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1 Introduction

Recently there has been a renewed interest in shifting expectations as a source of business cycle

fluctuations. A range of models have been explored that rely variously on multiple equilibria,

exogenous news about future productivity and imperfect information – see, for example,

Benhabib and Farmer (1994), Schmitt-Grohe (2000), Beaudry and Portier (2006), Jaimovich

and Rebelo (2008) and Lorenzoni (2008). These frameworks seek not only to explain business

cycles fluctuations with changes in expectations but also to resolve comovement problems

that arise in real business cycle theory.

This paper explores an alternative theory based on learning dynamics. In the context of an

otherwise standard stochastic growth model, we consider an environment in which households

and firms have an incomplete model of the macroeconomy, knowing only their own objectives,

constraints and beliefs. Agents are optimizing, have a completely specified belief system but

do not know the equilibrium mapping between primitive disturbances, the aggregate state of

the economy and market clearing prices. By extrapolating from historical patterns in observed

data they approximate this mapping to forecast exogenous variables relevant to their decision

problems, such as the rental rate of capital and the real wage. This belief structure has the

property that beliefs affect the true data generating process of the economy which in turn

affects belief formation. The economy is therefore self-referential: shifts in beliefs about future

returns to labor and capital affect current market clearing prices which in turn can reinforce

beliefs. In this environment, current prices can become less informative about future economic

conditions generating fluctuations in real activity.

This kind of mechanism driving business cycle fluctuations is found in early writings on

macroeconomic dynamics. For example, Pigou (1927), on page 122, writes:

"[...] a rise in prices, however brought about, by creating some actual and some

counterfeit prosperity for business man, is liable to promote an error of optimism,

and a fall in prices an error of pessimism, and this mutual stimulation of errors

and price movements may continue in a vicious spiral until it is checked by some

interference from outside."
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Hence, shifts in expectations, whether in part due to changes in fundamentals or in part

due to error are a source of business cycle fluctuation that may be self-fulfilling. Our model

is very much in the spirit of this quote.1 Learning breaks the tight link between fundamen-

tals and, through expectations formation, equilibrium prices and allocations, giving rise to

additional volatility relative to a rational expectations analysis of the model. Furthermore,

shifts in expectations occur not because of exogenous “news shocks” about the future state

of the economy – as proposed in the recent literature on expectations-driven business cy-

cles – or “sunspots” but because of the agents’ learning process, which depends on current

available data. Revisions in agents’ beliefs about future returns to their capital holdings gen-

erate endogenous aggregate demand shocks which amplify the effects of exogenous changes to

productivity. Moreover, learning might be thought to improve the internal propagation mech-

anisms of the model, since beliefs are a function of historical data, introducing an additional

state variable.

Calibrating the model to match properties of post-war U.S. quarterly data, the central

results of the paper are as follows. First, learning amplifies technology shocks. Relative to

a rational expectations analysis of the model, a 20 percent smaller standard deviation of

technology shocks is required to match the standard deviation of HP-filtered output data.

Moreover, the volatility of investment and hours relative to output is 40 and 25 percent

greater than under rational expectations. Second, the persistence properties of our model

bear much closer resemblance to observed data. The first order autocorrelation properties of

output, hours and investment growth are well matched despite shocks being identically and

independently distributed over time – hump-shaped impulse responses are observed. These

features of the data are typically problematic for real business cycle theory as documented

by Cogley and Nason (1993) and Rotemberg and Woodford (1996). In general, the learning

model provides a superior characterization of second order moments of observed data than

does the model under rational expectations.

The improvement in fit can be traced to shifting beliefs acting as endogenous demand

shocks, interpretable as news and having similar effects to government expenditure or invest-

1The model will not have the property of “vicious spirals”.
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ment specific technology shocks. The latter will be given specific emphasis when interpreting

results. The only source of exogenous variation are technology shocks, which have two ef-

fects. First, as in standard real business cycle theory, a temporary technology shock shifts the

production frontier with well understood implications. Second, in subsequent periods, house-

holds revise their beliefs in response to changed market opportunities. In particular, relative

to rational expectations, households are more optimistic about the future path of returns to

capital and more pessimistic about future returns to labor. The former leads to substitution

of current for future consumption and a high marginal utility of income, an effect reinforced

by lower projected wages. Combined, these expectations effects induce a larger fall in con-

sumption and consequently a larger shift in labor supply and investment in the period after

the shock. This amplification of substitution and income effects in response to a technology

shock relative to rational expectations explains the increased volatility in these variables. The

delayed adjustment in beliefs explains the persistence. Furthermore, these observations high-

light our connection to Pigou (1927): erroneous optimism or pessimism about future returns

to capital and wages are in part validated by the data. Moreover, shifts in expectations about

future returns to labor and capital are for a given technological frontier and endogenous to

the technology shock. In this sense they have similarity to demand shocks in so far as hours

and consumption negatively comove in response to a revision in expectations.

As there is additional endogenous variation in the marginal utility of income for a given

production frontier, the model suffers a comovement problem. Hours and consumption dis-

play negative correlation. Furthermore, while hours growth exhibits positive autocorrelation,

consumption growth has negative autocorrelation. The third result of the paper shows that

in a model of the kind proposed by Beaudry and Portier (2006) this comovement problem can

be resolved. That paper explores primitive assumptions on technology and preferences that

are consistent with so called expectations-driven business cycles – in response to an expec-

tational shock, output, hours, investment and consumption display positive comovement. We

propose a new pairing of assumptions that delivers this property. They are a small degree of

increasing returns combined with non-separability in utility between consumption and hours.2

2The results do not rely on having an upward sloping demand for labor schedule or indeterminacy. More-
over, indentical results obtain if increasing returns are replaced by a model of endogenous entry and exit as
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The first assumption provides an endogenous shift in the production frontier from external

economies so that consumption does not crowd out investment, while the latter assists in

capturing the comovement between hours and consumption. Under these assumptions, which

introduce no additional states variables, our model provides an even better characterization

of observed data. Moreover, the interaction of learning with these model features provides

additional amplification and propagation relative to a rational expectations model with these

characteristics and our baseline model under learning. The modified model implies some 30

percent greater volatility in output for a given technology shock.

The results are robust to a range of alternative assumptions. In particular, our analysis

could be criticized on the ground that it is well understood that real business cycle theory

fails to account for various properties of observed data without augmenting the model with

additional frictions such as variable capital utilization and investment adjustment costs. We

show that our benchmark model performs well when compared to rational expectations models

with these features.

Finally, we compare our analysis with earlier explorations of learning as a source of am-

plification and propagation. In particular, we revisit the analysis of Williams (2003) which

also looked at learning in a standard real business cycle model. That paper concludes that

learning based on extrapolating historical patterns in observed data, as considered here, is

unlikely to help improve the performance of real business cycle models. Reproducing that

analysis in the context of our model shows that this is indeed the case. The difference in

conclusions stems from the failure in Williams (2003) to model optimal decisions conditional

on maintained beliefs as done in Marcet and Sargent (1989) and Preston (2005). Williams

(2003) also considers a related but distinct class of learning models in which agents face un-

certainty about structural parameters rather than the statistical relation between prices and

state variables that obtains in equilibrium. This conceptually distinct exercise is argued to be

more promising in generating economic fluctuations. The results of this paper indicate this

is not necessarily true.

This paper belongs to a long literature reconciling the predictions of real business cycle

considered by Portier (1995) and Jaimovich (2007).
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theory with observed data – see, inter alia, Hansen (1985), Rogerson (1988), Christiano and

Eichenbaum (1992), Benhabib and Farmer (1994), Andolfatto (1996), Burnside and Eichen-

baum (1996), Carlstrom and Fuerst (1997) and Schmitt-Grohe (2000). These papers introduce

various frictions including indeterminacy of rational expectations equilibrium to benchmark

theory to improve the amplification and propagation of technology shocks. Our paper furthers

this line of inquiry by considering learning dynamics as an alternative friction.

The introduction of imperfect information and learning in the real business cycle frame-

work dates back to Kydland and Prescott (1982). In their model, the stochastic process for

technology is composed of two unobserved shocks with different persistence. Agents face a

signal extraction problem when predicting future productivity. More recently, Edge, Laubach,

and Williams (2007) show in a similar model that learning has important effects in the re-

sponse of the economy to a persistent shift in productivity growth. In this class of models

learning is not an endogenous source of propagation because changes in endogenous variables

do not affect the agents’ learning process. On the contrary, gradual recognition of the pro-

ductivity changes generates a gradual response to the shock – a property determined by the

specified signal-to-noise ratio in the exogenous process.

In addition to the above mentioned learning literature, our paper relates to other recent

contributions by Milani (2006), Carceles-Poveda and Giannitsarou (2007) and Huang, Liu,

and Zha (2008). Milani (2006) considers whether learning dynamics improve the fit of a sim-

ple estimated New Keynesian model. Carceles-Poveda and Giannitsarou (2007) analyze the

consequences of learning dynamics for asset pricing in a real business cycle model. Huang,

Liu, and Zha (2008) explore the amplification and propagation of technology shocks. Like

Williams (2003), these papers consider models in which only one-period-ahead forecasts mat-

ter for household and firm behavior – decisions are not optimal given the maintained beliefs.

Moreover, and in further contrast to these papers, the analysis here studies model proper-

ties at the steady state distribution of beliefs so that initial conditions are not a source of

amplification and propagation.

Finally, this paper connects with recent work on imperfect information and business cycle

dynamics. Nieuwerburgh and Veldkamp (2006) consider a model where agents have a noisy
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signal about aggregate and idiosyncratic productivity and explore implications for generating

long expansions and short contractions in economic activity. Lorenzoni (2008) develops a

theory of demand shocks in a model with heterogeneous productivity shocks and diverse

private information. Agents’ signal extraction problem lead to expectational errors relative

to a full information model, which generate dynamics that are qualitatively like demand

shocks when the only primitive disturbances are technology shocks.

The paper proceeds as follows. Section 2 lays out a simple real business cycle model.

Section 3 discusses the assumed belief structure. Section 4 details the data and calibration.

Section 5 presents the core results under our benchmark assumptions. Section 6 gives results

for a model consistent with expectations driven business cycles in the sense of Beaudry and

Portier (2006). Section 7 provides some robustness exercises. Section 8 concludes.

2 A Simple Model

The following section details a stochastic growth model similar in spirit to Kydland and

Prescott (1982), Prescott (1986) and King, Plosser, and Rebelo (1988). A continuum of

households faces a canonical consumption allocation problem and decides how much to con-

sume of the economy’s single available good, how much to invest, and how much labor to

supply to firms in the production of the available good. A continuum of competitive firms

produces goods using labor and capital as inputs. The major difference to this earlier litera-

ture is the incorporation of near-rational beliefs, delivering an anticipated utility model of the

kind discussed by Kreps (1998) and Sargent (1999). The analysis follows Marcet and Sargent

(1989) and Preston (2005), solving for optimal decisions conditional on current beliefs.

Various mechanisms of persistence, such as investment adjustment costs and variable capi-

tal utilization, are abstracted from. This facilitates identification of key mechanisms operating

in our model that would be present in more richly specified environments and provides pel-

lucid results on the ability of near-rational expectations to replicate salient features of the

data.3 The sequel demonstrates that frictions of this kind tend to amplify further the effects

3This should not be taken to suggest that the benchmark real business cycle model is the best competing
model. Our approach seeks to elucidate a new theoretical mechanism for expectations-driven business cycles,
while at the same time showing it is consistent with empirical regularities.
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identified in our benchmark analysis.

