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1 Introduction

The magnitude of the expected excess return on stocks relative to bonds (the equity pre-

mium) constitutes one of the major puzzles in financial economics. As Mehra and Prescott

(1985) show, the fluctuations observed in the consumption growth rate over U.S. history

predict an equity premium that is far too small, assuming reasonable levels of risk aversion.1

One proposed explanation is that the return on equities is high to compensate investors for

the risk of a rare disaster (Rietz (1988)). An open question has therefore been whether the

risk is sufficiently high, and the rare disaster sufficiently severe, to quantitatively explain the

equity premium. Recently, however, Barro (2006) shows that it is possible to explain the

equity premium using such a model when the probability of a rare disaster is calibrated to

international data on large economic declines.

While the models of Rietz (1988) and Barro (2006) advance our understanding of the eq-

uity premium, they fall short in other respects. Most importantly, these models predict that

the volatility of stock market returns equals the volatility of dividends. Numerous studies

have shown, however, that this is not the case. In fact, there is excess stock market volatility;

the volatility of stock returns far exceeds that of dividends (e.g. Shiller (1981), LeRoy and

Porter (1981), Keim and Stambaugh (1986), Campbell and Shiller (1988), Cochrane (1992),

Hodrick (1992)). While the models of Barro and Rietz address the equity premium puzzle,

they do not address this volatility puzzle.

In the original model of Barro (2006), agents have power utility and the endowment

process is subject to large and relatively rare consumption declines (disasters). This paper

proposes two modifications. First, rather than being constant, the probability of a disaster

is stochastic and varies over time. Second, the representative agent, rather than having

power utility preferences, has recursive preferences. I show that such a model can generate

volatility of stock returns close to that in the data at reasonable values of the underlying

parameters. Moreover, the model implies reasonable values for the mean and volatility of

1Campbell (2003) extends this analysis to multiple countries.
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the government bills.

Both time-varying disaster probabilities and recursive preferences are necessary to fit the

model to the data. The role of time-varying disaster probabilities is clear, the role of recursive

preferences perhaps less so. Recursive preferences, introduced by Kreps and Porteus (1978)

and Epstein and Zin (1989) retain the appealing scale-invariance of power utility, but allow

for separation between the willingness to take on risk and the willingness to substitute over

time. Power utility requires that these are driven by the same parameter, leading to the

counterfactual prediction that a high price-dividend ratios predicts a high excess return.

Increasing the agent’s willingness to substitute over time reduces the effect of the disaster

probability on the riskfree rate. With recursive preferences, this can be accomplished without

simultaneously reducing the agent’s risk aversion.

The model in this paper allows for time-varying disaster probabilities and recursive utility

with unit elasticity of intertemporal substitution (EIS). The assumption that the EIS is equal

to 1 allows the model to be solved in closed form up to an indefinite integral. A time-varying

disaster probability is modeled by allowing the intensity for jumps to follow a square-root

process (Cox, Ingersoll, and Ross (1985)). The solution for the model reveals that allowing

the probability of a disaster to vary not only implies a time-varying equity premium, it also

increases the level of the equity premium. The dynamic nature of the model therefore leads

the equity premium to be higher than what static considerations alone would predict.

This model can quantitatively match high equity volatility and the predictability of excess

stock returns by the price-dividend ratio. Generating long-run predictability of excess stock

returns without generating counterfactual long-run predictability in consumption or dividend

growth is a central challenge for general equilibrium models of the stock market. This model

meets the challenge: while stock returns are predictable, consumption and dividend growth

are only predictable ex post if a disaster actually occurs. Because disasters occur rarely, the

amount of consumption predictability is quite low, just as in the data. A second challenge for

models of this type is to generate volatility in stock returns without counterfactual volatility

in the government bill rate. This model meets this challenge as well. The model is capable
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of matching the low volatility of the government bill rate because of two competing effects.

When the risk of a disaster is high, rates of return fall because of precautionary savings.

However, the probability of government default (either outright or through inflation) rises.

Investors therefore require greater compensation to hold government bills.

As I describe above, adding dynamics to the rare disaster framework allows for a number

of new insights. Note however, that the dynamics in this paper are relatively simple. A

single state variable (the probability of a rare disaster) drives all of the results in the model.

This is parsimonious, but also unrealistic: it implies, for instance, that the price-dividend

ratio and the riskfree rate are perfectly negatively correlated. It also implies a degree of

co-movement among assets that would not hold in the data. In Section 2.4, I suggest ways

in which this weakness might be overcome while still maintaining tractability.

Several recent papers also address the potential of rare disasters to explain the aggregate

stock market. Gabaix (2008a) assumes power utility for the representative agent, while

also assuming the economy is driven by a linearity-generating process (see Gabaix (2008b))

that combines time-variation in the probability of a rare disaster with time-variation in the

degree to which dividends respond to a disaster. This set of assumptions allows him to

derive closed-form solutions for equity prices as well as prices for other assets. In Gabaix’s

numerical calibration, only the degree to which dividends respond to the disaster varies over

time. Therefore the economic mechanism driving stock market volatility in Gabaix’s model is

quite different than the one considered here. Barro (2009) and Martin (2008) propose models

with a constant disaster probability and recursive utility. In contrast, the model considered

here focuses on the case of time-varying disaster probabilities. Longstaff and Piazzesi (2004)

propose a model in which consumption, and the ratio between consumption and the dividend

are hit by contemporaneous downward jumps; the ratio between consumption and dividends

then reverts back to a long-run mean. They assume a constant jump probability and power

utility. In contemporaneous independent work, Gourio (2008b) specifies a model in which the

probability of a disaster varies between two discrete values. He solves this model numerically

assuming recursive preferences. A related approach is taken by Veronesi (2004), who assumes
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that the drift of dividends follows a Markov switching process, with a small probability

of falling into a low state. While the physical probability of a low state is constant, the

representative investor’s subjective probability is time-varying due to learning. Veronesi

assumes exponential utility; this allows for the inclusion of learning but makes it difficult to

assess the magnitude of the excess volatility generated through this mechanism.

