NBER WORKING PAPER SERIES

FINANCIAL INNOVATION AND THE TRANSACTIONS DEMAND FOR CASH

Fernando E. Alvarez
Francesco Lippi

Working Paper 13416
http://www.nber.org/papers/w13416

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138

August 2007

We thank Daron Acemoglu for constructive criticisms on a previous version of the paper. We also thank Alessandro Secchi for his guidance in the construction and analysis of the database. We benefited from the comments of Manuel Arellano, V.V. Chari, Luigi Guiso, Bob Lucas, Greg Mankiw, Fabiano Schivardi, Rob Shimer, Pedro Teles, Randy Wrigth and seminar participants at the University of Chicago, University of Sassari, Harvard University, MIT, Wharton School, Northwestern, FRB of Chicago, FRB of Minneapolis, Bank of Portugal, European Central Bank, Bank of Italy, CEMFI, EIEF, University of Cagliari, University of Salerno, Austrian National Bank, Tilburg University and Erasmus University Rotterdam. The views expressed herein are those of the author(s) and do not necessarily reflect the views of the National Bureau of Economic Research.
© 2007 by Fernando E. Alvarez and Francesco Lippi. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Financial Innovation and the Transactions Demand for Cash
Fernando E. Alvarez and Francesco Lippi
NBER Working Paper No. 13416
August 2007, Revised May 2008
JEL No. E31,E4,E41

Abstract

We document cash management patterns for households that are at odds with the predictions of deterministic inventory models that abstract from precautionary motives. We extend the Baumol-Tobin cash inventory model to a dynamic environment that allows for the possibility of withdrawing cash at random times at a low cost. This modification introduces a precautionary motive for holding cash and naturally captures developments in withdrawal technology, such as the increasing diffusion of bank branches and ATM terminals. We characterize the solution of the model and show that qualitatively it is able to reproduce the empirical patterns. Estimating the structural parameters we show that the model quantitatively accounts for key features of the data. The estimates are used to quantify the expenditure and interest rate elasticity of money demand, the impact of financial innovation on money demand, the welfare cost of inflation, the gains of disinflation and the benefit of ATM ownership.

Fernando E. Alvarez
University of Chicago
Department of Economics
1126 East 59th Street
Chicago, IL 60637
and NBER
f-alvarez1@uchicago.edu
Francesco Lippi
University of Sassari
Department of Economics
and
Ente Einaudi,
via Due Macelli, 73
00184 Rome - Italy
flippi@uniss.it

1 Introduction

There is a large literature arguing that financial innovation is important for understanding money demand, yet seldom this literature integrates the empirical analysis with an explicit modeling of the financial innovation. In this paper we develop a dynamic inventory model of money demand that explicitly incorporates the effects of financial innovation on cash management. We estimate the structural parameters of the model using detailed micro data from Italian households, and use the estimates to revisit several classic questions on money demand.

As standard in the inventory theory we assume that non-negative cash holdings are needed to pay for consumption purchases. We extend the Baumol-Tobin model to a dynamic environment which allows for the opportunity of withdrawing cash at random times at low or zero cost. Cash withdrawals at any other time involve a fixed cost, b. In particular, the expected number of such opportunities per period of time is described by a single parameter, p. Examples of such opportunities are finding an ATM that does not charge a fee, or passing by a bank desk at a time with a low opportunity cost. Another interpretation of p is that it measures the probability that an ATM terminal is working properly or a bank desk is open for business. Financial innovations, such as the increase in the number bank branches and ATM terminals, can be modeled by increases in p and decreases in b.

Our model changes the predictions of the Baumol-Tobin model (BT henceforth) in ways that are consistent with stylized facts concerning households' cash management behavior. The randomness introduced by p gives rise to a precautionary motive for holding cash: when agents have an opportunity to withdraw cash at zero cost they do so even if they have some cash at hand. Thus, the average cash balances held at the time of a withdrawal relative to the average cash holdings, \underline{M} / M, is a measure of the strength of the precautionary motive. This ratio ranges between zero and one and is increasing in p. Using household data for Italy and the US we document that \underline{M} / M is about 0.4 , instead of being zero as predicted by the BT model. Another property of our model is that the number of withdrawals, n, increases with p, and the average withdrawal size W decreases, with W / M ranging between zero and two. Using data from Italian households we measure values of n and W / M that are inconsistent with those predicted by the BT model.

The model studies how to finance a constant flow of cash expenditures, the value of which is taken as given both in the theory and in the empirical implementation. Hence the model abstracts from the cash/credit choice i.e. from the choice of
whether to have a credit card, and for those that have a credit card, of whether a particular purchase is done using cash or credit. Formally, we are assuming separability between cash vs. credit purchases. We are able to study this problem for the Italian households because we have a measure of the consumption purchases done with cash. We view our paper as an input on the study of the cash/credit decision, an important topic that we plan to address in the future.

We organize the analysis as follows. In Section 2 we use a panel data of Italian households to illustrate key cash management patterns, including the strength of precautionary motive, to compare them to the predictions of the BT model, and motivate the analysis that follows.

Sections 3 and 4 present the theory. Section 3 analyzes the effect of financial diffusion using a version of the BT model where agents have a deterministic number of free withdrawals per period. This model provides a simple illustration of how technology affects the level and the shape of the money demand (i.e. its interest and expenditure elasticities). Section 4 introduces our benchmark stochastic dynamic inventory model. In this model agents have random meetings with a financial intermediary in which they can withdraw money at no cost, a stochastic version of the model of Section 3. We solve analytically for the Bellman equation and characterize its optimal decision rule. We derive the distribution of currency holdings, the aggregate money demand, the average number of withdrawals, the average size of withdrawals, and the average cash balances at the time of a withdrawal. We show that a single index of technology, $b \cdot p^{2}$, determines both the shape of the money demand and the strength its precautionary component. While technological improvements (higher p and lower b) unambiguously decrease the level of money demand, their effect on this index -and hence on the shape and the precautionary component of money demand- is ambiguous. The structural estimation of the model parameters will allow us to shed light on this issue. We conclude the section with the analysis of the welfare implications of our model and a comparison with the standard analysis as reviewed in Lucas (2000).

Sections 5, 6 and 7 contain the empirical analysis. In Section 5 we estimate the model using the panel data for Italian households. The two parameters p and b are overidentified because we observe four dimensions of household behavior: M, W, \underline{M} and n. We argue that the model has a satisfactory statistical fit and that the patterns of the estimates are reasonable. For instance, we find that the parameters for the households with an ATM card indicate their access to a better technology (higher p and lower b). The estimates also indicate that technology is better in
locations with higher density of ATM terminals and bank branches. Section 6 studies the implications of our findings for the time pattern of technology and for the expenditure and interest elasticity of the demand for currency. The estimated parameters reproduce the sizeable precautionary holdings present in the data. Even though our model can generate interest rate elasticities between zero and $1 / 2$, and expenditure elasticities between $1 / 2$ and one, the values implied by our estimates are close to $1 / 2$ for both, the values of the BT model. We discuss how to reconcile our estimates of the interest rate elasticity with the smaller values typically found in the literature. ${ }^{1}$ In Section 7 we use the estimates to quantify the welfare cost of inflation - in particular the gains from the Italian disinflation in the 1990s- and the benefits of ATM card ownership.

2 Cash Holdings Patterns of Italian Households

Table 1 presents some statistics on the cash holdings patterns by Italian households based on the Survey of Household Income and Wealth. ${ }^{2}$ For each year we report cross section means of statistics where the unit of analysis is the household. We report statistics separately for households with and without ATM cards. All these households have checking accounts that pay interests at rates documented below. The survey records the household expenditure paid in cash during the year (we use cash and currency interchangeably to denote the value of coins and banknotes). The table displays these expenditures as a fraction of total consumption expenditure. The fraction paid with cash is smaller for households with an ATM card, it displays a downward trend for both type of households, though its value remains sizeable as of 2004. These percentages are comparable to those for the US between 1984 and $1995 .^{3}$ The table reports the sample mean of the ratio M / c, where M is the

[^0]average currency held by the household during a year and c is the daily expenditure paid with currency. We notice that relative to c Italian households hold about twice as much cash than US households between 1984 and 1995. ${ }^{4}$ Table 1 reports three statistics that are useful to assess the empirical performance of deterministic inventory models, such as the classic one by Baumol and Tobin.

The first statistic is the ratio between currency holdings at the time of a withdrawal (\underline{M}) and average currency holdings in each year (M). While this ratio is zero in deterministic inventory-theoretic models, its sample mean in the data is about 0.4. A comparable statistic for US households is about 0.3 in 1984, 1986 and 1995 (see Table 1 in Porter and Judson, 1996). The second one is the ratio between the withdrawal amount (W) and average currency holdings. While this ratio is 2 in the BT model, it is smaller in the data. The sample mean of this ratio for households with an ATM card is below 1.4, and for those without ATM is slightly below 2. The inspection of the raw data shows that there is substantial variation across provinces and indeed the median across households is about 1.0 for households with and without ATM. ${ }^{5}$ The third statistic is the normalized number of withdrawals per year. The normalization is chosen so that in BT this statistic is equal to 1 . In particular, in the BT model the following accounting identity holds, $n W=c$, and since withdrawals only happen when cash balances reach zero, then $M=W / 2$. As the table shows the sample mean of this statistic is well above 1 , especially so for households with ATM.

The second statistic, $\frac{W}{M}$, and the third, $\frac{n}{c /(2 M)}$, are related through the accounting identity $c=n W$. In particular, if W / M is smaller than 2 and the identity holds then the third statistic must be above 1. Yet we present separate sample means for these statistics because of the large measurement error in all these variables. This is informative because W enters in the first statistic but not in the second and c enters in the third but not in the second. In the estimation section of the paper we document and consider the effect of measurement error systematically, without altering the conclusion about the drawbacks of deterministic inventory theoretical

[^1]Table 1: Households' currency management

Variable	1993	1995	1998	2000	2002	2004
Expenditure share paid w/ currency ${ }^{a}$						
w/o ATM	0.68	0.67	0.63	0.66	0.65	0.63
w. ATM	0.62	0.59	0.56	0.55	0.52	0.47
Currency ${ }^{\text {b }}$: M / c (c per day)						
w/o ATM	15	17	19	18	17	18
w. ATM	10	11	13	12	13	14
M per Household, in 2004 euros $^{\text {c }}$						
w/o ATM	430	490	440	440	410	410
w. ATM	370	410	370	340	330	350
Currency at withdrawals ${ }^{\text {d }}: \underline{M} / M$						
w/o ATM	0.41	0.31	0.47	0.46	0.46	na
w. ATM	0.42	0.30	0.39	0.45	0.41	na
Withdrawal ${ }^{\text {e }}$: W / M						
w/o ATM	2.3	1.7	1.9	2.0	2.0	1.9
w. ATM	1.5	1.2	1.3	1.4	1.3	1.4
\# of withdrawals: $n\left(\right.$ per year) ${ }^{f}$						
w/o ATM	16	17	25	24	23	23
w. ATM	50	51	59	64	58	63
Normalized: $\frac{n}{c /(2 M)} \quad(c \text { per year })^{f}$						
w/o ATM	1.2	1.4	2.6	2.0	1.7	2.0
w. ATM	2.4	2.7	3.8	3.8	3.9	4.1
\# of observations ${ }^{g}$	6,938	6,970	6,089	7,005	7,112	7,159

The unit of observation is the household. Entries are sample means computed using sample weights. Only households with a checking account and whose head is not self-employed are included, which accounts for about 85% of the sample observations.
Notes:- ${ }^{a}$ Ratio of expenditures paid with cash to total expenditures (durables, non-durables and services). - ${ }^{b}$ Average currency during the year divided by daily expenditures paid with cash. ${ }^{c}$ The average number of adults per household is 2.3. In 2004 one euro in Italy was equivalent to 1.25 USD in USA, PPP adjusted (Source: the World Bank ICP tables). - ${ }^{d}$ Average currency at the time of withdrawal as a ratio to average currency. - ${ }^{e}$ Average withdrawal during the year as a ratio to average currency. - ${ }^{f}$ The entries with $n=0$ are coded as missing values. - ${ }^{g}$ Number of respondents for whom the currency and the cash consumption data are available in each survey. Data on withdrawals are supplied by a smaller number of respondents. Source: Bank of Italy Survey of Household Income and Wealth.
models.
For each year Table 2 reports the mean and standard deviation across provinces for the diffusion of bank branches and ATM terminals, and for two components of the opportunity cost of holding cash: interest rate paid on deposits and the probability of cash being stolen. The diffusion of Bank branches and ATM terminals varies significantly across provinces and is increasing through time. Differences in the nominal interest rate across time are due mainly to the disinflation. The variation of nominal interest rates across provinces mostly reflects the segmentation of banking

Table 2: Financial innovation and the opportunity cost of cash

Variable	1993	1995	1998	2000	2002	2004
Bank branches a	0.38	0.42	0.47	0.50	0.53	0.55
	(0.13)	(0.14)	(0.16)	(0.17)	(0.18)	(0.18)
ATM terminals a	0.31	0.39	0.50	0.57	0.65	0.65
	(0.18)	(0.19)	(0.22)	(0.22)	(0.23)	(0.22)
Interest rate on deposits b	6.1	5.4	2.2	1.7	1.1	0.7
	(0.4)	(0.3)	(0.2)	(0.2)	(0.2)	(0.1)
Probability of cash theft c	2.2	1.8	2.1	2.2	2.1	2.2
	(2.6)	(2.1)	(2.4)	(2.5)	(2.4)	(2.6)
CPI Inflation	4.6	5.2	2.0	2.6	2.6	2.3

Notes: Mean (standard deviation in parenthesis) across provinces. - ${ }^{a}$ Per thousand residents (Source: the Supervisory Reports to the Bank of Italy and the Italian Central Credit Register). - ${ }^{b}$ Net nominal interest rates in per cent. Arithmetic average between the selfreported interest on deposit account (Source: Survey of Household Income and Wealth) and the average deposit interest rate reported by banks in the province (Source: Central credit register). - ${ }^{c}$ We estimate this probability using the time and province variation from statistics on reported crimes on Purse snatching and pickpocketing. The level is adjusted to take into account both the fraction of unreported crimes as well as the fraction of cash stolen for different types of crimes using survey data on victimization rates (Source: Istat and authors' computations; see the Online Appendix A for details).
markets. The large differences in the probability of cash being stolen across provinces reflect variation in crime rates across rural vs. urban areas, and a higher incidence of such crimes in the North.

Lippi and Secchi (2007) report that the household data display patterns which are in line with previous empirical studies showing that the demand for currency decreases with financial development and that its interest elasticity is below onehalf. ${ }^{6}$ Tables 1 and 2 show that the opportunity cost of cash in 2004 is about $1 / 3$ of the value in 1993 (the corresponding ratio for the nominal interest rate is about $1 / 9$), and that the average of M / c shows an upward trend. Indeed the average of M / c across households of a given type (with and without ATM cards) is negatively correlated with the opportunity cost R in the cross section, in the time series, and the pool time series-cross section. Yet the largest estimate for the interest rate elasticity are smaller than 0.25 and in most cases about 0.05 (in absolute value). At

[^2]the same time, Table 2 shows large increases in bank branches and ATM terminals per person. Such patterns are consistent with both shifts of the money demand and movements along it. Our model and estimation strategy allows us to quantify each of them.

