance is diminished in this model by the fact that the planning phase

provides an additional opportunity to revise production levels. Naturally, this additional dynamic

effect increases with θ and decreases with T . Figure 10 provides some comparative statics with

respect to the relative importance of the two types of adjustment costs by varying ϕ and θ. As one

can observe, ϕ primarily affects the size of the jump between production levels and initial plans

for the subsequent production period, with high values of ϕ implying small jumps. In contrast, θ

primarily affects the shape of the production plan adjustments and final equilibrium production

levels.

One important special case of the repeated game is the one in which ϕ = 0. In such a

case, there is no link between consecutive production periods and the model collapses to the

benchmark model with free initially chosen plans. That is, at t = 0 players decide simultaneously

and costlessly on their initial plans (q1(0), q2(0)) and then continue playing as in the benchmark

model. In the simultaneous-move game played at date zero players solve equation (18) (with
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ϕ = 0), implying a unique equilibrium of

qj = qi =
−B0

2D0 + F0
(21)

These initial plans give rise to an equilibrium path, in which production plans are flat at t = 0

and gradually decline thereafter (see also Figure 10).12 For any ϕ > 0, however, the equilibrium

path presents the hump-shaped pattern emphasized throughout.

3 Evidence

3.1 Data

We use data on domestic production targets of the major auto manufacturers in the U.S. These are

the same data used by Doyle and Snyder (1999).13 Therefore, we focus only on the dimensions of

the data that are relevant for our empirical analysis; Doyle and Snyder (1999) provide descriptive

statistics and further details of the data.

The unit of analysis is a production month. Prior to each production month, the Big Three

U.S. auto manufacturers — General Motors (GM), Ford, and Chrysler — decide about their pro-

duction targets for future months.14 These targets are posted in a weekly industry trade journal,

Ward’s Automotive Reports, which specializes in industry data and statistics. Targets are posted

approximately every month, starting as early as six months prior to actual production.

Production targets are summarized by the number of cars to be produced by each manu-

facturer, aggregated over all models. Thus, variation across models or the introduction of new

models cannot be directly used. The data set has a panel structure and covers the years 1965

to 1995, for a total of 372 production months.15 Every time a production target is published, it

includes production targets for all three manufacturer. Thus, manufacturers do not decide when

to post their targets, as this is requested byWard’s. Overall, we observe 1, 621 production targets

for each manufacturer.16 This amounts to an average of 4.42 production targets per production

12This path is initially flat because, in equilibrium, initial production plans (q∗i , q
∗
j ) satisfy

∂V i0i (q∗i ,q
∗
j )

∂qi
= 0. From

equation (4), the rate of adjustment at t = 0 is given by x0i (qi, qj) =
1
θ

∂V i0 (qi,qj)

∂qi
, implying x0i (q

∗
i , q

∗
j ) = 0.

13We are extremely grateful to Maura Doyle and Chris Snyder for the willingness to share their data with us.
14These targets are being described by various synonyms: “assembly targets,” “assembly schedules,” “production

plans,” “production forecasts,” etc.
15Some of the observations in the data include post-production revisions. We discard these observations. We

only focus on targets posted before production. Five production months have no pre-production targets, and are

therefore omitted from the analysis.
16The data also include production targets for American Motors (AMC) until its exit from the market in 1987.

We do not use these data for the reported results. AMC has a small market share (2.3% on average) and it exhibits

a similar pattern to that of the Big Three, with the exception of its last three years of operation, during which

AMC’s market share, production, and production targets rapidly declined. The qualitative results of the paper

remain unchanged if we use pre-1984 AMC data.
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month, ranging from some cases with a single production target to others with up to 12 associated

targets.17

Figure 11 presents the total number of published targets made at each 10 day interval prior to

actual production.18 It shows that production targets are published approximately once a month,

typically on the last week of the month, although one can see some density between the monthly

peaks. One can also observe that the number of observations is quite stable over the 3-4 months

before production. There are significantly fewer earlier observations.

3.2 Empirical Analysis

Let us first introduce some notation. Denote by Qit the actual quantity produced by manufacturer

i during month t. Denote by Ad
it the production target made by manufacturer i for production

month t, with −d representing the number of days between the date of the production target and
the target date. Namely, if a production target Ad

it is made at date t
0 then d = t0 − t. The focus

of the analysis is on the way in which Ad
it evolves with d.