In this paper, the conditional distribution of consumption growth becomes highly non-

normal when a disaster is relatively likely. Thus the paper also relates to a literature that

examines the effects of non-normalities on risk premia. Harvey and Siddique (2000) and

Dittmar (2002) examine the role of higher-order moments on the cross-section; unlike the

present paper they take the market return as a given. Similarly to the present paper, Weitz-

man (2007) constructs an endowment economy with non-normal consumption growth. His

model differs from the present one in that he assumes independent and identically distributed

consumption growth (with a Bayesian agent learning about the unknown variance), and he

focuses on explaining the equity premium.

Finally, this paper draws on a literature that derives asset pricing results assuming en-

dowment processes that include jumps, with a focus on option pricing (an early reference

is Naik and Lee (1990)). Liu, Pan, and Wang (2005) consider an endowment process in

which jumps occur with a constant intensity; their focus is on uncertainty aversion but they

also consider recursive utility. My model departs from theirs in that the probability of a

jump varies over time. Drechsler and Yaron (2011) show that a model with jumps in the

volatility of the consumption growth process can explain the behavior of implied volatility

and its relation to excess returns. Eraker and Shaliastovich (2008) also model jumps in the

volatility of consumption growth; they focus on fitting the implied volatility curve. Both

papers assume of EIS greater than one and derive approximate analytical and numerical

solutions. Santa-Clara and Yan (2006) consider time-varying jump intensities, but restrict

attention to a model with power utility and implications for options. In contrast, the model

considered here focuses on recursive utility and implications for the aggregate market.
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2 Model

2.1 Assumptions

I assume an endowment economy with an infinitely-lived representative agent. This set-up

is standard, but I assume a novel process for the endowment. Aggregate consumption (the

endowment) solves the following stochastic differential equation

dCt = µCt− dt+ σCt− dBt + (eZt − 1)Ct− dNt, (1)

where Bt is a standard Brownian motion and Nt is a Poisson process with time-varying

intensity λt.
2 This intensity follows the process

dλt = κ(λ̄− λt) dt+ σλ
√
λt dBλ,t, (2)

where Bλ,t is also a standard Brownian motion, and Bt, Bλ,t and Nt are assumed to be

independent. I assume Zt is a random variable whose time-invariant distribution ν is inde-

pendent of Nt, Bt and Bλ,t. I use the notation Eν to denote expectations of functions of Zt

taken with respect to the ν-distribution. The t subscript on Zt will be omitted when not

essential for clarity.

Assumptions (1) and (2) define Ct as a mixed jump-diffusion process. The diffusion term

µCt− dt + σCt− dBt represents the behavior of consumption in normal times, and implies

that, when no disaster takes place, log consumption growth over an interval ∆t is normally

distributed with mean (µ− 1
2
σ2)∆t and variance σ2∆t. Disasters are captured by the Poisson

process Nt, which allows for large instantaneous changes (“jumps”) in Ct. Roughly speaking,

λt can be thought of as the disaster probability over the course of the next year.3 In what

2In what follows, all processes will be right continuous with left limits. Given a process xt, the notation

xt− will denote lims↑t xs, while xt denotes lims↓t xs.
3More precisely, the probability of k jumps over the course of a short interval ∆t is approximately equal

to e−λt∆t (λt∆t)
k

k! , where t will be measured in units of years. In the calibrations that follow, the average

value of λt will be 0.0355, implying a 0.0249 probability of a single jump over the course of a year, a 0.00044

probability of two jumps, and so forth.
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follows, I will refer to λt either as the disaster intensity or the disaster probability depending

on the context; these terms should be understood to have the same meaning. The instanta-

neous change in log consumption, should a disaster occur, is given by Zt. Because the focus

of the paper is on disasters, Zt will be assumed to be negative throughout.

In the model, a disaster is therefore a large negative shock to consumption. The model is

silent on the reason for such a decline in economic activity; examples include a fundamental

change in government policy, a war, a financial crisis and a natural disaster. Given this

paper’s focus on time-variation in the likelihood of a disaster, it is probably most realistic

to think of the disaster as caused by human beings (namely, the first three examples given

above, rather than a natural disaster). The recent financial crisis in the United States

illustrates such time-variation: Following the series of events in the fall of 2008, there was

much discussion of a second Great Depression, brought on by a freeze in the financial system.

The conditional probability of a disaster seemed higher, say, than in 2006.

As Cox, Ingersoll, and Ross (1985) discuss, the solution to (2) has a stationary distri-

bution provided that κ > 0 and λ̄ > 0. This stationary distribution is Gamma with shape

parameter 2κλ̄/σ2
λ and scale parameter σ2

λ/(2κ). If 2κλ̄ > σ2
λ, the Feller condition4 is sat-

isfied, implying a finite density at zero. The top panel of Figure 1 shows the probability

density function corresponding to the stationary distribution. The bottom panel shows the

probability that λt exceeds x as a function of x (the y-axis uses a log scale). That is, the

panel shows the difference between 1 and the cumulative distribution function for λt. As this

figure shows, the stationary distribution of λt is highly skewed. The skewness arises from

the square root term multiplying the Brownian shock in (2): This square root term implies

that high realizations of λt make the process more volatile, and thus further high realiza-

tions more likely than they would be under a standard auto-regressive process. The model

therefore implies that there are times when “rare” disasters can occur with high probability,

but that these times are themselves unusual.