Another classic model of money demand is Miller and Orr (1966) who study the optimal inventory policy for an agent subject to stochastic cash inflows and outflows. Despite the presence of uncertainty, their model, as the one by BT, does not feature a precautionary motive in the sense that $\underline{M}=0$. Unlike in the BT model, they find that the interest rate elasticity is $1 / 3$ and the average withdrawal size W / M is $3 / 4$. In this paper we keep the BT model as a theoretical benchmark because the Miller and Orr model is more suitable for the problem faced by firms, given the nature of stochastic cash inflows and outflows. Our paper studies currency demand by households: the theory studies the optimal inventory policy for an agent that faces deterministic cash outflows (consumption expenditure) and no cash inflows and the empirical analysis uses the household survey data (excluding entrepreneurs).

3 A model with deterministic free withdrawals

This section presents a modified version of the BT model to illustrate how technological progress affects the level and interest elasticity of the demand for currency.

Consider an agent who finances a consumption flow c by making n withdrawals from a deposit account. Let R be the net nominal interest rate paid on deposits. In a deterministic setting agents cash balances decrease until they hit zero, when a new withdrawal must take place. Hence the size of each withdrawal is $W=c / n$ and the average cash balance $M=W / 2$. In the BT model agents pay a fixed cost b for each withdrawal. We modify the latter by assuming that the agent has p free withdrawals, so that if the total number of withdrawals is n then she pays only for the excess of n over p. Setting $p=0$ yields the BT case. Technology is thus represented by the parameters b and p.

For example, assume that the cost of a withdrawal is proportional to the distance to an ATM or bank branch. In a given period the agent is moving across locations, for reason unrelated to her cash management, so that p is the number of times that she is in a location with an ATM or bank branch. At any other time, b is the distance that the agent must travel to withdraw. In this setup an increase in the density of bank branches or ATMs increases p and decreases b.

The optimal number of withdrawals solves the minimization problem

$$
\begin{equation*}
\min _{n}\left[R \frac{c}{2 n}+b \max (n-p, 0)\right] . \tag{1}
\end{equation*}
$$

It is immediate that the value of n that solves the problem, and its associated M / c, depends only on $\beta \equiv b /(c R)$, the ratio of the two costs, and p. The money demand for a technology with $p \geq 0$ is given by

$$
\begin{equation*}
\frac{M}{c}=\frac{1}{2 p} \sqrt{\min \left(2 \frac{\hat{b}}{R}, 1\right)} \quad \text { where } \quad \hat{b} \equiv \frac{b p^{2}}{c} . \tag{2}
\end{equation*}
$$

To understand the workings of the model, fix b and consider the effect of increasing p (so that \hat{b} increases). For $p=0$ we have the BT setup, so that when R is small the agent decides to economize on withdrawals and choose a large value of M. Now consider the case of $p>0$. In this case there is no reason to have less than p withdrawals, since these are free by assumption. Hence, for all $R \leq 2 \hat{b}$ the agent will choose the same level money holdings, namely, $M=c /(2 p)$, since she is not paying for any withdrawal but is subject to a positive opportunity cost. Note that the interest elasticity is zero for $R \leq 2 \hat{b}$. Thus as p (hence \hat{b}) increases, then the money demand has a lower level and a lower interest rate elasticity than the money demand from the BT model. Indeed (2) implies that the range of interest rates R for which the money demand is smaller and has lower interest rate elasticity is increasing in p. On the other hand, if we fix \hat{b} and increase p the only effect is to lower the level of the money demand. The previous discussion makes clear that for fixed p, \hat{b} controls the "shape" of the money demand, and for fixed \hat{b}, p controls its level. We think of technological improvements as both increasing p and lowering b : the net effect on \hat{b}, hence on the slope of the money demand, is in principle ambiguous. The empirical analysis below allows us to sign and quantify this effect.

4 A model with random free withdrawals

This section presents our benchmark model that generalizes the example of the previous section in several dimensions. It takes an explicit account of the dynamic nature of the cash inventory problem, as opposed to minimizing the average steady state cost. It distinguishes between real and nominal variables, as opposed to financing a constant nominal expenditure, or alternatively assuming zero inflation. Most
importantly, it assumes that the agent has a Poisson arrival of free opportunities to withdraw cash at a rate p. Relative to the deterministic model, this assumption produces cash management behavior that is closer to the one documented in Section 2. The randomness gives rise to a precautionary motive, so that some withdrawals occur when the agent still has a positive cash balance and the (average) W / M ratio is smaller than two. The model retains the feature, discussed in Section 3, that the interest rate elasticity is smaller than $1 / 2$ and is decreasing in the parameter p. It also generalizes the sense in which the "shape" of the money demand depends on the parameter $\hat{b}=p^{2} b / c$.

4.1 The agent's problem

We assume that agents are subject to a cash-in-advance constraint and minimize the cost of financing a given constant flow of cash consumption, denoted by c. Let $m \geq 0$ denote the non-negative real cash balances of an agent, that decrease due to consumption and inflation:

$$
\begin{equation*}
\frac{d m(t)}{d t}=-c-m(t) \pi \tag{3}
\end{equation*}
$$

for almost all $t \geq 0$. Agents can withdraw or deposit at any time from an account that yields real interest r. Transfers from the interest bearing account to cash balances are indicated by discontinuities in m : a withdrawal is a jump up on the cash balances, i.e. $m\left(t^{+}\right)-m\left(t^{-}\right)>0$, and likewise for a deposit.

There are two sources or randomness in the environment, described by independent Poisson processes with intensities p_{1} and p_{2}. The first process describes the arrivals of "free adjustment opportunities" (see the Introduction for examples). The second Poisson process describes the arrivals of times where the agent looses (or is stolen) her cash balances. We assume that a fixed cost b is paid for each adjustment, unless it happens exactly at the time of a free adjustment opportunity.

We can write the problem of the agent as:

$$
\begin{equation*}
G(m)=\min _{\left\{m(t), \tau_{j}\right\}} \mathbb{E}_{0}\left\{\sum_{j=0}^{\infty} e^{-r \tau_{j}}\left[I_{\tau_{j}} b+\left(m\left(\tau_{j}^{+}\right)-m\left(\tau_{j}^{-}\right)\right)\right]\right\} \tag{4}
\end{equation*}
$$

subject to (3) and $m(t) \geq 0$, where τ_{j} denote the stopping times at which an adjustment (jump) of m takes place, and $m(0)=m$ is given. The indicator $I_{\tau_{j}}$ is zero -so the cost is not paid- if the adjustment takes place at a time of a free
adjustment opportunity, otherwise is equal to one. The expectation is taken with respect to the two Poisson processes. The parameters that define this problem are r, π, p_{1}, p_{2}, b and c.

4.2 Bellman equations and optimal policy

We turn to the characterization of the Bellman equations and of its associated optimal policy. We will guess, and later verify, that the optimal policy is described by two thresholds for m : $0<m^{*}<m^{* *}$. The threshold m^{*} is the value of cash that agents choose after a contact with a financial intermediary: we refer to it as the optimal cash replenishment level. The threshold $m^{* *}$ is a value of cash beyond which agents will pay the cost b, contact the intermediary, and make a deposit so as to leave her cash balances at m^{*}. Assuming that the optimal policy is of this type and that for $m \in\left(0, m^{* *}\right)$ the value function G is differentiable, it must satisfy:

$$
\begin{align*}
r G(m)= & G^{\prime}(m)(-c-\pi m)+p_{1} \min _{\hat{m} \geq 0}[\hat{m}-m+G(\hat{m})-G(m)]+ \tag{5}\\
& +p_{2} \min _{\hat{m} \geq 0}[b+\hat{m}+G(\hat{m})-G(m)] .
\end{align*}
$$

If the agent chooses not to contact the intermediary then, as standard, the Bellman equation states that the return on the value function $r G(m)$ must equal the flow cost plus the expected change per unit of time. The first term of the summation gives the change in the value function per unit of time, conditional on no arrival of either free adjustment or of a cash theft. This change is given by the change in the state m, times the derivative of the value function $G^{\prime}(m)$. The second term gives the expected change conditional on the arrival of free adjustment opportunity: an adjustment $\hat{m}-m$ is incurred instantly with its associated "capital gain" $G(\hat{m})-$ $G(m)$. Likewise, the third term gives the change in the value function conditional on the money stock m being stolen. In this case the cost b must be paid and the adjustment equals \hat{m}, since m is "lost". Regardless of how the agent ends up matched with a financial intermediary, upon the match she chooses the optimal level of real balances, which we denote by m^{*}, which solves

$$
\begin{equation*}
m^{*}=\arg \min _{\hat{m} \geq 0} \hat{m}+G(\hat{m}) . \tag{6}
\end{equation*}
$$

Note that the optimal replenishment level m^{*} is constant. There are two boundary conditions for this problem. First, if money balances reach zero $(m=0)$ the agent
must withdraw, otherwise she will violate the non-negativity constraint in the next instant. Second, for values of $m \geq m^{* *}$ we conjecture that the agent chooses to pay b and deposit the extra amount, $m-m^{*}$. Combining these boundary conditions with (5) we have:

$$
G(m)= \begin{cases}b+m^{*}+G\left(m^{*}\right) & \text { if } m=0 \tag{7}\\ \frac{-G^{\prime}(m)(c+\pi m)+\left(p_{1}+p_{2}\right)\left[m^{*}+G\left(m^{*}\right)\right]+p_{2} b-p_{1} m}{r+p_{1}+p_{2}} & \text { if } m \in\left(0, m^{* *}\right) \\ b+m^{*}-m+G\left(m^{*}\right) & \text { if } m \geq m^{* *}\end{cases}
$$

For the assumed configuration to be optimal it must be the case that the agent prefers not to pay the cost b and adjust money balances in the relevant range:

$$
\begin{equation*}
m+G(m)<b+m^{*}+G\left(m^{*}\right) \text { all } m \in\left(0, m^{* *}\right) . \tag{8}
\end{equation*}
$$

Summarizing, we say that $m^{*}, m^{* *}, G(\cdot)$ solve the Bellman equation for the total cost problem (4) if they satisfy (6)-(7)-(8).

We find it convenient to reformulate this problem so that it is closer to the standard inventory theoretical models. We define a related problem where the agent minimizes the shadow cost

$$
\begin{equation*}
V(m)=\min _{\left\{m(t), \tau_{j}\right\}} \mathbb{E}_{0}\left\{\sum_{j=0}^{\infty} e^{-r \tau_{j}}\left[I_{\tau_{j}} b+\int_{0}^{\tau_{j+1}-\tau_{j}} e^{-r t} R m\left(t+\tau_{j}\right) d t\right]\right\} \tag{9}
\end{equation*}
$$

subject to (3), $m(t) \geq 0$, where τ_{j} denote the stopping times at which an adjustment (jump) of m takes place, and $m(0)=m$ is given. The indicator $I_{\tau_{j}}$ equals zero if the adjustment takes place at the time of a free adjustment, otherwise is equal to one. In this formulation R is the opportunity cost of holding cash. In this problem there is only one Poisson process with intensity p describing the arrival of a free opportunity to adjust. The parameters of this problem are r, R, π, p, b and $c .^{7}$

The derivation of the Bellman equation for an agent unmatched with a financial intermediary and holding a real value of cash m follows by the same logic used

[^3]to derive equation (5). The only decision that the agent must make is whether to remain unmatched, or to pay the fixed cost b and be matched with a financial intermediary. Denoting by $V^{\prime}(m)$ the derivative of $V(m)$ with respect to m, the Bellman equation satisfies
\[

$$
\begin{equation*}
r V(m)=R m+p \min _{\hat{m} \geq 0}(V(\hat{m})-V(m))+V^{\prime}(m)(-c-m \pi) . \tag{10}
\end{equation*}
$$

\]

Regardless of how the agent ends up matched with a financial intermediary, she chooses the optimal adjustment and sets $m=m^{*}$, or

$$
\begin{equation*}
V^{*} \equiv V\left(m^{*}\right)=\min _{\hat{m} \geq 0} V(\hat{m}) . \tag{11}
\end{equation*}
$$

As in problem (4) we will guess that the optimal policy is described by two threshold values satisfying $0<m^{*}<m^{* *}$. This requires two boundary conditions. At $m=0$ the agent must pay the cost b and withdraw, and for $m \geq m^{* *}$ the agent chooses to pay the cost b and deposit the cash in excess of $m^{*} .{ }^{8}$ Combining these boundary conditions with (10) we have:

$$
V(m)= \begin{cases}V^{*}+b & \text { if } m=0 \tag{12}\\ \frac{R m+p V^{*}-V^{\prime}(m)(c+m \pi)}{r+p} & \text { if } m \in\left(0, m^{* *}\right) \\ V^{*}+b & \text { if } m \geq m^{* *}\end{cases}
$$

To ensure that it is optimal not to pay the cost and contact the intermediary in the relevant range we require:

$$
\begin{equation*}
V(m)<V^{*}+b \text { for } m \in\left(0, m^{* *}\right) . \tag{13}
\end{equation*}
$$

Summarizing, we say that $m^{*}, m^{* *}, V^{*}, V(\cdot)$ solve the Bellman equation for the shadow cost problem (9) if they satisfy (11)-(12)-(13). We are now ready to show that, first, (4) and (9) are equivalent and, second, the existence and characterization of the solution.

Proposition 1. Assume that the opportunity cost is given by $R=r+\pi+p_{2}$, and that the contact rate with the financial intermediary is $p=p_{1}+p_{2}$. Assume that the

[^4]functions $G(\cdot), V(\cdot)$ satisfy
\[

$$
\begin{equation*}
G(m)=V(m)-m+c / r+p_{2} b / r \tag{14}
\end{equation*}
$$

\]

for all $m \geq 0$. Then, $m^{*}, m^{* *}, G(\cdot)$ solve the Bellman equation for the total cost problem (4) if and only if $m^{*}, m^{* *}, V^{*}, V(\cdot)$ solve the Bellman equation for the shadow cost problem (9).
Proof. See Appendix A.
We briefly comment on the relation between the total and shadow cost problems. Notice that they are described by the same number of parameters. They have r, π, c, b in common, the total cost problem uses p_{1} and p_{2}, while the shadow cost problem uses R and p. That $R=r+\pi+p_{2}$ is quite intuitive: the shadow cost of holding money is given by the real opportunity cost of investing, r, plus the fact that cash holdings loose real value continually at a rate π and they are lost entirely with probability p_{2} per unit of time. Likewise that $p=p_{1}+p_{2}$ is clear too: since the effect of either shock is to force an adjustment on cash. The relation between G and V in (14) is quite intuitive. First the constant c / r is required, since even if withdrawals were free (say $b=0$) consumption expenditures must be financed. Second, the constant $p_{2} b / r$ is the present value of all the withdrawals cost that is paid after cash is "lost". This adjustment is required because in the shadow cost problem there is no theft. Third, the term m has to be subtracted from V since this amount has already been withdrawn from the interest bearing account.

From now on, we use the shadow cost formulation, since it is closer to the standard inventory decision problem. On the theoretical side, having the effect of theft as part of the opportunity cost allows us to parameterize R as being, at least conceptually, independent of r and π. On the quantitative side we think that, at least for low nominal interest rates, the presence of other opportunity costs may be important.

