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1 Introduction

We study the problem of a policymaker (more concretely, a central bank), who seeks to set policy

optimally in an economy where the true economic structure is unobserved and the policymaker

optimally learns from his observations of the economy. This is a classic problem of learning and

control with model uncertainty, variants of which have been studied in the past, but very little has

been done with forward-looking variables, which are a key component of modern policy-relevant

models. We gain some tractability by taking our model of the economy to be a so-called Markov

jump-linear-quadratic (MJLQ) system, extended to include forward-looking variables. In this setup,

model uncertainty takes the form of different “modes” or regimes that follow a Markov process.

This setup can be adapted to handle many different forms of model uncertainty, but yet provides

a relatively simple structure for analysis.

In a previous paper, Svensson and Williams [15], we studied optimal policy design in models of

this class when policymakers can or cannot observe the current mode, but we abstracted from any

learning and inference about the current mode. In this paper we focus on learning and inference in

the more relevant situation, particularly for the model-uncertainty applications which interest us, in

which the modes are not directly observable. Thus, decision makers must filter their observations to

make inferences about the current mode. As in most Bayesian learning problems, the optimal policy

thus typically includes an experimentation component reflecting the endogeneity of information.

This class of problems has a long history in economics, and it is well-known that solutions are

difficult to obtain. We develop algorithms to solve numerically for the optimal policy.1 Due to

the curse of dimensionality, the Bayesian optimal policy (BOP) is only feasible in relatively small

models. Confronted with these difficulties, we also consider adaptive optimal policy (AOP).2 In

this case, the policymaker in each period does update the probability distribution of the current

mode in a Bayesian way, but the optimal policy is computed each period under the assumption

that the policymaker will not learn in the future from observations. In our MJLQ setting, the

AOP is significantly easier to compute, and in many cases provides a good approximation to the
1 In addition to the classic literature (on such problems as a monopolist learning its demand curve), Wieland

[17]-[18] and Beck and Wieland [1] have recently examined Bayesian optimal policy and optimal experimentation in
a context similar to ours but without forward-looking variables. Tesfaselassie, Schaling, and Eijffinger [16] examine
passive and active learning in a simple model with a forward-looking element in the form of a long interest rate in
the aggregate-demand equation. Ellison and Valla [7] and Cogley, Colacito, and Sargent [3] study situations like
ours but where the expectational component is as in the Lucas-supply curve (Et−1πt, for example) rather than our
forward-looking case (Etπt+1, for example). More closely related to our present paper, Ellison [6] analyzes active and
passive learning in a New Keynesian model with uncertainty about the slope of the Phillips curve.

2 What we call optimal policy under no learning, adaptive optimal policy, and Bayesian optimal policy has in the
literature also been referred to as myopia, passive learning, and active learning, respectively.



BOP. Moreover, the AOP analysis is of some interest in its own right, as it is closely related to

specifications of adaptive learning which have been widely studied in macroeconomics (see Evans

and Honkapohja [8] for an overview). Further, the AOP specification rules out the experimentation

which some may view as objectionable in a policy context.3

In this paper, we provide two simple examples, with and without forward-looking variables, to

illustrate the role of learning and experimentation in an MJLQ framework and compare the policy

functions and value functions under NL, AOP, and BOP. Of particular interest is how uncertainty

affects policy, and how learning interacts with the optimal policy decisions. We also diagnose

the aspects of the model which influence the size of experimentation motive, and thus drive the

differences between the Bayesian and adaptive optimal policies.

MJLQ models have been widely studied in the control-theory literature for the special case when

the model modes are observable and there are no forward-looking variables (see Costa, Fragoso,

and Marques [4] (henceforth CFM) and the references therein).4 More recently, Zampolli [19]

has used such an MJLQ model to examine monetary policy under shifts between regimes with

and without an asset-market bubble. Blake and Zampolli [2] provide an extension of the MJLQ

model with observable modes to include forward-looking variables and present an algorithm for the

solution of an equilibrium resulting from optimization under discretion. Svensson and Williams

[15] provide a more general extension of the MJLQ framework with forward-looking variables and

present algorithms for the solution of an equilibrium resulting from optimization under commitment

in a timeless perspective as well as arbitrary time-varying or time-invariant policy rules, using

the recursive saddlepoint method of Marcet and Marimon [11]. They also provide two concrete

examples: an estimated backward-looking model (a three-mode variant of Rudebusch and Svensson

[13]) and an estimated forward-looking model (a three-mode variant of Lindé [10]). Svensson and

Williams [15] also extend the MJLQ framework to the more realistic case of unobservable modes,

although without introducing learning and inference about the probability distribution of modes,

which is our focus here.

The paper is organized as follows: Section 2 lays out the basic model an MJLQ system with

forward-looking variables. Sections 3, 4, and 5 specify the optimal policy under no learning (NL),

the adaptive optimal policy (AOP), and the Bayesian optimal policy (BOP). Section 6 provides some

simple examples, and compares the value functions and policy functions for these three alternatives
3 In addition, AOP is useful for technical reasons as it gives us a good starting point for our more intensive

numerical calculations in the BOP case.
4 do Val and Başar [5] provide an application of an adaptive-control MJLQ problem in economics.
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and clarifies the benefits and costs of optimal experimentation.

2 The model

We consider a Markov Jump-Linear-Quadratic (MJLQ) model of an economy with forward-looking

variables. The economy has a private sector and a policymaker. We let Xt denote an nX -vector

of predetermined variables in period t, xt an nx-vector of forward-looking variables, and it an ni-

vector of (policymaker) instruments (control variables).5 We let model uncertainty be represented

by nj possible modes and let jt ∈ Nj ≡ {1, 2, ..., nj} denote the mode in period t. The model of

the economy can then be written

Xt+1 = A11jt+1Xt + A12jt+1xt + B1jt+1it + C1jt+1εt+1, (2.1)

EtHjt+1xt+1 = A21jtXt + A22jtxt + B2jtit + C2jtεt, (2.2)

where εt is a multivariate normally distributed random i.i.d. nε-vector of shocks with mean zero

and contemporaneous covariance matrix Inε . The matrices A11j , A12j , ..., C2j have the appropriate

dimensions and depend on the mode j. As a structural model here is simply a collection of matrices,

each mode can represent a different model of the economy. Thus, uncertainty about the prevailing

mode is model uncertainty.6

Note that the matrices on the right side of (2.1) depend on the mode jt+1 in period t + 1,

whereas the matrices on the right side of (2.2) depend on the mode jt in period t. Equation (2.1)

then determines the predetermined variables in period t+1 as a function of the mode and shocks in

period t + 1 and the predetermined variables, forward-looking variables, and instruments in period

t. Equation (2.2) determines the forward-looking variables in period t as a function of the mode and

shocks in period t, the expectations in period t of next period’s mode and forward-looking variables,

and the predetermined variables and instruments in period t. The matrix A22j is invertible for each

j ∈ Nj .

The mode jt follows a Markov process with the transition matrix P ≡ [Pjk].7 The shocks εt are

mean zero and i.i.d. with density ϕ, and without loss of generality we assume that εt is independent

jt.8 We also assume that C1jεt and C2kεt are independent for all j, k ∈ Nj . These shocks, along
5 The first component of Xt may be unity, in order to allow for mode-dependent intercepts in the model equations.
6 See also Svensson and Williams [15], where we show how many different types of uncertainty can be mapped

into our MJLQ framework.
7 Obvious special cases are P = Inj , when the modes are completely persistent, and Pj. = p̄′ (j ∈ Nj), when the

modes are serially i.i.d. with probability distribution p̄.
8 Because mode-dependent intercepts (as well as mode-dependent standard deviations) are allowed in the model,

we can still incorporate additive mode-dependent shocks.
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with the modes, are the driving forces in the model and they are not directly observed. For technical

reasons, it is convenient but not necessary that they are independent. We let pt = (p1t, ..., pnjt)′

denote the true probability distribution of jt in period t. We let pt|t denote the policymaker’s and

private sector’s estimate of the probability distribution in the beginning of period t. The prediction

equation for the probability distribution is

pt+1|t = P ′pt|t. (2.3)

We let the operator Et[·] in the expression EtHjt+1xt+1 on the left side of (2.2) denote expec-

tations in period t conditional on policymaker and private-sector information in the beginning of

period t, including Xt, it, and pt|t, but excluding jt and εt. Thus, the maintained assumption is

symmetric information between the policymaker and the (aggregate) private sector. Since forward-

looking variables will be allowed to depend on jt, parts of the private sector, but not the aggregate

private sector, may be able to observe jt and parts of εt. Note that although we focus on the

determination of the optimal policy instrument it, our results also show how private sector choices

as embodied in xt are affected by uncertainty and learning. The precise informational assumptions

and the determination of pt|t will be specified below.

We let the policymaker’s intertemporal loss function in period t be

Et

∞∑

τ=0

δτL(Xt+τ , xt+τ , it+τ , jt+τ ) (2.4)

where δ is a discount factor satisfying 0 < δ < 1, and the period loss, L(Xt, xt, it, jt), satisfies

L(Xt, xt, it, jt) ≡



Xt

xt

it



′

Wjt




Xt

xt

it


 , (2.5)

where the matrix Wj (j ∈ Nj) is positive semidefinite. We assume that the policymaker optimizes

under commitment in a timeless perspective. As explained below, we will then add the term

Ξt−1
1
δ
EtHjtxt (2.6)

to the intertemporal loss function in period t. As we shall see below, the nx-vector Ξt−1 is the

vector of Lagrange multipliers for equation (2.2) from the optimization problem in period t − 1.

For the special case when there are no forward-looking variables (nx = 0), the model consists of

(2.1) only, without the term A12jt+1xt; the period loss function depends on Xt, it, and jt only; and

there is no role for the Lagrange multipliers Ξt−1 or the term (2.6).
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We will distinguish three cases: (1) Optimal policy when there is no learning (NL), (2) Adaptive

optimal policy (AOP), and (3) Bayesian optimal policy (BOP). By NL, we refer to a situation when

the policymaker and the aggregate private sector have a probability distribution pt|t over the modes

in period t and updates the probability distribution in future periods using the transition matrix

only, so the updating equation is

pt+1|t+1 = P ′pt|t. (2.7)

That is, the policymaker and the private sector do not use observations of the variables in the

economy to update the probability distribution. The policymaker then determines optimal policy

in period t conditional on pt|t and (2.7). This is a variant of a case examined in Svensson and

Williams [15].

By AOP, we refer to a situation when the policymaker in period t determines optimal policy

as in the NL case, but then uses observations of the realization of the variables in the economy to

update its probability distribution according to Bayes Theorem. In this case, the instruments will

generally have an effect on the updating of future probability distributions, and through this channel

separately affect the intertemporal loss. However, the policymaker does not exploit that channel in

determining optimal policy. That is, the policymaker does not do any conscious experimentation.

By BOP, we refer to a situation when the policymaker acknowledges that the current instruments

will affect future inference and updating of the probability distribution, and calculates optimal

policy taking this separate channel into account. Therefore, BOP includes optimal experimentation,

where for instance the policymaker may pursue policy that increases losses in the short run but

improves the inference of the probability distribution and therefore lowers losses in the longer run.