2.1 Microfoundations

Households. Households maximize their intertemporal utility derived from consumption

and leisure

Êj
t

∞∑

T=t

βT−t
[
lnCj

T − ν
(
Hj
T

)]
(1)

subject to the flow budget constraint

Cj
t +Kj

t+1 = RK
t K

j
t +WtH

j
t + (1− δ)Kj

t (2)

where Cj
t denotes household j′s consumption, Kj

t the holdings of the aggregate capital stock

available at the beginning of period t, with Kj
0 > 0 given; and Hj

t represents the fraction of

the available time (normalized to one unit per period) spent on non-leisure activities. The

function v (·) is convex. The functional forms are chosen to be consistent with a balanced

growth path – see King, Plosser and Rebelo (1988). Households supply labor and capital in

perfectly competitive markets. RK
t is the rental rate of capital and Wt is the real wage. The

household’s discount factor and the depreciation rate of capital satisfy 0 < β, δ < 1.

The expectation operator Êj
t denotes agent j’s subjective beliefs. In forming expectations,

households and firms observe only their own objectives, constraints and realizations of aggre-

gate variables that are exogenous to their decision problems and beyond their control. The

agent’s problem is to choose sequences of consumption, hours worked, and capital in order

to maximize (1) subject to (2), taking as given prices and the capital stock available at the

beginning of the period. Beliefs are specified in the next section.

Household optimization yields the conditions

Wt = Cj
t νH

(
Hj
t

)
(3)

from equating the marginal rate of substitution between an additional unit of consumption

and additional unit labor supply to their relative prices and

βÊj
t

[
Cj
t

Cj
t+1

(
RK
t+1 + (1− δ)

)
]

= 1 (4)
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the Euler equation from equating the marginal rate of substitution between consumption

today and tomorrow to the real interest rate.

The paper’s primary goal is the quantitative evaluation of the model. Following Kydland

and Prescott (1982), a log-linear approximation of the model around a balanced growth path

is employed. For any variable Gt define gt = Gt/Xt as the corresponding normalized variable,

where Xt is the level of technology in period t described further below. The model is then

studied in log deviation from a non-stochastic steady state in these transformed variables

so that ĝt = ln (gt/ḡ), with ḡ denoting the steady state value of gt. Details of the steady

state and the log-linear approximation are confined to the appendix. Here it suffices to note

that consumption, investment, output, the capital stock and real wages grow at the rate of

technological progress in the balanced growth path so that

yt =
Yt
Xt

; ct =
Ct

Xt

; it =
It
Xt

; wt =
Wt

Xt

and kt =
Kt

Xt−1

are stationary. Hours and the rental rate of capital are stationary on the balanced growth path.

Studying the approximated model also facilitates economic interpretation of later results.

Log-linearizing, solving the flow budget constraint forward, imposing the transversality

condition and substituting for hours using a log-linear approximation to (3) gives the in-

tertemporal budget constraint

ǫcÊt

∞∑

T=t

βT−tĉjT = β−1k̂jt + Êt

∞∑

T=t

βT−t
[
ǫwŵT + R̄R̂K

T − β−1γ̂T

]
.

The coefficients ǫc and ǫw are constants that are composites of model primitives, R̄ > 0

the gross rental rate, and γ̂t = ln (Xt/ (Xt−1γ̄)) the log deviation of the growth rate in

technological progress relative to steady state growth. This relation states the expected

present value of consumption must be equal to the capital stock available at the beginning of

the period plus the expected present value of wage and rental income. These latter variables

are outside the control of the household, given the assumption of competitive markets.

To determine optimal consumption decisions, combine the intertemporal budget constraint
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with a log-linear approximation to (4) to yield

ĉjt =
1− β

ǫc

[
β−1
(
k̂jt − γ̂t

)
+ R̄R̂K

t + ǫwŵt

]

+Êj
t

∞∑

T=t

βT−t
[
(1− β)

ǫc
− β

]
βR̄R̂K

T+1 +

Êj
t

∞∑

T=t

βT−t
(1− β)

ǫc
βǫwŵT+1. (5)

The consumption decision rule comprises three terms. The first shows the impact that the

current level of the capital stock and current prices have on consumption. The second and

third terms show how expected variations in permanent income affect current consumption.

The former has two parts corresponding to the positive income effect and the negative substi-

tution effect of higher returns to capital on current consumption. The latter has only one part

as the income and substitution effects of a wage increase both increase current consumption.

Firms. There is a continuum of identical competitive firms of mass one. Each produces

the economy’s only good using capital and labor as inputs according to the production function

Y i
t =

(
Ki
t

)α (
XtH

i
t

)1−α

where 0 < α < 1. Labor augmenting technological progress, Xt, satisfies the stochastic

process

ln (Xt+1/Xt) = ln γ̄ + at+1

where at is an independent, identically distributed random variable with zero mean and

standard deviation σA. γ̄ > 0 is the steady state rate of technology growth. This aggregate

disturbance is the only source of exogenous variation in the model. Each firm chooses labor

and capital inputs to maximize profits

Πit = Y i
t −RK

t K
j
t −WtH

j
t

taking factor prices as given. The first-order conditions to a firm’s optimization problem

provide

Wt = (1− α)
(
Ki
t

)α
(Xt)

1−α (H i
t

)−α

RK
t = α

(
Ki
t

)α−1 (
XtH

i
t

)1−α
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which equate factor prices with their real marginal products.

2.2 Market clearing and aggregate dynamics

We are interested in studying the behavior of macroeconomic aggregates. As households have

the same preferences and constraints; firms the same technology; and beliefs are assumed

homogeneous across all agents (although they are assumed not to be aware of that) the

analysis considers a symmetric equilibrium in which k̂it = k̂jt = k̂t; Ĥ
j
t = Ĥi

t = Ĥt; ı̂
i
t = ı̂jt = ı̂t

for all i, j, t.

Integrating over the continuum provides aggregate consumption demand

ĉt =
1− β

ǫc

[
β−1k̂t + R̄R̂K

t − β−1γ̂t + ǫwŵt

]

+Êt

∞∑

T=t

β̃
T−t
[
(1− β)

ǫc
− β

]
βR̄R̂K

T+1 + (6)

Êt

∞∑

T=t

βT−t
(1− β)

ǫc
βǫwŵT+1

where
∫
Êj
t dj = Êt denotes average expectations in the population. Aggregate consumption

dynamics inherit the properties of individual decision rules. This is the only model equation

that depends on expectations, and therefore of central focus. If near-rational expectations are

to be a source of amplification and propagation of primitive shocks, the effects must originate

here.

A log-linear approximation yields the remaining model equations. Aggregate capital dy-

namics are given by the accumulation equation

k̂t+1 =

[
α
ȳ

k̄
+
(1− δ)

γ̄

]
k̂t + (1− α)

ȳ

k̄
Ĥt −

c̄

k̄
ĉt −

(1− δ)

γ̄
γ̂t. (7)

The labor-leisure choice determines aggregate labor supply as

ǫHĤt = −ĉt + ŵt (8)

where ǫH is the inverse Frisch elasticity of labor supply. Factor prices are expressed as

ŵt = αk̂t − αĤt (9)

R̂K
t = γ̂t + (α− 1) k̂t + (1− α) Ĥt. (10)
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And the resource constraint provides

αk̂t + (1− α) Ĥt =
c̄

ȳ
ĉt +

ı̄

ȳ
ı̂t. (11)

Given our assumption about technological progress, equations (6) - (11) together with the

expectations formation mechanism specified in the next section completely determine the

aggregate dynamics of the economy.

3 Beliefs

Optimal decisions require households to forecast the evolution of future wages and returns to

capital. They are assumed to use a simple econometric model, relating wages and the capital

rental rate to the aggregate stock of capital. That is

R̂K
t = ωr0 + ωr1k̂t + ert , (12)

ŵt = ωw0 + ωw1 k̂t + ewt (13)

and

k̂t+1 = ωk0 + ωk1k̂t + ekt (14)

where ert , e
r
tand ert are i.i.d. shocks. The beliefs contain the same variables that appear

in the minimum state variable rational expectations solution to the model. And, while the

rational expectations solution does not contain a constant, it has the natural interpretation

under learning of capturing uncertainty about the steady state (equivalently the level of

technology). It is assumed that wages and capital are forecast in normalized units as under

rational expectations.

Rational Expectations. The model solution under rational expectations implies (to a

first-order approximation) that labor and capital prices and the next-period capital stock are

linearly related to aggregate capital, with time-invariant coefficients ωr0 = ωw0 = ωk0 = 0 and

ωr1 = ω̄r1, ω
w
1 = ω̄w1 , ω

k
1 = ω̄k1. Hence, the agents’ forecasting model nests beliefs that would

be observed in a rational expectations equilibrium. Furthermore, under rational expectations

ert = ω̄r3γ̂t, e
w
t = ω̄w3 γ̂t and ekt = ω̄k3γ̂t.
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Perpetual learning. Agents estimate equations (12) — (14), updating their coefficient

estimates every period as new data become available. Following recent literature, households

update their estimates using a discounted least-squares estimator, assigning lower weight

to older observations to protect against structural change.4 Letting ω′ = (ω0, ω1), zt =(
R̂K
t , ŵt, k̂t+1

)
and qt−1 =

(
1, k̂t

)
, the algorithm can be written in recursive terms as

ω̂t = ω̂t−1 + gR−1t qt−1
(
zt − ω̂′t−1qt−1

)′
(15)

Rt = Rt−1 + g
(
qt−1q

′
t−1 −Rt−1

)
(16)

where ω̂t denotes the current period’s coefficient estimate and g ∈ (0, 1) denotes the constant

gain, determining the rate at which older observations are discounted. The constant gain

assumption delivers perpetual learning, as market participants ‘forget’ the past. However,

the model has the property that if beliefs were instead given by a recursive least-square

algorithm, defined by g = t−1, the learning process would converge to the rational expectations

coefficients.5 Under the constant gain algorithm, agents’ estimates converge to a distribution.

Evans and Honkapohja (2001) show that for a gain sufficiently close to zero the distribution

is normal and centered around the time-invariant coefficients of the rational expectations

coefficients. Put differently, the model naturally “nests” the rational expectations model

with g arbitrarily small. Finally, the above constant gain algorithm can be interpreted as a

Kalman filter of a random coefficients model, with specific priors on the coefficients’ drift (see

Appendix).

Timing and information. Agents update their estimates at the end of the period, after

making consumption and labor supply decisions. This avoids simultaneous determination of

the parameters defining agents’ forecast functions and current prices and quantities. However,

to compare the model under learning with the predictions under rational expectations, we

assume that agents’ expectations are determined simultaneously with consumption and labor

supply decisions, so that agents observe all variables that are determined at time t, including

4Of course we consider an otherwise stationary model environment with a single shock so as to clearly
isolate the role of expectations in generating business cycle fluctuations. Adding structural change would
generate further volatility.