In order to make targets comparable over time and across manufacturers, we normalize all

targets by eventual production. Namely, a (normalized) production target is defined as

adit ≡
Ad
it −Qit

Qit
(22)

Thus, adit is the percentage deviation of the target from the eventual production; it is positive

(negative) when a production target is higher (lower) than eventual production.19 ,20 Our key

theoretical prediction concerns the change of adit with respect to d. We expect adit to gradually

increase early on, when d is high (in absolute value), and decrease later, as it gets closer towards

the production date.

Our analysis is based on pooling observations from multiple production months. The under-

lying assumption is that, up to the normalization, the same game is played repeatedly over time.

This enables us to treat different production targets in different games as if they are made in the

17The frequency of posted production targets significantly increased in the 1970s. The average number of pro-

duction targets per production month was 2.13 during 1965-1975, compared to 5.94 and 5.32 during 1976-1985 and

1986-1995, respectively.
18Since production decisions reflect total production for the month, we follow Doyle and Snyder (1999) and use

the last day of the production month as the relevant “date” of production.
19This transformation of the data is similar to the PPE measure used in Doyle and Snyder (1999). Our measure

uses a slightly different normalization to relate it more closely to the theoretical predictions. All the qualitative

results are robust to alternative normalization choices, including the PPE measure of Doyle and Snyder.
20There are six instances of extreme outliers. Five of them are due to unexpected low Qit’s, which generate high

adit’s, more than three times eventual production (a
d
it > 2). The sixth instant is of zero announcements by Chrysler.

While these cases do not affect the general pattern in any important way, we drop them to reduce noise. We take

a conservative approach and also drop all other production targets (at different times and by other manufacturers)

associated with the same production month. This leaves us with 361 production months and 1, 598 targets by each

manufacturer for the empirical analysis.
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same context. We then use quartic (biweight) kernel regressions of adit on d to non-parametrically

describe the evolution of production targets over time. In all figures, we use a bandwidth of

30 days. We repeat this exercise for each manufacturer i separately, for the Big Three average,

adBig3,t =
1
3

³
adGM,t + adFord,t + adChrysler,t

´
, and for different subsamples of the data. In this sec-

tion we describe our findings; we defer to the next section the discussion of the link between the

empirical exercise and the theoretical assumptions.

The key evidence is presented in Figure 12, which pools all production months in the data.

The qualitative picture is of a non-monotonic pattern. On average, production targets start about

5 percent above eventual production levels and gradually increase. They peak 2-3 months before

production at about 10 percent, and then gradually decline towards actual production levels. This

pattern is not uniform across manufacturers. While Ford and Chrysler, the two smaller firms,

follow a similar non-monotonic pattern of production targets, GM exhibits a different behavior.

GM’s average initial production target is about 15 percent above its eventual production level,

and it gradually declines as the deadline gets closer. This is not inconsistent with the model: if

initial production targets are high, the model predicts a gradual decline over time. It would be

interesting to explain why GM’s (relative) initial production plans are consistently higher than

those of Ford and Chrysler. In the repeated game model, for example, such variation could arise

if the ϕ parameter for GM is sufficiently close to zero.

The dashed lines in Figure 12 report 95 percent confidence intervals. These are computed

by bootstrapping the data, and running the same kernel regression on each bootstrapped sam-

ple; the dashed lines in each figure report the point-by-point 2.5 and 97.5 percentiles. These

show that the observed decline in planned production towards the production deadline is quite

precisely estimated. This is a pattern that it extremely consistent across manufacturers and for

different subsamples. Figure 12 also shows that the confidence intervals significantly shrink as the

production deadline gets closer. This happens for two reasons. First, as may be expected, the

variance in the estimates is lower close to the day of production. This may be due to information

shocks, which are likely to be more pronounced when the production deadline is further away in

the future. The second reason is apparent from Figure 11: the number of observed production

targets 3-6 months before production is significantly smaller than the number of observations 0-3

months before production.

Our theoretical prediction concerns a non-monotonic pattern of production targets with respect

to the same production month. A potential concern may be that while the average pattern shown

is qualitatively consistent with the theoretical prediction, it may be generated by aggregation over

periods, but is not present in individual patterns.21 To address this concern, we repeat the same

exercise for different subsamples of the data. Figure 13 divides the sample into three decades.

Figure 14 performs the analysis for each calendar month separately to account for potential

21For example, one could imagine an extreme case in which half of the patterns are monotonically increasing

and concave and half are monotonically decreasing and concave. In such a case, the average pattern may show

non-monotonicity even though none of the individual patterns is such.
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seasonal variation (due, for example, to model-year product-life-cycle effects; see Copeland, Dunn,

and Hall, 2005). Figure 15 repeats the exercise separately for months in which production growth

is positive and months in which production growth is negative. All these exercises show similar

qualitative patterns. First, the declining production targets during the last 2-3 months before

production are present in every single regression. Second, in the majority of the cases one can

observe the increase in production targets early on. This second observation does not hold in

every regression. This may be expected because, as already mentioned, the data are more noisy

for early targets.