I assume the continuous-time analogue of the utility function defined by Epstein and

4from Feller (1951)
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Zin (1989) and Weil (1990), that generalizes power utility to allow for preferences over the

timing of the resolution of uncertainty. The continuous-time version is formulated by Duffie

and Epstein (1992); I make use of a limiting case of their model that sets the parameter

associated with the intertemporal elasticity of substitution equal to one. Define the utility

function Vt for the representative agent using the following recursion:

Vt = Et

∫ ∞
t

f(Cs, Vs) ds, (3)

where

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log((1− γ)V )

)
. (4)

Note that Vt represents continuation utility, i.e. utility of the future consumption stream.

The parameter β is the rate of time preference. I follow common practice in interpreting γ

as relative risk aversion. As γ approaches one, (4) can be shown to be ordinally equivalent

to logarithmic utility. I assume throughout that β > 0 and γ > 0. Most of the discussion

will focus on the case of γ > 1.

2.2 The value function and the riskfree rate

Let W denote the wealth of the representative agent and J(W,λ) the value function. In

equilibrium, it must be the case that J(Wt, λt) = Vt. Conjecture that the price-dividend

ratio for the consumption claim is constant. Namely, let St denote the value of a claim to

aggregate consumption, then

St
Ct

= l. (5)

for some constant l.5 The process for consumption and the conjecture (5) imply that St

satisfies

dSt = µSt− dt+ σSt− dBt + (eZt − 1)St− dNt. (6)

Let rt denote the instantaneous riskfree rate.

5Indeed, the fact that St/Ct is constant (and equal to 1/β) arises from the assumption of unit EIS, and

is independent of the details of the model (see, e.g., Weil (1990)).
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To solve for the value function, consider the Hamilton-Jacobi-Bellman equation for an

investor who allocates wealth between St and the riskfree asset. Let αt be the fraction

of wealth in the risky asset St, and (with some abuse of notation), let Ct be the agent’s

consumption. Wealth follows the process

dWt =
(
Wt−αt(µ− rt + l−1) +Wt−rt − Ct−

)
dt+Wt−αtσ dBt + αt(e

Zt − 1)Wt− dNt.

At the optimum, the instantaneous expected change in the value function, plus flow utility

must equal zero (Duffie and Epstein (1992)). That is, optimal consumption and portfolio

choice must satisfy the equation:

sup
αt,Ct

{
JW
(
Wtαt(µ− rt + l−1) +Wtrt − Ct

)
+ Jλκ(λ̄− λt)+

1

2
JWWW

2
t α

2
tσ

2 +
1

2
Jλλσ

2
λλt + λtEν

[
J(Wt(1 + αt(e

Zt − 1)), λt)− J(Wt, λt)
]

+f(Ct, J)

}
= 0, (7)

where Ji denotes the first derivative of J with respect to variable i, for i equal to λ or W , and

Jij the second derivative of J with respect to i and j. Note that the instantaneous return

on wealth invested in the risky asset is determined by the dividend yield l−1 as well as by

the change in price. Note also that the instantaneous expected change in the value function

is given by the continuous drift plus the expected change due to jumps.

As Appendix A.1 shows, the form of the value function and the envelope condition

fC = JW imply that that the wealth-consumption ratio l = β−1. Moreover, the value

function takes the form

J(W,λ) =
W 1−γ

1− γ
I(λ). (8)

The function I(λ) is given by

I(λ) = ea+bλ, (9)

where

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + b

κλ̄

β
, (10)

b =
κ+ β

σ2
λ

−

√(
κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

. (11)
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It follows from (11) that, for γ > 1, b > 0.6 Therefore, by (8), an increase in disaster risk

reduces utility for the representative agent. As Section 2.4 shows, the price of the dividend

claim falls when the disaster probability rises. The agent requires compensation for this

risk (because utility is recursive, marginal utility depends on the value function), and thus

time-varying disaster risk increases the equity premium.

Appendix A.1 shows that the riskfree rate is given by

rt = β + µ − γσ2︸ ︷︷ ︸
standard model

+ λtEν
[
e−γZ

(
eZ − 1

)]︸ ︷︷ ︸
disaster risk

. (12)

The term above the first bracket in (12) is the same as in the standard model without

disaster risk; β represents the reflects the role of discounting, µ intertemporal smoothing

and γ precautionary savings. The term multiplying λt in (12) arises from the risk of a

disaster. Because eZ < 1, the riskfree rate is decreasing in λ. An increase in the probability

of a rare disaster increases the representative agent’s desire to save, and thus lowers the

riskfree rate. The greater is risk aversion, the greater is this effect.

2.3 Risk of default

Disasters often coincide with at least a partial default on government securities. This point

is of empirical relevance if one tries to match the behavior of the riskfree asset to the rate

of return on government securities in the data. I therefore allow for partial default on

government debt, and consider the rate of return on this defaultable security. I assume that,

in the event of disaster, there will be a default on government liabilities with probability q.

I follow Barro (2006) in assuming that in the event of default, the percent loss is equal to

the percent fall in consumption.

Specifically, let rLt denote the interest rate that investors would receive if default does

not occur. As shown in Appendix A.5, the equilibrium relation between rLt and rt is

rLt = rt + λtqEν
[
e−γZt

(
1− eZ

)]
. (13)

6Note that κ > 0 and β > 0 are standing assumptions.
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Let rb denote the instantaneous expected return on government debt. Then rbt = rLt +

λtqEν
[
eZ − 1

]
, so

rbt = rt + λtqEν
[
(e−γZt − 1)

(
1− eZ

)]
. (14)

The second term in (14) has the interpretation of a disaster risk premium: the percent

change in marginal utility is multiplied by the percent loss on the asset. An analogous term

will appear in the expression for the equity premium below. Figure 3 shows the face value

of government debt, rLt , the instantaneous expected return on government debt rbt and the

riskfree rate rt as a function of λt. Because of the required compensation for default, rLt

lies above rt. The expected return lies between the two because the actual cash flow that

investors receive from the government bill will be below rLt if default occurs.