5In the temporal limit, agents have an infinite amount of data.
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k̂t+1. For example, the one-period-ahead forecast of R̂
K
t is

ÊtR̂
K
t+1 = ω̂r0,t−1 + ω̂r1t−1k̂t+1

where ω̂r0,t−1 and ω̂
r
1t−1 are the previous period’s estimates of belief parameters that define the

period t forecast function. Hence, they observe the same variables that a ‘rational’ agent would

observe. The only difference is that they are attempting to learn the ‘correct’ coefficients that

characterize optimal forecasts. An alternative approach would be to assume expectations are

formed before taking decisions, but this would render comparison of the learning model to the

benchmark real business cycle model difficult as rational expectations would not be a special

case of the assumed belief structure.

That beliefs are updated a period after new data arrive is a key component of learning as

a friction. Like models of sticky information – see, for example, Mankiw and Reis (2002)

– where only some firms can update information about the state of the economy, we assume

that all agents can revise their beliefs in response to new data, but only with a one-period

lag subject to the constraint of the constant gain learning technology.6

It is assumed the innovation, γ̂t, is not used in equations (12) — (14). This does not imply

γ̂t is unobserved – indeed, (5) implies consumption decisions are in part determined by

these innovations. The interpretation is that while individual households and firms observe

these disturbances they do not know how they are mapped into market clearing prices in

general equilibrium. This assumption is similar to, though arguably more appealing than,

the imperfect common knowledge literature where it is often assumed that only certain kinds

of aggregate data are public knowledge or only certain markets are available to trade state-

contingent claims. Absent these assumptions prices would fully reveal information about

which agents are assumed to have only imperfect understanding – there is no inference

problem. In the present model, if the innovation was used in forecasting, agents would not

face an inference problem and learn quickly given that the only disturbance in the model is

the technology shock.7

6More generally, beliefs are state variables that are sluggish by assumption, much like habit formation,
price indexation, investment adjustment costs and labor market search (the latter typically assuming that
new matches are only productive in future periods).

7Formally, including the disturbance would generate a singularity in the regression if initial beliefs coincide
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Finally in forecasting over the decision horizon agents do not take into account that they

update their beliefs in subsequent periods. The model is therefore one of anticipated utility

– see Sargent (1999).

True Data Generating Process. Using (12) — (14) to substitute for expectations in

(6) and solving delivers the actual data generating process

zt = T1 (ω̂t−1) qt−1 + T2 (ω̂t−1) γ̂t (17)

ω̂t = ω̂t−1 + gR−1t qt−1
([(

T1 (ω̂t−1)− ω̂′t−1
)
qt−1 + T2 (ω̂t−1) γ̂t

])′
(18)

Rt = Rt−1 + g
(
qt−1q

′
t−1 −Rt−1

)
(19)

and 




ĉt

ı̂t

Ĥt





= Ψzt, (20)

where T1 (ω̂) and T2 (ω̂) are nonlinear functions of the previous period’s estimates of beliefs and

Ψ is a matrix comprised of composites of primitive model parameters. The actual evolution of

zt is determined by a time-varying coefficient equation in the state variables k̂t and γ̂t, where

the coefficients evolve according to (18) and (19). The evolution of zt depends on ω̂t−1, while

at the same time ω̂t depends on zt. Learning induces self-referential behavior. Agents use

current prices and capital holdings to make inferences about future macroeconomic conditions,

but in equilibrium prices depend on agents’ beliefs, and prices in turn affect the evolution of

beliefs. This dependence on zt is related to the fact that outside the rational expectations

equilibrium T1 (ω̂t−1) �= ω̂′t−1 and similarly for T2.

with the rational expectations equilibrium. When initial beliefs differ from the rational expectations equilib-
rium, the regression is well defined, but because there is no uncertainty about the forecasting model, beliefs
quickly converge to the predictions of a rational expectations analysis (where the singularity would again
emerge given infinite data. And with a small gain, as in our analysis, the regression’s variance-covariance
martix would still be close to singular). Finally, if the proposed interpretation is unappealing, this particular
assumption could be relaxed by introducing an additional shock to the model. We refrain from doing this to
ensure comparability with the standard real business cycle framework.
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4 Calibration

The sample characteristics we seek to match are for U.S. data, 1955:Q1 to 2004:Q4. A short

description of each series is contained in the Appendix. Concerning households’ preferences we

set the discount rate β = 0.99. We assume separable preferences between consumption and

leisure with log-utility for consumption and close-to-linear utility of leisure.8 Accordingly,

the inverse Frisch elasticity of labor supply, ǫH , is set equal to 0.0025. Firms’ technology

is specified by a capital share α = 0.34 and steady state growth rate of labor augmenting

technical progress equal to γ̄ = 1.0053, consistent with the quarterly mean output growth

over the sample.

Two parameters are left to calibrate: the standard deviation of the shock, σA, and the con-

stant gain, g. We calibrate these two parameters by minimizing the sum-of-squared distances

between the model implied volatility of HP-detrended output and the first autocorrelation

coefficient of output growth and the corresponding data moments. To do this, at each iter-

ation in the minimization problem the model is simulated for 20000 periods. The first 2000

periods of the simulation are discarded and required statistics are computed using the re-

maining observations. This insures that the model reaches its stationary distribution of belief

parameters, implying that our calibration and subsequent results do not depend on the initial

conditions on the belief parameters.

As illustration of the possible effects of initial beliefs on inference, consider the following

example. Suppose that data are generated according to the process xt = x̄ + εt, where

x̄ > 0 is a constant and εt an i.i.d mean zero disturbance. Estimate the mean using all

sample observations and assume that the initial condition on the expectation of this mean is

x̄e > x̄. Over time, beliefs about the mean of xt will be revised down as realizations of this

random variable fluctuate around the true mean. The resulting estimates exhibit positive

autocorrelation. Yet the true model has zero serial correlation. Our simulation approach

ensures inference is not driven by transitional dynamics of this kind.9

8This approximates the labor supply properties of a model of indivisable labor – see Hanson (1985) and
Rogerson (1988).

9This is one way in which our work is distinguished from Milani (2006).
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The procedure gives a gain of 0.0029. To interpret this magnitude, note the gain indexes

the weight that agents assign to past data. This value of the gain implies that observations that

are 50 years old receive a weight of (1− 0.0029)200 ≃ 0.5, implying agents do not discount past

data too heavily.10 To gauge the relative magnitude across observations, the weight assigned

to the most recent data observation is approximately one.

One concern about the analysis might be that this choice of gain provides excessive free-

dom to fit observed data. Several points are worth making. First, many deviations from

benchmark theory involve increased parameterization. This is true when incorporating in-

vestment adjustment costs, variable capital utilization, financial market frictions and labor

market search – see, for example, Andolfatto (1996), Burnside and Eichenbaum (1996) and

Carlstrom and Fuerst (1997). All these model variants engender more highly parameterized

models and all seek to match the kinds of properties discussed here. In the same spirit, learn-

ing is an example of alternative friction whose implications for model fit are being evaluated.

Second, our calibrated gain is considerably smaller than values found in the literature,

which range from 0.01 − 0.05 – see, for example, Milani (2006), which estimates the gain,

and Orphanides and Williams (2005). Branch and Evans (2006) show that a simple VAR

with constant gain performs well in forecasting output growth and inflation, with respect to

alternative more sophisticated models. The constant gain model is also shown to approximate

well the behavior of output growth forecasts in the Survey of Professional Forecasters. The

choice of gain that maximizes the fit in their VAR is 0.007, which is also above our calibra-

tion. In a more sophisticated model, the gain parameter could be calibrated to replicate key

properties of expectations data from surveys. We leave that to future research.

Finally note that under rational expectations we only have to choose σA to match the

standard deviation of HP-filtered output.

10For this value of g, agents would give approximately zero weight to observations that are 500 years old.
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5 Central Results

5.1 Statistical Properties

Tables 1 and 2 report summary statistics on the cyclical properties of various U.S. data series

and the model under both rational expectations and learning dynamics. For each variable the

relative standard deviation and correlation with output are reported. Table 1 reports these

statistics for HP-filtered series (facilitating comparison to earlier studies based on filtered

data), while Table 2 presents the corresponding statistics for the growth rates of each series

(which is more natural given the assumed stochastic trend).

Table 1: HP filtered moments

Statistic Data REE Learning

Technology: σA - 1.22 0.98

Output: σY 1.54 1.54 1.52

Consumption: σC/σY 0.52 0.54 0.38

ρY,C 0.69 0.97 0.83

Investment: σI/σY 2.87 2.42 3.06

ρY,I 0.90 0.99 0.98

Hours: σH/σY 1.13 0.49 0.71

ρY,H 0.88 0.97 0.96

Wages: σw/σY 0.54 0.54 0.38

ρY,w 0.12 0.97 0.84

Labor Prod: σPr/σY 0.68 0.54 0.38

ρY,Pr 0.52 0.97 0.84

The first row of Table 1 shows learning dynamics amplify the effects of technology shocks.

To match the variance and serial correlation properties of output, the learning model requires

a technology disturbance with a standard deviation that is about 20 percent smaller than

required under rational expectations. Moreover, the relative volatility of hours and invest-

ment is 40 and 25 percent higher respectively, bearing closer resemblance to data implied
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moments than the rational expectations model. The former represents a significant success,

being problematic for standard real business cycle theory – see Hansen (1985) and Rogerson

(1988).11 In regards to consumption, wages and labor productivity, the model performs less

well. Given the high elasticity of the labor supply and the assumption of perfectly competitive

markets the model predicts Ĉt ≈ ŵt = Ŷt − Ĥt and is therefore too stylized to capture the

different dynamics of these variables. The source of the discrepancy between the model and

the data resides in the behavior of consumption, discussed further below.

Table 2 shows the same set of statistics in terms of growth rates, underscoring that the

model under learning delivers a better fit. In particular, the model does not display the

counterfactually large output growth volatility which occurs under rational expectations.12

Table 2: Growth rates

Statistic Data REE Learning

Output: σ∆Y 0.88 1.19 0.99

Consumption: σ∆C/σ∆Y 0.60 0.52 0.54

ρ∆Y ,∆C 0.51 0.98 0.80

Investment: σ∆I/σ∆Y 2.54 2.45 2.82

ρ∆Y ,∆I 0.71 0.99 0.94

Hours: σ∆H/σ∆Y 0.93 0.50 0.65

ρ∆Y ,∆H 0.70 0.98 0.87

Wages: σ∆w/σ∆Y 0.60 0.52 0.54

ρ∆Y ,∆w 0.08 0.98 0.80

Labor Prod: σ∆Pr/σ∆Y 0.95 0.52 0.54

ρ∆Y ,∆Pr 0.68 0.98 0.80

11Using different measures of hours and real activity, or different sample sizes, affects the specific values of
σH/σY , but does not alter our conclusions regarding the model’s performance. For example, using non-farm
business output as a measure of economic activity yields σH/σY = 0.83 for the whole sample and σH/σY = 1.1
for the sample 1982:Q3-2006:Q1. Using average weekly hours (from the BLS household survey data) and real
GDP as a measure of output gives a relative standard deviation of 0.88, over the same period.
12The rational expectations model over-predicts the standard deviation of output growth by some 30 percent

in contrast to 10 percent for the learning model.
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Turning to the correlations between each series and output, all moments are closer to the

data than are those under rational expectations. Of particular note are the weaker correla-

tions of consumption, wages and labor productivity with output. To presage later discussion,

these improvements in fit arise from learning endogenously generating dynamics that are qual-

itatively like those elicited by the presence of demand shocks. Revisions to beliefs shift the

marginal utility of income. And for a given technology frontier these variations in marginal

utility have qualitative similarities to demand shocks. As shown by Christiano and Eichen-

baum (1992), the inclusion of such shocks in conjunction with technology disturbances can

improve the fit of unconditional moments pertaining to labor market variables.