As already discussed, the non-monotonic pattern predicts a positive slope of adit with respect

to d early on, and a negative slope towards production. In order to test directly for the change in

slopes, we perform two final exercises. First, we divide production targets into three categories —

Early, Middle, and Late — according to how far in advance these targets are made. Table 1 reports

the frequencies in which (i) early targets are lower than intermediate targets, (ii) intermediate

targets are higher than late targets, and (iii) late targets are higher than eventual production. We

report this for each manufacturer, as well as for the Big Three average. All these 12 frequencies

except one are greater than 50%. None of them is significantly lower than 50% and the majority

of them are significantly higher. This is all consistent with the theory, and gives support to the

non-monotonic pattern.

Second, we define the percentage change, per day, in production targets by

sdit ≡
Ad
it −Ad0

it

(d− d0)Ad0
it

(23)

where Ad0
it and Ad

it are two consecutive production targets associated with the same production

month. We then run similar kernel regressions of sdit with respect to d. Figure 16 reports these

regressions. One can observe that in all cases the slope of production targets is positive between

130 days and 80 days before production, and that the confidence interval for the slope estimates

lies entirely or almost entirely, depending on the manufacturer, in the positive region. Later on,

the slope is significantly negative in all regressions, establishing the non-monotonic pattern.

3.3 Discussion

The theoretical model presented abstracts from certain important aspects of the empirical ap-

plication, such as inventories, product differentiation, and multi-product manufacturers. While

any quantitative analysis ought to account for these effects explicitly, we argue that the qualita-

tive predictions should still hold. The key for the theoretical results is that control variables are

strategic substitutes. Thus, as long as production decisions, rather than sales, operate as strategic

substitutes, the existence of inventories should not have a qualitative effect on the theory, and

therefore on the interpretation of the empirical exercise. Moreover, as long as inventories (and,

to a lesser extent, quantity produced abroad) are roughly stable over time, it seems difficult for
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inventory fluctuations per se to generate the pattern of production targets we observe.22 Simi-

larly, product differentiation and multi-product firms are also unlikely to change the maintained

assumption that control variables are strategic substitutes. These assumptions are also consistent

with earlier works, which use a Cournot framework to model competition among the Big Three.

Berndt et al. (1990) cannot reject the Cournot model in this context, and Doyle and Snyder

(1999) use it to test for information-sharing.

In the previous section we show that the pattern of production targets in the U.S. auto industry

is consistent with the theoretical framework. To complete the analysis, it is important to discuss

two key aspects. First, we identify sources of adjustment costs in the auto industry. Second, we

question the manufacturers’ incentives to reveal their production targets truthfully. We discuss

each aspect in turn.

First, the model assumes that production targets are associated with some real actions, which

cannot be costlessly reversed. Auto manufacturers are continuously taking actions that affect

their future production capabilities. They contract parts from suppliers, hire temporary labor,

cancel vacations, etc. It seems natural to assume that such production-related decisions are costly

to change. A late order of parts may be more expensive, revising previously signed contracts

may involve penalties, firing workers results in compensation payments, and changing promises

may have reputational costs. Moreover, auto manufacturers deal with many third parties, both

on the supply and the retail level. If these parties also organize their plans according to the

manufacturers’ publicly posted targets, a change in these targets may cause them some adjustment

costs which may later feed back to the manufacturers’ profits.

The contracting channel is one of the main sources of adjustment costs. Given the magnitude

and timing of the processes involved in the industry, forward contracts are widespread. In prin-

ciple, every change in plans would involve renegotiating these contracts. In reality this does not

happen so often, as contracts often stipulate clauses that deal with these instances. Typical part

contracts in the industry explicitly specify minimum and maximum monthly orders, assigning

financial penalties to deviations from this contracted range. Even if these contracts are never

renegotiated, implicit adjustment costs arise when contracting with different parties does not si-

multaneously take place. Since parts are complements in production (consider, for example, an

O-ring production function), once contracts are signed sequentially each new contract represents

a stronger commitment to a certain production level. Therefore, signing new contracts, which are

not fully consistent with earlier signed contracts, carries an implicit adjustment cost, as it would

have been cheaper if previous contracts had been set differently.