4.3 Characterization of the optimal return point m^{*}

The next proposition gives one non-linear equation whose unique solution determines the cash replenishment value m^{*} as a function of the model parameters: R, π, r, p, c and b.

Proposition 2. Assume that $r+\pi+p>0$. The optimal return point $\frac{m^{*}}{c}$ has three arguments: $\beta, r+p, \pi$, where $\beta \equiv \frac{b}{c R}$. The return point m^{*} is given by the unique
positive solution to

$$
\begin{equation*}
\left(\frac{m^{*}}{c} \pi+1\right)^{1+\frac{r+p}{\pi}}=\frac{m^{*}}{c}(r+p+\pi)+1+(r+p)(r+p+\pi) \frac{b}{c R} . \tag{15}
\end{equation*}
$$

Proof. See Appendix A.
Note that, keeping r and π fixed, the solution for m^{*} / c is a function of $b /(c R)$, as it is in the steady state money demand of Section 3. This immediately implies that m^{*} is homogenous of degree one in (c, b). The next proposition gives a closed form solution for the function $V(\cdot)$, and the scalar V^{*} in terms of m^{*}.

Proposition 3. Assume that $r+\pi+p>0$. Let m^{*} be the solution of (15).
(i) The value for the agents not matched with a financial institution, for $m \in$ $\left(0, m^{* *}\right)$, is given by the convex function:

$$
\begin{equation*}
V(m)=\left[\frac{p V^{*}-R c /(r+p+\pi)}{r+p}\right]+\left[\frac{R}{r+p+\pi}\right] m+\left(\frac{c}{r+p}\right)^{2} A\left[1+\pi \frac{m}{c}\right]^{-\frac{r+p}{\pi}} \tag{16}
\end{equation*}
$$

where $A=\frac{r+p}{c^{2}}\left(R m^{*}+(r+p) b+\frac{R c}{r+p+\pi}\right)>0$.
For $m=0$ or $m \geq m^{* *}: V(m)=V^{*}+b$.
(ii) The value for the agents matched with a financial institution, V^{*}, is

$$
\begin{equation*}
V^{*}=\frac{R}{r} m^{*} . \tag{17}
\end{equation*}
$$

Proof. See Appendix A.
The close relationship between the value function at zero cash and the optimal return point $V(0)=(R / r) m^{*}+b$ derived in this proposition will be useful to measure the gains of different financial arrangements. The next proposition uses the characterization of the solution for m^{*} to conduct some comparative statics.

Proposition 4. The optimal return point m^{*} has the following properties:
(i) $\frac{m^{*}}{c}$ is increasing in $\frac{b}{c R}, \frac{m^{*}}{c}=0$ as $\frac{b}{c R}=0$ and $\frac{m^{*}}{c} \rightarrow \infty$ as $\frac{b}{c R} \rightarrow \infty$.
(ii) For small $\frac{b}{c R}$, we can approximate $\frac{m^{*}}{c}$ by the solution in BT model, or

$$
\frac{m^{*}}{c}=\sqrt{2 \frac{b}{c R}}+o\left(\sqrt{\frac{b}{c R}}\right)
$$

where $o(z) / z \rightarrow 0$ as $z \rightarrow 0$.
(iii) Assuming that the Fisher equation holds, in that $\pi=R-r$, the elasticity of
m^{*} with respect to p evaluated at zero inflation satisfies

$$
0 \leq-\left.\frac{p}{m^{*}} \frac{d m^{*}}{d p}\right|_{\pi=0} \leq \frac{p}{p+r}
$$

(iv) The elasticity of m^{*} with respect to R evaluated at zero inflation satisfies

$$
0 \leq-\left.\frac{R}{m^{*}} \frac{d m^{*}}{d R}\right|_{\pi=0} \leq \frac{1}{2}
$$

The elasticity is decreasing in p and satisfies:

$$
-\left.\frac{R}{m^{*}} \frac{\partial m^{*}}{\partial R}\right|_{\pi=0} \rightarrow 1 / 2 \text { as } \frac{\hat{b}}{R} \rightarrow 0 \text { and }-\left.\frac{R}{m^{*}} \frac{\partial m^{*}}{\partial R}\right|_{\pi=0} \rightarrow 0 \text { as } \frac{\hat{b}}{R} \rightarrow \infty
$$

where $\hat{b} \equiv(p+r)^{2} b / c$.
Proof. See Appendix A.
The proposition shows that when $b /(c R)$ is small the resulting money demand is well approximated by the one for the BT model. Part (iv) shows that the absolute value of the interest elasticity (when inflation is zero) ranges between zero and $1 / 2$, and that it is decreasing in p. In the limits we use \hat{b} to write a comparative static result for the interest elasticity of m^{*} with respect to p. Indeed, for $r=0$, we have already given an economic interpretation to \hat{b} in Section 3, to which we will return in Proposition 8. Since in Proposition 2 we show that m^{*} is a function of $b /(c R)$, then the elasticity of m^{*} with respect to b / c equals the one with respect to R with an opposite sign.

4.4 Number of withdrawals and cash holdings distribution

This section derives the invariant distribution of real cash holdings when the policy characterized by the parameters $\left(m^{*}, p, c\right)$ is followed and the inflation rate is π. Throughout the section m^{*} is treated as a parameter, so that the policy is to replenish cash holdings up to the return value m^{*}, either when a match with a financial intermediary occurs, which happens at a rate p per unit of time, or when the agent runs out of money (i.e. real balances hit zero). Our first result is to compute the expected number of withdrawals per unit of time, denoted by n. This includes both the withdrawals that occur upon an exogenous contact with the financial intermediary and the ones initiated by the agent when her cash balances reach zero. By the fundamental theorem of Renewal Theory n equals the reciprocal of the expected time between withdrawals, which after straightforward calculations gives

Proposition 5. The expected number of cash withdrawals per unit of time, n, is

$$
\begin{equation*}
n\left(\frac{m^{*}}{c}, \pi, p\right)=\frac{p}{1-\left(1+\pi \frac{m^{*}}{c}\right)^{-\frac{p}{\pi}}} . \tag{18}
\end{equation*}
$$

Proof. See Appendix A.
As can be seen from expression (18) the ratio $n / p \geq 1$, since in addition to the p free withdrawals it includes the costly withdrawals that agents do when they exhaust their cash. Note how this formula yields exactly the expression in the BT model when $p=\pi=0$. The next proposition derives the density of the invariant distribution of real cash balances as a function of p, π, c and m^{*} / c.

Proposition 6. (i) The density for the real balances m is:

$$
\begin{equation*}
h(m)=\left(\frac{p}{c}\right) \frac{\left[1+\pi \frac{m}{c}\right]^{\frac{p}{\pi}-1}}{\left[1+\pi \frac{m^{*}}{c}\right]^{\frac{p}{\pi}}-1} . \tag{19}
\end{equation*}
$$

(ii) Let $H\left(m, m_{1}^{*}\right)$ be the CDF of m for a given m^{*}. Let $m_{1}^{*}<m_{2}^{*}$, then $H\left(m, m_{2}^{*}\right) \leq$ $H\left(m, m_{1}^{*}\right)$, i.e. $H\left(\cdot, m_{2}^{*}\right)$ first order stochastically dominates $H\left(\cdot, m_{1}^{*}\right)$. Proof. See Appendix A.

The density of m solves the following ODE (see the proof of Proposition 6)

$$
\begin{equation*}
\frac{\partial h(m)}{\partial m}=\frac{(p-\pi)}{(\pi m+c)} h(m) \tag{20}
\end{equation*}
$$

for any $m \in\left(0, m^{*}\right)$. There are two forces determining the shape of this density. One is that agents meet a financial intermediary at a rate p, where they replenish their cash balances. The other is that inflation eats away the real value of their nominal balances. Notice that if $p=\pi$ these two effects cancel and the density is constant. If $p<\pi$ the density is downward sloping, with more agents at low values of real balances due to the greater pull of the inflation effect. If $p>\pi$, the density is upward sloping due the greater effect of the replenishing of cash balances. This uses that $\pi m+c>0$ in the support of h because $\pi m^{*}+c>0$ (see equation (37) in Appendix A).

We define the average money demand as $M=\int_{0}^{m^{*}} m h(m) d m$. Using the ex-
pression for $h(m)$, integration gives

$$
\begin{equation*}
\frac{M}{c}\left(\frac{m^{*}}{c}, \pi, p\right)=\frac{\left(1+\pi \frac{m^{*}}{c}\right)^{\frac{p}{\pi}}\left[\frac{m^{*}}{c}-\frac{\left(1+\pi \frac{m^{*}}{c}\right)}{p+\pi}\right]+\frac{1}{p+\pi}}{\left[1+\pi \frac{m^{*}}{c}\right]^{\frac{p}{\pi}}-1} \tag{21}
\end{equation*}
$$

Next we analyze how M depends on m^{*} and p. The function $\frac{M}{c}(\cdot, \pi, p)$ is increasing in m^{*}, which follows immediately from part (ii) of Proposition 6: with a higher target replenishment level the agents end up holding more money on average. The next proposition shows that for a fixed m^{*}, M is increasing in p :

Proposition 7. The ratio $\frac{M}{m^{*}}$ is increasing in p with:

$$
\frac{M}{m^{*}}(\pi, p)=\frac{1}{2} \text { for } p=\pi \quad \text { and } \quad \frac{M}{m^{*}}(\pi, p) \rightarrow 1 \text { as } p \rightarrow \infty .
$$

Proof. See Appendix A.
It is useful to compare this result with the corresponding one for the BT case, which is obtained when $\pi=p=0$. In this case agents withdraw m^{*} hence $M / m^{*}=$ $1 / 2$. The other limit corresponds to the case where withdrawals happen so often that at all times the average amount of money coincides with the amount just after a withdrawal.

The average withdrawal, W, is

$$
\begin{equation*}
W=m^{*}\left[1-\frac{p}{n}\right]+\left[\frac{p}{n}\right] \int_{0}^{m^{*}}\left(m^{*}-m\right) h(m) d m \tag{22}
\end{equation*}
$$

To understand the expression for W notice that $(n-p)$ is the number of withdrawals in a unit of time that occur because the zero balance is reached, so if we divide it by the total number of withdrawals per unit of time (n) we obtain the fraction of withdrawals that occur at a zero balance. Each of these withdrawals is of size m^{*}. The complementary fraction gives the withdrawals that occur due to a chance meeting with the intermediary. A withdrawal of size $m^{*}-m$ happens with frequency $h(m)$. Inspection of (22) shows that W / c is a function of three arguments: $m^{*} / c, \pi, p$.

Combining the previous results we can see that for $p \geq \pi$, the ratio of withdrawals to average cash holdings is less than two. To see this, using the definition of W we can write

$$
\begin{equation*}
\frac{W}{M}=\frac{m^{*}}{M}-\frac{p}{n} . \tag{23}
\end{equation*}
$$

Since $M / m^{*} \geq 1 / 2$, then it follows that $W / M \leq 2$. Indeed notice that for p
large enough this ratio can be smaller than one. We mention this property because for the Baumol - Tobin model the ratio W / M is exactly two, while in the data of Table 1 for households with an ATM card the average ratio is below 1.5 and its median value is 1 . The intuition for this result in our model is clear: agents take advantage of the free random withdrawals regardless of their cash balances, hence the withdrawals are distributed on $\left[0, m^{*}\right]$, as opposed to be concentrated on m^{*}, as in the BT model.

We let \underline{M} be the average amount of money that an agent has at the time of withdrawal. A fraction $[1-p / n]$ of the withdrawals happens when $m=0$. For the remaining fraction, p / n, an agent has money holdings at the time of the withdrawal distributed with density h, so that: $\underline{M}=0 \cdot\left[1-\frac{p}{n}\right]+\left[\frac{p}{n}\right] \int_{0}^{m^{*}} m h(m) d m$. Inspection of this expression shows that \underline{M} / c is a function of three arguments: $m^{*} / c, \pi, p$. Simple algebra shows that $\underline{M}=m^{*}-W$ or, inserting the definition of \underline{M} into the expression for M :

$$
\begin{equation*}
\underline{M}=\frac{p}{n} M . \tag{24}
\end{equation*}
$$

The ratio \underline{M} / M is a measure of the precautionary demand for cash: it is zero only when $p=0$, it goes to 1 as $p \rightarrow \infty$ and, at least for $\pi=0$, it is increasing in p. This is because as p increases the agent has more opportunities for a free withdrawal, which directly increases \underline{M} / M (see equations 18 and 24), and from part (iii) in Proposition 4 the induced effect of p on m^{*} cannot outweigh the direct effect.

Other researchers noticing that currency holdings are positive at the time of withdrawals account for this feature by adding a constant \underline{M} / M to the sawtooth path of a deterministic inventory model, which implies that the average cash balance is $M_{1}=\underline{M}+0.5 c / n$ or $M_{2}=\underline{M}+0.5 W$. See e.g. equations (1) and (2) in Attanasio, Guiso and Jappelli (2002) and Table 1 in Porter and Judson (1996). Instead, when we model the determinants of the precautionary holdings \underline{M} / M in a random setup, we find that $W / 2<M<\underline{M}+W / 2$. The leftmost inequality is a consequence of Proposition 7 and equation (23), the other can be derived using the form of the optimal decision rules and the law of motion of cash flows (see the Online Appendix C). The discussion above shows that the expressions for the demand for cash proposed in the literature to deal with the precautionary motive are upward biased. Using the data of Table 1 shows that both expressions M_{1} and M_{2} overestimate the average amount of cash held by Italian households by a large margin. ${ }^{9}$

[^5]
4.5 Comparative statics on M, M, W and welfare

We begin with a comparative statics exercise on M, \underline{M} and W in terms of the primitive parameters $b / c, p$, and R. To do this we combine the results of Section 4.3, where we analyzed how the optimal decision rule m^{*} / c depends on $p, b / c$ and R, with the results of Section 4.4 where we analyze how M, \underline{M}, and W change as a function of m^{*} / c and p. The next proposition defines a one dimensional index $\hat{b} \equiv(b / c) p^{2}$ that characterizes the shape of the money demand and the strength of the precautionary motive focusing on $\pi=r=0$. When $r \rightarrow 0$ our problem is equivalent to minimizing the steady state cost. The choice of $\pi=r=0$ simplifies the comparison of the analytical results with the ones for the original BT model and with the ones of Section 3.