Since Cogley and Nason (1993, 1995), the internal propagation mechanisms of technology

shocks have been a central preoccupation of real business cycle theory. These papers demon-

strate that the impulse response functions of model variables are entirely determined by the

assumed stochastic properties of technology shocks – the existence of capital as a state vari-

able adds little propagation. Rotemberg and Woodford (1996), in related criticism of real

business cycle theory, show that predictable variation in model simulated output, hours and

consumption data is negligible, despite evidence of substantial forecastable variation of these

series in observed data. Moreover, what predictable variation there is in the model is of the

wrong kind.

Figure 1 plots the autocorrelation function for output growth together with model predic-

tions under both rational expectations and learning. The rational expectations real business

cycle model has virtually no propagation, having an autocorrelation function that is essen-

tially equal to zero at all horizons – recall that the growth rate of technology is given by

an i.i.d. process. In contrast, the learning model matches the first-order serial correlation

properties, though generates little persistence beyond that. While matching this feature of

the data was part of the calibration, we view it as a success given how well remaining model

properties are captured.

Table 3 reports the autocorrelation properties of the growth rate of key model variables.

Investment, output and hours growth are remarkably well matched relative to the predictions

of the model under rational expectations. That wages, labor productivity and consumption
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are counterfactually predicted to have negative serial autocorrelation stems from the well

known comovement problem in real business cycle theory (given that the dynamics of these

series in the model are indistinguishable) emphasized by Barro and King (1984). While the

impact effect of technology shocks does induce positive comovement, subsequent dynamics

under learning are driven by revisions to beliefs. The next section shows that these revisions

to beliefs are isomorphic to demand shocks in the sense that for a given production frontier

shifts in expectations imply consumption and hours must be negatively correlated from the

labor-leisure condition (3). This explains the observed positive serial correlation in hours and

concomitant negative serial autocorrelation in consumption. The final section introduces an

extension to the baseline model that resolves these counterfactual predictions.

Table 3: Autocorrelation in growth rates

Statistic Data REE Learning

Wages: ∆w 0.19 0.10 -0.14

Consumption: ∆C 0.25 0.11 -0.14

Investment: ∆I 0.34 -0.03 0.42

Output: ∆Y 0.28 0.00 0.28

Labor Prod: ∆Pr 0.05 0.10 -0.14

Hours: ∆H 0.58 -0.03 0.44

5.2 Impulse Response Functions

Further insight can be gleaned from impulse response functions to a unit technology shock.

The effects of a disturbance depend on the precise beliefs maintained by households at the time

of the shock. Impulse response functions for the learning model are therefore generated by

simulating the model twice for 2000+T periods. The first 2000 periods guarantee convergence

to the model stationary distribution and are discarded. The second simulation includes a unit

shock in period 2001. The T -period impulse response to a unit technology shock is then given

by the difference between these two trajectories. The simulation is repeated 3000 times.

For stationary variables, the impulse response functions are expressed in percentage de-

viations from steady state. For non-stationary series, the impulse responses are reported in
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percentage deviations from the trend growth rate.13 For these later series, a unit technology

shock results in a permanent increase in their level. In each plot the solid lines correspond to

the median point-wise impulse response function, while the dotted lines provide a 75 percent

band – that is, the 12.5 and 87.5 percentiles of the simulated impulse responses. The dashed

line gives the corresponding impulse response predicted by a rational expectations analysis of

the model.

Figures 2 - 6 report the impulse response functions for output, consumption, investment,

hours and the rental rate of capital. For all series the impact effects of a technology shock

are almost identical when comparing the median impulse response under learning and the

impulse response under rational expectations. This is because agents’ beliefs are distributed

around the rational expectations prediction function, as shown in the next section. However,

in the case of learning, there is variation in the impact effects. The observed amplification

of technology shocks in the previous section is in part sourced to this variation. Depending

on the precise beliefs of households and firms at the time of the shock, which along with the

capital stock determine the state of the economy, the impact effect of the technology shock

could be larger or smaller.

Output, hours and investment display a hump-shaped profile in response to a technology

shock. This reflects earlier noted persistence properties induced by learning dynamics. At

the time of the shock, belief coefficients are fixed so that the impact effects are on average

the same. In subsequent periods, beliefs are revised in response to observed data with a

one-period lag. This generates persistence in the actual data generating process for all series.

An interesting feature of the model concerns dynamics the period after the technology

shock dissipates. In a rational expectations equilibrium, all model variables, appropriately

normalized, are a linear function of the capital stock and the disturbance to the growth rate

of technology. As the disturbance is assumed to be i.i.d., the observed dynamics one period

after the shock are entirely determined by adjustment in the capital stock. Under learning,

this is not the case. The technology shock leads to revisions in beliefs that commence the

period after the disturbance. Subsequent dynamics are largely driven by revisions to beliefs.

13Equivalently, the dynamics are those observed in transition to the new steady state associated with the
higher level of technology.
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In the period after the disturbance, agents revise upwards their beliefs about the returns

to investment and downwards their beliefs about wages – not just for the next period, but

for all future periods in the household’s decision horizon. Hence, the present discounted value

of capital returns rises and the present discounted value of labor returns falls relative to the

predictions of rational expectations. Figure 7 plots the time series of these sums under each

belief structure. Recalling aggregate consumption dynamics given by equation (6), optimism

about future returns – a steeper profile – tilts the consumption profile towards greater future

consumption. This and the flatter expected wage path serve to increase the marginal utility

of income relative to rational expectations, leading to larger labor supply and investment

effects. Both predictions are, therefore, in part realized in equilibrium outcomes in the period

after the shock: the return to capital rises and investment demand surges, while the real wage

drops as aggregate labor supply increases.14 Thus the model generates dynamics that are

consistent with those described by Pigou (1927).

Learning amplifies the standard substitution and income effects that operate in real busi-

ness cycle theory in response to a technology shock. In particular, the response in consumption

and hours resemble the effects of an investment-specific shock affecting the expected future

rate of return on investment. Agents forecast higher returns to capital which induce them to

decrease current consumption and increase their labor supply through the familiar intertem-

poral substitution effect on leisure – see Greenwood, Hercowitz, and Huffman (1988) for

a treatment of investment-specific shocks. This further amplifies the strong substitution ef-

fect already present under rational expectations. Shifts in expectations are endogenous to

technology disturbances giving the model greater flexibility in fitting various second-order

moments. Increased variation in marginal utility of income generates increased volatility in

hours worked. Because these variations in hours are caused by variations in the supply of

labor for a given production frontier, the model also better matches the various statistics

14The assumption that agents forecast normalized wages, which fall in response to a positive technology
shock, is not important for the result. In a model with stationary but persistent techonology shocks, agents
would forecast a rise in wages, but one that is smaller relative to rational expecations. Hence, it remains
true that agents project a flatter profile for real wages. Only in the case of i.i.d. productivity shocks does
learning induce higher wages and consumption than rational expectations. This is because under rational
expectations the intertemporal substitution effects work in the opposite direction than under persistent shocks.
Consumption and wages increase on impact and then converge to their steady state values.
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relating to labor market variables – to wit, hours, wages and average labor productivity.

Moreover, the tight correlation between consumption and output is broken.

5.3 Distributions of Beliefs

Because beliefs are central to our story it is useful to study their properties further. Consider

the following thought experiment. An econometrician observes an economy with data gen-

erated according to the real business model under rational expectations. For each observed

sample, the econometrician runs the exact regressions that comprise the beliefs in the learn-

ing model – recall equations (12) — (14) – calibrated with a gain equal to g = 0.0029. The

coefficients are recorded for many simulations.15

The dashed line in Figure 8 plots a kernel estimate of the implied distribution of the

resulting parameter estimates. Six distributions are reported corresponding to the intercept

and slope coefficient in each of the three forecasting equations. Because the econometrician

is outside the model – equivalently, the econometrician is small relative to the population

of rational expectation agents – the distribution reflects pure sampling error: there is no

feedback of this sampling error on the true data generating process. The distributions are

centered on the rational expectations equilibrium, exhibit negligible bias, and have a fairly

tight variance. This variance would go to zero as the gain parameter goes to zero, as this would

imply that all data are given equal weight. But with the chosen positive gain it is evident

that the econometrician has fairly accurate estimates of the parameters characterizing the

true data generating process, and would therefore make comparably good forecasts of future

returns as the rational agent.

Now imagine a world where all agents modeled by our real business cycle theory actually

construct forecasts based on these estimated models. This is precisely the model discussed

in this paper. The kernel estimate of the resulting ergodic distribution of beliefs is given by

the solid lines. The distribution of the estimated coefficients on capital is not centered on

the rational expectations parameters. The distributions are re-centered around the rational

15To compute the distribution of beliefs, the model is simulated 2250 periods and agents’ estimates are
recorded after discarding the first 2000 observations. The simulation is repeated 7000 times.

23



expectations coefficients to facilitate comparison with the non-feedback case.16 However the

median impact impulse responses shown in the previous section indicate that agents’ median

forecast is in line with rational expectations.

The variation in possible beliefs that can be held by agents is substantially more dispersed

than in the previous thought experiment. This dispersion is what leads to the nonlinear im-

pulse response functions and the associated uncertainty of their paths. This in turn generates

the increased volatility in the learning model.

The figures show that the bulk of the dispersion in agents’ beliefs is endogenously de-

termined by the interaction between observed prices and updating of agents’ beliefs. The

dispersion in beliefs reflects that prices are less informative about future macroeconomic con-

ditions. This model feature is further manifestation of shifting expectations as a source of

business cycle fluctuations that is very much in the spirit of Pigou and Keynes. Shifting

beliefs about the future returns to capital and wages, perhaps due to greater optimism about

future investment opportunities, leads to changes in current market clearing prices for labor

and capital. In turn, these prices reinforce beliefs.

These dynamics obviously relate to a number of recent papers on news shocks and business

cycle dynamics – see for example Beaudry and Portier (2006) and Jaimovich and Rebelo

(2008). The present analysis is distinct in the sense that there is only a single source of

disturbance – technology shocks. The observed dynamics can be sourced to two kinds of

variation: that due to the direct effects of the shock and that due to revisions in beliefs.

Because the latter are endogenous to variations in technology they could arguably be termed

“endogenous news shocks”. Note, however, that the mechanism in each case is different. In our

model, dynamics are generated by contemporaneous technology shocks and the endogenous

pessimism and optimism reflected in revisions to beliefs. Endogenous news affects agents’

decisions through intertemporal substitution effects on labor. In contrast, these other papers

generate shifts in current equilibrium prices in response to signals about productivity at some

future date that are exogenous to current technology: exogenous news affects agents’ decisions

through an income effect. Hence, in our model, negative comovement between consumption

16The “bias” in the estimates, a product of the nonlinearity of beliefs and linear regression methods, is
about 6% for each coefficient. As the gain goes to zero this bias vanishes.
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and hours implies higher hours and lower consumption; in models with exogenous news,

negative comovement implies higher consumption and lower hours. Irrespective, learning

clearly provides a mechanism through which expectations-driven business cycles emerge.