All three rates decrease in λt because, at these parameter values, a higher λt induces a

greater desire to save. However, rLt and rbt are less sensitive to changes in λ than rt because

of an opposing effect: the greater is λt, the greater is the risk of default, and therefore the

greater the return investors demand for holding the government bill. Because of a small cash

flow effect, rbt decreases more than rLt , but still less than rt.

2.4 The dividend claim

This section describes prices and expected returns on the aggregate stock market. Let Dt

denote the dividend. I model dividends as levered consumption, i.e. Dt = Cφ
t as in Abel

(1999) and Campbell (2003). Ito’s Lemma implies

dDt

Dt−
= µD dt+ φσ dBt + (eφZt − 1) dNt, (15)

where µD = φµ + 1
2
φ(φ− 1)σ2. For φ > 1, dividends fall by more than consumption in the

event of a disaster. This is consistent with the U.S. experience (for which accurate data on

dividends are available) as discussed in Longstaff and Piazzesi (2004).

While dividends and consumption are driven by the same shocks, (15) does allow divi-

dends and consumption to wander arbitrarily far from one another. This could be avoided

by modeling the consumption-dividend ratio as a stationary but persistent process, as in,
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e.g. Lettau and Ludvigson (2005), Longstaff and Piazzesi (2004) and Menzly, Santos, and

Veronesi (2004). In order to focus on the novel implications of time-varying disaster risk, I

do not take this route here.

It is convenient to price the claim to aggregate dividends by first calculating the state-

price density. Unlike the case of time-additive utility, the case of recursive utility implies

that the state-price density depends on the value function. In particular, Duffie and Skiadas

(1994) show that the state-price density πt is equal to

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC(Ct, Vt), (16)

where fC and fV denote derivatives of f with respect to the first and second argument

respectively.

Let Ft = F (Dt, λt) denote the price of the claim to future dividends. Absence of arbitrage

then implies that Ft is the integral of future dividend flow, discounted using the state-price

density:

F (Dt, λt) = Et

[∫ ∞
t

πs
πt
Ds ds

]
. (17)

Define a function representing a single term in this integral:

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
.

Then

F (Dt, λt) =

∫ ∞
0

H(Dt, λt, τ) dτ.

The function H(Dt, λt, τ) has an interpretation: It is the price today of a claim to the

dividend paid τ years in the future. Appendix A.3 shows that H takes a simple exponential

form:

H(Dt, λt, τ) = exp {aφ(τ) + bφ(τ)λt}Dt
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and that the functions aφ(τ) and bφ(τ) have solutions

aφ(τ) =

(
µD − µ− β + γσ2(1− φ)− κλ̄

σ2
λ

(ζφ + bσ2
λ − κ)

)
τ

− 2κλ̄

σ2
λ

log

(
(ζφ + bσ2

λ − κ)
(
e−ζφτ − 1

)
+ 2ζφ

2ζφ

)
(18)

bφ(τ) =
2Eν

[
e(1−γ)Z − e(φ−γ)Z

] (
1− e−ζφτ

)
(ζφ + bσ2

λ − κ) (1− e−ζφτ )− 2ζφ
, (19)

where

ζφ =

√
(bσ2

λ − κ)
2

+ 2Eν [e(1−γ)Z − e(φ−γ)Z ]σ2
λ. (20)

Appendix A.3 discusses further properties of interest, such as existence, sign and convergence

as τ approaches infinity. In particular, for φ > 1, aφ(τ) and bφ(τ) are well-defined for all

values of τ . Moreover, bφ(τ) is negative. The sign of bφ(τ) is of particular importance for

the model’s empirical implications. Negative bφ(τ) implies that when risk premia are high

(namely when disaster risk is high), valuations are low. Thus the price-dividend ratio (which

is F (D,λ, τ) divided by the aggregate dividend D) predicts realized excess returns with a

negative sign.

The fact that higher risk premia go along with lower prices would seem like a natural

implication of the model. After all, don’t higher risk premia imply higher discount rates,

and don’t higher discount rates imply lower prices? The problem with this argument is

that it ignores the effect of disaster risk on the riskfree rate. As shown in Section 2.2, higher

disaster risk implies a lower riskfree rate. As is true more generally for dynamic models of the

price-dividend ratio (Campbell and Shiller (1988)), the net effect depends on the interplay of

three forces: the effect of the disaster risk on risk premia, on the riskfree rate and on future

cash flows. A precise form of this statement is given in Section 2.6.

The result that bφ(τ) is negative implies that, indeed, the risk premium and cash flow

effect dominate the riskfree rate effect. Thus the price-dividend ratio will predict excess

returns with the correct sign. Appendix A.3 shows that this is true in general for reasonable

values of the parameters, namely for φ > 1. Section 2.7 contrasts this result with what holds

in a dynamic model with power utility.
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The results in this section also suggest the following testable implications: Stock market

valuations should fall when the risk of a rare disaster rises. The risk of a rare disaster

is unobservable, but, given a comprehensive data set, one can draw conclusions based on

disasters that have actually occurred. This is important because it establishes independent

evidence for the mechanism in the model.