Proposition 8. Let $\pi=0$ and $r \rightarrow 0$, the ratios: $W / M, \underline{M} / M$ and $(M / c) p$ are determined by three strictly monotone functions of \hat{b} / R that satisfy:

$$
\begin{aligned}
& \text { As } \frac{\hat{b}}{R} \rightarrow 0: \frac{W}{M} \rightarrow 2, \frac{M}{\bar{M}} \rightarrow 0 \quad, \frac{\partial \log \frac{M p}{c}}{\partial \log \frac{\hat{b}}{R}} \rightarrow \frac{1}{2} \\
& \text { As } \frac{\hat{b}}{R} \rightarrow \infty: \frac{W}{M} \rightarrow 0, \frac{M}{M} \rightarrow 1, \frac{\partial \log \frac{M p}{c}}{\partial \log \frac{\hat{b}}{R}} \rightarrow 0 .
\end{aligned}
$$

Proof. See Appendix A.
The elasticity of $(M / c) p$ with respect to \hat{b} / R determines the effect of the technological parameters b / c and p on the level of money demand, as well as on the interest rate elasticity of M / c with respect to R since

$$
\begin{equation*}
\eta(\hat{b} / R) \equiv \frac{\partial \log (M / c) p}{\partial \log (\hat{b} / R)}=-\frac{\partial \log (M / c)}{\partial \log R} . \tag{25}
\end{equation*}
$$

Direct computation gives that

$$
\begin{equation*}
\frac{\partial \log (M / c)}{\partial \log p}=-1+2 \eta(\hat{b} / R) \leq 0 \quad \text { and } \quad 0 \leq \frac{\partial \log (M / c)}{\partial \log (b / c)}=\eta(\hat{b} / R) \tag{26}
\end{equation*}
$$

The previous sections showed that p has two opposing effects on M / c : for a given m^{*} / c, the value of M / c increases with p, but the optimal choice of m^{*} / c decreases with p. Proposition 8 and equation (26) show that the net effect is always negative. For low values of \hat{b} / R, where $\eta \approx 1 / 2$, the elasticity of M / c with respect to p and without ATMs, respectively; the one for M_{2} by 7% and 40%, respectively.
is close to zero and the one with respect to b / c is close to $1 / 2$, which is the BT case. For large values of \hat{b} / R, the elasticity of M / c with respect to p goes to -1 , and the one with respect to b / c goes to zero. Likewise, equation (26) implies that $\partial \log M / \partial \log c=1-\eta$ and hence that the expenditure elasticity of the money demand ranges between $1 / 2$ (the BT value) and 1 as \hat{b} / R becomes large.

In the original BT model $W / M=2, \underline{M} / M=0$ and $\frac{\partial \log (M / c)}{\partial \log R}=-1 / 2$ for all b / c and R. These are the values that correspond to our model as $\hat{b} / R \rightarrow 0$. This limit includes the standard case where $p \rightarrow 0$, but it also includes the case where b / c is much smaller than p^{2} / R. As \hat{b} / R grows, our model predicts smaller interest rate elasticity than the BT model, and in the limit, as $\hat{b} / R \rightarrow \infty$, that the elasticity goes to zero. This result is a smooth version of the one for the model with p deterministic free withdrawal opportunities of Section 3. In that model the elasticity $\partial \log (M p / c) / \partial \log (\hat{b} / R)$ is a step function that takes two values, $1 / 2$ for low values of \hat{b} / R, and zero otherwise. The smoothness is a natural consequence of the randomness on the free withdrawal opportunities. One key difference is that the deterministic model of Section 3 has no precautionary motive for money demand, hence $W / M=2$ and $\underline{M} / M=0$. Instead, as Proposition 8 shows, in the model with random free withdrawal opportunities, the strength of the precautionary motive, as measured by W / M and \underline{M} / M, is a function of \hat{b} / R.

Figure 1 plots $W / M, \underline{M} / M$ and η as functions of \hat{b} / R. This figure completely characterizes the shape of the money demand and the strength of the precautionary motive since the functions plotted in it depend only on \hat{b} / R. The range of the \hat{b} / R values used in this figure is chosen to span the variation of the estimates presented in Table 6. While this figure is based on results for $\pi=r=0$, the figure obtained using the values of π and r that correspond to the averages for Italy during 1993-2004 is quantitatively indistinguishable.

We conclude this section with a result on the welfare cost of inflation and the effect technological change. Let (R, κ) be the vector of parameters that index the value function $V(m ; R, \kappa)$ and the invariant distribution $h(m ; R, \kappa)$, where $\kappa=(\pi, r, b, p, c)$. We define the average flow cost of cash purchases borne by households $v(R, \kappa) \equiv \int_{0}^{m^{*}} r V(m ; R, \kappa) h(m ; R, \kappa) d m$. We measure the benefit of lower inflation for households, say as captured by a lower R and π, or of a better technology, say as captured by a lower b / c or a higher p, by comparing $v(\cdot)$ for the corresponding values of (R, κ). A related concept is $\ell(R, \kappa)$, the expected withdrawal

Figure 1: $W / M, \underline{M} / M, m^{*} / M$ and $\eta=$ elasticity of $(M / c) p$

cost borne by households that follow the optimal rule

$$
\begin{equation*}
\ell(R, \kappa)=\left[n\left(m^{*}(R, \kappa), p, \pi\right)-p\right] \cdot b \tag{27}
\end{equation*}
$$

where n is given in (18) and the expected number of free withdrawals, p, are subtracted. The value of $\ell(R, \kappa)$ measures the resources wasted trying to economize on cash balances, i.e. the deadweight loss for the society corresponding to R. While ℓ is the relevant measure of the cost for the society, we find useful to define v separately to measure the consumers' benefit of using ATM cards. The next proposition characterizes $\ell(R, \kappa)$ and $v(R, \kappa)$ as $r \rightarrow 0$. This limit is useful for comparison with the BT model and it also turns out to be an excellent approximation for the values of r that we use in our estimation.

Proposition 9. Letr $\rightarrow 0$: (i) $v(R, \kappa)=R m^{*}(R, \kappa)$; (ii) $v(R, \kappa)=\int_{0}^{R} M(\tilde{R}, \kappa) d \tilde{R}$, and (iii) $\ell(R, \kappa)=v(R, \kappa)-R M(R, \kappa)$.
Proof. See Appendix A.
This proposition allows us to estimate the effect of inflation or technology on agents' welfare using data on W and \underline{M}, since $W+\underline{M}=m^{*}$. In the BT model $\ell=R M=$
$\sqrt{R b c / 2}$ since $m^{*}=W=2 M$. In our model $m^{*} / M=W / M+\underline{M} / M<2$, as can be seen in Figure 1, thus using $R M$ as an estimate of $R\left(m^{*}-M\right)$ produces an overestimate of the cost of inflation ℓ. For instance, for $\hat{b} / R=1.8$, the BT welfare cost measure overestimates the cost of inflation by about 67%, since $m^{*} / M \cong 1.6$.

Clearly the loss for society is smaller than the cost for households; using (i)-(iii) and Figure 1 the two can be easily compared. As \hat{b} / R ranges from zero to ∞, the ratio of the costs ℓ / v decreases from $1 / 2$, the BT value, to zero. Not surprisingly (ii)-(iii) implies that the loss for society coincides with the consumer surplus that can be gained by reducing R to zero, i.e. $\ell(R)=\int_{0}^{R} M(\tilde{R}) d \tilde{R}-R M(R)$. This extends the result of Lucas (2000), derived from a money-in-the-utility-function model, to an explicit inventory-theoretic model. Measuring the welfare cost of inflation using the consumer surplus requires the estimation of the money demand for different interest rates, while the approach using (i) and (iii) can be done using information on M, W and \underline{M}. Section 7 presents an application of these results and a comparison with the ones by Lucas (2000). ${ }^{10}$

5 Estimation of the model

We estimate the parameters ($p, b / c$) using the data described in Section 2 under two alternative sets of assumptions. Our baseline assumptions are that all households in the same cell (to be defined below) have the same parameters ($p, b / c$). For this case we discuss the identification of the parameters and the goodness of fit of the model. Alternatively in Section 5.3 we assume that $(p, b / c)$ are a simple parametric function of individual household characteristics. In both cases we take the opportunity cost R as observable (see Table 2), and assume that households values of ($M / c, n, W / M$, $\underline{M} / M)$ are observed with classical normally distributed measurement error (in logs).

The assumption of classical measurement error is often used when estimating models based on household survey data. We find that the pattern of violations of a simple accounting identity, $c=n W-\pi M$, is consistent with large classical measurement error. In particular, a histogram of the deviations of this identity (in log points) is centered around zero, symmetric, and roughly bell shaped (see the Online Appendix J for more details).

Let us provide a complete list of the assumptions used in the baseline estimation. We define a cell as a particular combination of year-province-household type, where

[^6]the latter is defined by the cash expenditure third-tile and ATM ownership. This yields about 3,700 cells, the product of the 103 provinces of Italy $\times 6$ time periods (spanning 1993-2004) $\times 2$ ATM ownership status (whether a household has an ATM card or not) $\times 3$ cash consumption third-tiles. For each year we observed the inflation rate π, and for each year-province-ATM ownership type we observed the opportunity cost R. Let i index the households in a cell. For all households in that cell we assume that b_{i} / c_{i} and p_{i} are identical. Given the homogeneity of the optimal decision rules, this implies that all household i have the same values of $M / c, W / M, n, \underline{M} / M$.

Let $j=1,2,3,4$ index the variables $M / c, W / M, n$ and \underline{M} / M, let z_{i}^{j} be the $(\log$ of the) i-th household observation on variable j, and $\zeta^{j}(\theta)$ the (log of the) model prediction of the j variable for the parameter vector $\theta \equiv(p, b / c)$. The variable z_{i}^{j} is observed with a zero-mean measurement error ε_{i}^{j} with variance σ_{j}^{2}, so that $z_{i}^{j}=\zeta^{j}(\theta)+\varepsilon_{i}^{j}$. It is assumed that the parameter σ_{j}^{2} is common across cells (we allow one set of variances for households with ATM cards, and one for those without).

The estimation proceeds in two steps. We first estimate σ_{j}^{2} by regressing each of the 4 observables, measured at the individual household level, on a vector of cell dummies. The variance of the regression residual is our estimate of σ_{j}^{2} (there are about 20,000 degrees of freedom for each estimate). Since the errors ε_{i}^{j} are assumed to be independent across households i and variables j, we estimate the vector of parameters θ for each cell separately, by minimizing the likelihood criterion

$$
\begin{equation*}
F(\theta ; z) \equiv \sum_{j=1}^{4}\left(\frac{N_{j}}{\sigma_{j}^{2}}\right)\left(\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} z_{i}^{j}-\zeta^{j}(\theta)\right)^{2} \tag{28}
\end{equation*}
$$

where σ_{j}^{2} is the measurement error variance estimated above and N_{j} is the sample size of the variable $j .{ }^{11}$ Minimizing F (for each cell) yields the maximum likelihood estimator provided the ε_{i}^{j} are independent across j for each i.

[^7]
5.1 Estimation and Identification

In this section we discuss the features of the data that identify our parameters. We argue that with our data set we can identify $\left(p, \frac{b}{c R}\right)$. As a first step we study how to select the parameters to match M / c and n only, as opposed to $(M / c, n, W / M, \underline{M} / M)$. To simplify the exposition assume zero inflation, $\pi=0$. For the BT model, i.e. for $p=0$, we have $W=m^{*}, c=m^{*} n$ and $M=m^{*} / 2$ which implies $2 M / c=1 / n$. Hence, if the data were generated by the BT model, M / c and n would have to satisfy this relation. Now consider the average cash balances generated by a policy like the one of the model of Section 4. From (18) and (21), for a given value of p and setting $\pi=0$, we have:

$$
\begin{equation*}
\frac{M}{c}=\frac{1}{p}\left[n m^{*} / c-1\right] \text { and } n=\frac{p}{1-\exp \left(-p m^{*} / c\right)} \tag{29}
\end{equation*}
$$

or, solving for M / c as a function of n :

$$
\begin{equation*}
\frac{M}{c}=\xi(n, p)=\frac{1}{p}\left[-\frac{n}{p} \log \left(1-\frac{p}{n}\right)-1\right] . \tag{30}
\end{equation*}
$$

For a given p, the pairs $M / c=\xi(n, p)$ and n are consistent with a cash management policy of replenishing balances to some value m^{*} either when the zero balance is reached or when a chance meeting with an intermediary occurs. Notice first that setting $p=0$ in this equation we obtain BT, i.e. $\xi(n, 0)=(1 / 2) / n$. Second, notice that this function is defined only for $n \geq p$. Furthermore, note that for $p>0$: $\frac{\partial \xi}{\partial n} \leq 0, \frac{\partial^{2} \xi}{\partial n^{2}}>0$, and $\frac{\partial \xi}{\partial p}>0$. Consider plotting the target value of the data on the ($n, M / c$) plane. For a given M / c, there is a minimum n that the model can generate, namely the value $(1 / 2) /(M / c)$. Given that $\partial \xi / \partial p>0$, any value of n smaller than the one implied by the BT model cannot be made consistent with our model, regardless of the values for the rest of the parameters. By the same reason, any value of n higher than $(1 / 2) /(M / c)$ can be accommodated by an appropriate choice of p. This is quite intuitive: relative to the BT model, our model can generate a larger number of withdrawals for the same M / c if the agent meets an intermediary often enough, i.e. if p is large enough. On the other hand there is a minimum number of expected chance meetings, namely $p=0$.

The previous discussion showed that p is identified. Specifically, fix a province-year-type of household combination, with its corresponding values for M / c and n. Then, solving $M / c=\xi(n, p)$ for p gives an estimate of p. Taking this value of p, and
those of M / c and n for this province-year-type combination, we use (29) to solve for m^{*} / c. Finally, we find the value of $\beta \equiv b /(c R)$ consistent with this replenishment target by solving the equation for m^{*} given in Proposition 2,

$$
\begin{equation*}
\beta \equiv \frac{b}{c R}=\frac{\exp \left[(r+p) m^{*} / c\right]-\left[1+(r+p)\left(m^{*} / c\right)\right]}{(r+p)^{2}} \tag{31}
\end{equation*}
$$

To understand this expression consider two pairs $(M / c, n)$, both on the locus defined by $\xi(\cdot, p)$ for a given value of p. The pair with higher M / c and lower n corresponds to a higher value of β. This is quite simple: agents will economize on trips to the financial intermediary if β is high, i.e. if these trips are expensive relative to the opportunity cost of cash. Hence, data on M / c and n identify p and β. Using data on R for this province-year, we can estimate b / c.

Figure 2 plots the function $\xi(\cdot, p)$ for several values of p, as well as the average value of M / c and n for all households of a given type (i.e. with and without ATM cards) for each province-year in our data (to make the graph easier to read we do not plot different consumption cells for a given province-year-ATM ownership). Notice that 46 percent of province-year pairs for households without an ATM card are below the $\xi(\cdot, 0)$ line, so no parameters in our model can rationalize those choices. The corresponding value for those with an ATM card is only 3.5 percent of the pairs. The values of p required to rationalize the average choice for most province-year pairs for those households without ATM cards are in the range $p=0$ to $p=20$. The corresponding range for those with ATM cards is between $p=5$ and $p=60$. Inspecting this figure we can also see that the observations for households with ATM cards are to the south-east of those for households without ATM cards. Equivalently, we can see that for the same value of p, the observations that correspond to households with ATM tend to have lower values of β.