6 Expectations-Driven Business Cycles

Under learning dynamics, real business cycle theory still faces difficulty in matching two key

characteristics of the data. The first is the relative volatility of hours and output – and labor

market variables more generally. Without a high elasticity of labor supply, the model strug-

gles to replicate the volatility of output. And while learning alleviates the magnitude of the

discrepancy between data and model predictions, there remains the question of what other

model features would better fit this dimension of the data.17 The second data characteriza-

tion regards the problem of comovement: hours and consumption are negatively correlated.

Introducing an alternative belief structure can do little to resolve this model prediction. For a

given production frontier, and under the assumption that consumption and leisure are normal

goods, shifting beliefs, regardless of how they are modeled, cause variation in the marginal

utility of income for which optimal decisions demand negative comovement in these variables.

An emerging literature under the rubric expectations-driven business cycles studies as-

sumptions on preferences and technology that resolve this comovement problem. The mo-

tivating example is typically a news shock about the state of future technology. In the

benchmark model under rational expectations it creates an increase in consumption and a

decrease in hours and investment.

Beaudry and Portier (2006) explore primitive assumptions on production technology that,

in a competitive environment, are consistent with positive comovement in these variables.

They show that if production in a multi-sector model displays cost complementarities in

intermediate goods inputs then an otherwise standard real business cycle model will pro-

duce expectations-driven business cycles: positive comovement between consumption, out-

put, hours and investment in response to an expectations shock. A growing number of papers

17Introducing labor market search as in Andolfatto (1996) is one possible remedy, though this friction
appears to have more success with persistence properties than as a source of amplification.
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have proposed alternative resolutions to the comovement problem by considering more com-

plex variants of the standard real business cycle model. Jaimovich and Rebelo (2008) propose

modified preferences, variable capital utilization and adjustment costs to investment; Chen

and Song (2007) introduce financial frictions; den Haan and Kaltenbrunner (2007) focus on

labor market frictions; Floden (2006) considers a model with vintage capital; and Christiano,

Motto, and Rostagno (2006) introduce monetary frictions.

6.1 The Model

Motivated by this literature, the benchmark model is augmented as follows. First, following

Beaudry and Portier (2004) and Eusepi (2008), a production technology with a small degree

of increasing returns is introduced. Second, household preferences are assumed to be non-

separable in consumption and leisure but consistent with a long-run balanced growth path.

These model features resolve the comovement problem. Increasing returns tends to induce

persistent positive comovement in investment, consumption and hours in periods after a

technology shock as the production function shifts out over time due to the external economies.

Moreover, the assumption limits the quantity of investment crowded out by consumption. If

increasing returns are deemed unappealing a model of endogenous entry and exit delivers

an isomorphic production structure – see, for example, Portier (1995) or Jaimovich (2007).

Non-separable preferences raise the marginal utility of consumption when labor supply is high,

delivering tighter comovement between these variables. This modeling choice is dictated by

keeping the model as simple as possible – no state variable is added – and to provide a

meaningful comparison with the benchmark real business cycle framework.

Households maximize

Êj
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The notation remains as before, with the following additions. Ut is the utilization rate of cap-

ital in any period t. The function δ (·) gives the associated capital depreciation costs attached

to a given utilization rate of capital. We choose δ (Ut) = θ−1Uθ
t . It is included to address
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the potential criticism that the benchmark model is designed to minimize amplification and

propagation under rational expectations. The results show that even in the presence of this

friction learning amplifies volatility relative to rational expectations by a greater magnitude

than in the benchmark analysis. The only other change in the household’s problem is the more

general utility function. The utility function is assumed to be consistent with constant hours

on the balanced growth path: it displays a constant intertemporal elasticity of substitution

and constant Frisch elasticity of labor supply.

Firms maximize

YT −WTHT −RK
T (UtKt)

by choice of effective capital input, UtKt, and labor input, Ht, subject to the production

technology

Yt = Ψt (UtKt)
α (XtHt)

1−α

where

Ψt =
[
(UtKt)

α (XtHt)
1−α]η X−η

t .

The term, Ψt, denotes the external effects of aggregate capital, indexed by the constant

η ≥ 0. The term X−η
t guarantees that a balanced growth path exists in this model. The

assumptions σ = 1, η = 0 and Ut = 1 for all t delivers our benchmark model. Details of the

first-order conditions; log-linear approximation; and resulting model equations are found in

the appendix.

6.2 Calibration

The inverse Frisch elasticity of labor supply is set at the same value as in the simple real

business cycle model. There are two extra parameters with respect to the benchmark model.

The first parameter, measuring the aggregate externality, is set as η = 0.1, consistent with the

lowest estimate in Baxter and King (1991). This value implies a “small” degree of externality

and a locally determinate equilibrium under rational expectations.18 The second parameter is

the household’s intertemporal elasticity of substitution, σ, which is chosen to make the ratio

18The parameter implies a downward-sloping demand for labor. For the connection between externality
and indeterminacy, see Benhabib and Farmer (1994).
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of the standard deviations of consumption and output in the model and HP-filtered data as

close as possible. This gives σ = 1.5.19 The parameters σA and g are again calibrated to

match the standard deviation of output in the filtered data and the first autocorrelation of

output growth respectively. The gain is now g = 0.0015, half that in the benchmark model.

This gain implies a 74% weight on observations that are 50 years old. The appendix shows

the parameter indexing variable depreciation, θ, is pinned down by the steady state return

on capital and the steady state depreciation rate.

6.3 Results

Table 4 reports a subset of earlier presented statistics for the generalized model. The model

does well in most dimensions. Assuming an intertemporal elasticity of consumption equal

to σ = 1.5 achieves a stronger correlation between consumption and hours, reflected in the

positive autocorrelation of the former. This comes at the cost of slightly lower volatility of

investment relative to the benchmark model. These results address some of the concerns

regarding predictable movements laid out in Rotemberg and Woodford (1996). While no

evidence is adduced here on the magnitude of predictable movements in model dynamics,

what is true is that the movements will be of the right kind.

Table 4: Model with increasing returns and non-separable preferences

Statistic

σY σC/σY σI/σY σH/σY ρY,C ρY,H ∆C ∆Y ∆I ∆H

Data 1.54 0.52 2.87 1.13 0.69 0.88 0.25 0.28 0.34 0.58

Model:

σ = 1.5 1.50 0.52 2.42 0.70 0.99 0.99 0.14 0.27 0.35 0.39

σ = 1 1.50 0.33 3.04 0.70 0.92 0.98 0.01 0.22 0.30 0.33

19Under these parameter choices, the preferences of the representative agent have the property that con-
sumption is an inferior good. Florin Bilbiie is thanked for alerting the authors to this possibility. The appendix
describes microfoundations with costly labor market participation in which individual household preferences
have consumption and leisure being normal goods but in which aggregate preferences approximate those
assumed above. Eusepi and Preston (2008) develop theoretical implications in detail.
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The second row shows the performance of the model when σ is equal to 1. This weakens

the autocorrelation properties of consumption, which, as before, is noticeably less volatile

than output. One last result is that the extended model improves the overall fit with the

data but also increases amplification considerably. The standard deviation of the shock that

is required to match the volatility of output is more than 30% lower than the required value

under rational expectations (not shown).

The impulse response functions in figures 9 - 13 confirm that the model can generate

expectations-driven business cycles, as consumption, investment and hours rise also after

the productivity shock has occurred. Interestingly, learning as an endogenous news shock

generates greater amplification and propagation when compared to other recent models of

news-driven business cycles. For example, in Jaimovich and Rebelo (2008), model implied

statistics are fairly similar across models with and without the news shock – current tech-

nology largely determine time series properties in that paper. This is not the case in our

model.

7 Robustness

Modeling learning dynamics introduces one free parameter. It might reasonably be asked how

sensitive are our results to the choice of gain parameter. Furthermore, our approach might

be criticized on the ground that it is well known that real business cycle models need to be

augmented with additional frictions to replicate observed data. And that if we permitted

the real business cycle model under rational expectations a one parameter deviation from the

benchmark model it would provide a similarly good fit as the model under learning dynamics.

Or that the presence of such frictions would mitigate the role of learning as an amplification

and propagation mechanism. The following exercises allay such concerns, showing that:

• Large gain coefficients generate excess volatility and counterfactual autocorrelations in

many variables and therefore inferior fit of observed data;

• Introducing other frictions to the benchmark model under rational expectations, such

as variable capital utilization or adjustment costs in investment, are not as successful
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in fitting the data as well as our one parameter deviation of learning dynamics; and

• Even when learning is introduced in conjunction with these frictions, it continues to pro-

vide significant amplification and propagation relative to the same model under rational

expectations.

7.1 Alternative Parameter Assumptions

Table 5 reports a subset of statistics for a number of variants of the benchmark model. The

calibration is held fixed at our benchmark values for the model under learning, so that the

standard deviation of technology shocks remains unchanged across simulations. Models 1

and 2 show the benchmark results for the rational expectations and learning models. The

latter reiterates earlier results for ease of comparison while the former gives the results under

rational expectations assuming the same standard deviation of technology shocks as model

2. The improved amplification is again immediate. Models 3 and 4 show the cases of a lower

elasticity of labor supply (ǫH = 0.25). Under both rational expectations and learning, the

volatility of output falls for a given standard deviation technology shock. Concomitantly,

the relative volatility of investment and hours also decline, while the relative volatility of

consumption increases. The serial correlation properties adjust accordingly. These results

underscore the centrality of the elasticity of labor supply in generating plausible volatility in

real business cycle models.

Model 5 shows the learning model under a higher gain, g = 0.009, which is three times as

large as our benchmark case. It significantly increases volatility in all series, but tends to over-

shoot corresponding sample moments. This makes clear that the modeler is not unconstrained

in choosing this parameter – increasingly larger gains do not translate into increasingly better

correspondence with data.

The final row reports statistics for an alternative model of learning. Many recent papers

have proposed analyses of learning dynamics in the context of models where agents solve

infinite horizon decision problems, but without requiring that agents make forecasts more

than one period into the future. In these papers, agents’ decisions depend only on forecasts

of future variables that appear in Euler equations used to characterize rational expectations
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equilibrium. Key contributions include Bullard and Mitra (2002) and Evans and Honkapohja

(2003).