Second, in the analysis we assume that the manufacturers’ reported production targets to

Ward’s truthfully represent their real production plans. This is an important assumption. If

these announcements were not anchored to any real decision, they would constitute pure cheap

talk. Our view, which is consistent with conversations with manufacturers andWard’s publishers,

22See Kahn (1992) and Bresnahan and Ramey (1994) for theory and evidence about the relationship between

sales and production. See also Judd (1996) for a dynamic model of inventories in a framework similar to ours.
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is that real actions taken by these firms are difficult to hide from others. Hiring processes for

extra shifts, orders of big amounts of windshields, or the construction of a new plant can be easily

monitored, not only by competitors, but also by Ward’s, by the press, and by other external

analysts. The main task of the trade journal is to report these actions to third parties (suppliers,

dealers, etc.), which cannot perform the monitoring so easily.23 As we argue above, third parties’

plans crucially depend on this information. Moreover, firms are aware that both Ward’s and

other external parties monitor the information they provide to Ward’s. Finally, one should note

that strategic considerations may also work towards providing incentives for truthful reporting.

If commitment is achieved by credible higher production targets, then credibility can only be

achieved by a reputation for truthful reporting. Given all the above, we consider the production

targets published at Ward’s a good proxy for real decisions being taken by firms. They may

represent monthly snapshots of the real underlying continuous decision processes taking place,

like the one described by our theoretical model.

4 Concluding remarks

This paper studies the dynamics of pre-production preparation as a commitment device in a

quantity setting framework with adjustment costs. We show that firms have a strategic incentive

to exaggerate their production targets in an attempt to achieve a Stackelberg leadership position.

More precisely, firms start by first steadily increasing their intended production levels and only

as production gets closer, do production targets gradually decline. As a result, final production

levels are higher than in a static framework.

We test the main predictions of the theory using data on production targets in the U.S.

auto industry. The observed production targets exhibit a non-monotonic pattern similar to the

one predicted by the theory. While one can write down a variety of theoretical models that

could explain why production targets are higher than eventual production,24 it is harder to find

alternative explanations for the non-monotonic pattern. This encourages us to view these findings

as empirical support for the existence of adjustment costs and for the relevance of the strategic

role of pre-production preparations in determining final production decisions.

This study has intentionally abstracted from informational issues as a way to focus on the

strategic aspects. Our view is that in reality both components are important and should be ac-

counted for. Given that the model can be easily extended to accommodate (common) uncertainty,

as well as multiple players, asymmetries, and a repeated interaction, one could seriously pursue a

23One could argue that the only reason to publish such information would be its commercial value to third parties.

Potential readers are encouraged to subscribe to Ward’s with the following quote: “News and numbers you can’t do

without. Auto analysts and decision-makers must get the latest, vital statistics on the industry’s health, plus up-

dated news, analysis and projections that impact their companys’ futures.” (http://wardsauto.com/war/index.htm)
24For example, in the presence of uncertainty, if adjusting quantity downwards is cheaper than adjusting it

upwards, then over-targetting would have an option value.
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more structural estimation approach. This would be interesting for policy purposes, as one could,

for example, quantify the intensity of competition (estimating how far the equilibrium is from the

Cournot levels) or perform welfare analysis.25 We leave this exercise for future work.

On a methodological level, we think that our exercise illustrates the empirical potential of non-

stationary predictions. As they exhibit rich interesting dynamics, they provide sharp qualitative

predictions which have the potential to be empirically verified or falsified. All they require is

exogenous variation in time, which is typically satisfied, but do not require further exogeneity

assumptions.
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Appendix

The appendix derives the equations that describe the solutions to three extension of the benchmark

model, as discussed in Section 2.4.

N players Consider N > 2 symmetric players. We can write the Bellman equation for the value

function as

max
xti

−θ
2

¡
xti
¢2
+

∂V t
i

∂qi
xti +

X
j 6=i

∂V t
i

∂qj
xtj +

∂V t
i

∂t

 = 0 (24)

The first order condition for xti implies

xti =
1

θ

∂V t
i

∂qi
(25)

We can now substitute this back into equation (24), as well as the symmetric solution for all other

xtj ’s, rearrange, and obtain the following differential equation

0 =
1

2θ

µ
∂V t

i

∂qi

¶2
+
1

θ

X
j 6=i

Ã
∂V t

j

∂qj

!µ
∂V t

i

∂qj

¶
+

∂V t
i

∂t
(26)

We guess that the value function will be symmetric in the opponents’ state variables, so that

the quadratic value function can be written as

V t
i (qi, qj) = At +Btqi +

X
j 6=i

Ctqj +Dtq
2
i +

X
j 6=i

Etq
2
j +

X
j 6=i

Ftqiqj +
X
j 6=i

X
k 6=i,j

Gtqjqk = (27)

= At +Btqi + CtQ−i +Dtq
2
i +EtR−i + FtqiQ−i +GtS−i

where Q−i =
P

j 6=i qj , R−i =
P

j 6=i q
2
j , and S−i =

P
j 6=i
P

k 6=i,j qjqk. Note that Q
2
−i = R−i + S−i.