3 Optimal policy with no learning

We first consider the NL case. Svensson and Williams [15] derive the equilibrium under commit-

ment in a timeless perspective for the case when Xt, xt, and it are observable in period t, jt is

unobservable, and the updating equation for pt|t is given by (2.7). Observations of Xt, xt, and it

are then not used to update pt|t.

It is worth noting what type of belief specification underlies the assumption that the policymaker

does not learn from his or her beliefs. In general this requires the policymaker to have subjective

beliefs which are inconsistent or differ from the true data-generating process. One possibility

would be to assume that the policymaker subjectively (and incorrectly) views modes as being
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independently drawn each period, in which case there is no reason to learn. As discussed in detail

in Svensson and Williams [15], following a suggestion from Alexei Onatski, we instead assume

that the policymaker in period t forgets past observations of the economy, such as Xt−1, Xt−2, . . .,

when making decisions in period t. Without past observations, the policymaker cannot use current

observations to update the beliefs. This possibility has the advantage that the policymaker need

not view the modes as being independently drawn and can exploit the fact that the true modes

may be serially correlated. However, forgetting past observations implies that the beliefs do not

satisfy the law of iterated expectations. This complication leads to the slightly more complicated

derivations below.

As a further difference, Svensson and Williams [15] assumed C2jt ≡ 0. With observable modes

or with unobservable modes with no learning, this is an innocuous assumption, since if C2jt 6≡ 0

the vector of predetermined variables and the block of equations for the predetermined variables,

(2.1), can be augmented with the vector Xεt and the equations Xε,t+1 = C2jt+1εt+1, respectively.

Here we allow C2jt 6≡ 0 and keep track of the term C2jtεt, since this term will serve as the shock

in the equations for the forward-looking variables, without which inference in some cases becomes

trivial.9

3.1 The general case

It will be useful to replace equation (2.2) by the two equivalent equations,

EtHjt+1xt+1 = zt, (3.1)

0 = A21jtXt + A22jtxt − zt + B2jtit + C2jtεt, (3.2)

where we introduce the nx-vector of additional forward-looking variables, zt. Introducing this vector

is a practical way of keeping track of the expectations term on the left side of (2.2). Furthermore,

it will be practical to use (3.2) and solve xt as a function of Xt, zt, it, jt, and εt

xt = x̃(Xt, zt, it, jt, εt) ≡ A−1
22jt

(zt −A21jtXt −B2jtit − C2jtεt). (3.3)

We note that, for given jt, this function is linear in Xt, zt, it, and εt.

In order to solve for the optimal decisions, we use the recursive saddlepoint method (see Marcet

and Marimon [11], Svensson and Williams [15], and Svensson [14] for details of the recursive sad-

dlepoint method). Thus, we introduce Lagrange multipliers for each forward looking equation, the
9 Alternatively, we could allow C2jt ≡ 0 and add the corresponding predetermined variables, but then we have to

assume that those predetermined variables are not observable. It turns out that the filtering problem becomes much
more difficult to handle when some predetermined variables as well as modes are unobservable.
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lagged values of which become state variables and reflecting costs of commitment, while the current

values become control variables. The dual period loss function can be written

EtL̃(X̃t, zt, it, γt, jt, εt) ≡
∑

j

pjt|t

∫
L̃(X̃t, zt, it, γt, j, εt)ϕ(εt)dεt,

where X̃t ≡ (X ′
t,Ξ

′
t−1)

′ is the (nX + nx)-vector of extended predetermined variables (that is,

including the nx-vector Ξt−1), γt is an nx-vector of Lagrange multipliers, and ϕ(·) denotes a generic

probability density function (for εt, the standard normal density function), and where

L̃(X̃t, zt, it, γt, jt, εt) ≡ L[Xt, x̃(Xt, zt, it, jt, εt), it, jt]− γ′tzt + Ξ′t−1

1
δ
Hjt x̃(Xt, zt, it, jt, εt). (3.4)

As discussed in Svensson and Williams [15], the failure of the law of iterated expectations

leads us to introduce the collection of value functions V̂ (st, j) which condition on the mode, while

the value function Ṽ (st) averages over these and represents the solution of the dual optimization

problem. The somewhat unusual Bellman equation for the dual problem can be written

Ṽ (st) = EtV̂ (st, jt) ≡
∑

j
pjt|tV̂ (st, j)

= max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δV̂ [g(st, zt, it, γt, jt, εt, jt+1, εt+1), jt+1]}

≡ max
γt

min
(zt,it)

∑
j
pjt|t

∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ

∑
k PjkV̂ [g(st, zt, it, γt, j, εt, k, εt+1), k]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1.

(3.5)

where st ≡ (X̃ ′
t, p

′
t|t)

′ denotes the perceived state of the economy (it includes the perceived proba-

bility distribution, pt|t, but not the true mode) and (st, jt) denotes the true state of the economy

(it includes the true mode of the economy). As we discuss in more detail below, it is necessary

to include the mode jt in the state vector because the beliefs do not satisfy the law of iterated

expectations. In the BOP case beliefs do satisfy this property, so the state vector is simply st. Also

note that in the Bellman equation we require that all the choice variables respect the information

constraints, and thus depend on the perceived state st but not the mode j directly.

The optimization is subject to the transition equation for Xt,

Xt+1 = A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1, (3.6)

where we have substituted x̃(Xt, zt, it, jt, εt) for xt; the new dual transition equation for Ξt,

Ξt = γt, (3.7)
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and the transition equation (2.7) for pt|t. Combining equations, we have the transition for st,

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(Xt, zt, it, j, εt) + B1jt+1it + C1jt+1εt+1

γt

P ′pt|t


 . (3.8)

It is straightforward to see that the solution of the dual optimization problem (3.5) is linear in

X̃t for given pt|t, jt,



zt

it
γt


 =




z(st)
i(st)
γ(st)


 = F (pt|t)X̃t ≡




Fz(pt|t)
Fi(pt|t)
Fγ(pt|t)


 X̃t, (3.9)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ FxX̃(pt|t, jt)X̃t + Fxε(pt|t, jt)εt. (3.10)

This solution is also the solution to the original primal optimization problem. We note that xt is

linear in εt for given pt|t and jt. The equilibrium transition equation is then given by

st+1 = ḡ(st, jt, εt, jt+1, εt+1) ≡ g[st, z(st), i(st), γ(st), jt, εt, jt+1, εt+1].

As can be easily verified, the (unconditional) dual value function Ṽ (st) is quadratic in X̃t for

given pt|t, taking the form

Ṽ (st) ≡ X̃ ′
tṼX̃X̃(pt|t)X̃t + w(pt|t).

The conditional dual value function V̂ (st, jt) gives the dual intertemporal loss conditional on the

true state of the economy, (st, jt). It follows that this function satisfies

V̂ (st, j) ≡
∫ [

L̃(X̃t, z(st), i(st), γ(st), j, εt)
+ δ

∑
k PjkV̂ [ḡ(st, j, εt, k, εt+1), k]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj).

The function V̂ (st, jt) is also quadratic in X̃t for given pt|t and jt,

V̂ (st, jt) ≡ X̃ ′
tV̂X̃X̃(pt|t, jt)X̃t + ŵ(pt|t, jt).

It follows that we have

ṼX̃X̃(pt|t) ≡
∑

j
pjt|tV̂X̃X̃(pt|t, j), w(pt|t) ≡

∑
j
pjt|tŵ(pt|t, j).

The value function for the primal problem, with the period loss function EtL(Xt, xt, it, jt) rather

than EtL̃(X̃t, zt, it, γt, jt, εt), satisfies

V (st) ≡ Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjt|tHj

∫
x(st, j, εt)ϕ(εt)dεt

= Ṽ (st)− Ξ′t−1

1
δ

∑

j

pjt|tHjx(st, j, 0) (3.11)
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(where the second equality follows since x(st, jt, εt) is linear in εt for given st and jt). It is quadratic

in X̃t for given pt|t,

V (st) ≡ X̃ ′
tVX̃X̃(pt|t)X̃t + w(pt|t)

(the scalar w(pt|t) in the primal value function is obviously identical to that in the dual value

function). This is the value function conditional on X̃t and pt|t after Xt has been observed but

before xt has been observed, taking into account that jt and εt are not observed. Hence, the second

term on the right side of (3.11) contains the expectation of Hjtxt conditional on that information.10

Svensson and Williams [15] present algorithms to compute the solution and the primal and

dual value functions for the no-learning case, with and without forward-looking variables, when

the matrices C2j ≡ 0. For completeness, appendix A presents variants of these algorithms that

incorporate the case when C2jt 6≡ 0. For future reference, we note that the value function for the

primal problem also satisfies

V (st) ≡
∑

j
pjt|tV̌ (st, j),

where the conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =
∫ {

L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (3.12)

3.2 The case without forward-looking variables

For the case without forward-looking variables, the recursive saddlepoint method is not needed, so

matters simplify. The transition equation for Xt+1 is

Xt+1 = Ajt+1Xt + Bjt+1it + Cjt+1εt+1, (3.13)

and the period loss function is

EtL(Xt, it, jt) ≡
∑

j
pjt|tL(Xt, it, j), (3.14)

where

L(Xt, it, jt) ≡
[

Xt

it

]′
Wjt

[
Xt

it

]
. (3.15)

The transition equation is

st+1 ≡
[

Xt+1

pt+1|t+1

]
= g(st, it, jt+1, εt+1) ≡

[
Ajt+1Xt + Bjt+1it + Cjt+1εt+1

P ′pt|t

]
. (3.16)

10 To be precise, the observation of Xt, which depends on C1jtεt, allows some inference of εt, εt|t. xt will depend on
jt and on εt, but on εt only through C2jtεt. By assumption C1jεt and C2kεt are independent. Hence, any observation
of Xt and C1jεt does not convey any information about C2jεt, so EtC2jtεt = 0.
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The Bellman equation for the optimal policy problem is

V (st) = EtV̂ (st, jt) ≡
∑

j
pjt|tV̂ (st, j)

= min
it

Et{L(Xt, it, jt) + δV̂ [g(st, it, jt+1, εt+1), jt+1]}

≡ min
it

∑
j
pjt|t

[
L(Xt, it, j) + δ

∑
k
Pjk

∫
V̂ [g(st, it, k, εt+1), k] ϕ(εt+1)dεt+1

]
. (3.17)

This results in the optimal policy function,

it = i(st) ≡ Fi(pt|t)Xt, (3.18)

which is linear in Xt for given pt|t. The equilibrium transition equation is then

st+1 = ḡ(st, jt+1, εt+1) ≡ g(st, i(st), jt+1, εt+1). (3.19)

The value function, V (st), is quadratic in Xt for given pt|t,

V (st) = X ′
tVXX(pt|t)Xt + w(pt|t).