Table 5: Robustness

Statistic

σY σC/σY σI/σY σH/σY ρY,C ρY,H ∆C ∆Y ∆I

Data 1.54 0.52 2.87 1.13 0.69 0.88 0.25 0.28 0.34

Model:

Baseline RE 1.24 0.54 2.42 0.49 0.97 0.97 0.11 0.00 −0.03

Baseline Learn 1.52 0.38 3.07 0.72 0.83 0.96 −0.14 −0.28 0.42

Low Elast. RE 1.13 0.56 2.35 0.39 0.98 0.97 0.10 0.01 −0.02

Low Elast. Learn 1.28 0.43 2.91 0.55 0.87 0.95 −0.17 0.22 0.41

High Gain 2.30 0.32 4.00 1.04 0.03 0.95 −0.35 0.44 0.26

Euler Equation 1.24 0.54 2.42 0.49 0.97 0.97 0.10 0.00 −0.03

Of particular relevance to the present study are the analyses of Williams (2003) and

Carceles-Poveda and Giannitsarou (2007). The former studies precisely the question explored

here: can learning be a source of business cycle fluctuations? The latter is similarly motivated,

with specific focus on asset pricing implications of real business cycle theory. Both papers

make use of models with learning dynamics in which only one-period-ahead expectations mat-

ter to expenditure and production plans of households and firms. Both conclude that learning

of the kind considered here is unpromising in generating amplification and propagation.20

A final related paper is Huang, Liu, and Zha (2008). It considers the same model as

Williams (2003) where only one-period-ahead expectations matter, but examines a belief

structure that does not nest the rational expectations equilibrium of the model. In particular,

a class of self-confirming equilibria is analyzed – see Sargent (1999). The resulting impulse

20Williams (2003) also considers learning about structural parameters rather than the equilibrium mapping
between state variables and prices and concludes that such uncertainty gives rises to greater amplification.
This is a conceptually distinct exercise to that pursued in the present paper.
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response functions indicate that such beliefs help amplify technology shocks. However, no

attempt is made to calibrate the model to fit observed data. Again, our paper is distinguished

from that analysis by considering optimal decisions conditional on beliefs and by constraining

the class of beliefs to nest the rational expectations equilibrium of the model. The analyses

also differ insofar as we consider model properties implied by the ergodic distribution of beliefs

to remove the effects of initial conditions. Huang, Liu, and Zha (2008), in contrast, consider

one specific choice of initial beliefs.

The final row replicates this kind of analysis in the context of the model developed here.

Williams (2003) proceeds assuming that the Euler equations predicted by a rational expecta-

tions analysis of the model represent decision rules of agents under learning. The only model

equation to change is that for consumption demand. The Euler equation is

ct = Etct+1 − Et

(
βR̄RK

t+1 + γ̂t+1
)
. (21)

The model under learning then assumes household consumption decisions are determined as

ct = Êtct+1 − Êt

(
βR̄RK

t+1 + γ̂t+1
)

(22)

This requires the further assumption that households directly forecast their own future con-

sumption using regressions of the kind specified in section 2. Preston (2005) shows that this

decision rule leads to suboptimal decisions – see also Marcet and Sargent (1989).21 All re-

maining model equations are unchanged as they do not directly depend on the specification

of beliefs.

Not modeling optimal decisions and assuming consumption decisions are made according

to (22) leads to dramatically different conclusions. Learning dynamics fail to generate am-

plification and propagation. Model implied moments are essentially indistinguishable from a

rational expectations analysis of the model. This negative finding has less to do with learning

than it does with the assumed nature of economic decisions. In real business cycle theory

the only intertemporal decision is the household’s consumption and saving decision. To make

21That (21) describes optimal decisions under rational expectations and not learning reflects the prop-
erty under rational expectations of equilibrium probability laws embedding information about all relevant
constraints, including transversality conditions and intertemporal budget constraints. This is not true once
beliefs are exogenously specified as in the learning model contemplated here.
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this decision households must forecast the entire future sequence of wages and real interest

rates. These beliefs about future prices determine current market clearing prices, which in

turn determine beliefs. A consequence of the model of household behavior given by (22) is

the connection between market prices that govern future consumption and investment oppor-

tunities and current allocations and prices is severed. The economic structure of the model

is completely changed and revealed to matter greatly for implied model dynamics. Only by

properly modeling the interactions of households’ and firms’ beliefs about the economy and

the markets in which they operate can we fully understand the potential of near-rational

beliefs to explain observed data.

7.2 Alternative Frictions

Table 6 presents two final exercises. First, under both belief structures, model implications

under variable capital utilization are considered. Second, under rational expectations only, a

model with investment adjustment costs is presented. This permits a comparison of learning

dynamics with one popular friction employed in the real business cycle literature. A more

exhaustive comparative exercise is beyond the scope of this paper. The data moments and

benchmark results are again presented in the first three rows.

Including variable capital utilization serves to amplify technology shocks under both belief

structures. However, learning still provides 23 percent greater volatility. Regardless of the na-

ture of beliefs, the relative volatilities, covariances and autocorrelations are largely unchanged.

Introducing investment adjustment costs of the form

Kt+1 = It

[
1− φ

(
It
It−1

)]
+ (1− δ)Kt

with φ(γ̄) = φ′(γ̄) = 0 and φ′′(γ̄) > 0 in the rational expectations model certainly improves

correspondence with data on some dimensions – the first-order serial correlation properties

of output and investment are much improved and output is more volatile.22 But remaining

moments are, if anything, further from the data. In particular, the relative volatility of

investment is considerably dampened. Finally, while results for learning under investment

22In this experiment σA and φ
′′ (γ̄) are chosen to match the volatility of HP-filtered output and the first

order autocorrelation of output growth.
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adjustment costs have not been presented, we conjecture that such frictions will only enhance

the amplification and propagation of near-rational expectations. Frictions that introduce

additional state variables make current quantities and prices more sensitive to households’

and firms’ beliefs about future economic conditions – and this is the heart of our theory of

Pigou-type fluctuations.

Table 6: Alternative Frictions

Statistic

σY σC/σY σI/σY σH/σY ρY,C ρY,H ∆C ∆Y ∆I

Data 1.54 0.52 2.87 1.13 0.69 0.88 0.25 0.28 0.34

Model:

Baseline RE 1.24 0.54 2.42 0.49 0.97 0.97 0.11 0.00 −0.03

Baseline Learn 1.52 0.38 3.07 0.72 0.83 0.96 −0.14 0.28 0.42

Var. Cap. Utl. RE 1.81 0.51 2.48 0.51 0.98 0.98 0.0 −0.02 −0.03

Var. Cap. Utl. Learn 2.23 0.38 2.91 0.66 0.93 0.98 −0.08 0.26 0.38

Inv. Adj. Costs RE 1.53 0.68 2.09 0.39 0.96 0.89 −0.04 0.16 0.56

8 Conclusion

This paper explores learning dynamics as a source of economic fluctuations, assessing its

implications for the amplification and propagation of technology shocks in real business cycle

models. In the spirit of Pigou (1927) a model is developed in which self-fulfilling expectations

are possible in response to technology shocks. The benchmark model delivers volatility in

output comparable to a rational expectations analysis with a standard deviation of technology

shock that is 20 percent smaller, and has substantially more volatility in investment and hours.

The model captures persistence in these series, unlike standard models. The improvement in

fit stems from shifting beliefs having properties of demand shocks.

While introducing learning dynamics improves model fit relative to rational expectations,

the benchmark model suffers a comovement problem between consumption, hours, output
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and investment. An augmented model that is consistent with expectations-driven business

cycles, in the sense of Beaudry and Portier (2006), resolves these counterfactual predictions.

This richer model produces additional amplification and propagation, requiring 30 percent

smaller technology shocks than a rational expectations analysis, while providing a superior

characterization of other second-order moments of observed data.
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A Appendix

A.1 Data

We use quarterly data for the US economy. The sample is 1955:Q1 to 2004:Q4. The variables

are constructed as follows with DLX codes in parentheses. Output is Real Gross Domestic

Product (GDPH); nominal consumption is computed as the sum of nondurable goods (CN),

services (CS) and government expenditures (G); nominal investment is the sum of private non-

residential investment structures (FNS), Equipment and software (FNE), private residential

investment (FR) and consumption durable goods (CD). Consumption and investment are

converted to real terms by using the GDP deflator (GDP/GDPH). Hours are measured by

non-farm business hours (LXNFH). All variables a transformed to per capita terms by using

the civilian non-institutional population above 16 years (LN16N). Productivity is measured

as output per hour in the non-farm business sector (LXNFA). Finally, the hourly wage is

measured by compensation per hour in the non-farm business sector (LXNFC). Real wage

is obtained by using the non-farm output price deflator (LXNFI). We also document the

volatility of hours by using (as an alternative measure) the average hours of all persons at

work from the household survey (LENCLWHN). For this series, we use the sample 1982:Q3-

2006:Q1.

A.2 Model

This section delineates the general model that includes capacity utilization, non-separability

between consumption and leisure and externalities of production.

A.2.1 Households

Consumers choose consumption, leisure and capital to maximize

Êt

∞∑

T=t

βT−tu (CT , LT )

subject to

Ct +Kt+1 = RK
t (utKt) +WtHt + (1− δ (Ut))Kt

Lt = 1−Ht.
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The first order conditions are

Ct : uc(Ct, Lt) = Λt

Kt+1 : βÊtΛt+1R
K
t+1ut+1 − Λt + βÊt [Λt+1 (1− δ (Ut+1))] = 0

Lt : uL(Ct, Lt) = −ΛtWt

Ut : RK
t = δ′ (Ut) .

In the sequel we assume

u (Ct, Lt) =
C1−σ
t v (1− Lt)

1− σ

where ν ′
(
H̄
)
> 0, H̄ is steady state hours worked, and ǫν = ν ′′H̄/ν > 0. Also, we assume

δ (Ut) =
1

θ
U θ
t

with δ
(
Ū
)
= δ in steady state.

Normalized non-stationary variables are denoted by lower case letters. Stationary variables

are left unchanged. Hence, for any trending variableGt define gt = Gt/Xt as the corresponding

normalized variable. The model is then studied in log deviation from a non-stochastic steady

state in these normalized variables so that ĝt = ln (gt/ḡ), with ḡ denoting the steady state

value of gt.

In terms of normalized variables the first-order conditions are as follows. For consumption:

λt ≡ Xσ
t Λt = Xσ

t uc(Ct, Lt) = Xσ
t C

−σ
t v (Ht) = c−σt v (Ht) .

For capital:

1 = βÊt

[
λt+1
λt

1

γσt+1

(
RK
t+1Ut+1 + (1− δ (Ut+1))

)]

For Leisure:

λtwt = Xσ−1
t ΛtWt = −

c1−σt

1− σ
v′ (Ht) .

A log-linear approximation to these relations around a balanced growth path provides:

1. Marginal utility of consumption:

λ̂t = −σĉt − ψ (1− σ) Ĥt
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where in steady state

ψ ≡
H̄v′

(
H̄
)

v
(
H̄
) (σ − 1)−1 =

w̄H̄

c̄
.

2. Euler equation:

βÊt

[
β−1
(
λ̂t+1 − λ̂t − σγ̂t+1

)
+

(
β−1 −

(1− δ)

γ̄σ

)(
R̂K
t+1 + Ût+1

)
−

δ

γ̄σ
θÛt+1

]
= 0

which on using the steady state relation

R̄KŪ

γ̄σ
=

(
β−1 −

(1− δ)

γ̄σ

)
=

θδ

γ̄σ

becomes

Êt

[(
λ̂t+1 − λ̂t − σγ̂t+1

)
+ β

(
β−1 −

(1− δ)

γσ

)
R̂K
t+1

]
= 0.

3. Labor-leisure choice:

(1− σ) ĉt + ǫνĤt = λ̂t + ŵt,

which, combined with the expression for marginal utility, gives:

σ−1λ̂t + ŵt = ǫHĤt

where

ǫH = ǫν −
(σ − 1)2

σ
ψ > 0

is the inverse Frisch elasticity of labor supply.23

4. Capacity utilization:

Ût =
1

(θ − 1)
R̂K
t .