Specifically, Barro and Ursua (2009) address the question: Given a large decline in the

stock market, how much more likely is a decline in consumption than otherwise? Barro

and Ursua augment the data set of Barro and Ursua (2008) with data on national stock

markets. They look at cumulative multi-year returns on stocks that coincide with macroeco-

nomic contractions. Their sample has 30 countries and 3037 annual observations; there are

232 stock-market crashes (defined as cumulative returns of -25%) and 100 macroeconomic

contractions (defined as the average of the decline in consumption and in GDP). There is

a 3.8% chance of moving from “normalcy” into a state with a contraction of 10% or more.

This number falls to 1%, if one conditions on a lack of a stock market crash. If one considers

major depressions (defined as a decline in fundamentals of 25% or more), there is a 0.89%

chance of moving from normalcy into a depression. Conditioning on no stock market crash

reduces the probability to 0.07%.

Also closely related is recent work by Berkman, Jacobsen, and Lee (2010), who study

the correlation between political crises and stock returns. Berkman et al. make use of the

International Crisis Behavior (ICB) database, a detailed database of international political

crises occurring during the period 1918–2006. Rather than dating the start of a crisis with

a military action itself, the database identifies a start of a crisis with with a change in the

probability of a threat.7 A regression of the return on the world market on the number of

such crises in a given month yields a coefficient that is negative and statistically significant.

Results are particularly strong for the starting year of a crisis, for violent crises, and for crises

rated as most severe. The authors also find a statistically significant effect on valuations:

7See Berkman et al. for a discussion of the prior empirical literature on the relation between political

instability and stock market returns.
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the correlation between the number of crises and the earnings-price ratio on the S&P 500

is positive and statistically significant, as is the correlation between the crisis severity index

and the earnings-price ratio. Similar results hold for the dividend yield.

Comparing the results in this section and in Section 2.2 indicate that both the riskfree

rate and the price-dividend ratio are driven by the disaster probability λt; this follows from

the fact that there is a single state variable. This perfect correlation could be broken by

assuming that consumption is subject to two types of disaster, each with its own time-varying

intensity, and further assuming that one type has a stronger effect on dividends (as modeled

through high φ) than the other. The real interest rate and the price-dividend ratio would

be correlated with both intensities, but to different degrees, and thus would not be perfectly

correlated with one another. The correlation between nominal rates and the price-dividend

ratio could be further reduced by introducing a third type of consumption disaster. The

three types could differ across two dimensions: the impact on dividends and the impact on

expected inflation. The expected inflation process would affect the prices of nominal bonds

but would not (directly) affect stocks. I conjecture that the generalized model could be

constructed to be as tractable as the present one.

2.5 The equity premium

The equity premium arises from the co-movement of the agent’s marginal utility with the

price process for stocks. There are two sources of this co-movement: Co-movement during

normal times (diffusion risk), and co-movement in times of disaster (jump risk). Ito’s Lemma

implies that F satisfies the following:

dFt
Ft−

= µF,t dt+ σF,t[dBt dBλ,t]
> + (eφZ − 1) dNt, (21)

for processes µF,t and σF,t. It is helpful to define notation for the price dividend ratio. Let

G(λ) =

∫ ∞
0

exp {aφ(τ) + bφ(τ)λ} dτ. (22)

Then

σF,t =
[
φσ (G′(λt)/G(λt))σλ

√
λt

]
. (23)
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Ito’s Lemma also implies

dπt
πt−

= µπ,t dt+ σπ,t[dBt dBλ,t]
> + (e−γZt − 1) dNt, (24)

where

σπ,t =
[
−γσ bσλ

√
λt

]
(25)

as shown in Appendix A.2. Finally, define

ret = µF,t +
Dt

Ft
+ λtEν

[
eφZ − 1

]
. (26)

Then ret can be understood to be the instantaneous return on equities.8 The instantaneous

equity premium is therefore ret − rt.

Appendix A.4 shows that the equity premium can be written as

ret − rt = −σπ,tσ>F,t + λtEν
[
(e−γZ − 1)(1− eφZ)

]
(27)

The first term represents the portion of the equity premium that is compensation for diffusion

risk (which includes time-varying λt). The second term is the compensation for jump risk.

While the diffusion term represents the co-movement between the state-price density and

prices during normal times, the jump risk term shows the co-movement between the state-

price density and prices during disasters. That is,

Eν
[
(e−γZ − 1)(1− eφZ)

]
= −Eν

[(
Ft − Ft−
Ft−

)(
πt − πt−
πt−

)]
for a time t such that a jump takes place.

Substituting (23) into (27) implies

ret − rt = φγσ2︸ ︷︷ ︸
standard model

− λt
G′

G
bσ2

λ + λtEν
[
(e−γZ − 1)(1− eφZ)

]︸ ︷︷ ︸
static disaster risk︸ ︷︷ ︸

time-varying disaster risk

(28)

8The first term in (26)) is the percentage drift in prices, the second term is the instantaneous dividend

yield, and the third term is the expected decline in prices in the event of a disaster. The first plus the third

term constitutes the expected percentage change in prices.
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The first and third terms are analogous to expressions in Barro (2006): the first term is

the equity premium in the standard model with normally distributed consumption growth,

while the third term arises from the (static) risk of a disaster. The second term is new

to the dynamic model. This is the risk premium due to time variation in disaster risk.