The conditional value function, V̂ (st, jt), satisfies

V̂ (st, j) ≡ L[Xt, i(st), j] + δ
∑

k
Pjk

∫
V̂ [ḡ(st, k, εt+1), k]ϕ(εt+1)dεt+1 (j ∈ Nj).

4 Adaptive optimal policy

Consider now the case of adaptive optimal policy, where the policymaker uses the same policy

function as in the no-learning case, but each period updates the probabilities that this policy is

conditioned on. This case is thus simple to implement recursively, as we have already discussed how

to solve for the optimal decisions and below we show how to update probabilities. However, the

ex-ante evaluation of expected loss is more complex, as we show below. In particular, we assume

that C2jt 6≡ 0 and that both εt and jt are unobservable. The estimate pt|t is the result of Bayesian

updating, using all information available, but the optimal policy in period t is computed under

the perceived updating equation (2.7). That is, the fact that the policy choice will affect future

pt+τ |t+τ and that future expected loss will change when pt+τ |t+τ changes is disregarded. Under the

assumption that the expectations on the left side of (2.2) are conditional on (2.7), the variables zt,

it, γt, and xt in period t are still determined by (3.9) and (3.10).
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4.1 Information revelation

In order to determine the updating equation for pt|t, we specify an explicit sequence of information

revelation as follows, in no less than nine steps. The timing assumptions are necessary in order to

spell out the appropriate conditioning for decisions and updating of beliefs.

First, the policymaker and the private sector enters period t with the prior pt|t−1. They know

Xt−1, xt−1 = x(st−1, jt−1, εt−1), zt−1 = z(st−1), it−1 = i(st−1), and Ξt−1 = γ(st−1) from the

previous period.

Second, in the beginning of period t, the mode jt and the vector of shocks εt are realized. Then

the vector of predetermined variables Xt is realized according to (2.1).

Third, the policymaker and the private sector observe Xt. They then know X̃t ≡ (X ′
t,Ξ

′
t−1)

′.

They do not observe jt or εt

Fourth, the policymaker and the private sector update the prior pt|t−1 to the posterior pt|t

according to Bayes Theorem and the updating equation

pjt|t =
ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1)

ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1)
pjt|t−1 (j ∈ Nj), (4.1)

where again ϕ(·) denotes a generic density function.11 Then the policymaker and the private sector

know st ≡ (X̃ ′
t, p

′
t|t)

′.

Fifth, the policymaker solves the dual optimization problem, determines it = i(st), and imple-

ments/announces the instrument setting it.

Sixth, the private-sector (and policymaker) expectations,

zt = EtHjt+1xt+1 ≡ E[Hjt+1xt+1 | st],

are formed. In equilibrium, these expectations will be determined by (3.9). In order to understand

their determination better, we look at this in some detail.

These expectations are by assumption formed before xt is observed. The private sector and the

policymaker know that xt will in equilibrium be determined in the next step according to (3.10).

Hence, they can form expectations of the soon-to-be determined xt conditional on jt = j,12

xjt|t = x(st, j, 0). (4.2)

11 The policymaker and private sector can also estimate the shocks εt|t as εt|t =
P

j pjt|tεjt|t, where εjt|t ≡
Xt −A11jXt−1 −A12jxt−1 −B1jit−1 (j ∈ Nj). However, because of the assumed independence of C1jεt and C2kεt,
j, k ∈ Nj , we do not need to keep track of εjt|t.

12 Note that 0 instead of εjt|t enters above. This is because the inference εjt|t above is inference about C1jεt, whereas
xt depends on εt through C2jεt. Since we assume that C1jεt and C2jεt are independent, there is no inference of C2jεt

from observing Xt. Hence, EtC2jtεt ≡ 0. Because of the linearity of xt in εt, the integration of xt over εt results in
x(st, jt, 0t).
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The private sector and the policymaker can also infer Ξt from

Ξt = γ(st). (4.3)

This allows the private sector and the policymaker to form the expectations

zt = z(st) = Et[Hjt+1xt+1 | st] =
∑

j,k
Pjkpjt|tHkxk,t+1|jt, (4.4)

where

xk,t+1|jt =
∫

x







A11kXt + A12kx(st, j, εt) + B1ki(st)
Ξt

P ′pt|t


 , k, εt+1


ϕ(εt)ϕ(εt+1)dεtdεt+1

= x







A11kXt + A12kx(st, j, 0) + B1ki(st)
Ξt

P ′pt|t


 , k, 0


 ,

where we have exploited the linearity of xt = x(st, jt, εt) and xt+1 = x(st+1, jt+1, εt+1) in εt and

εt+1. Note that zt is, under AOP, formed conditional on the belief that the probability distribution

in period t + 1 will be given by pt+1|t+1 = P ′pt|t, not by the true updating equation that we are

about to specify.

Seventh, after the expectations zt have been formed, xt is determined as a function of Xt, zt,

it, jt, and εt by (3.3).

Eight, the policymaker and the private sector then use the observed xt to update pt|t to the new

posterior p+
t|t according to Bayes Theorem, via the updating equation

p+
jt|t =

ϕ(xt|jt = j, Xt, zt, it, pt|t)
ϕ(xt|Xt, zt, it, pt|t)

pjt|t (j ∈ Nj). (4.5)

Ninth, the policymaker and the private sector then leave period t and enter period t + 1 with

the prior pt+1|t given by the prediction equation

pt+1|t = P ′p+
t|t. (4.6)

In the beginning of period t + 1, the mode jt+1 and the vector of shocks εt+1 are realized, and

Xt+1 is determined by (2.1) and observed by the policymaker and private sector. The sequence of

the nine steps above then repeats itself.

With the timing laid out, we now provide more detail on the updating equations (4.1) and (4.5),

explicitly writing out the densities. This will help in writing an explicit law of motion for beliefs.

12



Since C1jεt is a random nX -vector that, for given j, is normally distributed with mean zero and

covariance matrix C1jC
′
1j ,

13 we know that

ϕ(Xt|jt = j,Xt−1, xt−1, it−1, pt|t−1) ≡ ψ(Xt −A11jXt−1 −A12jxt−1 −B1jit−1;C1jC
′
1j), (4.7)

where

ψ(ε; Σεε) ≡ 1√
(2π)nε |Σεε|

exp
(
− 1

2
ε′Σ−1

εε ε

)

denotes the density function of a random nε-vector ε with a multivariate normal distribution with

mean zero and covariance matrix Σεε. Furthermore,

ϕ(Xt|Xt−1, xt−1, it−1, pt|t−1) ≡
∑

j

pjt|t−1ψ(Xt −A11jXt−1 + A12jxt−1 + B1jit−1;C1jC
′
1j). (4.8)

Thus, we know the details of the updating equation (4.1). Further, since C2kεt is a random nx-vector

that is normally distributed with mean zero and covariance matrix C2kC
′
2k, we know that14

ϕ(xt|jt = k,Xt, zt, it, pt|t) ≡ ψ[zt −A21kXt −A22kxt −B2kit;C2kC
′
2k], (4.9)

ϕ(xt|Xt, zt, it, pt|t) ≡
∑

k

pkt|tψ[zt −A21kXt −A22kxt −B2kit; C2kC
′
2k]. (4.10)

Thus, we know the details of the updating equation (4.5).

In particular, it follows that we can write the updating equation (4.5) as

p+
t|t = Q+(st, zt, it, jt, εt) (4.11)

≡ [Q+
1 (st, zt, it, jt, εt), ..., Q+

nj
(st, zt, it, jt, εt)]′,

where

Q+
k (st, zt, it, jt, εt) ≡ ψ[Zk(Xt, zt, it, jt, εt);C2kC

′
2k]∑

k pkt|tψ[Zk(Xt, zt, it, jt, εt);C2kC
′
2k]

pkt|t (k ∈ Nj) (4.12)

and

Zk(Xt, zt, it, jt, εt) ≡ zt −A21kXt −A22kx̃(Xt, zt, it, jt, εt)−B2kit,

where we use (3.3) to express xt as a function of Xt, zt, it, jt, and εt, and use this to eliminate xt

from the first argument of ψ(·, ·) in (4.9) and (4.10).

The transition equation for pt+1|t+1 can then finally be written

pt+1|t+1 = Q(st, zt, it, jt, εt, jt+1, εt+1), (4.13)

13 Assume for simplicity that the rank of C1jC
′
1j is nX ; if not, for instance when the predetermined variables

include lagged endogenous variables, choose the appropriate nonsingular submatrix and the appropriate subvector of
Xt.

14 Again, assume that the rank of C2kC′2k is nx, or else select the appropriate nonsingular components.
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where Q(st, zt, it, jt, εt, jt+1, εt+1) is defined by the combination of (4.1) for period t + 1 with (3.6),

(4.6), and (4.11). The equilibrium transition equation for the full state vector is then given by

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = ḡ(st, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1x(st, jt, εt) + B1jt+1i(st) + C1jt+1εt+1

γ(st)
Q(st, z(st), i(st), jt, εt, jt+1, εt+1)


 , (4.14)

where the third row is given by the true updating equation (4.13) together with the policy function

(3.9). Thus, we note that in this AOP case there is a distinction between the “perceived” transition

equation, which includes the perceived updating equation, (2.7), and the “true” transition equation,

which includes the true updating equation (4.13).

Note that V (st) in (3.11), which is subject to the perceived transition equation, (3.8), does not

give the true (unconditional) value function for the AOP case. This is instead given by

V̄ (st) ≡
∑

j
pjt|tV̌ (st, j),

where the true conditional value function, V̌ (st, jt), satisfies

V̌ (st, j) =
∫ {

L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV̌ [ḡ(st, j, εt, k, εt+1), k]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1 (j ∈ Nj). (4.15)

That is, the true value function V̄ (st) takes into account the true updating equation for pt|t, (4.13),

whereas the optimal policy, (3.9), and the perceived value function, V (st) in (3.11), are conditional

on the perceived updating equation (2.7) and thereby the perceived transition equation (3.8). Note

also that V̄ (st) is the value function after X̃t has been observed but before xt is observed, so it

is conditional on pt|t rather than p+
t|t. Since the full transition equation (4.14) is no longer linear

due to the belief updating (4.13), the true value function V̄ (st) is no longer quadratic in X̃t for

given pt|t. Thus, more complex numerical methods are required to evaluate losses in the AOP case,

although policy is still determined simply as in the NL case.

Note that

EtQ(st, z(st), i(st), jt, εt, jt+1, εt+1) = pt+1|t = P ′pt|t. (4.16)

The difference between the true updating equation for pt+1|t+1, (4.13), and the perceived updating

equation (2.7) is that, in the true updating equation, pt+1|t+1 becomes a random variable from

the point of view of period t, with mean equal to pt+1|t. This is because pt+1|t+1 depends on the

realization of jt+1 and εt+1. We can hence write the true transition equation for pt+1|t+1 as

pt+1|t+1 = P ′pt|t + vt+1 (4.17)
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where

vt+1 ≡ Q(st, z(st), i(st), jt, εt, jt+1, εt+1)− P ′pt|t, (4.18)

and thus Etvt+1 = 0. The first term on the right side of (4.17) is the prediction pt+1|t and the

second term is the innovation in pt+1|t+1 that results from the Bayesian updating and depends on

the realization of jt+1 and εt+1.