A.2.2 Firms

The firms’s problem is

max
UtKt,Ht

YT −WTHT −RK
T (UtKt)

subject to the production technology

Yt = Ψt (UtKt)
α (XtHt)

1−α where Ψt =
[
(UtKt)

α (XtHt)
1−α]η X−η

t

23The restriction ǫH > 0 guarantees the concavity of the utility function.
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denotes the external effects of aggregate capital. The term X−η
t guarantees that a balanced

growth path with exogenous growth exists in this model. Output is made stationary by the

following transformation

Ψtγ
−α
t kαt U

α
t H

1−α
t = yt

which is log-linearized to

Ψ̂t − αγ̂t + αk̂t + αÛt + (1− α) Ĥt = ŷt. (23)

The external effects can be expressed in terms of stationary variables

Ψt =

[(
Ut
γt
kt

)α
H1−α
t

]η
,

and after log-linearizing

Ψ̂t = ηα
(
Ût + k̂t − γ̂t

)
+ (1− α) ηĤt. (24)

The first order condition with respect to hours is

−Wt + (1− α)Ψt (UtKt)
α (Xt)

1−αH−α
t = 0

which becomes

(1− α)ΨtX
α
t−1

(
Ut

Kt

Xt−1

)α
(Xt)

1−α

Xt

H−α
t =

Wt

Xt

and hence

(1− α)Ψtγ
−α
t (Utkt)

αH−α
t = wt.

Combined with the definition of output gives

wt = (1− α)
yt
Ht

which in log-linear form becomes

ŵt = ŷt − Ĥt. (25)

The capital input decision gives:

0 = −RK
t + αΨt

(
Ut
γt
kt

)α−1
H1−α
t .
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Using the definition of output yields

RK
t = αγt

yt
Utkt

which in log-linear form is

R̂K
t = γ̂t + ŷt − Ût − k̂t. (26)

Finally, the evolution of capital in log-linear terms is described by:

k̂t+1 =
ı̄

k̄
ı̂t +

(1− δ)

γ̄

(
k̂t − γ̂t

)
−

δθ

γ̄
Ût. (27)

A.3 Consumption decision rule

The final task is to derive the optimal consumption decision rule under arbitrary expectations.

Households choose a path for consumption, taking as given their initial capital holdings,

capital and labor prices and their expectations about future prices. The flow budget constraint

can be expressed in terms of stationary variables

ct + kt+1 = (γt)
−1RK

t (Utkt) + wtHt + (1− δ (Ut)) (γt)
−1 kt.

Log-linearization gives

γ̄σ−1β−1k̂t =






c̄
k̄
ĉt + k̂t+1−

R̄γ̄σ−1
(
R̂K
t + Ût +

1−α
α
ŵt +

1−α
α
Ĥt − γ̂t

)
−

(1−δ)
γ̄

[
−γ̂t −

δ
(1−δ)

θÛt
]






employing the relations

w̄H̄

k̄
=
1− α

α

ŪR̄k

γ̄
=
1− α

α
R̄γ̄σ−1 and

[
R̄kŪ

γ̄
+
1− δ

γ̄

]
= γ̄σ−1β−1 = β̃

−1
.

Defining

R̄γ̄σ−1 = γ̄σ−1
(
β−1 −

(1− δ)

γ̄σ

)

= β̃
−1
−
(1− δ)

γ̄

= R̃
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and R̄kŪ
γ̄
= δθ

γ̄
, the expression above can be further simplified to

k̂t = β̃

[
c̄

k̄
ĉt + k̂t+1 + β̃

−1
γ̂t − R̃

(
R̂K
t +

1− α

α
ŵt +

1− α

α
Ĥt

)]
.

Using the labor supply condition

σ−1λ̂t + ŵt = ǫHĤt

and the definition of marginal utility gives the following constant-consumption labor supply

[
ǫH −

σ − 1

σ
ψ

]
Ĥt = −ĉt + ŵt (28)

Substituting for labor supply decision Ĥt using the household’s first-order condition gives

k̂t = β̃
(
ǫcĉt + β̃

−1
γ̂t + k̂t+1 − ǫwŵt − R̃R̂K

t

)

where

ǫc =
c̄

k̄
+

[
ǫH − ψ

(σ − 1)

σ

]−1
R̃
1− α

α

ǫw =

(

1 +

[
ǫH − ψ

(σ − 1)

σ

]−1)

R̃
1− α

α
.

Solving forward and taking expectations yields the intertemporal budget constraint

ǫcÊt

∞∑

T=t

β̃
T−t

ĉT = β̃
−1
k̂t + Êt

∞∑

T=t

β̃
T−t
(
ǫwŵT + R̃R̂K

T − β̃
−1
γ̂T

)

as of time t. Solving the Euler equation backward from time T and taking expectations at t

yields

Êt

(
σĉT + ψ (1− σ) ĤT

)
= σĉt + ψ (1− σ) Ĥt + Êt

[
T−1∑

T=t

(
β̃R̃R̂K

T+1 − σγ̂T+1

)]

.

Substituting for the constant-consumption labor supply we obtain

Êt ([(1− χ) σĉT + χσŵT ]) = σĉt + ψ (1− σ) Ĥt + Êt

[
T−1∑

T=t

(
β̃R̃R̂K

T+1 − σγ̂T+1

)]

where

χ =
ψ (1− σ)

σǫH + ψ (1− σ)
.
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Rearranging in terms of expected consumption and substituting into the intertemporal

budget constraint we get

ĉt + σ−1ψ (1− σ) Ĥt =

(1− χ)
(
1− β̃

)

ǫcβ̃
k̂t +

Êt

∞∑

T=t

β̃
T−t




(1− χ)

(
1− β̃

)

ǫc

(
(ǫw + ǫ̃cχ) ŵT + R̃R̂K

T − β̃
−1
γ̂T

)
− β̃

(
σ−1β̃R̃R̂K

T+1 − γ̂T+1

)


 .

Finally, we obtain the consumption decision rule, depending only on forecast of prices that

are beyond the control of the household

ĉt + σ−1ψ (1− σ) Ĥt =
(1− χ)

(
1− β̃

)

ǫc

[
β̃
−1
k̂t + R̃R̂K

t − β̃
−1
γ̂t + (ǫw + ǫcχ) ŵt

]

+Êt

∞∑

T=t

β̃
T−t



β̃ −
(1− χ)

(
1− β̃

)

ǫc



 γ̂T+1

+Êt

∞∑

T=t

β̃
T−t




(1− χ)

(
1− β̃

)

ǫc
− β̃σ−1



 β̃R̃R̂K
T+1

+Êt

∞∑

T=t

β̃
T−t

(1− χ)
(
1− β̃

)

ǫc
β̃ (ǫw + ǫcχ) ŵT+1.

Setting σ = 1 and χ = 0 we get back to the simple real busisiness cycle model.

A.4 Steady State

From the Euler equation we get

R̄kŪ

γ̄
= γ̄σ−1β−1 −

1− δ

γ̄

= β̃
−1
−
1− δ

γ̄

and from the capacity utilization first-order condition

R̄kŪ

γ̄
=

δθ

γ̄
=⇒ θ =

R̄kŪ

δ
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which defines θ, allowing to determine U and therefore Rk. The ratios

ȳ

k̄
= (α)−1

R̄kŪ

γ̄
;
ı̄

k̄
= 1−

1− δ

γ̄
;
c̄

k̄
=

ȳ

k̄
−

ı̄

k̄
and

c̄

ȳ
=

c̄

k̄
/
ȳ

k̄
.

Finally the steady state level ψ, for a given choice of H̄, is determined by

ψ =
H̄v′

(
H̄
)

v
(
H̄
) (σ − 1)−1 =

w̄H̄

k̄

k̄

c̄

=
1− α

α
R̄γ̄σ−1

k̄

c̄
(σ − 1)−1

=
1− α

α
R̃
k̄

c̄
(σ − 1)−1 .

A.5 The model with costly participation

The preferences described above suffer from the problem that, for a given σ, if the Frisch

elasticity of labor supply increases beyond some threshold level, consumption becomes an

inferior good. In this section we show how a simple model of costly labor market participation

gives a similar labor supply and consumption decision rule. We assume that each ‘household’

is composed of a continuum of family members. Labor is indivisible: each member of the

household decides whether to work a fixed amount of hours or to not participate in the labor

market. Participating in the labor market entails a cost. We assume perfect risk sharing

within the household.

The maximization problem for the household is

Et

∞∑

T=t

βT−tu (CT , LT )

subject to

Ct +Kt+1 +XtΦ (et) = RK
t (utKt) +WtHt + (1− δ (Ut))Kt

Lt = 1−Ht,

where et denotes the fraction of household members that are working. Household consumption

is defined as

Ct = etC
e
t + (1− et)C

u
t
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where Ce
t denotes consumption of employed members and Cu

t is consumption of the unem-

ployed. The utility function is defined as

u (Ct, Lt) = et
(Ce

t )
1−σ ν (h)

1− σ
+ (1− et)

(Cu
t )
1−σ ν (0)

1− σ
,

where

Lt = 1−Ht = 1− eth.

Finally, the function Φ (et) denotes the cost attached to labor market participation and has

the following properties

Φe (et) > 0, Φee (ē) > 0.

Total household consumption satisfies a standard Euler equation, while the first order

conditions for the employed and unemployed are

(Ce
t )
−σ ν (h) = Λt (29)

(Cu
t )
−σ ν (0) = Λt (30)

implying the risk-sharing condition

Ce
t

Cu
t

=

[
ν (h)

ν (0)

] 1
σ

.

Employed household members enjoy greater consumption in compensation of work effort.

The first order condition with respect to participation gives

1

1− σ

[
− (Ce

t )
1−σ ν (h) + (Cu

t )
1−σ ν (0)

]
= Λt [Wth− Ce

t + Cu
t − Φe,t]

which, rearranging, becomes

σ

σ − 1
(Ce

t − Cu
t ) =Wth− Φe,t.

Expressing the variables in stationary levels and log-linearizating provides

ĉet = ĉut

ĉt =
ē (c̄e − c̄u)

c̄
Ĥt + ĉet (31)

σ

σ − 1

e (c̄e − c̄u)

c̄
ĉet = ψŵt − ǫφφ̄Ĥt,
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where

ψ =
H̄w̄

c̄
, ǫφ =

Φeeē

Φe
, φ̄ =

Φeē

c̄
.

In steady state the following holds

ē (c̄e − c̄u)

c̄
=

σ − 1

σ

(
ψ − φ̄

)
> 0.

Substituting for ĉet and using the above steady state relation we get

(
ψ − φ̄

) [
ĉt −

σ − 1

σ

(
ψ − φ̄

)
Ĥt

]
= ψŵt − ǫφφ̄Ĥt,

which gives the following constant-consumption labor supply
[

ǫφφ̄(
ψ − φ̄

) −
σ − 1

σ

(
ψ − φ̄

)
]

Ĥt = −ĉt +
ψ(

ψ − φ̄
)ŵt.

To derive the optimal decision rule, the flow budget constraint can be expressed in terms

of stationary variables as

ct + kt+1 +Φ(et) = (γt)
−1RK

t (Utkt) + wtHt + (1− δ (Ut)) (γt)
−1 kt.

Log-linearization gives

γ̄σ−1β−1k̂t =






Φeē
c̄

c̄
k̄
Ĥt +

c̄
k̄
ĉt + k̂t+1−

R̄γ̄σ−1
(
R̂K
t + Ût +

1−α
α
ŵt +

1−α
α
Ĥt − γ̂t

)
−

(1−δ)
γ̄

[
−γ̂t −

δ
(1−δ)

θÛt
]





,

which becomes

k̂t = β̃

[
c̄

k̄
ĉt + φ̄

c̄

k̄
Ĥt + k̂t+1 + β̃

−1
γ̂t − R̃

(
R̂K
t +

1− α

α
ŵt +

1− α

α
Ĥt

)]
.