Because bφ is negative, G′ is also negative. Moreover, b is positive, so this term represents a

positive contribution to the equity premium. Because both the second and the third terms

are positive, an increase in the risk of rare disaster increases the equity premium.9

The instantaneous equity premium relative to the government bill rate is equal to (28)

minus the default premium rbt − rt (given in (14)):

ret − rbt = φγσ2 − λt
G′

G
bσ2

λ + λtEν
[(
e−γZ − 1

) (
(1− q)

(
1− eφZ

)
+ q

(
eZ − eφZ

))]
. (30)

The last term in (30) takes the usual form for the disaster risk premium: the percent change in

marginal utility is multiplied by the percent loss. Here, with probability q, the expected loss

on equity relative to bonds is reduced because both assets perform poorly. This instantaneous

equity premium is shown in Figure 4 (solid line). The difference between the dashed line and

the solid line represents the component of the equity premium that is new to the dynamic

model, and shows that this term is large. The dotted line represents the equity premium

in the standard diffusion model without disaster risk and is negligible compared with the

disaster risk component. Figure 4 shows that the equity premium is increasing with the

disaster risk probability.

Equation (30) and Figure 4 show that the return required for holding equity increases

with the probability of a disaster. How does it depend on a more traditional measure of

risk, namely the equity volatility? When there is no disaster, instantaneous volatility can be

9Also of interest is the equity premium conditional on no disasters, which is equal to (28) less the

component due to jumps in the realized return (see Equation 26). This conditional equity premium is given

by

ret − rt − λtEν [eφZ − 1] = φγσ2 − λt
G′

G
bσ2
λ + λtEν

[
e−γZ(1− eφZ)

]
. (29)
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computed directly from (23):

(
σF,tσ

>
F,t

) 1
2 =

(
φ2σ2 +

(
G′(λt)

G(λt)

)2

σ2
λλt

) 1
2

.

Figure 5 shows that volatility is an increasing and concave function of the disaster probability.

When the probability of a disaster is close to zero, the variance in the disaster probability

is also very small. Thus the volatility is close to that of the dividend claim in non-disaster

periods (φσ). As the risk of a rare disaster increases, so does the volatility of the disaster

process. The increase in risk rises (approximately) with the square root of λ. Because the

equity price falls when the disaster probability increases, the model is consistent with the

“leverage effect” found by Black (1976), Schwert (1989) and Nelson (1991).

The above equations show that an increase in the equity premium is accompanied by an

increase in volatility. The net effect of a change in λ on the Sharpe ratio (the equity premium

divided by the volatility) is shown in Figure 6. Bad times, interpreted in this model as times

with high probability of disaster, are times when the investors demand a higher risk-return

tradeoff than usual. Harvey (1989) and subsequent papers report empirical evidence that

the Sharpe ratio indeed varies countercyclically. Like the model of Campbell and Cochrane

(1999), this model is consistent with this evidence.

The time-varying disaster risk model generates a countercyclical Sharpe ratio through

two mechanisms. First, the value function varies with λt: when disaster risk is high, investors

require a greater return on all assets with prices negatively correlated with λ. The component

of the equity premium associated with time-varying λt thus rises linearly with λ while the

volatility rises only with the square root. Second, the component of the equity premium

corresponding to disaster risk itself (the last term in (30)) has no counterpart in volatility.

This term compensates equity investors for negative events that are not captured by the

standard deviation of returns.
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2.6 Zero-coupon equity

In order to understand the dynamics of the price-dividend ratio, it is helpful to think of the

aggregate as being composed of components that pay a dividend at a specific point in time,

namely, zero-coupon equity.

Recall that

H(Dt, λt, T − t) = exp {aφ(τ) + bφ(τ)λt}Dt

is the time-t price of the claim that pays the aggregate dividend at time t+τ . Appendix A.3

shows that the risk premium on the zero-coupon claim with maturity τ is equal to

r
e,(τ)
t − rt = φγσ2 − λtσ2

λbφ(τ)b+ λtEν
[
(e−γZ − 1)(1− eφZ)

]
. (31)

Like the equity premium, the risk premium on zero-coupon equity is positive and increasing

in λt.

Zero-coupon equity can help answer the question of why the price-dividend ratio on the

aggregate market is decreasing in λt. Because bφ(0) = 0, the question can be restated as:

why is b′φ(τ) negative for small values of τ?10 The differential equation for bφ(τ) is given by

(A.27). Evaluating at zero yields:

b′φ(0) = Eν
[
e(φ−γ)Z − e(1−γ)Z

]
= −Eν

[
e−γZ(eZ − 1)

]︸ ︷︷ ︸
riskfree rate

− Eν
[
(e−γZ − 1)(1− eφZ)

]︸ ︷︷ ︸
equity premium

+ Eν
[
eφZ − 1

]︸ ︷︷ ︸
expected future dividends

.(32)

Equation (32) shows that the change in bφ(τ) can be written in terms of risk premium, riskfree

rate and cash flow effects. The first term multiplies λt in the equation for the riskfree rate

(12). The second term multiplies λt in the equation for the risk premium (31) in the limit

as τ approaches zero. The third term represents the effect of change in λt on expected

future dividends: eφZ − 1 is the percent change in dividends in the event of a disaster. The

10This restatement relies on the fact that bφ(τ) is monotonically decreasing. It is, because as τ increases,

e−ζφτ falls and 1 − e−ζφτ rises. The numerator of (19) therefore rises. In the denominator, the term

(ζφ + bσ2
λ − κ)

(
1− e−ζφτ

)
rises, and so the denominator falls in absolute value.
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terms corresponding to the riskfree rate and the risk premium enter with negative signs,

because higher discount rates reduce the price. Expected future dividend growth enters

with a positive sign because higher expected cash flows raise the price. Indeed, the term

corresponding to the equity premium and to expected future dividends together exceed that

of the riskfree rate when φ > 1.