This way of representing beliefs sheds light on the gains from learning. If the conditional value

function V̌ (st, jt) under NL is concave in pt|t for given X̃t and jt, then by Jensen’s inequality the true

expected future loss under AOP will be lower than the true expected future loss under NL. That

is, the concavity of the value function in beliefs means that learning leads to lower losses. While

it likely that V̌ is indeed concave, as we show in applications, it need not be globally so and thus

learning need not always reduce losses. In some cases the losses incurred by increased variability

of beliefs may offset the expected precision gains. Furthermore, under BOP, it may be possible to

adjust policy so as to further increase the variance of pt|t, that is, achieve a mean-preserving spread

which might further reduce the expected future loss.15 This amounts to optimal experimentation.

4.2 The case without forward-looking variables

For the case without forward-looking variables, again the recursive saddlepoint method is not

needed and the expressions simplify. With the transition equation for the predetermined variables

(3.13) and the period loss function (3.14), the optimal policy in the AOP case is determined as in

the NL case by the solution to (3.17), subject to the perceived transition equation (3.16) and given

by the same policy function, (3.18).

The optimal policy under AOP is calculated under the perceived updating equation, (2.7). The

true updating equation for pt+1|t+1 is

pt+1|t+1 = Q(st, it, jt+1, εt+1), (4.19)

where

Q(st, it, jt+1, εt+1) ≡ [Q1(st, it, jt+1, εt+1), ..., Qnj (st, it, jt+1, εt+1)]′,

Qk(st, it, jt+1, εt+1) ≡
ψ[(Ajt+1 −Ak)Xt + (Bjt+1 −Bk)it + Cjt+1εt+1; CkC

′
k]∑

j,k Pjkpjt|tψ[(Ajt+1 −Ak)Xt + (Bjt+1 −Bk)it + Cjt+1εt+1;CkC
′
k]

∑
j
Pjkpjt|t.

15 Kiefer [9] examines the properties of a value function, including concavity, under Bayesian learning for a simpler
model without forward looking variables.
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The equilibrium transition equation is then

st+1 = ḡ(st, jt+1, εt+1) ≡
[

Ajt+1Xt + Bjt+1i(st) + Cjt+1εt+1

Q(st, i(st), jt+1, εt+1)

]
.

The true (unconditional) value function, V̄ (st), taking into account that pt+1|t+1 will be updated

according to (4.19) and ex post depend on jt+1 and εt+1, is given by

V̄ (st) ≡
∑

j
pjt|tV̌ (st, j),

where the true conditional value function V̌ (st, j) satisfies

V̌ (st, j) = L[Xt, i(st), j] + δ
∑

k
Pjk

∫
V̌ [ḡ(st, k, εt+1), k]ϕ(εt+1)dεt+1.

Again, if the conditional value function V̌ (st+1, jt+1) under NL is concave in pt+1|t+1, the value

function V̄ (st) under AOP will be lower than under NL.

4.3 A special case when forward-looking variables do not reveal any further

information

A special case that is simpler to deal with is when the forward-looking equation (2.2) does not vary

with the mode:

A21j = A21, A22j = A22, B2j = B2, C2j = 0 (j ∈ Nj). (4.20)

That is, the matrices A21, A22, and B2 are independent of j, and the matrix C2 = 0, so

xt = x̃(Xt, zt, it) ≡ A−1
22 (zt −A21Xt −B2it).

In that case, the observation of xt does not reveal any further information about jt. This implies

that the updating equation (4.5) collapses to

p+
t|t = pt|t,

so the prediction equation (4.6) is simply

pt+1|t = P ′pt|t.

In particular, we then have

xt = x(st) ≡ x̃[Xt, z(st), i(st)],

pt+1|t+1 = Q(st, zt, it, jt+1, εt+1),

st+1 = g(st, zt, it, γt, jt+1, εt+1),

ḡ(st, jt+1, εt+1) ≡ g(st, z(st), i(st), γ(st), jt+1, εt+1).
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That is, there is in this case no separate dependence of st+1 and xt on jt and εt beyond st. This

special case also makes the Bayesian optimal policy simpler, as we see below.

5 Bayesian optimal policy

Finally, we consider the BOP case, when optimal policy is determined while taking the updating

equation (4.13) into account. That is, we now allow the policymaker to choose it taking into account

that his actions will affect pt+1|t+1, which in turn will affect future expected losses. In particular,

experimentation is allowed and is optimally chosen. For the BOP case, there is hence no distinction

between the “perceived” and “true” transition equation.

5.1 The general case

The transition equation for the BOP case is:

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt, εt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(st, zt, it, jt, εt) + B1jt+1it + C1jt+1εt+1

γt

Q(st, zt, it, jt, εt, jt+1, εt+1)


 . (5.1)

Then the dual optimization problem can be written as (3.5) subject to the above transition equation

(5.1). However, in the Bayesian case, matters simplify somewhat, as we do not need to compute

the conditional value functions V̂ (st, jt), which we recall were required due to the failure of the law

of iterated expectations in the AOP case. We note now that the second term on the right side of

(3.5) can be written as

EtV̂ (st+1, jt+1) ≡ E
[
V̂ (st+1, jt+1)

∣∣∣ st

]
.
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Since, in the Bayesian case, the beliefs do satisfy the law of iterated expectations, this is then the

same as

E
[
V̂ (st+1, jt+1)

∣∣∣ st

]
= E


 V̂







Xt+1(jt+1, εt+1)
Ξt

pt+1|t+1(Xt+1(jt+1, εt+1))


 , jt+1




∣∣∣∣∣∣
st




= E



E


 V̂







Xt+1(jt+1, εt+1)
Ξt

pt+1|t+1(Xt+1(jt+1, εt+1))


 , jt+1




∣∣∣∣∣∣
Xt+1, pt+1|t+1(Xt+1)




∣∣∣∣∣∣
st





= E


 Ṽ







Xt+1(jt+1, εt+1)
Ξt

pt+1|t+1(Xt+1(jt+1, εt+1))







∣∣∣∣∣∣
st




= E
[
Ṽ (st+1)

∣∣∣ st

]
,

where we use the definition of Ṽ (st), that Xt+1 is a function of jt+1 and εt+1, and that pt+1|t+1 is

a function of Xt+1. Appendix B provides a more detailed proof.

Thus, the dual Bellman equation for the Bayesian optimal policy is

Ṽ (st) = max
γt

min
(zt,it)

Et{L̃(X̃t, zt, it, γt, jt, εt) + δṼ [g(st, zt, it, γt, jt, εt, jt+1, εt+1)]}

≡ max
γt

min
(zt,it)

∑
j
pjt|t

∫ [
L̃(X̃t, zt, it, γt, j, εt)
+ δ

∑
k PjkṼ [g(st, zt, it, γt, j, εt, k, εt+1)]

]
ϕ(εt)ϕ(εt+1)dεtdεt+1,

(5.2)

where the transition equation is given by (5.1).

The solution to the optimization problem can be written

ı̃t ≡



zt

it
γt


 = ı̃(st) ≡




z(st)
i(st)
γ(st)


 = F (X̃t, pt|t) ≡




Fz(X̃t, pt|t)
Fi(X̃t, pt|t)
Fγ(X̃t, pt|t)


 , (5.3)

xt = x(st, jt, εt) ≡ x̃(Xt, z(st), i(st), jt, εt) ≡ Fx(X̃t, pt|t, jt, εt). (5.4)

Because of the nonlinearity of (4.13) and (5.1), the solution is no longer linear in X̃t for given pt|t.

The dual value function, Ṽ (st), is no longer quadratic in X̃t for given pt|t. The value function of

the primal problem, V (st), is given by, equivalently, (3.11), (4.15) (with the equilibrium transition

equation (4.14) with the solution (5.3)), or

V (st) =
∑

j

pjt|t

∫ {
L[Xt, x(st, j, εt), i(st), j]
+ δ

∑
k PjkV [ḡ(st, j, εt, k, εt+1)]

}
ϕ(εt)ϕ(εt+1)dεtdεt+1. (5.5)

It it is also no longer quadratic in X̃t for given pt|t. Thus, more complex and detailed numerical

methods are necessary in this case to find the optimal policy and the value function. Therefore
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little can be said in general about the solution of the problem. Nonetheless, in numerical analysis

it is very useful to have a good starting guess at a solution, which in our case comes from the AOP

case. In our examples below we explain in more detail how the BOP and AOP cases differ, and

what drives the differences.

5.2 The case without forward-looking variables

In the case without forward-looking variables, the transition equation for st+1|t+1 is

st+1 = g(st, it, jt+1, εt+1) ≡
[

Ajt+1Xt + Bjt+1it + Cjt+1εt+1

Q(st, it, jt+1, εt+1)

]
,

and the optimal policy is determined by the Bellman equation

V (st) = min
it

Et{[L(Xt, i(st), jt) + δV [g(st, it, jt+1, εt+1)]}

= min
it

∑
j
pjt|t

{
L(Xt, it, j) + δ

∑
k
Pjk

∫
V [g(st, it, k, εt+1)]ϕ(εt+1)dεt+1

}
.

This results in the optimal policy function

it = i(st) ≡ Fi(st).

Again, because of the nonlinearity of Q(st, it, jt+1, εt+1), the optimal policy function is no longer

linear in Xt for given pt|t, and the value function is no longer quadratic in Xt for given pt|t. The

equilibrium transition equation is

st+1 = ḡ(st, jt+1, εt+1) ≡ g(st, i(st), jt+1, εt+1).

5.3 The special case when forward-looking variables do not reveal any further

information

As above, the special case (4.20) makes it unnecessary to deal with the details of the updating

equation (4.11) and the separate dependence of st+1 on jt and εt. The transition equation is simply

st+1 ≡



Xt+1

Ξt

pt+1|t+1


 = g(st, zt, it, γt, jt+1, εt+1)

≡



A11jt+1Xt + A12jt+1 x̃(st, zt, it) + B1jt+1it + C1jt+1εt+1

γt

Q(st, zt, it, jt+1, εt+1)


 .

19



5.4 Bayesian optimal policy with endogenous mode transition

In the baseline formulation of the model, the mode transition matrix is given, so the model uncer-

tainty represented by the Markov chain of the modes is independent of the state of the economy

and the policy choice. However, in some situations it is natural to think of the state or the policy

as influencing the likelihoods of the different modes. Assume now that the mode transition prob-

abilities are instead endogenous and do depend on Xt, xt, and it. That is, the transition matrix

depends on Xt, xt, and it,

P = P (Xt, xt, it) ≡ [Pjk(Xt, xt, it)] .

Such dependence would ruin the tractability of our NL case (and thus make more difficult the AOP

case as well), which exploited the exogeneity of the modes. However, as we need to go for numerical

solutions in the BOP case anyway, these further complications are of less consequence.