Using the for the constant-consumption labor supply

k̂t = β̃
(
ǫcĉt + β̃

−1
γ̂t + k̂t+1 − ǫwŵt − R̃R̂K

t

)

where

ǫc =
c̄

k̄
+

[
ǫφφ̄(
ψ − φ̄

) −
σ − 1

σ

(
ψ − φ̄

)
]−1 [

R̃
1− α

α
− φ̄

c̄

k̄

]

ǫw =



1 +
ψ(

ψ − φ̄
)

[
ǫφφ̄(

ψ − φ̄
) −

σ − 1

σ

(
ψ − φ̄

)
]−1

 R̃
1− α

α
.
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Iterating forward and taking expectations provides

ǫcÊt

∞∑

T=t

β̃
T−t

ĉT = β̃
−1
k̂t + Êt

∞∑

T=t

β̃
T−t
(
ǫwŵT + R̃R̂K

T − β̃
−1
γ̂T

)

the intertemporal budget constraint as of time t. Combining (29) and (31) we obtain

ĉt =
σ − 1

σ

(
ψ − φ̄

)
Ĥt − σ−1λ̂t.

Solving the Euler equation backward from time T and taking expectations

Êtλ̂T = λ̂t + Êt

[
T−1∑

T=t

(
β̃R̃R̂K

T+1 − σγ̂T+1

)]

Êt

(
σĉT +

(
ψ − φ̄

)
(1− σ) ĤT

)
= σĉt +

(
ψ − φ̄

)
(1− σ) Ĥt + Êt

[
T−1∑

T=t

(
β̃R̃R̂K

T+1 − σγ̂T+1

)]

.

Substituting for the constant-consumption labor supply yields

Êt ([(1− χ) σĉT + χσŵT ]) = σĉt + ψ (1− σ) Ĥt + Êt

[
T−1∑

T=t

(
β̃R̃R̂K

T+1 − σγ̂T+1

)]

by using

χ =

[ (
ψ − φ̄

)2
(1− σ)

σǫφφ̄+
(
ψ − φ̄

)2
(1− σ)

]

.

Rearranging in terms of expected consumption and substituting into the intertemporal budget

constraint we get

ǫcÊt

∞∑

T=t

β̃
T−t

[
1

1− χ

{

ĉt + σ−1
(
ψ − φ̄

)
(1− σ) Ĥt + Êt

[
T−1∑

T=t

(
σ−1β̃R̃R̂K

T+1 − γ̂T+1

)]

− χŵT

}]

= β̃
−1
k̂t + Êt

∞∑

T=t

β̃
T−t
(
ǫwŵT + R̃R̂K

T − β̃
−1
γ̂T

)
.

Further simplification leads to

ĉt + σ−1
(
ψ − φ̄

)
(1− σ) Ĥt =

(1− χ)
(
1− β̃

)

ǫcβ̃
k̂t +

Êt

∞∑

T=t

β̃
T−t




(1− χ)

(
1− β̃

)

ǫc

(
(ǫw + ǫ̃cχ) ŵT + R̃R̂K

T − β̃
−1
γ̂T

)
− β̃

(
σ−1β̃R̃R̂K

T+1 − γ̂T+1

)


 .
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Finally, we obtain the consumption decision rule, depending only on forecast of prices that

are beyond the control of the household,

ĉt + σ−1
(
ψ − φ̄

)
(1− σ) Ĥt =

(1− χ)
(
1− β̃

)

ǫc

[
β̃
−1
k̂t + R̃R̂K

t − β̃
−1
γ̂t + (ǫw + ǫcχ) ŵt

]

+Êt

∞∑

T=t

β̃
T−t



β̃ −
(1− χ)

(
1− β̃

)

ǫc



 γ̂T+1

+Êt

∞∑

T=t

β̃
T−t




(1− χ)

(
1− β̃

)

ǫc
− β̃σ−1



 β̃R̃R̂K
T+1

+Êt

∞∑

T=t

β̃
T−t

(1− χ)
(
1− β̃

)

ǫc
β̃ (ǫw + ǫcχ) ŵT+1.

Setting σ = 1 and χ = 0 (σ = 1) we get back to the simple RBC model. For low values of

φ̄ (the cost of participating) the decision rule approximates our representative agent model.

To give the intuition of the equivalence between the representative agent and the model

with costly participation consider an increase in the representative agent’s income that leaves

unchanged the price of capital and the price of labor. Under the current calibration the agent’s

preferences imply that consumption is an inferior good. Therefore with higher income the

agent decreases consumption and increases leisure. In the case of a "family" with costly labor

market participation, the positive income transfer induces a higher fraction of family members

to exit the labor market and consume leisure, while the family members that are still working

do not decrease their consumption. However aggregate consumption decreases because of a

composition effect. As shown above, family members that do not work are allocated lower

consumption. Since their number increases, aggregate consumption also decreases. Also

notice that assuming σ > 1, by letting Φee,Φe → 0 the model becomes Rogerson’s lottery

model with non-separable preferences described in King and Rebelo (1999).

A.6 Constant gain learning and the Kalman filter

Agents update their beliefs using the following constant-gain algorithm

ω̂t = ω̂t−1 + gR−1t qt−1
(
z̃t − ω̂′t−1qt−1

)
(32)

51



Rt = Rt−1 + g
(
qt−1q

′
t−1 −Rt−1

)

where we now assume for simplicity that z̃t = T (ω̂t−1)qt−1 is one-dimensional (for example

kt+1) and qt is a two-dimensional vector. Following Evans and Honkapohja (2001) and Sargent

and Williams (2005), the limiting behavior of the estimates are approximated by the following

system of ordinary differential equations24

·

ω̂ = R−1Mq (ω̂) [T (ω̂)− ω̂]

Ṙ = Mq (ω̂)−R

where Mq (ω̂) = E
(
qt−1q

′
t−1

)
.25 Asymptotically R converges to Mq (ω̂).

As a way to justify and interpret the use of constant-gain algorithms it is common to

relate them to the Kalman filter. Assume agents believe that the data generating process is

the following random walk model of coefficient variation

z̃t = ω′t−1qt−1 + ẽzt

ωt = ωt−1 + ẽωt

where for simplicity we assume that z̃t is one-dimensional and qt is a n-dimensional vector.

The shock ẽzt has standard deviation σA and variance-covariance matrix of ẽ
ω
t is assumed to

be Σω << σ2zI. The matrix Σ
ω defines agents’ prior about the variance in the coefficients’

drift. Let ω̂t|t−1 the optimal estimate of ωt conditional on information up to date t− 1. This

is obtained from the following Kalman filtering equations

ω̂t+1|t = ω̂t|t−1 +
Ptqt−1

1 + q′t−1Ptqt−1

(
z̃t − ω̂′t|t−1qt−1

)
(33)

Pt+1 = Pt −
Ptqt−1q

′
t−1Pt

1 + q′t−1Ptqt−1
+
1

σ2z
Σω (34)

where we use

E
[(
ωt − ω̂t|t−1

) (
ωt − ω̂t|t−1

)′]
= σ2zPt.

24This ODE system is called the mean dynamics of the estimates. Sargent and Williams (2005) investigate
a second ODE system which describe the escape dynamics, which are not the focus of this paper. In the
simulations conducted with the calibrated model we did not observe escape dynamics.
25The unconditional expectation has finite value if the system is E-Stable. See also Evans and Honkapohja

(2001).
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Sargent and Williams (2005) propose the following approximation to the filtering equa-

tions. For large t, (34) can be approximated by

Pt+1 = Pt − PtMq (ω̂)Pt +
1

σ2z
Σω.

Further assuming that 1/
(
1 + q′t−1Ptqt−1

)
≈ 1, the filtering equations can be re-written as

ω̂t+1|t = ω̂t|t−1 + Ptqt−1
(
z̃t − ω̂′t|t−1qt−1

)
(35)

Pt+1 = Pt − PtMq (ω̂)Pt +
1

σ2z
Σω.

The asymptotic behavior of (35) can be shown to be equivalent to the asymptotic behavior

of constant-gain least squares, provided agents’ priors on Σω satisfy

Σω = g2σ2zMq (ω̂)
−1 . (36)

To show this, the matrix P converges asymptotically to a unique positive definite matrix

which solves the Riccati equation

PMq (ω̂)P =
1

σ2z
Σω.

Using (36) the solution becomes P = gMq (ω̂)
−1. Hence, in large samples, Pt converges to

P and Rt converges to Mq (ω̂), implying that the constant gain algorithm and the Kalman

filter have the same asymptotic behavior. As shown in Sargent and Williams (2005), the

two algorithms share the same asymptotic behavior in large samples but their transitional

dynamics display differences in small samples. In this paper, we analyze the dynamics of

agents’ beliefs at their stationary distribution, and therefore evaluate the learning algorithm

in large samples.

53



1 2 3 4 5 6 7 8 9
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

quarters

O
ut

pu
t g

ro
w

th
 A

C
F

Figure 1: Output autocorrelation function. The thick dashed line denotes US data, the thick
solid line denoted the model with learning, while the dotted line denotes the model under
rational expectations.
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Figure 2: Dotted lines denote the 75% bands, solid line denotes the median impulse response
under learning. The dashed line denotes the impulse response under rational expectations.
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Figure 3: Dotted lines denote the 75% bands, solid line denotes the median impulse response
under learning. The dashed line denotes the impulse response under rational expectations.
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Figure 4: Dotted lines denote the 75% bands, solid line denotes the median impulse response
under learning. The dashed line denotes the impulse response under rational expectations.
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Figure 5: Dotted lines denote the 75% bands, solid line denotes the median impulse response
under learning. The dashed line denotes the impulse response under rational expectations.
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Figure 6: Dotted lines denote the 75% bands, solid line denotes the median impulse response
under learning. The dashed line denotes the impulse response under rational expectations.
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Figure 7: Dotted lines denote the 75% bands, solid line denotes the median impulse response
under learning. The dashed line denotes the impulse response under rational expectations.
The top panel is the present discounted value of returns to capital and the bottom panel the
corresponding value for wages.
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Figure 8: Solid line: model with feedback. Dotted line, model without feedback.
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Figure 9: Output dynamics in response to a technology shock with increasing returns and
non-separable preferences. The thick solid line denotes the model with learning, with the
dotted lines showing the 12.5 and 87.5 percentiles.
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Figure 10: Consumption dynamics in response to a technology shock with increasing returns
and non-separable preferences. The thick solid line denotes the model with learning, with the
dotted lines showing the 12.5 and 87.5 percentiles.
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Figure 11: Hours dynamics in response to a technology shock with increasing returns and
non-separable preferences. The thick solid line denotes the model with learning, with the
dotted lines showing the 12.5 and 87.5 percentiles.
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Figure 12: Investment dynamics in response to a technology shock with increasing returns
and non-separable preferences. The thick solid line denotes the model with learning, with the
dotted lines showing the 12.5 and 87.5 percentiles.
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Figure 13: Rental rate dynamics in response to a technology shock with increasing returns
and non-separable preferences. The thick solid line denotes the model with learning, with the
dotted lines showing the 12.5 and 87.5 percentiles.
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