As explained in the paragraph above, understanding b′φ(τ) for low values of τ is sufficient

for understanding why the price-dividend ratio is a decreasing function of λt. However, it

is also instructive to decompose b′φ(τ) for general values of τ . At longer maturities, it is

possible for λt to change before the claim matures. Thus there are additional terms that

account for the effect of future changes in λt:

b′φ(τ) = −Eν
[
e−γZ(eZ − 1)

]︸ ︷︷ ︸
riskfree rate

−
(
−bσ2

λbφ(τ) + Eν
[
(e−γZ − 1)(1− eφZ)

])︸ ︷︷ ︸
equity premium

+ Eν
[
eφZ − 1

]︸ ︷︷ ︸
expected future dividends

+
1

2
σ2
λbφ(τ)2︸ ︷︷ ︸

Jensen’s inequality

− κbφ(τ)︸ ︷︷ ︸
mean-reversion

The first three terms in this more general decomposition are analogous to those in the simpler

(32). The final two terms account for the effect of future changes in λt. The first of these is

a Jensen’s inequality term; all else equal, more volatility in the state variable increases the

price-dividend ratio. The second of these represents the fact that, if λt is high in the present,

λt is likely to decrease in the future on account of mean reversion.

While the focus of this paper is on the aggregate market, it is also of interest to com-

pare the model’s implications for zero-coupon equity to the behavior of these claims in the

data.11 Binsbergen, Brandt, and Koijen (2011) use option price data to calculate prices and

risk premia on zero-coupon equity. Their methods are able to establish prices for dividend

claims that have variable maturities of less than two years. They find that these claims

have expected excess returns that are statistically different from zero. In other words, the

equity premium arises at least in part from the short-term portion of the dividend stream.

11A related issue is the behavior of zero-coupon bonds. Bonds are described in detail in Appendix B.
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Binsbergen et al. argue that this evidence is contrary to the implications of some leading

asset pricing models such as Bansal and Yaron (2004) and Campbell and Cochrane (1999).

In these models, the claim to dividends in the very near future has a premium close to zero;

the equity premium arises from dividends paid in the far future.

In contrast, the present model implies a substantial equity premium for the short-term

claim, and thus is consistent with the empirical evidence. Figure 7 shows risk premia (31)

as a function of maturity. While the equity premium is increasing in maturity (that is, the

“term structure of equities” is upward-sloping), the intercept of the graph is not at zero but

rather at 5.5%. The reason is that a major source of the equity premium is disaster risk

itself. Equities of all maturities have equal exposure to this risk, and thus even equities with

short maturities have substantial risk premia, as the data imply.12

2.7 Comparison with power utility

To understand the role played by the recursive utility assumption, it is instructive to consider

the properties of a model with time-varying disaster risk and time-additive utility.13 Consider

a model with identical dynamics of consumption and dividends, but where utility is given

by

Vt = Et

∫ ∞
t

e−βs
C1−γ
s

1− γ
ds.

Appendix C shows that the riskfree rate under this model is equal to

rt = β + γµ− 1

2
γ(γ + 1)σ2 − λtEν

[
e−γZ − 1

]
(33)

the equity premium is given by

ret − rt = φγσ2 + λtEν
[(
e−γZ − 1

)
(1− eφZ)

]
(34)

12van Binsbergen et al. also show that, in their sample, short-maturity equity has a higher risk premium

than the aggregate equity claim. While the model predicts that short-maturity equity has a lower risk

premium, the data finding is not statistically significant, and the predictions of the model appear to be well

within the standard errors that van Binsbergen et al. calculate.
13Gourio (2008b) also shows analytically that the power utility model cannot replicate the predictability

evidence.
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and the value of the aggregate market takes the form

F (Dt, λt) = Dt

∫ ∞
0

exp {ap,φ(τ) + bp,φ(τ)λt} dτ.

The functions ap,φ(τ) and bp,φ(τ) satisfy ordinary differential equations given in Appendix C.

The solutions are:

ap,φ(τ) =

(
µD − µ− β + γσ2

(
1

2
(γ + 1)− φ

)
− κλ̄

σ2
λ

(ζp,φ − κ)

)
τ

− 2κλ̄

σ2
λ

log

(
(ζp,φ − κ)

(
e−ζp,φτ − 1

)
+ 2ζp,φ

2ζp,φ

)
(35)

bp,φ(τ) =
2Eν

[
e(φ−γ)Z − 1

] (
e−ζp,φτ − 1

)
(ζp,φ − κ) (1− e−ζp,φτ )− 2ζp,φ

, (36)

where

ζp,φ =
√
κ2 − 2Eν [e(φ−γ)Z − 1]σ2

λ. (37)

It is useful to contrast (36) with its counterpart in the recursive utility model. Under recursive

utility, bφ(τ) is negative for φ > 1, implying that the price-dividend ratio is decreasing in

λt. For power utility, bφ(τ) is negative only if φ > γ; otherwise it is positive.14 Under the

reasonable assumption that φ is less than γ, the power utility model makes the counterfactual

prediction that price-dividend ratios predict excess returns with a positive sign.15

What accounts for the difference between the power utility model and the recursive utility

model? The answer lies in the behavior of the riskfree rate. Comparing (33) with (12) reveals

that the riskfree rate under power utility falls more in response to an increase in disaster risk

14For φ > γ, the numerator of (36) is positive, and ζp,φ > κ, so 2ζp,φ > ζp,φ − κ > (ζp,φ − κ)(1− e−ζp,φτ )

and the denominator is negative. For φ < γ, it is necessary to also assume that κ2 > 2Eν
[
e(φ−γ)Z − 1

]
σ2
λ.

The numerator is negative because Eν
[
e(φ−γ)Z − 1

]
> 0. The denominator is also negative because κ > ζp,φ.