We now show that the pair of observables W / M and n also allows on to identify the model structural parameters. As in the previous case, consider an agent that follows an arbitrary policy of replenishing her cash to a return level m^{*}, either as her cash balances hit zero, or at the time of chance meeting with the intermediary. Again, to simplify consider the case of $\pi=0$. Using the cash flow identity $n W=c$ and (30) yields

$$
\begin{equation*}
\frac{W}{M}=\delta(n, p) \equiv\left[\frac{1}{p / n}+\frac{1}{\log (1-p / n)}\right]^{-1}-\frac{p}{n} \tag{32}
\end{equation*}
$$

Figure 2: Theory vs. data (province-year mean): $M / c, n$
Theory (solid lines) vs Data (dots)
dot size $=\#$ obs, empty $=\mathrm{HHs}$ w/o ATM, filled $=\mathrm{HHs}$ w/ATM

for $n \geq p$, and $p \geq 0$. Some algebra shows that

$$
\delta(n, 0)=2, \delta(n, n)=0, \frac{\partial \delta(n ; p)}{\partial p}<0, \frac{\partial \delta(n ; p)}{\partial n}>0
$$

Notice that the ratio W / M is a function only of the ratio p / n. The interpretation of this is clear: for $p=0$ we have $W / M=2$, as in the BT model. This is the highest value that can be achieved by the ratio W / M. As p increases for a fixed n, the replenishing level of cash m^{*} / c must be smaller, and hence the average withdrawal becomes smaller relative the average cash holdings M / c. Indeed, as n converges to p-a case where almost all the withdrawals are due to chance meetings with the intermediary-, then W / M goes to zero. As in the previous case, given a pair of observations on W / M and n, we can use δ to solve for the corresponding p. Then, using the values of ($W / M p, n$) we can find a value of $(b / c) / R$ to rationalize the choice of W / M. To see how, notice that given $W / M, M / c$, and p / n, we can find the value of m^{*} / c using $\frac{W}{M}=\frac{m^{*} / c}{M / c}-\frac{p}{n}$ (equation 23). With the values of $\left(m^{*} / c, p\right)$ we can find the unique value of $\beta=(b / c) / R$ that rationalizes this choice, using (31). Thus, data on W / M and n identifies p. The implied values of p needed to
rationalize these data are similar to the ones found using the information of M / c and n displayed in Figure 2.

Finally notice that the ratio \underline{M} / M can also be used to identify the model structural parameters. In (24) we have derived that $p=n \quad(\underline{M} / M)$. We use this equation as a way to estimate p. If \underline{M} is zero, then p must be zero. Hence the fact that $\underline{M} / M>0$, documented in Table 1, is an indication that our model requires $p>0$. We can readily use this equation to estimate p since we have data on both n and (\underline{M} / M). According to this formula a large value of p is consistent with either a large ratio of cash at withdrawals, \underline{M} / M, or a large number of withdrawals, n. Also, for a fixed p, different combinations of n and \underline{M} / M that give the same product are due to differences in $\beta=(b / c) / R$. If β is high, then agents economize on the number of withdrawals and keep larger cash balances (see the Online Appendix L9 for more documentation).

We have discussed how data on any of the pairs $(M / c, n),(W / M, n)$ or $(\underline{M} / M, n)$ identify p and β. Of course, if the data had been generated by the model, the three ways of estimating (p, β) would produce identical estimates. In other words, the model is overidentified. We will use this idea to report how well the model fits the data or, more formally, to test for the overidentifying restrictions in the next section. Considering the case of $\pi>0$ makes the expressions more complex, but, at least qualitatively, does not change any of the properties discussed above. Moreover, since the inflation rate in our data set is quite low the expressions for $\pi=0$ approximate the relevant range for $\pi>0$ very well.

5.2 Estimation results

We estimate the model for each province-year-type of household and report statistics of the estimates in Table 3. For each year we use the inflation rate corresponding to the Italian CPI for all provinces and fix the real return r to be 2% per year. The first two panels in the table report the mean, median, 95th and 5th percentile of the estimated values for p and b / c across all province-year. As explained above, our procedure estimates $\beta \equiv \frac{b}{c R}$, so to obtain b / c we compute the opportunity cost R as the sum of the nominal interest rate and the probability of cash being stolen described in Table 2. The parameter p gives the average number of free withdrawals opportunities per year. The parameter $b / c \cdot 100$ is the cost of a withdrawal in percentage of the daily cash-expenditure. We also report the mean value of the t statistics for these parameters. The asymptotic standard errors are computed by
solving for the information matrix.

Table 3: Summary of $(p, b / c)$ estimates across province-year-types

	Household w/o ATM		Household w. ATM	
	Cash expenditure ${ }^{a}$:	Low	High	Low
High				
	Parameter			
Mean	6.8	8.7	20	25
Median	5.6	6.2	17	20
95 $5^{\text {th }}$ percentile	17	25	49	61
$5^{\text {th }}$ percentile	1.1	0.8	3	4
Mean t-stat	2.5	2.2	2.7	3.5
	Parameter	b/c (in $\%$ of daily cash expenditure)		
Mean	10.5	5.5	6.5	2.1
Median	7.3	3.6	3.5	1.1
95 ${ }^{\text {th }}$ percentile	30	17	24	7
$5^{\text {th }}$ percentile	1.5	0.4	0.6	0.3
Mean t-stat	2.8	2.5	2.4	3.3
\# prov-year-type estimates	504	505	525	569
	Goodness of fit:	Likelihood Criterion	$F(\theta, x) \sim \chi^{2}$	

\% province-years-type where:

$-F(\theta, x)<4.6^{b}$	64%	57%
\# prov-year-type estimates	1,539	1,654
Avg. \# of households per estimate	10.7	13.5

Notes:- ${ }^{a}$ Low (high) denotes the lowest (highest) third of households ranked by cash expenditure c. - ${ }^{b}$ Percentage of province-year-type estimates where the overidentifying restriction test is not rejected at the 10 per cent confidence level.

The results reported in the first two columns of the table concern households who posses an ATM card, shown separately for those in the lowest and highest cash expenditure levels. The corresponding statistics for households without ATM card appear in the third and fourth columns. The results in this table confirm the graphical analysis of figure 2 discussed above: the median estimates of p are just where one would locate them by the figures. The difference between the 95 th and the 5th percentiles indicates that there is a tremendous amount of heterogeneity across province-years. The relatively low values for the mean t-statistics reflect the fact that the number of households used in each estimation cell is small. Indeed, in the Online Appendix I we consider different levels of aggregation and data selection. In all the cases considered we find very similar values for the average of the parameters p and b / c, and we find that when we do not disaggregate the data so much the
average t-stats increase roughly with the (square root) of the average number of observations per cell. ${ }^{12}$

Table 3 shows that the average value of b / c across all province-year-type is between 2 and 10 per cent of daily cash consumption. Fixing an ATM ownership type, and comparing the average estimates for p and b / c across cash consumption cells we see that there are small differences for p, but that b / c is substantially smaller for the those in the highest cash consumption cell. Indeed, combining this information with the level of cash consumption that corresponds to each cell we estimate b to be uncorrelated with cash consumption levels, as documented in Section 6. Using information from Table 1 for the corresponding cash expenditure to which these percentages refer, the mean values of b for households with and without ATM are 0.8 and 1.7 euros at year 2004 prices, respectively. For comparison, the cash withdrawal charge for own-bank transactions was zero, while the average charge for other-bank transactions, which account for less than 20% of the total, was 2.0 euros. ${ }^{13}$

Next we discuss three different types of evidence that indicate a successful empirical performance of the model. First, Table 3 shows that households with ATM cards have a higher mean and median value of p and correspondingly lower values of b / c. The comparison of the $(p, b / c)$ estimates across province-year-consumption cells shows that 88 percent of the estimated values of p are higher for households with ATM, and for 82 percent of the estimated values of b / c are lower. Also, there is evidence of an effect at the level of the province-year-consumption cell, since we find that the correlation between the estimated values of b / c for households with and without ATM across province-year-consumption cell is 0.69 . The same statistic for p is 0.3 . These patterns are consistent with the hypothesis that households with ATM cards have access to a more efficient transactions system, and that the efficiency of the transaction technology in a given province-year-consumption cell is correlated for both ATM and non-ATM adopters. We find this result reassuring since we have estimated the model for ATM holders and non-holders and for each province-year-consumption cell separately.

Second, in the third panel of Table 3 we report statistics on the goodness of fit of the model. For each province-year-type cell, under the assumption of normally

[^8]distributed errors, or as an asymptotic result, the minimized likelihood criterion is distributed as a $\chi_{(2)}^{2}$. According to the statistic reported in the first line of this panel, in more than half of the province-years-consumption cells the minimized likelihood criterion is smaller than the critical value corresponding to a 10% probability confidence level.

Table 4: Correlations between $\left(p, \frac{b}{c}, V(0)\right)$ estimates and financial diffusion indices

	Household with ATM		
	p	b / c	$V(0)$
Bank-branch per 1,000 head	0.08	-0.19	-0.18
ATM per 1,000 head	0.10	-0.27	-0.27
	Household with No ATM		
	p	b / c	$V(0)$
Bank-branch per 1,000 head	0.00^{a}	-0.26	-0.20

Notes: All variables are measured in logs. The sample size is 1,654 for HH w. ATM and 1,539 for HH without ATM. P-values for the null Hp. of a zero coefficient (not reported), computed assuming that the estimates are independent, are smaller than 1 per cent with the exception of the one denoted by a.

Third, in Table 4 we compute correlations of the estimates of the technological parameters $p, b / c$ and the cost of financing cash purchases $V(0)$ with indicators that measure the density of financial intermediaries: bank branches and ATMs per resident that vary across province and years. A greater financial diffusion raises the chances of a free withdrawal opportunity (p) and reduces the cost of contacting an intermediary (b / c). Hence we expect $V(0)$ to be negatively correlated with the diffusion measure. We find that the estimates of b / c and $V(0)$ are negatively correlated with these measures, and that the estimated p are positively correlated, though the latter correlation is smaller. This finding is reassuring since the indicators of financial diffusion were not used in the estimation of $(p, b / c)$.

5.3 Estimates using individual household data

This section explores an alternative estimation strategy based on individual household observations. It is assumed that the four variables ($M / c, W / M, n, \underline{M} / M$) are observed with classical measurement error, and that the parameters b / c and p differ for each households, and are given by a simple function of household level variables. In particular, let X_{i} be a k dimensional vector containing the value of households i covariates. We assume that for each household i the values of b / c and
p are given by $(b / c)_{i}=\exp \left(\lambda_{b / c} \cdot X_{i}\right)$ and $p_{i}=\exp \left(\lambda_{p} \cdot X_{i}\right)$, where λ_{p} are $\lambda_{b / c}$ are the parameters to be estimated. The vector X_{i} contains $k=8$ covariates: a constant, calendar year, the household cash expenditure (in logs), an ATM dummy, a measure of the financial diffusion of Bank Branches and ATM terminals at the province level, a credit card dummy, the income level per adult (in logs), and the household size.

Assuming that the measurement error is independent across households and variables, the maximum likelihood estimate of λ minimizes

$$
F(\lambda, X) \equiv \sum_{j=1}^{4} \frac{1}{\sigma_{j}^{2}} \sum_{i=1}^{N}\left[z_{i}^{j}-\zeta^{j}\left(\theta\left(\lambda, X_{i}, R_{i}\right)\right)\right]^{2}
$$

where, as above, z_{i}^{j} is the \log of the j-th observable for household $i, \zeta^{j}(\theta)$ is the model solution given the parameters θ and N is the number of households in the sample. ${ }^{14}$ The estimation proceeds in two steps. We first estimate σ_{j}^{2} for each of the 4 variables by running a regression at the household level of each of the 4 variables against the household level X_{i}. We then minimize the likelihood criterion F taking the estimated $\hat{\sigma}_{j}^{2}$ as given. The asymptotic standard errors of λ are computed by inverting the information matrix.

Table 5 presents the estimates of λ. The first column displays the point estimates of λ_{p} and the fourth the point estimates for $\lambda_{b / c}$. The number in parenthesis next to the point estimates are the corresponding t-stats. To compare the results with the benchmark estimates of Section 5.2 the table also includes the coefficients of two regressions, under the labels $\bar{\lambda}_{p}$ and $\bar{\lambda}_{b / c}$. The dependent variables of these regression are the benchmark estimates of p and b / c, and hence they are the same for all households in a cell -i.e. combination of a year, province, ATM card ownership, and third-tile cash consumption-, the right hand side variables are the cell-means of the X_{i} covariates.

We now discuss the estimation results. The estimates of p and b / c that correspond to a household with the average values of each of the X_{i} variables and our estimated parameters λ_{p} and $\lambda_{b / c}$ are, respectively, 11 and 5.2 percent. These two values are similar to the estimates reported in Table 3 (in particular they are close

[^9]Table 5: Household level $(p, b / c)$ estimates

X_{i} covariates						
		t-stat	$\bar{\lambda}_{p}$	$\lambda_{b / c}$	t-stat	$\bar{\lambda}_{b / c}$
constant	-87.7	$(-1,370)$	-87.7	225	$(3,340)$	217
year	0.04	(0.67)	0.04	-0.11	(-1.64)	-0.11
log cash expenditure	0.04	(0.03)	-0.01	-0.96	(-0.62)	-0.97
ATM dummy	1.24	(64.70)	1.28	-0.66	(-32.7)	-0.75
log ATM and BB density	-0.15	(-1.30)	-0.16	-0.37	(-2.8)	-0.34
credit card dummy	0.30	(2.96)	0.21	-0.01	(-0.05)	0.08
log income	0.25	(4.18)	0.30	0.26	(4.05)	0.33
log HH size	0.35	(4.05)	0.28	0.26	(2.74)	0.27

Notes: Estimates for $p, b / c$ under the assumption that $(b / c)_{i}=\exp \left(\lambda_{b / c} X_{i}\right)$ and $p_{i}=$ $\exp \left(\lambda_{p} X_{i}\right) . X_{i}$ is at the household level and $(M / c, W / M, n, \underline{M} / M)$ measured with error.
to the median across cells). The mean estimate for p, greater than zero, supports the introduction of this dimension of the technology, as opposed to having only the BT parameter b / c. The estimates of both ATM dummies are economically important, and statistically significant. Households with an ATM card are estimated to have a value of p approximately three times bigger $(\exp (1.24) \approx 3.46)$ and a value of b / c about half $(\exp (-0.66) \approx 0.52)$ relative to households without ATM cards. There is a small positive time trend on p and a larger negative time trend on b / c, although neither estimate is statistically significant. The value of b / c is smaller in locations with higher density of ATM or Bank Branches with an elasticity of -0.37 borderline statistically significant, but this measure has a small negative effect on p. ${ }^{15}$ The credit card dummy estimates suggest that the credit card has no effect on b / c and a small positive borderline significant effect on p. A possible interpretation for the effect on p is that households with a credit card have a better access to financial intermediaries. We find a positive effect of the \log of the household size (number of adults) in both p and b / c. This result is hard to interpret. If the withdrawal technology available to a households, summarized by $(p, b / c)$, had increasing (decreasing) returns with respect to household size, we would have expected the p and b / c to vary in opposite way as the household size changed. The coefficient of cash consumption indicates a small effect on p and an elasticity with respect to b / c of almost negative one (-0.96), although it is imprecisely estimated (this elasticity

[^10]is very close to the one estimated using cell level aggregated data). The income per adult has a positive elasticity of about 0.25 for both p and b / c. We interpret the effect of income per capita on p as reflecting better access to financial intermediaries, and with respect to b / c as measuring a higher opportunity cost of time. The combination of the effects of income per capita and cash expenditures yields the following important corollary: the value of b is estimated to be independent of the level of cash expenditure of the household, implying a cash expenditure elasticity of money demand approximately of one half provided that the opportunity cost of time is the same.