This also implies that

xti(qi, qj) =
1

θ
(Bt + 2Dtqi + FtQ−i) (28)

Thus, we can rewrite equation (26) as

0 =
1

2θ
(Bt + 2Dtqi + FtQ−i)2 +

1

θ

X
j 6=i
(Ct + 2Etqj + Ftqi + 2Gt(Q−j − qi)) (Bt + 2Dtqj + FtQ−j) +

+
¡
A0t +B0tqi + C 0tQ−i +D0

tq
2
i +E0tR−i + F 0tqiQ−i +G0tS−i

¢
(29)

After collecting terms (and reversing signs for A0, B0, etc. as in the benchmark model) and
equating coefficients, we obtain the following law of motion:

A0

B0

C 0

D0

E0

F 0

G0


=
1

θ



1
2B

2 + (N − 1)BC
2BD +BF (N − 1) + CF (N − 1)

BF + 2BE + 2CD + CF (N − 2) + 2BG(N − 2)
2D2 + F 2(N − 1)

1
2F

2 + 4DE + 2FG(N − 2)
4DF + 2EF + F 2(N − 2) + 2FG(N − 2)

1
2F

2 + 2EF + 4GD + 4FG(N − 3)


(30)
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with the boundary condition (for t = T ) given by

AT

BT

CT

DT

ET

FT

GT


=



0

a− c

0

−b
0

−b
0


(31)

Asymmetric Players We keep notation as before, with the addition of superscripts to denote

the identity of the player. Thus, player i’s adjustment costs function is now ci(xi, t) =
θi

2 x
2
i , her

(constant) marginal cost is ci, and Ai
t to F

i
t denote i’s value function coefficients.

One can start by following the same steps as in Section 2.1. The first difference appears in

equation (5), which now reads

1

2θi

µ
∂V t

i

∂qi

¶2
+
1

θj

µ
∂V t

i

∂qj

¶Ã
∂V t

j

∂qj

!
+

∂V t
i

∂t
= 0 (32)

The value function for each player is

V t
i (qi, qj) = Ai

t +Bi
tqi + Ci

tqj +Di
tq
2
i +Ei

tq
2
j + F i

t qiqj (33)

Substituting it into equation (32) gives

0 =
1

2θi
¡
Bi
t + 2D

i
tqi + F i

t qj
¢2
+
1

θj
¡
Ci
t + 2E

i
tqj + F i

t qi
¢ ³

Bj
t + 2D

j
t qj + F j

t qi

´
+ (34)

+
¡
Ai0
t +Bi0

t qi + Ci0
t qj +Di0

t q
2
i +Ei0

t q
2
j + F i0

t qiqj
¢

By collecting terms one obtains the law of motion for the coefficients in player i’s value function

(symmetrically for player j):

Ai0

Bi0

Ci0

Di0

Ei0

F i0


=



1
2θi

Bi2 + 1
θj
BjCi

2
θi
BiDi + 1

θj
BjF i + 1

θj
CiF j

1
θi
BiF i + 2

θj
BjEi + 2

θj
CiDj

2
θi
Di2 + 1

θj
F iF j

1
2θi

F i2 + 4
θj
DjEi

2
θi
DiF i + 2

θj
DjF i + 2

θj
EiF j


(35)

with the boundary condition given by

Ai
T

Bi
T

Ci
T

Di
T

Ei
T

F i
T


=



0

a− ci

0

−b
0

−b


(36)
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Uncertainty We follow the same steps as in Section 2.1 with few modifications. Now there are

two value functions, depending on the state of the economy. Let these two value functions be VL
and VH . Thus, the Bellman equation if one is in state L is

max
xti

Ã
−θ
2

¡
xti
¢2
+

∂V t
L,i

∂qi
xti +

∂V t
L,i

∂qj
xtj +

∂V t
L,i

∂t
+ λ

¡
V t
H,i(qi, qj)− V t

L,i(qi, qj)
¢!