Let

P̃ (Xt, zt, it, jt, εt) ≡ P [Xt, x̃(Xt, zt, it, jt, εt), it],

where we have used (3.3). Then equation (4.6) is replaced by

pt+1|t = P̃ (Xt, zt, it, jt, εt)′p+
t|t, (5.6)

and (5.6) is used instead of (4.6) in the definition of Q(st, zt, it, jt, εt, jt+1, εt+1). Furthermore,

everywhere, Pjk is replaced by P̃jk(Xt, zt, it, jt, εt). The rest of the problems remains the same.

Thus, formally, the extension to endogenous mode transitions is easy. However, as we have noted,

the simplicity of the NL and AOP cases vanishes.

6 Examples

In this section we present some simple examples which help to illuminate the benefits of learning and

experimentation. First we consider a backward-looking case, then add forward-looking components.

6.1 A backward-looking example

6.1.1 The model and benchmark specification

We consider the simplest possible example, where nX = 1, nx = 0, ni = 1, nε = 1, and Nj = {1, 2},

Xt+1 = Ajt+1Xt + Bjt+1it + Cjt+1εt+1,
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where εt is normally distributed with zero mean and unit variance. In our benchmark specification,

we assume that A1 = A2 = 1 and C1 = C2 = 1, so

Xt+1 = Xt + Bjt+1it + εt+1.

Furthermore, B1 = − 1.5 and B2 = − 0.5. That is, the instrument it has a larger negative effect on

Xt+1 in mode 1 than in mode 2. We assume that the modes are quite persistent,

P ≡
[

P11 1− P11

1− P22 P22

]
=

[
0.98 0.02
0.02 0.98

]
.

Below we consider some sensitivity analysis to see how the results vary as we vary the different

parameters. We also consider briefly the case where the uncertainty is over the state persistence

coefficient A rather than the response to the instrument B.

It follows that the stationary distribution of the modes satisfies p̄ ≡ (p̄1, p̄2)′ = (0.5, 0.5)′. We

note that the predicted probability of mode 1 in period t + 1, p1,t+1|t, is similar to the perceived

probability of mode 1 in period t, since the modes are so persistent,

p1,t+1|t = p1t|tP11 + (1− p1t|t)(1− P22) = 0.02 + 0.96p1t|t. (6.1)

We finally assume that the period loss function satisfies

Lt =
1
2
X2

t .

For this simple example, the state st ≡ (X ′
t, p

′
t|t)

′ can be represented by (Xt, p1t)′, where we write

p1t for p1,t|t, the perceived probability of mode 1 in period t.

Figure 6.1, panel a, shows the resulting value function V (Xt, p1t) for the optimal policy under

no learning (NL), as a function of p1t for three different values of Xt.16 Panel b shows the value

function for the Bayesian optimal policy (BOP) as a function of p1t, for the same three different

values of Xt. Panel c plots the difference between the loss under BOP and NL. We see that the

loss under BOP is significantly lower than under NL, albeit less so for high values of p1t. Panel d

shows the difference between the loss under BOP and the adaptive optimal policy (AOP). We see

that the loss under BOP is lower than under AOP, but only modestly so.

Taken together, these results show that there is indeed benefit from learning in this example,

although the additional benefits from experimentation are quite modest here. By moving from the

NL case to AOP, and thus updating beliefs, policymakers are able to capture most of the benefit
16 The example is solved with collocation methods via modifications of some of the programs of the CompEcon

Toolbox described by Miranda and Fackler [12]
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Figure 6.1: Losses from no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal

policy (BOP)
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of the fully Bayesian optimal policy. The additional incremental improvement from AOP to BOP,

arising from the experimentation motive, is much less significant. Thus, the AOP, which is relatively

simple to compute and to implement recursively in real time, provides a good approximation to

the fully optimal policy. Of course, these conclusions are dependent on the particular parameters

chosen for this simple example, but as we show below we have found similar qualitative results in

a number of other examples that we have analyzed.

Figure 6.2 shows the corresponding optimal policy functions. Panel a shows the optimal policy

under NL as a function of Xt for three different values of p1t. For given p1t, the optimal policy

function under NL is linear in Xt. Panel b shows the optimal policy function under BOP. On this

scale, the nonlinearity in Xt for given p1t is not apparent. Panel c shows the difference between

the optimal policy under BOP and NL. Here we see that the Bayesian optimal policy is indeed

nonlinear in Xt for given p1t. Panel d plots the difference in the policies for all p1t and all Xt in the

interval [− 5, 5]. We see that the difference is largest for small p1t, where the Bayesian optimal policy
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Figure 6.2: Policy for no learning (NL) and Bayesian optimal policy (BOP)
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responds more aggressively (it is larger for positive values of Xt and smaller for negative values)

than the adaptive policy. We discuss below how more aggressive policies can sharpen inference,

and thus lessen future expected losses. But first we see how our results vary with the parameters

of the model.

6.1.2 Sensitivity analysis

In order to better determine what drives the gains from learning and experimentation, we now

consider some variations on the benchmark specification of the model. In each of the cases to

follow we will report the losses and loss differences at a particular point in the state space, namely

the center of it where Xt = 0 and p1,t|t = 0.5. As we have seen above, the differences may be

larger at other points in the space, but this provides a natural reference point and a convenient

way to summarize each loss function by a single number. Further, in what follows we change each

parameter one at a time, and thus we do not capture any potential interaction effects between the

different parts of the model.
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Figure 6.3: Losses and loss differences from no learning (NL), adaptive optimal policy (AOP), and

Bayesian optimal policy (BOP) when the coefficient B2 varies.
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For our first experiment, we see how the gains from learning and experimentation vary as

we vary the degree of differences across the modes. Thus, we fix B1 = −1.5 and vary B2, with

our results shown in figure 6.3. As expected, when B1 and B2 are close together, there is little

difference among the losses in the NL, AOP, and BOP cases. But as the difference increases, here

by making B2 smaller in magnitude, the gains from learning increase sharply, as the gap between

the NL and AOP cases becomes visible in panel a. However, the gains from experimentation

remain negligible until the difference in the coefficients across modes becomes more extreme. This

is clear in panel b, where we see that the composite gains from learning and experimentation (BOP

minus NL) are mostly due to learning, as the gap between BOP and AOP is near zero except at

the rightmost edge of the figure. Thus, learning is beneficial even for moderate differences across

modes, while experimentation only has noticeable benefits for more extreme uncertainty. But even

in this more extreme range, the gains from experimentation are significantly smaller than the gains

from learning.

In the next group of experiments, we keep the response coefficients fixed at B1 = −1.5 and

B2 = −0.5 as in our benchmark specification, but vary other aspects of the model. First, we change

the state persistence coefficient A1 = A2 = A which was fixed at 1 in our benchmark specification.

Our results in figure 6.4 show that when A is small, so that the state has less exogenous persistence,

the gains from learning and experimentation are low. This is to be expected, as the gains from

updating beliefs relate are due to improved knowledge which will help to make policy more accurate

in the future. But if there is little persistence in the state, then actions today have little consequence
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Figure 6.4: Losses and loss differences from no learning (NL), adaptive optimal policy (AOP), and

Bayesian optimal policy (BOP) when A1 = A2 = A varies (and B varies across modes).
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Figure 6.5: Losses and loss differences from no learning (NL), adaptive optimal policy (AOP), and

Bayesian optimal policy (BOP) when P11 = P22 varies (and B varies across modes).
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for the future, and thus more accurate beliefs bring little or no gains. However, as the state becomes

more persistent, the gains from learning increase substantially. The gains from experimentation

become noticeable as well once the state becomes sufficiently persistent, but once again they are

dwarfed by the gains from learning.

Along similar lines, we next consider the effects of the persistence of modes. We keep the

transition matrix diagonal and symmetric, and vary the persistence as measured by P11 = P22

which is set at 0.98 in the benchmark specification. Not surprisingly, when the modes are i.i.d. or

nearly so, and thus P11 is near 0.5, there are no gains from learning or experimentation. Similarly

to the previous case, there is no gain from increased accuracy of beliefs about the current mode if
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Figure 6.6: Losses and loss differences from no learning (NL), adaptive optimal policy (AOP), and

Bayesian optimal policy (BOP) when C1 = C2 = C varies (and B varies across modes).
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this knowledge has no consequence, which is the case here as the mode is about as likely to change

as it is to stay the same. As the modes become more persistent, the gains from learning increase

substantially while again the gains from experimentation are only sizeable at the very edge of the

range considered when modes are nearly permanent. But once again the experimentation gains are

much smaller in magnitude than the gains from learning, even when the modes are very persistent.

One additional interesting aspect of this case is that as the modes become more persistent the

level of the loss in the NL case increases, while it falls in the AOP and BOP cases. By exploiting

the better knowledge of modes which comes with updating beliefs, in these cases policymakers are

better able to tailor policy to the prevailing mode.

The final parameter variation we consider is the amount of volatility in the model, as measured

by C1 = C2 = C. In our benchmark specification this is fixed at 1, but we now see what happens

when the model is more or less variable. Not surprisingly, as we increase the variability, losses

increase substantially in all cases. Moreover, the increases are nearly proportional in all the three

cases. In absolute terms, the gains from learning increase sizeably as the variability increases,

although by a much smaller amount as a percentage of the overall loss. Similarly, the absolute

gains from experimentation are larger with more variability, but again much less so as a proportion

of the total loss.

All of the above experiments considered the case where the policy response coefficient B varied

across modes, which is perhaps the most natural starting case. However, now we analyze situations

in which B is constant across modes (at −1.5) but the state persistence coefficient A varies. In
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Figure 6.7: Losses and loss differences from no learning (NL), adaptive optimal policy (AOP), and

Bayesian optimal policy (BOP) when A2 varies (and differs from A1 = 1).
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particular, we fix A1 = 1 and see what results when A2 takes on different values. (The rest of the

parameters are the same as in the benchmark specification.) Figure 6.7 summarizes our results,

which in qualitative terms are quite similar to our previous findings. When A2 is close to A1, of

course there is once again little gain from having sharper inference about modes. As the difference

between A1 and A2 increases (as A2 falls) the gains from learning grow substantially. Once again,

only when the differences across modes are quite extreme are there sizeable experimentation gains,

which yet again are significantly smaller than the gains from learning.

In summary, in all of the cases we have considered, the gains from learning and the gains from

experimentation both increase in the situations where one would expect sharper inference to be

beneficial. As the differences across modes grow larger, in the benchmark case where the instrument

response coefficient B varies across modes as well as the case where the state persistence coefficient

A varies, then the optimal policies conditional on each mode grow more different, and thus there are

more gains from correctly inferring the current mode. Similarly, the gains from sharper inference

increase as the effects of the current mode are longer lasting, either due to increased persistence

in the state through A or more directly through increased persistence of the modes themselves

through the transition matrix P . In all these cases the gains from learning are significant even for

relatively modest amounts of uncertainty, while the gains from experimentation are only noticeable

for more extreme uncertainty.
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Figure 6.8: Probability density of Xt+1 and updating of pt+1|t+1
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6.2 The interaction of learning and control

In order to better understand the nature of the different solutions and the role of learning, we

consider figures 6.8 and 6.9 which depict how beliefs respond to different policies (all the calculations

in this section use our benchmark specification). First, figure 6.8 shows the components of the

Bayesian updating rule. Panel a shows the conditional density function of the innovation in Xt+1,

Zt+1 ≡ Xt+1−EtXt+1, conditional on the mode jt+1 ≡ k where k = 1 or 2 in period t+1, for given

Xt and it. Here Xt is set equal to 1, and it is set equal to 0.8; this value for it is approximately the

optimal policy under NL for Xt = 1 and p1,t+1|t = p1t|t = p̄1 = 0.5. Panel b shows the unconditional

(that is, not conditional on k) density function of the innovation in Xt+1, for Xt = 1, it = 0.8, and

p1,t+1|t = 0.5. Panel c plots the resulting updated p1,t+1|t+1 as a function of the innovation in Xt+1.