We conclude by discussing a goodness of fit statistics. The value of the minimized likelihood criterion is $F=62,804$, which equals half of the log-likelihood minus a constant not involving λ. Under the assumption of independent measurement error F is distributed as a χ^{2} with $N \times 4-2 \times k=54,260$ degrees of freedom in a large sample. ${ }^{16}$ The minimized value for F reflects a relatively bad fit of the model. A χ^{2} distribution with 54,260 degrees of freedom gives essentially zero probability of obtain such a large value. This is to be compared with the model estimated using cell aggregated data, which passed the over-identifying restrictions test for more than half of the cells (see Table 3).

6 Implications for money demand

In this section we study the implications of our findings for the time patterns of technology and for the expenditure and interest elasticity of the demand for currency.

We begin by documenting the trends in the withdrawal technology, as measured by our estimates of p and b / c. Table 6 shows that p has approximately doubled, and that (b / c) has approximately halved over the sample period. In words, our point estimates indicate that the withdrawal technology has improved through time. ${ }^{17}$ The table also reports $\hat{b} / R \equiv(b / c) p^{2} / R$, which as shown in Proposition 8 and illustrated in Figure 1 determines the elasticity of the money demand and the strength of the precautionary motive. In particular, the proposition implies that W / M and \underline{M} / M depend only on \hat{b} / R. The upward trend in the estimates of \hat{b} / R, which is mostly a reflection of the downward trend in the data for W / M, implies that the interest rate elasticity of the money demand has decreased through time.

[^11]Table 6: Time series pattern of estimated model parameters

	1993	1995	1998	2000	2002	2004	All years
Households with ATM							
p	17	16	20	24	22	33	22
$b / c \times 100$	6.6	5.7	2.8	3.1	2.8	3.5	4.0
\hat{b} / R	1.1	1.4	1.9	5.6	3.0	5.8	3.2
Households without ATM							
p	6	5	8	9	8	12	8
$b / c \times 100$	13	12	6.2	4.9	4.5	5.7	7.7
\hat{b} / R	0.2	0.2	0.4	0.4	0.4	1.6	0.5
$R \times 100$	8.5	7.3	4.3	3.9	3.2	2.9	5.0

R and p are annual rates, c is the daily cash expenditure rate, and for each province-yeartype $\hat{b} / R=b \cdot p^{2} /(365 \cdot c \cdot R)$, which has no time dimension. Entries in the table are sample means across province-type in a year.

By Proposition 8 , the interest rate elasticity $\eta(\hat{b} / R)$ implied by those estimates is smaller than $1 / 2$, the BT value. Using the mean of \hat{b} / R reported in the last column of Table 6 to evaluate the function η in Figure 1 yields values for the elasticity equal to 0.43 and 0.48 for households with and without ATM card, respectively. Even for the largest values of \hat{b} / R recorded in Table 6 , the value of η remains above 0.4. In fact, further extending the range of Figure 1 it can be shown that values of \hat{b} / R close to 100 are required to obtain an elasticity η smaller than 0.25 . For such high values of \hat{b} / R, the model implies \underline{M} / M of about 0.99 and W / M below 0.3 , values reflecting much stronger precautionary demand for money than those observed for most Italian households. On the other hand, studies using cross sectional household data, such as Lippi and Secchi (2007) for Italian data, and Daniels and Murphy (1994) using US data, report interest rate elasticities smaller than 0.25.

A possible explanation for the difference in the estimated elasticities is that the cross sectional regressions in the studies mentioned above fail to include adequate measures of financial innovations, and hence the estimate of the interest rate elasticity is biased towards zero. To make this clear, in Table 7 we estimate the interest elasticity of M / c by running two regressions for each household type where M / c is the model fitted value for each province-year-consumption type. The first regression includes the \log of $p, b / c$ and R. According to Proposition $8,(M / c) p$ has elasticity
$\eta(\hat{b} / R)$ so that we approximate it using a constant elasticity:

$$
\begin{equation*}
\log M / c=-\log p+\eta(\log (b / c)+2 \log (p))-\eta \log (R) . \tag{33}
\end{equation*}
$$

The regression coefficient for η estimated from (33) gives virtually the same value obtained from Figure 1. Since the left hand side of the equation uses the values of M / c produced by the model using the estimated $p, b / c$ and no measurement error, the only reason why the regression R^{2} does not equal one is that we are approximating a non-linear function with a linear one. Yet the R^{2} is pretty close to one because the elasticity, for this range of parameters, is close to constant. To estimate the size of the bias due to the omission of the variables $\log p$ and $\log b / c$, the second regression includes only $\log R$. The regression coefficient for $\log R$ is an order of magnitude smaller than the value of η, pointing to a large omitted variable bias: the correlation between $(\log (b / c)+2 \log (p))$ and $\log R$ is 0.12 and 0.17 for households with and without ATM card, respectively. Interestingly, the regression coefficients on $\log R$ estimated by omitting the \log of p and b / c are similar to the values that are reported in the literature mentioned above. Replicating the regressions of Table 7 using the actual, as opposed to the fitted, value of M / c as a dependent variable yields very similar results (not reported here).

Table 7: A laboratory experiment on the interest elasticity of money demand

Dependent variable: $\log (M / c)$	Household w. ATM		Household w/o ATM	
$\log (p)$	-0.05	-	-0.01	-
$\log (b / c)$	0.45	-	0.48	-
$\log (R)$	-0.44	-0.07	-0.48	-0.04
R^{2}	0.985	0.01	0.996	0.004
$\#$ observations (cells)	1,654	1,654	1,539	1,539

Notes: All regressions include a constant.

We now estimate the expenditure elasticity of the money demand. An advantage of our data is that we use direct measures of cash expenditures (as opposed to income or wealth). ${ }^{18}$ By Proposition 8 , the expenditure elasticity is

$$
\begin{equation*}
\frac{\partial \log M}{\partial \log c}=1+\eta(\hat{b} / R) \frac{\partial \log b / c}{\partial \log c} . \tag{34}
\end{equation*}
$$

For instance, if the ratio b / c is constant across values of c then the elasticity is one;

[^12]alternatively, if b / c decreases proportionately with c the elasticity is $1-\eta$. Using the variation of the estimated b / c across time, locations and household groups with different values of c, we estimate the elasticity of b / c with respect to c equal to -0.82 and -1.01 for households without and with ATM card, respectively. Using the estimates for η we obtain that the mean expenditure elasticity is $1+0.48 \times(-0.82)=$ 0.61 for households without ATM, and 0.56 for those with.

7 Cost of inflation and Benefits of ATM card

We use the estimates of ($p, \frac{b}{c}$) to quantify the deadweight loss for the society and the cost for households of financing cash purchases and to discuss the benefits of ATM card ownership. In Section 4.5 we showed that the loss is $\ell=R\left(m^{*}-M\right)$ and the household cost is $v=R m^{*}$. In the first panel of Table 8 we display the average of ℓ and of ℓ / c for each year. In 1993 the loss is 24 euros or 0.99 days of cash purchases.

Table 8: Deadweight loss ℓ and household cost v of cash purchases

	1993	1995	1998	2000	2002	2004	mean
ℓ (2004 euros, per household)	24	23	11	11	10	10	15
ℓ / c (in days of cash purchases)	0.99	0.85	0.46	0.42	0.39	0.40	0.59
ℓ / c under 1993 technology	0.99	0.90	0.72	0.71	0.67	0.66	0.78
v (2004 euros, per household)	51	49	25	25	22	25	33
$\begin{aligned} & v / c \text { : avg. group / avg. all groups } \\ & - \text { high } c \text { (top third ranked by } c \text {) } \\ & - \text { low } c \text { (bottom third ranked by } c \text {) } \end{aligned}$		w. ATM 0.61 1.11			/o AT 1.00 1.48		

Note: ℓ and v are averages weighted by the number of household type, and measured as annual flows. The average value of v / c across all groups is 1.31 days of cash purchases.

To put this quantity in perspective we relate it to the one in Lucas (2000), obtained by fitting a $\log -\log$ money demand with an interest elasticity of $1 / 2$, which corresponds to the BT model. Figure 5 in his paper plots the welfare cost of inflation, denoted by w (and defined as our ℓ), which for an opportunity cost R of 5%, is about 1.1% of US GDP. At the same R our deadweight loss ℓ is about 14 times smaller, or 0.08% of the annual income for Italian households y ($c \cdot 365$ accounts for about half of annual Italian GDP, $\ell / y=0.59 /(2 \cdot 365) \cong 0.08 \%)$. There are two reasons for this difference. The first is that for a given cost R and money demand M / c, the deadweight loss in our model is smaller than in BT (see Section 4.5). For instance
for $R=0.05$ and $\hat{b} / R=1.8$, which is about our sample average, w / ℓ is about 1.6. The second is that the welfare cost is proportional to the level of the money demand: multiplying M / y by a constant, multiplies ℓ / y by the same constant. In particular, Lucas fits US data with a much higher value of M / y than the one we use for Italy: 0.225 versus 0.026 at $R=0.05$. This is because while we focus on currency held by households, he uses the stock of M1, an aggregate much larger than ours (including cash holdings of non-residents and firms). ${ }^{19}$

Table 8 also shows that by the end of the sample the welfare loss is about 40% smaller than its initial value. The reduction is explained by decreases in the opportunity cost R and by advances in the withdrawal technology, i.e. decreases in b / c and increases in p. To account for the contribution of these two determinants on the reduction of the deadweight loss we compute a counterfactual. For each province-type of household we freeze the values of p and b / c at those estimated for 1993, and compute ℓ / c for the opportunity cost R and inflation rates π corresponding to the subsequent years. We interpret the difference between the value of ℓ / c in 1993 and the value corresponding to subsequent years as the increase in welfare due to the Italian disinflation. We find that the contributions of the disinflation and of technological change to the reduction in the welfare loss are of similar magnitude (see the Online Appendix L10 for details).

The bottom panel of Table 8 examines the cross section variation in the cost v / c. Comparing the values across columns shows that the cost is lower for households with ATM cards, reflecting their access to a better technology. Comparing the values across rows shows that the cost is lower for households with higher consumption purchases c, reflecting that our estimates of b / c are uncorrelated with c.

We use v / c to quantify the benefits associated to the ownership of the ATM card. Under the maintained assumption that b is proportional to consumption within each year-province-consumption group type, the value of the benefit for an agent without ATM card, keeping cash purchases constant, is defined as: $v_{0}-v_{1} \frac{c_{0}}{c_{1}}=R\left(m_{0}^{*}-m_{1}^{*} \frac{c_{0}}{c_{1}}\right)$, where the $1 / 0$ subscript indicates ownership (lack of) ATM card. The benefit is thus computed assuming that the only characteristic that changes when comparing costs is ATM ownership (i.e. c is kept constant). ${ }^{20}$ Table 9 shows that the mean benefit of ATM card ownership ranges between 15 and 30 euros per year in the early sample

[^13]and that it is smaller, between 4 and 13 euros, in 2004. The population weighted average of the benefits across all years and types is 17 euros (not reported in the table). The downward trend in the benefits is due to both the disinflation and the improvements in the technology, as discussed above. Table 9 also shows that the benefit is higher for household in the top third of the distribution of cash expenditure. This mainly reflects the different level of c of this group, since the benefit per unit of c is roughly independent of its level. The bottom panel of Table 9 shows that the benefit associated to ATM ownership is estimated to be positive for over 91% of the province-year-type estimates. Two statistical tests are presented: the null hypothesis that the gain is positive cannot be rejected (at the 10% confidence level) in 99.5% of our estimates. Conversely, we are able to reject the null hypothesis that the benefit is negative in about 64% of the cases. Since our estimates of the parameters for households with and without ATM are done independently, we think that the finding that the estimated benefit is positive for most province-years provides additional support for the model.

Table 9: Annual benefit of ATM ownership (in euros at 2004 prices)

	1993	1995	1998	2000	2002	2004
	Top third of households ranked by c					
Mean across province years	29	35	17	15	13	13
	Bottom third of households ranked by c					
Mean across province years	17	14	6.6	5.5	3.6	4.4

Point estimate benefit $>0 \quad H_{o}$: benefit $>0 \quad H_{o}$: benefit <0 91% of cells rejected 0.5% of cells rejected 64% of cells
Note: The confidence level for the test of hypothesis is 10%. The test is run on each of about 1,500 cells.

Two caveats are noteworthy about the above counterfactual exercise. First, the estimated benefit assumes that within a given province-year-consumption group households without ATM card differ from those with a card only in terms of the withdrawal technology that is available to them $(p, b / c)$. In future work we plan to study the household choice of whether or not to have an ATM card, which will be informative on the size of the estimates' bias. The second caveat is that ATM cards provide other benefits, such as access to banking information and electronic funds transfers for retail transactions (EFTPOS payments), where the latter is important in Italy. In spite of these caveats, our estimates of the annual benefit of ATM card ownership are close to annual cardholder fees for debit cards, which vary from 10
to 18 euros for most Italian banks over 2001-2005 (see page 35 and Figure 3.8.2 in Retail Banking Research Ltd., 2005).

8 Conclusions

This paper proposes a simple, tightly parametrized, extension of the classic BaumolTobin model to capture important empirical regularities that characterize the households' cash management. We now discuss some extensions of the model that we plan to develop fully in future.

Our model has some unrealistic features: all random withdrawals are free, and all the cash expenditures are deterministic. Two variations of our model that address these issues are sketched below. The first one introduces an additional parameter, f, denoting a fixed cost for withdrawals upon the random contacts with the financial intermediary. The motivation for this is that when random withdrawals are free the model has the unrealistic feature that agents withdraw every time they match with an intermediary, making several withdrawals of extremely small size. Instead the model with $0<f<b$ has a strictly positive minimum withdrawal size. In the Online Appendix F we use a likelihood ratio test to compare the fit of the $f>0$ model with our benchmark $f=0$ model. It is shown that the fit does not improve much. Additionally, we show that the parameter f is nearly not identified. To understand the intuition behind this result notice that the BT model is obtained for $p=0, f=0$ and $b>0$ or, equivalently, for $f=b>0$ and $p>0$. More data would be needed to estimate $f>0$, such as information on the minimum withdrawal size. We left this exploration for future work.

The second variation explores the consequences of assuming that the cash expenditure has a random component. One interesting result of this model is that it may produce $W / M \geq 2$, or equivalently $M<\mathbb{E}(c) / 2 n$, where $\mathbb{E}(c)$ stands for expected cash consumption per unit of time. These inequalities are indeed observed for a small number of households, especially those without ATM cards (see Table 1 and Figure 2). However, this model is less tractable than our benchmark model, and it is inconsistent with the large number of withdrawals, and the values of W / M, that characterize the behavior of most households in the sample. Although in the Online Appendices D and E we solved for the dynamic programming problem for both variations, as well as for the implied distribution of the statistics for cash balances and withdrawals, we do not develop them further here to keep the discussion as simple as possible. Moreover, as briefly discussed, while the models incorporate
some realistic features of cash management, they deliver only a modest improvement on the fit of the statistics that we focus on in this paper.