= 0 (37)

and symmetrically for VH . The optimal adjustment rate is given by

xi =
1

θ

∂V t
L,i

∂qi
(38)

and symmetrically for H. Now one can obtain the corresponding differential equations as in

equations (5) and (8), resulting in a system of twelve ODE’s. The law of motion for the coefficients

associated with the L state is

A0L
B0L
C 0L
D0
L

E0L
F 0L


= λ



AH −AL

BH −BL

CH − CL

DH −DL

EH −EL

FH − FL


+
1

θ



1
2B

2
L +BLCL

2BLDL +BLFL + CLFL

BLFL + 2BLEL + 2CLDL

2D2
L + F 2L

1
2F

2
L + 4DLEL

4DLFL + 2ELFL


(39)

Additional six symmetric equations are associated with the H state. This structure is identical

to the benchmark model except for the fact that, in each equation, with probability λ we switch

to the other value function. Finally, the boundary conditions are given by the different profit

functions at each state.
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Figure 1: Parameters of the value function
This figure plots the value function parameters in the benchmark model, when parameters are

set to a = b = 1, c = 0, and θ = 1. The value function is given by equation (6):

V t
i (qi, qj) = At +Btqi + Ctqj +Dtq

2
i +Etq

2
j + Ftqiqj

and the figure below shows how each of its parameters change over time. The parameters can

be thought of either as initial value functions for games with different horizons (so T is on the

horizontal axis), or as continuation values within a particular game (so t is on the horizontal axis).

Due to the Markov structure, these two interpretations are identical. One can see (and we verify

with longer horizons) that as the horizon becomes longer all parameters, except for the constant

A0, approach zero. A0 converges to approximately 0.0925. Thus, for games with long horizons

the values converge to 0.0925, which are almost 20% lower than the static Cournot profits of 19 .
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Figure 1: Parameters of the value function
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Figure 2: Equilibrium path and off-equilibrium strategies
This figure plots the equilibrium path in the benchmark model, when parameters are set to

a = b = 1, c = 0, and θ = 1, and initial production plans are at the Cournot level of 13 . It

shows that equilibrium path is non-monotonic: it peaks at about 0.4 and then declines towards

0.37, which is the equilibrium production level. This level is higher than the Cournot level of
1
3 . The dashed lines illustrates off-equilibrium path strategies. It simulates a shock, occurring at

date t = −4, which exogenously and unexpectedly drops one of the player’s production target
to 1

3 . The subsequent dashed lines present the equilibrium path in the continuation game, after

the shock. It shows that the leadership position persists, illustrating why players cannot credibly

coordinate on sticking to the Cournot levels.
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Figure 2: Equilibrium path and off-equilibrium strategies
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Figure 3: Equilibrium path with different (symmetric) initial ac-
tions

This figure plots the equilibrium path in the benchmark model, when parameters are set to

a = b = 1, c = 0, and θ = 1. It does so for different values of initial production plans: 13 (the

Cournot level), 0.37, 0.4, 0.43, 0.46, and 0.5 (the Stackelberg level). All cases are of full symmetry,

in parameters and in initial actions, so the equilibrium path is identical for both players in each

case. Clearly, equilibrium paths of the different cases do not cross each other. Note, however,

that final production levels are much closer (around 0.37 in all cases, but not the same, keeping

the same ordering as that of initial levels) to each other compared to the initial production plans.

Note also that the equilibrium path is non-monotonic when initial actions are sufficiently low (less

than about 0.44 in this case), with the peak being closer to the deadline as the initial actions are

lower. When initial actions are higher, equilibrium path is monotone, but the rate of decrease in

production targets is much higher towards the deadline, due to the commitment effect.
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Figure 3: Equilibrium path with different (symmetric) initial actions

26



Figure 4: Equilibrium path with different horizons
This figure plots the equilibrium path in the benchmark model, when parameters are set to

a = b = 1, c = 0, and θ = 1, and initial production plans are 13 (the Cournot level). It does so for

different horizons: 100, 50, 10, and 1. As can be seen, as the horizons gets longer, players have

more time to smooth out their production target increase, therefore peaking at a higher level.

Once the deadline gets closer, however, this higher build-up declines faster, leading to an increase

in cost. Final production levels do not change by much, unless the horizon is very short (as is the

case when T = 1).