By Bayes Theorem, it is given by the ratio of the density of the innovation conditional on k = 1

to the unconditional density of the innovation multiplied by the period-t prediction of mode 1 in
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Figure 6.9: Probability density of pt+1|t+1
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period t + 1, p1,t+1|t = 0.5,

p1,t+1|t+1 =
ψ(Xt+1 − EtXt+1 | k = 1, Xt, it)
ψ(Xt+1 − EtXt+1 | p1,t+1|t, Xt, it)

p1,t+1|t. (6.2)

We see that p1,t+1|t+1 is decreasing in Xt+1 − EtXt+1. The larger the innovation in Xt+1, the less

likely the mode 1, since, for a given positive it, mode 1 is associated with a larger negative effect

of it on Xt+1 and hence, everything else equal, a lower Xt+1. This is apparent in panel a, where

the probability density of the innovation conditional on mode 1 is to the left of the density of the

innovation conditional on mode 2.

Suppose now that the policymaker increases the value of the policy instrument, say from 0.8

to 1.4. Then, a larger value of the policy instrument multiplies the mode-dependent coefficient

Bjt+1 . As a result, the conditional probability densities in panel a move further apart, and the

unconditional density in panel b becomes more spread out. As a result, the updated p1,t+1|t+1

becomes more sensitive to the innovation. This is shown in panel d, where p1,t+1|t+1 as a function

of the innovation is plotted for both it = 0.8 and it = 1.4. Thus, with a larger absolute value of the
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Figure 6.10: Loss from adaptive optimal policy (AOP)
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instrument, for a given realization of the innovation, the updated p1,t+1|t+1 is closer to the extremes

of 0 or 1. The policymaker becomes less uncertain about the mode in period t + 1. In this sense,

we can say that a larger instrument setting improves the updating and learning of the distribution

of the modes. Thus, if the policymaker perceives that learning is beneficial, he or she would in this

example be inclined to experiment by pursuing more aggressive policy, in the sense of increasing

the magnitude of the instrument for a given Xt.

We will return shortly to the issue of when learning and experimentation is beneficial. But

first, we note that, given the conditional and unconditional distribution of the innovation in Xt+1

illustrated in figure 6.8, panels a and b, and the relation between the updated probability p1,t+1|t+1

and the realization of the innovation in Xt+1 illustrated in panel c, we can infer the conditional

and unconditional probability densities of p1,t+1|t+1.17 These are shown in figure 6.9, panels a and

b, respectively, for it = 0.8. Furthermore, panels c and d show the conditional and unconditional

probability densities of p1,t+1|t+1 when it is increased to 1.4. Comparing panels c and a, we see that

a higher absolute value of the instrument moves the conditional densities of beliefs further apart.

Thus, with a more aggressive policy, beliefs are much more sharply concentrated around the truth.

Comparing panels d and b, we see that the unconditional density is further spread out, and in this

case becomes bimodal. Thus, the mass of the unconditional distribution is closer to the extremes,

0 and 1, indicating that the uncertainty about the mode in period t + 1 falls.
17 If ψp(p) and ψZ(Z) denote the probability densities of scalars p and Z, and p is an invertible and continuously

differentiable function of Z, p = Q(Z), the densities are related by

ψp(p) = ψZ(Q−1(p))dQ−1(p)/dp.
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When is learning beneficial? In order to understand this, we again look at figure 6.1, panel a,

which shows the value function under NL, as a function of p1,t|t for three different values of Xt.

Consider a policymaker in period t, with the perceived probability of mode 1 in period t equal to 0.5,

so p1,t|t = 0.5. Since 0.5 is the stationary probability for this Markov chain, this also means that the

period-t predicted probability of mode 1 in period t + 1, given by (6.1), is also 0.5. Under NL, the

policymaker’s predicted and updated probabilities are the same, p1,t+1|t+1 = p1,t+1|t. Thus, in this

case the conditional and unconditional probability distributions of p1,t+1|t+1 in figure 6.9, panels a

and b, are the same and are simply given by a spike with unit probability mass for p1,t+1|t+1 = 0.5.

Under adaptive optimal policy (AOP), the policymaker applies the same policy function as under

NL, but now he uses Bayes Theorem to update the perceived probability of mode 1, p1,t+1|t+1, after

observing the innovation in Xt+1 at the beginning of period t+1. That is, from the vantage point of

period t, the updated probability p1,t+1|t+1 in period t+1 is a random variable with the probability

density shown in figure 6.9, panel b. As discussed above, the mean of this probability density is the

predicted probability, p1,t+1|t = 0.5. Comparing the perceived probability distribution of p1,t+1|t+1

under AOP with what prevails under NL, we see a dramatic mean-preserving spread, from a spike

with unit mass at 0.5 to the spread-out probability density shown in panel b.

As discussed above, such a mean-preserving spread reduces the intertemporal loss if the value

function under NL is strictly concave as function of p1,t+1|t+1. In this case Jensen’s inequality

implies that the expected future loss falls when the future beliefs become more dispersed. In

figure 6.1, panel a, we see that the value function under NL indeed is concave, more so for higher

values of Xt+1 and lower values of p1,t+1|t+1, but also in the vicinity of p1,t+1|t+1 = 0.5. Thus,

we understand why the loss is lower under AOP, where the policymaker follows the same policy

function, it+1 = F (Xt+1, p1,t+1|t+1), as under NL but updates the probability of mode 1 according

to (6.2).

Under AOP, the policymaker does not consider adjusting the policy in order to change the

shape of the density of p1,t+1|t+1 and thereby improve the future precision of beliefs. Our previous

discussion of figure 6.9 has revealed that increasing the absolute value of the instrument in this

example will lead to a larger mean-preserving spread. In the case of increasing the instrument from

0.8 to 1.4, this increases the spread from that of the density in panel b to the that of the density in

panel d. The value function under AOP is shown in figure 6.10. Compared with the value function

under NL in panel a of figure 6.1, it is more concave for low values of p1,t|t and somewhat flatter

for higher values.
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Now, in the BOP case, the policymaker considers the influence of his policy on inference. Thus,

he has the option of increasing the magnitude of the policy instrument somewhat, in order to

increase the mean-preserving spread of the density of p1,t+1|t+1, the benefit of which depends on

the concavity of the AOP value function. The cost of this is an increase in the expected period loss

in period t + 1 from its minimum. The result of the optimal tradeoff is shown in panels c and d

of figure 6.2 above. In this particular example, the policymaker chooses not to deviate much from

the policy under NL and AOP. That is, he does not experiment much, except for small values of

p1,t+1|t ≈ p1t|t where incidentally the concavity of the value function under AOP is the largest.18

Furthermore, from figure 6.1, panels c and d, we see that the fall in the intertemporal loss from

AOP to BOP is quite modest, and most of the fall in the loss arises in moving from NL to AOP.

Thus, in this example, the main benefit from learning arises without any experimentation.

Although the amount of experimentation, measured as the policy difference between BOP and

AOP, is substantial for low values of p1t|t, the benefit in terms of additional loss is quite small. As

we have seen in our sensitivity analysis, this holds true for most of the other parameterizations as

well, and only when there are extreme differences across modes are the gains from experimentation

sizeable. Furthermore, in the above example there is no direct cost whatsoever of a large instrument

or a large change in the instrument. If such a cost is added, the magnitude and the benefits of

experimentation (moving from AOP to BOP) shrink, whereas there is still substantial benefits from

learning (moving from NL to AOP).

6.3 A forward-looking example

We now turn to a closely related example with forward-looking elements. The main implications

of the backward-looking example are preserved, with one important qualification. The Lagrange

multiplier associated with the equation for the forward-looking variable becomes a state variable,

and this introduces some changes in the optimal policy in response to movements in this new

multiplier state Ξt−1. Rather than being symmetric around Xt = 0, in the forward-looking case

policies become asymmetric when Ξt−1 6= 0.

The example here is perhaps the simplest possible in the forward-looking case. There is one

predetermined variable, one forward-looking variable, and two modes. The transition equation for
18 The approximation p1,t+1|t ≈ p1t|t is justified by (6.1). Because the modes are so persistent, the predicted

probability is close to the current perceived probability.
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Figure 6.11: Losses from no learning (NL), adaptive optimal policy (AOP), and Bayesian optimal

policy (BOP) for the forward-looking example with Ξt−1 = 0.
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the predetermined variable and the equation for the forward-looking variable are:

Xt+1 = Bjt+1it + εt+1, (6.3)

Etxt+1 = Xt + xt. (6.4)

In the backward-looking example above, the uncontrolled system was a random walk which

policy stabilized. The current system is similar, in that the jump variable xt is essentially a random

walk in the absence of control. As in the backward-looking case, we suppose that the instrument

is more effective in mode 1:

B1 = − 1.5, B2 = − 0.5.

Again, we assume that the modes are highly persistent with transition matrix:

P =
[

0.98 0.02
0.02 0.98

]
.
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Figure 6.12: Policy for no learning (NL) and Bayesian optimal policy (BOP) for the forward-looking

example with Ξt−1 = 0.
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The loss function is similar in spirit to the backward-looking case, although different in details:

Lt =
1
2
x2

t + 0.1i2t , δ = 0.95.

Since the forward-looking variable xt now has the random walk elements, it is also the one which

receives the most weight in the loss function. We also include a small control-cost term.

Figure 6.11 is analogous to figure 6.1 above. In the current figure, panel a shows the resulting

value function V (Xt, Ξt−1, p1t) for the optimal policy under NL, as a function of p1t for three

different values of Xt, and with Ξt−1 = 0. The shadow cost of the forward-looking constraint is

zero, and thus this value is most comparable to the backward-looking case. Below we discuss the

differences in results when the multiplier Ξt−1 differs from zero. Again, panel b shows the value

function for the BOP as a function of p1t, while panel c plots the difference between the loss under

BOP and NL, and panel d shows the difference between the loss under BOP and AOP. Overall,

these results are quite similar to the backward-looking case. The value functions appear nearly

linear with some modest concavity, suggesting that learning is beneficial but experimentation has
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Figure 6.13: Differences in policy between Bayesian optimal policy (BOP) and no learning (NL)

for the forward-looking example with different Ξt−1 values. Solid line: p1t = 0.08; dashed line:

p1t = 0.36; dot-dash line: p1t = 0.92.
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modest effects. Indeed, we again see that the loss under BOP is significantly lower than under NL,

while the loss under BOP is lower than under AOP, but only modestly so.