Our model, as well as the BT model, takes as given the household cash expenditure. We think that our model should work well as an input for a cash-credit model and view the modeling of this choice as an important extension left for future work. Additionally, new household level data sets with information on cash management similar to the one we have used, as well as detailed diary information on how different purchases were paid (cash, credit card, check, etc.) will allow careful quantitative work in this area. ${ }^{21}$

[^14]
References

[1] Attanasio, O., L. Guiso and T. Jappelli, 2002. "The Demand for Money, Financial Innovation and the Welfare Cost of Inflation: An Analysis with Household Data", Journal of Political Economy, Vol. 110, No. 2, pp. 318-351.
[2] Cooley, Thomas and Gary Hansen, 1991. "The Welfare Costs of Moderate Inflations", Journal of Money, Credit and Banking, Vol. 23, No. 3, pp. 483-503.
[3] Constantinides, George M. and Scott F. Richard, 1978. "Existence of Optimal Simple Policies for Discounted-Cost Inventory and Cash Management in Continuous Time", Operations Research, Vol. 26, No. 4, pp. 620-636.
[4] Constantinides, George M., 1976. "Stochastic Cash Management with Fixed and Proportional Transaction Costs", Management Science, Vol. 22, pp. 1320-1331.
[5] Daniels, Kenneth N. and Neil B. Murphy, 1994. "The impact of technological change on the currency behavior of households: an empirical cross section study", Journal of Money, Credit and Banking, Vol. 26 , No. 4, pp. 867-74.
[6] Dotsey, Michael , 1988. "The demand for currency in the United States", Journal of Money, Credit and Banking, Vol. 20, No. 1, pp. 22-40.
[7] European Central Bank, 2006. Blue Book. Payment and securities settlement systems in the european union and in the acceding countries. December.
[8] Frenkel, Jacob A. and Boyan Jovanovic (1980). "On transactions and precautionary demand for money", The Quarterly Journal of Economics, Vol. 95, No. 1, pp. 25-43.
[9] Humphrey, David B., 2004. "Replacement of cash by cards in US consumer payments", Journal of Economics and Business, Vol. 56, Issue 3, pp. 211225.
[10] Lippi, F. and A. Secchi, 2007. "Technological change and the demand for currency: An analysis with household data", CEPR discussion paper No. 6023.
[11] Lucas, Robert E. Jr, 2000. "Inflation and Welfare", Econometrica, Vol. 68(2), 247-74.
[12] Miller, Merton and Daniel Orr, 1966. "A model of the demand for money by firms", Quarterly Journal of Economics, Vol. 80, pp. 413-35.
[13] Porter Richard D. and Ruth A. Judson, 1996. "The Location of US currency: How Much Is Abroad?", Federal Reserve Bulletin, October, pp. 883-903.
[14] Retail Banking Research Ltd., 2005. "Study of the Impact of Regulation 2560/2001 on Bank Charges for National Payments", Prepared for the European Commission, London, September.
[15] Mooslechner, P., H. Stix and K. Wagner, 2006. "How Are Payments Made in Austria? Results of a Survey on the Structure of Austrian Households Use of Payment Means in the Context of Monetary Policy Analysis". Monetary Policy \& the Economy Q2/06, OENB.
[16] Stix, H., 2004. "How do debit cards affect cash demand? Survey data evidence". Empirica, Vol. 31, pp. 93-115.

Appendix

A Proofs for the model with free withdrawals

Proof of Proposition 1. Given two functions G, V satisfying (14) it is immediate to verify that the boundary conditions of the two systems at $m=0$ and $m \geq m^{* *}$ are equivalent. Also, it is immediate to show that for two such functions

$$
m^{*}=\arg \min _{\hat{m} \geq 0} V(\hat{m})=\arg \min _{\hat{m} \geq 0} \hat{m}+G(\hat{m}) .
$$

It only remains to be shown that the Bellman equations are equivalent for $m \in$ $\left(0, m^{* *}\right)$. Using (14) we compute $G^{\prime}(m)=V^{\prime}(m)-1$. Assume that $G(\cdot)$ solves the Bellman equation (7) in this range, inserting (14) and its derivative into (7) gives

$$
\left[r+p_{1}+p_{2}\right] V(m)=V^{\prime}(m)(-c-\pi m)+\left[p_{1}+p_{2}\right] V\left(m^{*}\right)+\left[r+p_{2}+\pi\right] m
$$

Using $R=r+\pi+p_{2}$ and $p=p_{1}+p_{2}$ we obtain the desired result, i.e. (12). The proof that if V solves the Bellman equation for $m \in\left(0, m^{* *}\right)$ so does G defined as in (14) follows from analogue steps.

Proof of Proposition 2. To solve for $V^{*}, m^{*}, m^{* *}$ and $V(\cdot)$ satisfying (11) and (12) we proceed as follows. Lemma 1 solves for $V\left(A, V^{*}\right)$, Lemma 2 gives $A\left(V^{*}\right)$. Lemma 3 shows that $V(\cdot)$ is convex for any $V^{*}>0$. Lemma 4 solves for m^{*} using that, since V is convex, m^{*} must satisfy $V^{\prime}\left(m^{*}\right)=0$. Finally, Lemma 5 gives $V^{*}=V\left(m^{*}\right)$.

Lemmas 2, 4 and 5 yield a system of 3 equations in the 3 unknowns A, m^{*}, V^{*} :

$$
\begin{align*}
A & =\frac{V^{*}(r+p) r+R c /\left(1+\frac{\pi}{r+p}\right)+(r+p)^{2} b}{c^{2}}>0 \tag{35}\\
V^{*} & =\frac{R}{r} m^{*} \tag{36}\\
m^{*} & =\frac{c}{\pi}\left(\left[\frac{R}{A c} /\left(1+\frac{\pi}{r+p}\right)\right]^{-\frac{\pi}{r+p+\pi}}-1\right) \tag{37}
\end{align*}
$$

Replacing equation (36) into (35) yields one equation for A. Rearranging equation (37) we obtain another equation for A. Equating these expressions for A, collecting terms and rearranging yields equation (15) in the main text (which determines m^{*}).

To see that equation (15) has a unique non negative solution rewrite the equation as $f\left(\frac{m^{*}}{c}\right)=g\left(\frac{m^{*}}{c}\right)$ where the function f denotes the left hand side and g the right hand side. For $r+p+\pi>0$, straightforward analysis shows that the solution exists and is unique.

Lemma 1. Let V^{*} be an arbitrary value. The differential equation in (10) for $m \in\left(0, m^{* *}\right)$ is solved by the expression given in (16).

Proof of Lemma 1. Follows by differentiation.

Lemma 2. Let V^{*} be an arbitrary non negative value. Let A be the constant that solves the ODE in Lemma 1. Imposing that this solution satisfies $V(0)=V^{*}+b$ the constant A is given by the expression in (35).

Proof of lemma 2. It follows using the expression in (16) to evaluate $V(0)$.

Lemma 3. Let V^{*} be an arbitrary value. The solution of V given in Lemma 1, with the value of A given in Lemma 2 is a convex function of m.

Proof of Lemma 3. Direct differentiation of V gives

$$
V^{\prime \prime}(m)=\left(\frac{\pi}{r+p}\right)\left(1+\frac{r+p}{\pi}\right) A\left[1+\pi \frac{m}{c}\right]^{-\frac{r+p}{\pi}-2}>0
$$

since, as shown in Lemma 2, $A>0$.

Lemma 4. Let A be an arbitrary value for the constant that indexes the solution of the $O D E$ for V in Lemma 1, given by (16). The value m^{*} that solves $V^{\prime}\left(m^{*}\right)=0$ is given by the expression in (37).

Proof of Lemma 4. Follows using simple algebra.
Lemma 5. The value of V^{*} is $V^{*}=\frac{R}{r} m^{*}$
Proof of Lemma 5. Recall that at $m=m^{*}$ we have $V^{\prime}\left(m^{*}\right)=0$ and $V\left(m^{*}\right)=V^{*}$. Replacing these values in the Bellman equation (10) evaluated at $m=m^{*}$ yields $r V^{*}=R m^{*}$.

Proof of Proposition 3. (i) The function $V(\cdot)$ is derived in Lemma 1, the expression for A in Lemma 2. (ii) The solution for V^{*} comes from Lemma 5.

Proof of Proposition 4. Proof of (i). Let $f(\cdot)$ and $g(\cdot)$ be the left hand side and the right hand side of equation (15) as a function of m^{*}. We know that $f(0)<g(0)$ for $b>0, g^{\prime}(0)=f^{\prime}(0)>0$, and $g^{\prime \prime}\left(m^{*}\right)=0$, and $f^{\prime \prime}\left(m^{*}\right)>0$ for all $m^{*}>0$. Thus there exists a unique value of m^{*} that solves (15). Let $u\left(m^{*}\right) \equiv f\left(m^{*}\right)-g\left(m^{*}\right)+b /(c R)(r+p)(r+\pi+p)$. Notice that $u\left(m^{*}\right)$ is strictly increasing, convex, goes from $[0, \infty)$ and does not depend on $b /(c R)$. Simple analysis of $u\left(m^{*}\right)$ establishes the desired properties of m^{*}.

Proof of (ii). For this result we use that $f\left(\frac{m^{*}}{c}\right)=g\left(\frac{m^{*}}{c}\right)$ is equivalent to

$$
\begin{equation*}
\frac{b}{c R}=\left(\frac{m^{*}}{c}\right)^{2}\left[\frac{1}{2}+\sum_{j=1}^{\infty} \frac{1}{(2+j)!}\left[\Pi_{s=1}^{j}(r+p-s \pi)\right]\left(\frac{m^{*}}{c}\right)^{j}\right] \tag{38}
\end{equation*}
$$

which follows by expanding $\left(\frac{m}{c} \pi+1\right)^{1+\frac{r+p}{\pi}}$ around $m=0$. We notice that $m^{*} / c=$ $\sqrt{\frac{2 b}{c R}}+o(\sqrt{b / c})$ is equivalent to $\left(m^{*} / c\right)^{2}=\frac{2 b}{c R}+[o(\sqrt{b / c})]^{2}+2 \sqrt{\frac{2 b}{c R}} o(\sqrt{b / c})$. Inserting this expression into (38), dividing both sides by $b /(c R)$ and taking the limit as $b /(c R) \rightarrow 0$ verifies our approximation.

Proof of (iii). For $\pi=R-r=0$, using (38) we have

$$
\frac{b}{c r}=\left(\frac{m^{*}}{c}\right)^{2}\left[\frac{1}{2}+\sum_{j=1}^{\infty} \frac{1}{(j+2)!}(r+p)^{j}\left(\frac{m^{*}}{c}\right)^{j}\right]
$$

To see that m^{*} is decreasing in p notice that the RHS is increasing in p and m. That $m^{*}(p+r)$ is increasing in p follows by noting that since $\left(m^{*}\right)^{2}$ decreases as p increases, then the term in square bracket, which is a function of $(r+p) m^{*}$, must increase. This implies that the elasticity of m^{*} with respect to p is smaller than $p /(p+r)$ since

$$
0<\frac{\partial}{\partial p}\left(m^{*}(p+r)\right)=m^{*}+(p+r) \frac{\partial m^{*}}{\partial p}=m^{*}\left[1+\frac{(p+r)}{p} \frac{p}{m^{*}} \frac{\partial m^{*}}{\partial p}\right] \text { thus }
$$

$\frac{(p+r)}{p} \frac{p}{m^{*}} \frac{\partial m^{*}}{\partial p} \geq-1$ or $0 \leq-\frac{p}{m^{*}} \frac{\partial m^{*}}{\partial p} \leq \frac{p}{p+r}$.
Proof of (iv). For $\pi \rightarrow 0$, equation (15) yields: $\exp \left(\frac{m^{*}}{c}(r+p)\right)=1+\frac{m^{*}}{c}(r+p)+$ $(r+p)^{2} \frac{b}{c R}$. Replacing $\hat{b} \equiv(p+r)^{2} b / c$ and $x \equiv m^{*}(r+p) / c$ into this expression, expanding the exponential, collecting terms and rearranging yields:
$x^{2}\left[1+\sum_{j=1}^{\infty} \frac{2}{(j+2)!}(x)^{j}\right]=2 \frac{\hat{b}}{R}$. We now analyze the elasticity of x with respect to R. Letting $\varphi(x) \equiv \sum_{j=1}^{\infty} \frac{2}{(j+2)!}[x]^{j}$, we can write that x solves $x^{2}[1+\varphi(x)]=$ $2 \hat{b} / R$. Taking logs and defining $z \equiv \log (x)$ we get: $z+(1 / 2) \log (1+\varphi(\exp (z)))=$ $(1 / 2) \log (2 \hat{b})-(1 / 2) \log R$. Differentiating z w.r.t. $\log R$:

$$
z^{\prime}\left[1+(1 / 2) \frac{\varphi^{\prime}(\exp (z)) \exp (z)}{(1+\varphi(\exp (z)))}\right]=-1 / 2 \quad \text { or } \quad \eta_{x, R} \equiv-\frac{R}{x} \frac{d x}{d R}=\frac{(1 / 2)}{1+(1 / 2) \frac{\varphi^{\prime}(x) x}{1+\varphi(x)}}
$$

Direct computation gives:

$$
\begin{array}{r}
\frac{\varphi^{\prime}(x) x}{1+\varphi(x)}=\frac{\sum_{j=1}^{\infty} j \frac{2}{(j+2)!}[x]^{j}}{1+\sum_{j=1}^{\infty} \frac{2}{(j+2)!}[x]^{j}}=\sum_{j=0}^{\infty} j \kappa_{j}(x) \text { where } \\
\kappa_{j}(x)=\frac{\frac{2}{(j+2)!}[x]^{j}}{1+\sum_{s=1}^{\infty} \frac{2}{(s+2)!}[x]^{s}} \text { for } j \geq 1, \text { and } \kappa_{0}(x)=\frac{1}{1+\sum_{s=1}^{\infty} \frac{2}{(s+2)!}[x]^{s}} .
\end{array}
$$

so that κ_{j} has the interpretation of a probability. For larger x the distribution κ is stochastically larger since: $\frac{\kappa_{j+1}(x)}{\kappa_{j}(x)}=\frac{x}{(j+3)}$, for all $j \geq 1$ and x. Then we can write
$\frac{\varphi^{\prime}(x) x}{1+\varphi(x)}=E^{x}[j]$, where the right hand side is the expected value of j for each x.
Hence, for higher x we have that $E^{x}[j]$ increases and thus the elasticity $\eta_{x, R}$ decreases. As $x \rightarrow 0$ the distribution κ puts all the mass in $j=0$ and hence $\eta_{x, R} \rightarrow 1 / 2$. As $x \rightarrow \infty$ the distribution κ concentrates all the mass in arbitrarily large values of j, hence $E^{x}[j] \rightarrow \infty$ and $\eta_{x, R} \rightarrow 0$.

Proof of Proposition 5. By the fundamental theorem of Renewal Theory n equals the reciprocal of the expected time between withdrawals, which is distributed as an exponential with parameter p and truncated at time \bar{t}. It is exponential because agents have an arrival rate p of free withdrawals. It is truncated at \bar{t} because agents must withdraw when balances hit the zero bound, where $\bar{t}=(1 / \pi) \log \left(1+\frac{m^{*}}{c} \pi\right)$ is the time to deplete cash balances from m^{*} to zero conditional on not having a free withdrawal opportunity. Simple algebra gives that the expected time between withdrawals is equal to: $\left(1-e^{-p \bar{t}}\right) / p$.