0.3

0.33

0.36

0.39

0.42

0.45

-1
00 -9

6

-9
2

-8
8

-8
4

-8
0

-7
6

-7
2

-6
8

-6
4

-6
0

-5
6

-5
2

-4
8

-4
4

-4
0

-3
6

-3
2

-2
8

-2
4

-2
0

-1
6

-1
2 -8 -4 0

t
pr

od
uc

tio
n 

ta
rg

et

Figure 4: Equilibrium path for different horizons
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Figure 5: Equilibrium path with different adjustment cost para-
meters

This figure plots the equilibrium path in the benchmark model, when parameters are set to

a = b = 1, c = 0, and initial production plans are 1
3 (the Cournot level). It plots different

cases for the adjustment cost parameters, θ (0.1, 1, and 10). One can clearly observe that as

adjustment costs are lower, production targets peak higher, as it is both cheaper to achieve these

levels, and lower targets do not provide enough commitment. The picture also suggests that

final production levels decrease with θ. This may be misleading. Since production level is 13 for

θ = 0, we suspect that they may increase with θ close to zero. We could not, however, verify this

conjecture numerically.
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Figure 6: Illustration of how the best response functions change
as a result of adjustment costs

This figure sketches the dynamic effect of adjustment costs in the context of a two-period

model. The solid lines are the static best response functions. The dashed lines are the best

response functions when production targets are higher than the Cournot level. Due to adjustment

costs, the best response function rotates at the level of the production target, and becomes less

responsive to the opponent’s action. The new equilibrium is therefore given by the intersection

of the two dashed lines, giving rise to production levels which are more competitive than the

Cournot level.
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Figure 6: Illustration of how the best response functions change as a result of adjustment costs
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Figure 7: Asymmetric players with different marginal costs
This figure plots the equilibrium path in a two-player model with asymmetric players. Parame-

ters are set to a = b = 1, and θ = 1. One player has zero marginal costs (c1 = 0), while the other

has positive marginal costs (c2 = 0.2). The figure plots three different cases, for different initial

production plans. As players are asymmetric, each case has two paths, one for each player. The

thin solid lines present the case where initial production plans are at the Cournot level (q1 = 0.4,

q2 = 0.2). The dashed lines present the case of a reversed initial production plans (q1 = 0.2,

q2 = 0.4), and the thick solid lines present the case of identical initial plans (q1 = q2 = 0.3). As

the horizon is reasonably long, in all cases the lower marginal cost player (player 1) eventually

gains higher market share. Her market share is higher the higher is her initial production plan. It

is somewhat interesting to note that player 2 ends up producing (slightly) less than her Cournot

level in one of the cases (0.195 compared to her Cournot level of 0.2). Total production is higher

than the Cournot level in all cases.

0.18

0.21

0.24

0.27

0.3

0.33

0.36

0.39

0.42

0.45

0.48

0.51

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0

t

pr
od

uc
tio

n 
ta

rg
et

mc1 = 0
mc2=0.2
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Figure 8: Asymmetric players with different adjustment costs
This figure plots the equilibrium path in a two-player model with asymmetric players. Para-

meters are set to a = b = 1, and c = 0. One player (player 1), however, has higher adjustment

cost parameter than her opponent. As discussed in the text, it is somewhat interesting that once

initial conditions are sufficiently low (as in the figure), it is the more flexible player who is able to

obtain higher market shares. It is not clear if this commitment advantage persists for any value

of θ > 0. For θ = 0 the flexible player always best responds at time T and therefore cannot enjoy

a commitment advantage.
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Figure 9: Equilibrium path in the repeated game
This figure plots the equilibrium path of the repeated game described in Section 2.5. Para-

meters are set to a = b = 1, c = 0, θ = 1, T = 10, ϕ = 0.1, and β = 0.9. Production plans follow

the same pattern before every production period, and production levels (approximately 0.37) are

constant. Initial plans in this case are not exogenous, but are set endogenously as part of the

equilibrium.
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Figure 10: Comparative statics in the repeated game
This figure plots the equilibrium path of the repeated game for different levels of adjustment

costs. The rest of the parameters are set to a = b = 1, c = 0, T = 10, and β = 0.9. The figure

presents a snapshot of one stage of the game. Since we solve for a steady state, this snapshot

repeats itself forever, as in Figure 9. As one can observe, ϕ mainly affects the initial plans, while θ

affects the dynamic pattern of plans. As discussed in the text, the case of ϕ = 0 is a special case in

which the equilibrium of the repeated game is identical to the benchmark model with free initial

decisions. Note, however, that even small values for ϕ are sufficient to generate non-monotonic

pattern. This is because continuation values do not change much with initial plans.
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Figure 11: Frequency and timing of production target observations
This figure provides information about the timing of the observations available. Each obser-