Figure 6.12 is analogous to figure 6.2 above, showing the corresponding optimal policy functions.

For the current figure, we again set Ξt−1 = 0. Panel a shows the optimal policy under NL as a

function of Xt for three different values of p1t, while panel b shows the optimal policy function under

BOP. As above, the nonlinearity in the BOP policy is not apparent at this scale. Panel c shows

the difference between the optimal policy under BOP and NL, while panel d plots the difference

in the policies for all p1t and all Xt in the interval [− 5, 5]. As in the backward-looking case, the

difference between policies is largest for small p1t, where the Bayesian optimal policy responds more

aggressively. Also note that, for a given p1t, the magnitudes of the differences, and hence the effects

of experimentation on policy, are symmetric about the Xt origin. That is, it is larger for positive

values of Xt and smaller for negative values, but the absolute value of the effect on it is the same

when |Xt| is the same.

We now examine the effects of the forward-looking constraint, as summarized by different values

of Ξt−1. A nonzero Ξt−1 correspond to a constraint from previous commitment and will therefore

increase the loss compared to when Ξt−1 is zero. However, a more interesting effect is on the

experimentation component of policy. In particular, for different Ξt−1 values some asymmetries in

the policy appear. This is evident in figure 6.13, which plots the differences in the optimal policy

under BOP and NL for three different values of p1t in each panel, now for different Ξt−1. Panel b

repeats panel c of figure 6.12 with Ξt−1 = 0, while in panel a we set Ξt−1 = − 4 and in panel c we
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set Ξt−1 = 4. We see that, in each case, the experimentation component of policy tends to lead

toward more aggressive policy, but this effect is altered by the multiplier Ξt−1. Comparing panel

a to panel b, we see that when Ξt−1 < 0 the experimentation component is greater for positive

values of Xt and smaller for negative values. The converse happens in panel c, as when Ξt−1 > 0

the experimentation component is smaller for positive values.

These differences reflect a feature of the tradeoff between experimentation and control which

is absent in the backward-looking case. Experimentation tends to push toward more aggressive

policy to sharpen the inference about the modes. However, when Ξt−1 < 0, the forward-looking

constraint implies a larger loss penalty for more negative Xt and it, which dampens this effect.

But, for positive Xt, the loss is smaller with Ξt−1 > 0, which amplifies the effect.

More precisely, in this case the term (2.6) that must be added to intertemporal loss function to

represent previous commitments is

Ξt−1
1
δ
xt.

A negative Ξt−1 hence makes it desirable to increase xt, everything else equal. By (6.3) and (6.4),

xt is determined by

xt = −Xt + Etxt+1 = −Xt − Et

∞∑

τ=0

Xt+1+τ = −Xt − Et

∞∑

τ=0

Bjt+1+τ it+τ ,

where we assume that the sums converge. Since Bj < 0 for j = 1 and 2, increasing xt means

increasing it. Hence, for Ξt−1 < 0 (> 0) and for each Xt and p1t, under both NL and BOP the

optimal it is higher (lower), and more so for BOP.

In economic terms, with forward-looking variables in the model, the key considerations are not

just sharpening inference versus inducing more volatility, but also influencing the expectations of

future variables. As we have seen the optimal policy embodies a rather intricate tradeoff amongst

these factors. However, it remains the case that the gains from optimal experimentation are much

smaller than the gains from learning.

7 Conclusions

In this paper we have presented a relatively general framework for analyzing model uncertainty and

the interactions between learning and optimization. While this is a classic issue, very little to date

has been done for systems with forward-looking variables, which are essential elements of modern

models for policy analysis. Our specification is general enough to cover many practical cases of
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interest, but yet remains relatively tractable in implementation. This is definitely true for cases

when decision makers do not learn from the data they observe (our no-learning case) or when they

do learn but do not account for learning in optimization (our adaptive optimal policy case). In

both of these cases, we have developed efficient algorithms for solving for the optimal policy which

can handle relatively large models with multiple modes and many state variables. However, in the

case of the Bayesian optimal policy, where the experimentation motive is taken into account, we

must solve more complex numerical dynamic programming problems. Thus, we are haunted by the

curse of dimensionality, forcing us to study relatively small and simple models.

Thus, an issue of much practical importance is the size of the experimentation component of

policy, and the losses entailed by abstracting from it. While our results in this paper are far from

comprehensive, they suggest that in practical settings the experimentation motive may not be a

concern. The above and similar examples that we have considered indicate that the benefits of

learning (moving from NL to AOP) may be substantial, whereas the benefits from experimentation

(moving from AOP to BOP) are modest or even insignificant. If this preliminary finding stands

up to scrutiny, experimentation in economic policy in general and monetary policy in particular

may not be very beneficial, in which case there is little need to face the difficult ethical and other

issues involved in conscious experimentation in economic policy. Furthermore, the AOP is much

easier to compute and implement than the BOP. To have this truly be a robust implication, more

simulations and cases need to be examined. In particular, it will be important in future work to

see how these results are affected in more realistic and empirically relevant settings.

Appendix

A Details of the algorithm for the no-learning case

Here we provide more detail on the setup of the model in the no-learning case and adapt the

algorithms in Svensson and Williams [15] (DFT) to the specification with C2j 6≡ 0.
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A.1 Setup

Our first task is to write the extended MJLQ system for the saddlepoint problem. We suppose that

we start with an initial period loss function which has the form

Lt =




Xt

xt

it



′ 


Q11j Q12j N1j

Q′
12j Q22j N2j

N ′
1j N ′

2j Rj







Xt

xt

it


 .

Then the dual loss is

L̃t = Lt − γ′tzt + Ξ′t−1

1
δ
Hjxt.

We now substitute in for xt using

xt = x̃(Xt, zt, it, jt, εt)

≡ A−1
22,jzt −A−1

22,jA21,jXt −A−1
22,jB2,jit −A−1

22,jC2,jεt

≡ AxX,jXt + Axz,jzt + Axi,jit + Axv,jvt, (A.1)

where in the last line we introduce new notation for the shock. Since we assume C1jεt is independent

of C2jεt, we find it useful to denote the shock εt in the forward-looking equation by vt. After this

substitution we want to express the laws of motion and dual loss in terms of the expanded state

X̃t = [X ′
t, Ξ

′
t−1]

′ and the expanded controls ı̃t = [z′t, i′t, γ′t]′. Suppressing time and mode subscripts

for the time being (all are t and j, respectively (except t − 1 on Ξt−1)), we see that the dual loss

can be written explicitly as

L̃t = X ′ (Q11 + A′xXQ22AxX + 2A′xXQ′
12

)
X + 2X ′ (N1 + Q12Axi + A′xXQ22Axi + A′xXN2

)
i

+ 2z′(A′xzQ
′
12 + A′xzQ22AxX)X + Ξ′

1
δ
HAxXX + Ξ′

1
δ
HAxzz + Ξ′

1
δ
HAxii

− γ′z + z′(A′xzQ22Axz)z + i′(R + A′xiQ22Axi + 2A′xiN2)i + 2z′(A′xzN2 + A′xzQ22Axi)i

+ v′(A′xvQ22Axv)v + cross terms in v,

where we don’t write out the cross terms since they have zero conditional expectations. Thus, we

can write the dual loss (ignoring the cross terms in v)

L̃t =
[

X̃t

ı̃t

]′ [
Q̃j Ñj

Ñ ′
j R̃j

] [
X̃t

ı̃t

]
+ v′tΛjvt,
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where (again suppressing the j index)

Q̃ =
[

Q̃11 Q̃12

Q̃′
12 0

]
,

Q̃11 = Q11 + A′xXQ22AxX + 2A′xXQ′
12,

Q̃12 =
1
2δ

A′xXH ′,

Ñ =
[

Ñ11 Ñ12 0
Ñ21 Ñ22 0

]
,

Ñ11 = Q12Axz + A′xXQ22Axz,

Ñ12 = N1 + Q12Axi + A′xXQ22Axi + A′xXN2,

Ñ21 =
1
2δ

HAxz,

Ñ22 =
1
2δ

HAxi,

R̃ =




R̃11 R̃12 R̃13

R̃′
12 R̃22 0

R̃′
13 0 0


 ,

R̃11 = A′xzQ22Axz,

R̃12 = A′xzN2 + A′xxQ22Axi,

R̃13 = − I/2,

R̃22 = R + A′xiQ22Axi + 2A′xiN2,

Λ = A′xvQ22Axv.

Similarly, the law of motion for X̃t can then be written

X̃t+1 = Ãjtjt+1X̃t + B̃jtjt+1 ı̃t + C̃jtjt+1 ε̃t+1,

where

ε̃t+1 =
[

εt+1

νt

]
, Ãjk =

[
A11k + A12kAxXj 0

0 0

]
,

B̃jk =
[

A12kAxzj B1k + A12kAxij 0
0 0 I

]
, C̃jk =

[
C1k A12kAxvj

0 0

]
.

Furthermore, for the case where C2j ≡ 0 and the forward variables do not reveal the mode j, we

have that AxX , Axz, Axi are independent of the mode and Axv ≡ 0, so the dependence on j in Ãjk,

B̃jk, and C̃jk disappears.

The value function for the dual problem, Ṽ (Xt, pt|t), will be quadratic in X̃t for given pt and

can be written

Ṽ (X̃t, pt) ≡ X̃ ′
tṼ (pt)X̃t + w(pt),
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where

Ṽ (pt) ≡
∑

j
pjtV̂ (pt)j , w(pt) ≡

∑
j
pjtŵ(pt)j .

Here, Ṽ (pt) and V̂ (pt)j are symmetric (nX + nx) × (nX + nx) matrices and w(pt) and ŵ(pt)j are

scalars that are functions of pt. (Thus, we simplify the notation and we let Ṽ (pt) and V̂ (pt)j

(j ∈ Nj) denote the matrices ṼX̃X̃(pt) and V̂XX(pt, jt) in section 3.) They will satisfy the Bellman

equation

X̃ ′
tṼ (pt)X̃t + w(pt) = max

γt

min
zt,it

∑

j

pjt

{
X̃ ′

tQ̃jX̃t + 2X̃ ′
tÑj ı̃t + ı̃′tR̃j ı̃t + tr(Λj)

+ δ
∑

k Pjk[X̃ ′
t+1,jkV̂ (P ′pt)kX̃t+1,jk + ŵ(P ′pt)k]

}
,

where

X̃t+1,jk ≡ ÃjkX̃t + B̃jk ı̃t + C̃jkε̃t+1.

The first-order condition with respect to ı̃t is thus

∑

j

pjt

[
X̃ ′

tÑj + ı̃′tR̃j + δ
∑

k

Pjk(X̃ ′
tÃ
′
jk + ı̃′tB̃

′
jk)V̂ (P ′pt)kB̃jk

]
= 0.