Proof of Proposition 6 . (i) Let $H(m, t)$ be the CDF for m at time t. Define $\psi(m, t ; \Delta) \equiv H(m, t)-H(m-\Delta(m \pi+c), t)$. Thus $\psi(m, t ; \Delta)$ is the fraction of agents with money in the interval $[m, m-\Delta(m \pi+c))$ at time t, and let h :

$$
\begin{equation*}
h(m, t ; \Delta)=\frac{\psi(m, t ; \Delta)}{\Delta(m \pi+c)} \tag{39}
\end{equation*}
$$

so that $\lim h(m, t ; \Delta)$ as $\Delta \rightarrow 0$ is the density of H evaluated at m at time t. In the discrete time version of the model with period of length Δ the law of motion of cash implies:

$$
\begin{equation*}
\psi(m, t+\Delta ; \Delta)=\psi(m+\Delta(m \pi+c), t ; \Delta)(1-\Delta p) \tag{40}
\end{equation*}
$$

Assuming that we are in the stationary distribution $h(m, t ; \Delta)$ does not depend on t, so we write $h(m ; \Delta)$. Inserting equation (39) in (40), substituting $h(m ; \Delta)+$ $\frac{\partial h}{\partial m}(m ; \Delta)[\Delta(m \pi+c)]+o(\Delta)$ for $h(m+\Delta(m \pi+c) ; \Delta)$ canceling terms, dividing by Δ and taking the limit as $\Delta \rightarrow 0$, we obtain (20). The solution of this ODE is $h(m)=1 / m^{*}$ if $p=\pi$ and $h(m)=A\left[1+\pi \frac{m}{c}\right]^{\frac{p-\pi}{\pi}}$ for some constant A if $p \neq \pi$. The constant A is chosen so that the density integrates to 1 , so that $A=1 /\left\{\left(\frac{c}{p}\right)\left(\left[1+\frac{\pi}{c} m^{*}\right]^{\frac{p}{\pi}}-1\right)\right\}$.
(ii) We now show that the distribution of m that corresponds to a higher value of m^{*} is stochastically higher. Consider the CDF $H\left(m ; m^{*}\right)$ and let $m_{1}^{*}<m_{2}^{*}$ be two values for the optimal return point. We argue that $H\left(m ; m_{1}^{*}\right)>H\left(m ; m_{2}^{*}\right)$ for all $m \in\left[0, m_{2}^{*}\right)$. This follows because in $m \in\left[0, m_{1}^{*}\right]$ the densities satisfy

$$
\frac{h\left(m ; m_{2}^{*}\right)}{h\left(m ; m_{1}^{*}\right)}=\left(\left[1+\pi \frac{m_{1}^{*}}{c}\right]^{\frac{p}{\pi}}-1\right) /\left(\left[1+\pi \frac{m_{2}^{*}}{c}\right]^{\frac{p}{\pi}}-1\right)<1
$$

In the interval $\left[m_{1}^{*}, m_{2}^{*}\right)$ we have: $H\left(m ; m_{1}^{*}\right)=1>H\left(m ; m_{2}^{*}\right)$.

Proof of Proposition 7. We first show that if $p^{\prime}>p$, then the distribution associated with p^{\prime} stochastically dominates the one associated with p. For this we use four properties. First, equation (19) evaluated at $m=0$ shows that $h(0 ; p)$ is decreasing in p. Second, since $h(\cdot ; p)$ and $h\left(\cdot ; p^{\prime}\right)$ are continuous densities, they integrate to one, and hence there must be some value \tilde{m} such that $h\left(\tilde{m} ; p^{\prime}\right)>$ $h(\tilde{m} ; p)$. Third, by the intermediate value theorem, there must be at least one $\hat{m} \in\left(0, m^{*}\right)$ at which $h(\hat{m} ; p)=h\left(\hat{m} ; p^{\prime}\right)$. Fourth, note that there is at most one such value $\hat{m} \in\left(0, m^{*}\right)$. To see why, recall that h solves $\frac{\partial h(m)}{\partial m}=\frac{(p-\pi)}{(\pi m+c)} h(m)$ so that if $h(\hat{m}, p)=h\left(\hat{m}, p^{\prime}\right)$ then $\frac{\partial h\left(\hat{m} ; p^{\prime}\right)}{\partial m}>\frac{\partial h(\hat{m}, p)}{\partial m}$. Summarizing: $h(m ; p)>h\left(m ; p^{\prime}\right)$ for $0 \leq m<\hat{m}, h(\hat{m} ; p)=h\left(\hat{m} ; p^{\prime}\right)$, and $h(m ; p)<h\left(m ; p^{\prime}\right)$ for $\hat{m}<m \leq m^{*}$. This establishes that $H\left(\cdot ; p^{\prime}\right)$ is stochastically higher than $H(\cdot ; p)$. Clearly this implies that M / m^{*} is increasing in p.

Finally, we obtain the expressions for the two limiting cases. Direct computation yields $h(m)=1 / m^{*}$ for $p=\pi$, hence $M / m^{*}=1 / 2$. For the other case, note that

$$
\frac{1}{h\left(m^{*}\right)}=\frac{c}{p} \frac{\left[1+\pi \frac{m^{*}}{c}\right]^{\frac{p}{\pi}}-1}{\left[1+\pi \frac{m^{*}}{c}\right]^{\frac{p}{\pi}-1}}=\frac{c}{p}\left[1+\pi \frac{m^{*}}{c}\right]\left(1-\frac{1}{\left[1+\pi \frac{m^{*}}{c}\right]^{\frac{p}{N}}}\right)
$$

hence $h\left(m^{*}\right) \rightarrow \infty$ for $p \rightarrow \infty$. Since h is continuous in m, for large p the distribution of m is concentrated around m^{*}. This implies that $M / m^{*} \rightarrow 1$ as $p \rightarrow \infty$.

Proof of Proposition 8.

Let $x \equiv m^{*}(r+p) / c$. Equation (15) for $\pi=0$ and $r=0$, shows that the value of x solves: $e^{x}=1+x+\hat{b} / R$. This defines the increasing function $x=\gamma(\hat{b} / R)$. Note that $x \rightarrow \infty$ as $\hat{b} / R \rightarrow \infty$ and $x \rightarrow 0$ as $\hat{b} / R \rightarrow 0$.

To see how the ratio $M p / c$ depends on x notice that from (29) we have that $M p / c=\phi(x p /(p+r))$ where $\phi(z) \equiv z /\left(1-e^{-z}\right)-1$. Thus $\lim _{r \rightarrow 0} M p / c=\phi(x)$. To see why the ratios W / M and \underline{M} / M are functions only of x, note from (29) that $\frac{p}{n}=1-\exp \left(-p m^{*} / c\right)=1-\exp (-x p /(p+r))$ and hence as $r \rightarrow 0$ we can write $p / n=\omega(x)=\underline{M} / M$ where the last equality follows from (24) and ω is the function: $\omega(x) \equiv 1-\exp (-x)$. Using (32) we have $W / M=\alpha(\omega)$ where $\alpha(\omega) \equiv[1 / \omega+1 / \log (1-\omega)]^{-1}-\omega$. The monotonicity of the functions ϕ, ω, α is straightforward to check. The limits for \underline{M} / M and W / M as $x \rightarrow 0$ or as $x \rightarrow \infty$ follow from a tedious but straightforward calculation.

Finally, the elasticity of the aggregate money demand with respect to \hat{b} / R is:

$$
\frac{R}{M / c} \frac{\partial M / c}{\partial R}=\frac{(1 / p) \phi^{\prime}(x)}{M / c} R \frac{\partial x}{\partial R}=x \frac{\phi^{\prime}(x)}{\phi(x)} \frac{R}{x} \frac{\partial x}{\partial R}=\eta_{\phi, x} \cdot \eta_{x, \hat{b} / R}
$$

i.e. is the product of the elasticity of ϕ w.r.t. x, denoted by $\eta_{\phi, x}$, and the elasticity of x w.r.t. \hat{b} / R, denoted by $\eta_{x, \hat{b} / R}$. The definition of $\phi(x)$ gives: $\eta_{\phi, x}=\frac{x\left(1-e^{-x}-x e^{-x}\right)}{\left(x-1+e^{-x}\right)\left(1-e^{-x}\right)}$ where $\lim _{x \rightarrow \infty} \eta_{\phi, x}=1$. A second order expansion of each of the exponential functions shows that $\lim _{x \rightarrow 0} \eta_{\phi, x}=1$. Direct computations using $x=\gamma(\hat{b} / R)$ yields $\eta_{x, \hat{b} / R}=\frac{e^{x}-x-1}{x\left(e^{x}-1\right)}$. It is immediate that $\lim _{x \rightarrow \infty} \eta_{x, \hat{b} / R}=0$ and $\lim _{x \rightarrow 0} \eta_{x, \hat{b} / R}=1 / 2$.

Proof of Proposition 9.

(i) By Proposition 3, $r V\left(m^{*}\right)=R m^{*}, V(\cdot)$ is decreasing in m, and $V(0)=V\left(m^{*}\right)+b$. The result then follows since m^{*} is continuous at $r=0$. (ii) Since $v(0)=0$ it suffices to show that $\frac{\partial v(R)}{\partial R}=\frac{\partial R m^{*}(R)}{\partial R}=M(R)$ or equivalently that $m^{*}(R)+R \frac{\partial m^{*}(R)}{\partial R}=$ $M(R)$. From (15) we have that: $\frac{\partial m^{*}}{\partial R}\left[\left(1+\pi \frac{m^{*}}{c}\right)^{(r+p) / \pi}-1\right] \frac{(r+p+\pi)}{c}=-\frac{b}{c R^{2}}(r+$ $p)(r+p+\pi)$. Using (15) again to replace $\frac{b}{c R}(r+p)(r+p+\pi)$, inserting the resulting expression into $m^{*}(R)+R \partial m^{*}(R) / \partial R$, letting $r \rightarrow 0$ and rearranging yields the expression for M obtained in (21). (iii) Using (i) in (iii) yields $R\left(m^{*}-M\right)=(n-p) b$. Replacing M and n using equations for the expected values (18) and (21) for an arbitrary m^{*} yields an equation identical to the one characterizing the optimal value of m^{*}, (15), evaluated at $r=0$.

[^0]: ${ }^{1}$ We remark that our interest rate elasticity, as in the BT model, refers to the ratio of money stock to cash consumption. Of course if cash consumption relative to total consumption is a function of interest rates, as in the Stokey-Lucas cash credit model, the elasticity of money to total consumption will be even higher. A similar argument applies to the expenditure elasticity. The distinction is important to compare our results with estimates in the literature, that typically use money/total consumption. See for instance Lucas (2000), who uses aggregate US data, or Attanasio, Guiso and Jappelli (2002), who use the same household data used here.
 ${ }^{2}$ This is a periodic survey of the Bank of Italy that collects data on several social and economic characteristics. The cash management information that we are interested in is only available since 1993.
 ${ }^{3}$ Humphrey (2004) estimates that the mean share of total expenditures paid with currency in the US is 36% and 28% in 1984 and 1995, respectively. If expenditures paid with checks are added to those paid with currency, the resulting statistics is about 85% and 75% in 1984 and 1995, respectively. The measure including checks is used by Cooley and Hansen (1991) to compute

[^1]: the share of cash expenditures for households in the US where, contrary to the practice in Italy, checking accounts did not pay an interest. For comparison, the mean share of total expenditures paid with currency by all Italian households is 65% in 1995.
 ${ }^{4}$ Porter and Judson (1996), using currency and expenditure paid with currency, estimate that M / c is about 7 days both in 1984 and in 1986, and 10 in 1995. A calculation for Italy following the same methodology yields about 20 and 17 days in 1993 and 1995, respectively.
 ${ }^{5}$ An alternative source for the average ATM withdrawal, based on banks' reports, can be computed using Tables 12.1 and 13.1 in the ECB Blue Book (2006). These values are similar, indeed somewhat smaller, than the corresponding values from the household data (see the Online Appendix L1).

[^2]: ${ }^{6}$ They estimate that the elasticity of cash holdings with respect to the interest rate is about zero for agents who hold an ATM card and -0.2 for agents without ATM card.

[^3]: ${ }^{7}$ The shadow cost formulation is the standard one used in the literature for inventory theoretical models, as in the models of Baumol-Tobin, Miller and Orr (1966), Constantinides (1976), among others. In these papers the problem aims to minimize the steady state cost implied by a stationary inventory policy. This differs from our formulation, where the agent minimizes the expected discounted cost in (9). In this regard our analysis follows the one of Constantinides and Richards (1978). For a related model, Frenkel and Jovanovic (1980) compare the resulting money demand arising from minimizing the steady state vs. the expected discounted cost.

[^4]: ${ }^{8}$ Since withdrawals are the agent only source of cash in this economy, in the invariant distribution of money holdings the threshold $m^{* *}$ is never reached and all agents are distributed on the interval $\left(0, m^{*}\right)$.

[^5]: ${ }^{9}$ The expression for M_{1} overestimates the average cash by 20% and 140% for household with

[^6]: ${ }^{10}$ In (ii)-(iii) we measure welfare and consumer surplus with respect to variations in R, keeping π fixed. The effect on M and v of changes in π for a constant R are quantitatively small.

[^7]: ${ }^{11}$ The average number of observations $\left(N_{j}\right)$ available for each variable varies. It is similar for households with and without ATM cards. There are more observations on M / c than for each of the other variables, and its average weight $\left(N_{1} / \sigma_{1}^{2}\right)$ is about 1.5 times larger than each of the other three weights (see the Online Appendix L8 for further documentation). The number of households-year-type combinations used to construct all the cells is approximately 40,000 .

[^8]: ${ }^{12}$ Concerning aggregation, we repeat all the estimates without disaggregating by the level of cash consumption, so that N_{j} is three times larger. Concerning data selection, we repeat all the estimates excluding those observations where the cash holding identity is violated by more than 200% or where the share of total income received in cash by the household exceeds 50%. The goal of this data selection, that roughly halves the sample size, is to explore the robustness of the estimates to measurement error.
 ${ }^{13}$ The sources are Retail Banking Research (2005) and an internal report by the Bank of Italy.

[^9]: ${ }^{14}$ Notice that we treat the opportunity cost R_{i} as known. To speed up the calculations we estimate the model assuming that inflation is zero. Based on the results for our benchmark case we think this will have at most a very minor effect on the estimates. We also restrict the sample to households that have information for all the 4 variables of interest, this gives us a sample of about $N=17,000$ (as opposed to 40,000 in our benchmark estimates).

[^10]: ${ }^{15}$ Table 4 showed a positive, albeit small, correlation.

[^11]: ${ }^{16}$ We estimate k loadings $\lambda_{b / c}$ and k loadings λ_{p} using N households with 4 observations each.
 ${ }^{17}$ Since we have only 6 time periods, the time trend are imprecisely estimated, as it can be seen from the t -stats corresponding to years in Table 5

[^12]: ${ }^{18}$ Dotsey (1988) argues for the use of cash expenditure as the appropriate scale variable.

[^13]: ${ }^{19}$ Hence the 14 -fold difference in ℓ / y is given by the product of the factor 1.6 (the welfare cost ratio for a given level of money demand), and the factor 8.6 (the ratio of money demand levels).
 ${ }^{20}$ The consumption third-tiles were constructed without conditioning on whether the household owned an ATM card. It turns out that the difference in c between households with and without ATM is very small (on average 4 per cent).

[^14]: ${ }^{21}$ One such dataset is developed by the Austrian National Bank and was used, for instance, by Stix (2004) and Mooslechner, Stix and Wagner (2006).