vation includes separate production target by each of the Big Three associated with a particular

production month. Recall, there are 372 production months in the data. Thus, one can see

that starting at around four months before production, observations are available at least on a

monthly basis, typically at the last week of the month. Earlier (more than four months in advance)

observations about production targets are not as regular.
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Figure 12: Production targets over time, pooling all data
This figure presents quartic (biweight) kernel regressions of production targets, measured by

adit (see equation (22)), as a function of the number of days before production, d. It does so for

each of the major three manufacturers (GM, Ford, and Chrysler), as well as for the (unweighted)

average (Big Three). Each series is based on 1,598 observations. All estimates use bandwidth of 30

days. The dashed lines present 95 percent confidence intervals. Confidence intervals are computed

by bootstrapping the data, and running the same kernel regression on each bootstrapped sample.

The dashed lines in each figure report the point-by-point 2.5 and 97.5 percentiles.
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Figure 13: Production targets over time, by period
This figure presents quartic (biweight) kernel regressions of production targets, measured by

adit (see equation (22)), as a function of the number of days before production, d. It does so for

each of the major three manufacturers (GM, Ford, and Chrysler), as well as for the (unweighted)

average (Big Three). Each figure reports the kernel regression estimates, estimated separately

for each decade of the data: 1965-1975 (thick solid line), 1976-1985 (dashed line), and 1986-1995

(thin solid line). The estimates for the first decade (1965-1975) only start about 120 days before

production, as during this period they were no early production target observations.
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Figure 13: Production targets over time, by period
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Figure 14: Production targets over time, by calendar month
This figure presents quartic (biweight) kernel regressions of production targets, measured by

adit (see equation (22)), as a function of the number of days before production, d. It does so for

each calendar month separately, to account for potential seasonality of model-year product-life-

cycle effects. Each figure presents the kernel regression estimates for each of the Big Three, as

well as for their average.
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Figure 14: Production targets over time, by calendar month
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Figure 15: Production targets over time, for positive and negative
production growth

This figure presents quartic (biweight) kernel regressions of production targets, measured by

adit (see equation (22)), as a function of the number of days before production, d. It does so for

each of the major three manufacturers (GM, Ford, and Chrysler), as well as for the (unweighted)

average (Big Three). Each figure reports the kernel regression estimates, estimated separately for

production months with positive production growth (thick line) and negative production growth

(thin line). Much of the variation in production growth is due to seasonality. As discussed in the

text, one can notice that much of the non-monotonic pattern in the data is driven by months with

positive production growth.
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Figure 15: Production targets over time, for positive and negative production growth
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Figure 16: Revisions in production targets
This figure presents quartic (biweight) kernel regressions of the revisions in production targets,

measured by sdit (see equation (23)), as a function of the number of days before production, d.

The units of sdit are in basis point change, per day. The figures present the pattern for each of

the major three manufacturers (GM, Ford, and Chrysler), as well as for the (unweighted) average

(“Big Three”). Each series is based on 1,239 observations (taking first differences, we lose the

earliest observed announcement for each production month). All estimates use bandwidth of 30

days. The dashed lines present 95 percent confidence intervals. Confidence intervals are computed

by bootstrapping the data, and running the same kernel regression on each bootstrapped sample.

The dashed lines in each figure report the point-by-point 2.5 and 97.5 percentiles.
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Figure 16: Revisions in production targets
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Table 1: Frequency estimates of revision signs
This table provides frequency estimates of the direction of production target revisions. The

inequalities are constructed in such a way that estimates of 0.5 imply random revisions and

estimates greater than 0.5 are consistent with the theoretical predictions. As one can observe, all

numbers but one are greater than 0.5, none of them is significantly less than 0.5, and the majority

of them are significantly greater than 0.5.

Pr(AMiddle
it > AEarly

it )a Pr(ALate
it < AMiddle

it )a Pr(Qit < ALate
it )a

Big 3 Average 0.614∗∗ 0.628∗∗ 0.740∗∗

GM 0.474 0.584∗∗ 0.763∗∗

Ford 0.667∗∗ 0.509 0.676∗∗

Chrysler 0.511 0.528 0.543

Obs. 135 286 359

∗∗ Significantly different from 0.5 at 95% confidence level.
a For each i and t we construct AEarly

it as the average of Ad
it such that d < −110. Respectively,

for AMiddle
it we use d ∈ [−110,−50] and for ALate

it we use d > −50. Changing the cutoff levels for
these variables has no effect on the results.
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