We can rewrite the first-order conditions as

∑

j

pjt

[
Ñ ′

jX̃t + R̃j ı̃t + δ
∑

k

PjkB̃
′
jkV̂ (P ′pt)k(ÃjkX̃t + B̃jk ı̃t)

]
= 0.

It is then apparent that the first-order conditions can be written compactly as

J(pt)̃ıt + K(pt)X̃t = 0, (A.2)

where

J(pt) ≡
∑

j

pjt

[
R̃j + δ

∑

k

PjkB̃
′
jkV̂ (P ′pt)kB̃jk

]

K(pt) ≡
∑

j

pjt

[
Ñ ′

j + δ
∑

k

PjkB̃
′
jkV̂ (P ′pt)kÃjk

]

This leads to the optimal policy function,

ı̃t = F̃ (pt)X̃t,

where

F̃ (pt) ≡ − J(pt)−1K(pt).

Furthermore, the value-function matrix Ṽ (pt) for the dual saddlepoint problem satisfies

X̃ ′
tṼ (pt)X̃t ≡

∑

j

pjt

{
X̃ ′

tQ̃jX̃t + 2X̃ ′
tÑjF̃ (pt)X̃t + X̃ ′

tF̃ (pt)′R̃jF̃ (pt)X̃t

+ δ
∑

k PjkX̃
′
t[Ã

′
jk + F̃ (pt)′B̃′

jk]V̂ (P ′pt)k[Ãjk + B̂jkF̃ (pt)]X̃t

}
.
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This implies the following Riccati equations for the matrix functions V̂ (pt)j :

V̂ (pt)j = Q̃j + ÑjF̃ (pt) + F̃ (pt)′Ñ ′
j + F̃ (pt)′R̃jF̃ (pt)

+ δ
∑

k

Pjk[Ã′jk + F̃ (pt)′B̃′
jk]V̂ (P ′pt)k[Ãjk + B̃jkF̃ (pt)].

The scalar functions ŵ(pt)j will satisfy the equations

ŵ(pt)j = tr(Λj) + δ
∑

k

Pjk[tr(V̂ (P ′pt)kC̃jkC̃
′
jk) + ŵ(P ′pt)k]. (A.3)

The value function for the primal problem is

X̃ ′
tV (pt)X̃t + w(pt) ≡ X̃ ′

tṼ (pt)X̃t + w(pt)− Ξ′t−1

1
δ

∑
j
pjtHjFxX̃(pt)jX̃t,

where we use that by (A.1) the equilibrium solution for xt can be written

xt = FxX̃(pt)jX̃t + Fxv(pt)jvt.

We may also find the conditional value function

X̃ ′
tV (pt)jX̃t + w(pt)j ≡ X̃ ′

tṼ (pt)jX̃t + w(pt)j − Ξ′t−1

1
δ
HjFxX̃(pt)jX̃t (j ∈ Nj).

A.2 The algorithm

Consider an algorithm for determining F̃ (pt), Ṽ (pt), w(pt), V̂ (pt)j and ŵ(pt)j for a given distribu-

tion of the modes in period t, pt. In order to get a starting point for the iteration, we assume that

the modes become observable T + 1 periods ahead, that is, in period t + T + 1. Hence, from that

period on, the relevant solution is given by the matrices F̃j and Ṽj and scalars wj for j ∈ Nj , where

F̃j is the optimal policy function, Ṽj is the value-function matrix, and wj is the scalar in the value

function for the dual saddlepoint problem with observable modes determined by the algorithm in

the appendix of DFT.

We consider these matrices Ṽj and scalars wj and the horizon T as known, and we will consider

an iteration for τ = T, T − 1, ..., 0 that determines F̃ (pt), Ṽ (pt), and w(pt) as a function of T . The

horizon T will then be increased until F̃ (pt), Ṽ (pt), and w(pt) have converged.

Let pt+τ,t for τ = 0, ..., T and given pt be determined by the prediction equation,

pt+τ,t = (P ′)τpt,

41



and let V̂ T+1
k = Ṽk and ŵT+1

k = wk (k ∈ Nj). Then, for τ = T, T − 1, ..., 0, let the mode-dependent

matrices V̂ τ
j and the mode-independent matrices Ṽ τ and F τ be determined recursively by

Jτ ≡
∑

j

pj,t+τ,t

[
R̃j + δ

∑

k

PjkB̃
′
jkV̂

τ+1
k B̃jk

]
,

Kτ ≡
∑

j

pj,t+τ,t

[
Ñ ′

j + δ
∑

k

PjkB̃
′
jkV̂

τ+1
k Ãjk

]
,

F̃ τ = − (Jτ )−1Kτ ,

V̂ τ
j = Q̃j + ÑjF̃

τ + F̃ τ ′Ñ ′
j + F̃ τ ′R̃jF̃

τ

+ δ
∑

k

Pjk[Ã′jk + F̃ τ ′B̃′
jk]V̂

τ+1
k [Ãjk + B̃kF̃

τ )],

ŵτ
j = tr(Λj) + δ

∑

k

Pjk[tr(V̂ τ+1
k C̃jkC̃

′
jk) + ŵτ+1

k ],

Ṽ τ =
∑

j

pj,t+τ,tV̂
τ
j ,

wτ
j =

∑

j

pj,t+τ,tŵ
τ
j .

This procedure will give F̃ 0, Ṽ 0 and w0 as functions of T . We let T increase until F̃ 0 and Ṽ 0

have converged. Then, F̃ (pt) = F̃ 0, Ṽ (pt) = Ṽ 0, and w(pt) = w0. The value-function matrix V (pt)

(denoted VX̃X̃(pt) in section 3) for the primal problem will be given by

V (pt) ≡ Ṽ (pt)−
[

0 1
2ΓX(pt)′

1
2ΓX(pt) 1

2 [ΓΞ(pt) + ΓΞ(pt)′]

]
,

where the matrix function

[ΓX(pt) ΓΞ(pt)] ≡ 1
δ

∑
j
pjtHj [FxX(pt)j FxΞ(pt)j ]

is partitioned conformably with Xt and Ξt−1. The conditional value function matrix V (pt)j for the

primal problem will be given by

V (pt)j ≡ V̂ (pt)j −
[

0 1
2ΓX(pt)′j

1
2ΓX(pt)j

1
2 [ΓΞ(pt)j + ΓΞ(pt)′j ]

]
(j ∈ Nj),

where V̂ (pt)j = V̂ 0
j and the matrix function

[ΓX(pt)j ΓΞ(pt)j ] ≡ 1
δ
Hj [FxX(pt)j FxΞ(pt)j ]

is partitioned conformably with Xt and Ξt−1.
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B Verifying the law of iterated expectations in the case of Bayesian

optimal policy

It will be slightly simpler to use the general probability measure notation, Pr(· | ·), although we will

translate this to the specific cases at the end. We also write pt for pt|t, for simplicity. Finally, for

simplicity we only consider the case without forward-looking variables (so we need only deal with

Xt rather than X̃t). The generalization to forward-looking variables is straightforward.

Thus, we want to verify

EtV̂ (st+1, jt+1) = EtV (st+1),

where V (st) ≡ EtV̂ (st, jt).

First, in the BOP case, we note that we can write pt+1 = Q̂(Xt+1;Xt, pt, it), and so we can

define

V̆ (Xt+1, jt+1; Xt, pt, it) ≡ V̂ (Xt+1, Q̂(Xt+1; Xt, pt, it), jt+1).

Then we consider

EtV̂ (Xt+1, pt+1, jt+1) ≡
∫

V̆ (Xt+1, jt+1; Xt, pt, it)d Pr(Xt+1, jt+1 | Xt), (B.1)

where the identity specifies the notation for the joint probability measure of (Xt+1, jt+1), Pr(Xt+1, jt+1 | Xt),

conditional on the information set in period t, Xt ≡ σ({Xt, Xt−1, ...}) (that is, the sigma-algebra

generated by current and past realizations of Xs, s ≤ t). We note that pt = E(jt | Xt) is Xt-

measurable, that is, pt is a function of Xt. Furthermore, it is Xt-measurable. Hence, Et [·] ≡
E[· | Xt, pt, it] ≡ E[· | Xt]. Also, we note that we can write

Et+1V̂ (Xt+1, pt+1, jt+1) ≡
∫

V̆ (Xt+1, jt+1; Xt, pt, it)dPr(jt+1 | Xt+1) ≡ V (Xt+1, pt+1).

We will use two equivalent decompositions of the joint measure. First, perhaps the most natural

decomposition is

Pr(Xt+1, jt+1 = k | Xt) = Pr(Xt+1 | jt+1 = k,Xt) Pr(jt+1 = k | Xt)

=
∑

j

Pr(Xt+1 | jt+1 = k,Xt) Pr(jt+1 = k | jt = j) Pr(jt = j | Xt)

=
∑

j

Pr(Xt+1 | jt+1 = k,Xt)Pjkpjt. (B.2)
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Alternatively, we can decompose the joint measure as

Pr(Xt+1, jt+1 = ` | Xt) = Pr(jt+1 = ` |Xt+1,Xt) Pr(Xt+1 | Xt)

= Pr(jt+1 = ` | Xt+1)
∑

j

Pr(Xt+1 | jt = j,Xt) Pr(jt = j | Xt)

= Pr(jt+1 = ` | Xt+1)
∑

j,k

Pr(Xt+1 | jt = j, jt+1 = k,Xt) Pr(jt+1 = k | jt = j) Pr(jt = j | Xt).

= p`,t+1

∑

j,k

Pr(AkXt + Bkit + Ckεt+1 | jt = j, jt+1 = k,Xt)Pjkpjt

= p`,t+1

∑

j,k

ϕ(εt+1)Pjkpjt. (B.3)

Thus, using the first decomposition, (B.2), with (B.1) we have an expression as in section 5.2,

EtV̂ (Xt+1, pt+1, jt+1)

=
∫ ∑

j,k

V̆ (AkXt + Bkit + Ckεt+1, k; Xt, pt, it)Pjkpjtϕ(εt+1)dεt+1

=
∫ ∑

j,k

V̂ [AkXt + Bkit + Ckεt+1, Q(AkXt + Bkit + Ckεt+1; Xt, pt), k]Pjkpjtϕ(εt+1)dεt+1

On the other hand, using the second decomposition, (B.3), we can write (B.1) as

EtV̂ (Xt+1, pt+1, jt+1)

=
∫ ∑

j,k,`

V̆ (Xt+1, `;Xt, pt, it)p`,t+1 Pjkpjtϕ(εt+1)dεt+1

=
∫ ∑

j,k

V (Xt+1, Q̂(Xt+1; Xt, pt))Pjkpjtϕ(εt+1)dεt+1

=
∫ ∑

j,k

V [AkXt + Bkit + Ckεt+1, Q(AkXt + Bkit + Ckεt+1;Xt, pt)]Pjkpjtϕ(εt+1)dεt+1

= EtV (Xt+1, pt+1)

Note that, by averaging with respect to pt, we thus eliminate jt as a state variable and do not need

to compute the conditional value function V̂ (Xt, pt, jt).
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