15Gabaix (2008a) solves a model with disaster risk and power utility assuming linearity generating processes

for consumption and dividends. While the theoretical model that Gabaix proposes allows for a time-varying

probability of rare disasters, the disaster probability is assumed to be constant in the calibration and dy-

namics are generated by changing the degree to which dividends respond to a consumption disaster. As

this discussion shows, incorporating time-varying probabilities into Gabaix’s calibrated model would likely

reduce the model’s ability to match the data.
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than under recursive utility with EIS equal to 1. In the power utility model, the riskfree rate

effect exceeds the combination of the equity premium and cash flow effect, and, as a result,

the price-dividend ratio increases with disaster risk.16

3 Calibration and Simulation

3.1 Calibration

3.1.1 Distribution of consumption declines

The distribution of the percentage decline, 1 − eZ is taken directly from the data . That

is, 1 − eZ is assumed to have a multinomial distribution, with outcomes given by actual

consumption declines in the data. I use the distribution of consumption declines found

by Barro and Ursua (2008). Barro and Ursua update the original cross-country dataset of

Maddison (2003) used by Barro (2006). The Maddison data consists of declines in GDP;

Barro and Ursua correct errors and fill in gaps in Maddison’s GDP data, as well as construct

an analogous dataset of consumption declines. I calibrate to the consumption data because

it is a more appropriate match to consumption in the model than is GDP. However, results

obtained from GDP data are very similar. The frequency of large consumption declines

implies an average disaster probability, λ̄ of 3.55%.17

The distribution of consumption declines in Panel A comes from data on 22 countries

from 1870 to 2006. One possible concern about the data is the relevance of this group for the

United States. For this reason, Barro and Ursua (2008) also consider the disaster distribution

16As in the recursive utility model, examining b′p,φ(0) allows a precise statement of these trade-offs. For

power utility:

b′p,φ(0) = Eν

[
e(φ−γ)Z − 1

]
= −Eν

[
e−γZ − 1

]︸ ︷︷ ︸
riskfree rate

− Eν
[
(e−γZ − 1)(1− eφZ)

]︸ ︷︷ ︸
equity premium

+ Eν
[
eφZ − 1

]︸ ︷︷ ︸
expected future dividends

,

which is greater than zero when γ > φ.
17I follow Barro and Ursua in using a 10% cut-off to identify large consumption declines.
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for a subset consisting of developed economies. For convenience, I follow Barro and Ursua

and refer to these as “OECD countries.”18 The distribution of consumption declines in these

countries is given in Panel B. There are fewer of these crises; the implied average disaster

probability is 2.86%. However, eliminating the non-OECD crises in effect eliminates many

comparatively minor crises (generally occurring after World War II). The overall distribution

is shifted toward the more serious crises. In what follows, I use the distribution in Panel A

for the base calibration, while the implications of the distribution in Panel B are explored

in Section 3.4.

3.1.2 Other parameters

Table 1 describes model parameters other than the disaster distribution described above.

Results are compared with quarterly U.S. data beginning in 1947 and ending in the first

quarter of 2010. Equities are constructed using the CRSP value-weighted index, while the

riskfree rate moments are constructed from real returns on the three-month Treasury Bill).

Postwar data are chosen as the comparison point in order to provide a clean comparison to

moments of the model that are calculated conditional on no disasters having occurred. Two

types of moments are simulated from the model. The first type (referred to as “population”

in the tables) are calculated based on all years in the simulation. The second type (referred

to as “conditional” in the tables) are calculated after first eliminating years in which one or

more disasters took place.19

In the model, time is measured in units of years and parameter values should be inter-

preted accordingly. The drift rate µ is calibrated so that in normal periods, the expected

18The overlap with the actual founding members of what is now known as the OECD is not exact. The

seventeen countries are Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan,

Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, U.K and U.S. The remaining five countries are

Argentina, Brazil, Chile, Peru and Taiwan.
19For calculations done over consecutive years, relevant periods are omitted. For example, for evaluating

predictability over 10-year horizons, 10 year periods of the simulation with a disaster are omitted.
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growth rate of log consumption is 2.5% per annum.20 The standard deviation of log con-

sumption σ is 2% per annum. These parameters are chosen as in Barro (2006) to match

postwar data in G7 countries. The probability of default given disaster, q, is set equal to

0.4, calculated by Barro based on data for 35 countries over the period 1900–2000.

Barro and Ursua (2008) consider values of risk aversion equal to 3 and 3.5; because the

dynamic nature of the present model leads to a higher risk premium, I use risk aversion equal

to 3. Given these parameter choices, a rate of time preference (β) equal to 1.2% per annum

matches the average real return on the three-month Treasury Bill in postwar U.S. data.

Leverage, φ, is set equal to 2.6; this is a conservative value by the standards of the prior

literature. For example, the model of Bansal and Yaron (2004) uses leverage parameters of

3 and 5. The ratio of dividend to consumption volatility in postwar U.S. data is 4.9. In

the present model, φ has implications for the response of dividends to a disaster, relative

to consumption. For example, if consumption falls by 40%, dividends fall by 1 − 0.62.6 =

74%. Is this reasonable? For many countries and events in the Barro and Ursua data

set, accurate dividend and earnings information is difficult to come by. However, data on

corporate earnings are available for the Great Depression, as described by Longstaff and

Piazzesi (2004), who argue that earnings may be a better proxy for economic dividends

due to artificial dividend smoothing. Longstaff and Piazzesi report that in the first year of

the Great Depression, when consumption fell by 10%, corporate earnings fell by more than

103%. In their calibration, they adopt a more conservative assumption: for a 10% decline

in consumption, earnings fall by 90%. This is consistent with a leverage parameter of 22.

However, the Longstaff and Piazzesi calibration assumes that the consumption-dividend ratio

is stationary; thus not all of the dividend decline is permanent. One approach to this issue

would be to model a stationary consumption-dividend ratio. As argued above, this would

complicate the model significantly, so instead I adopt a relatively conservative value for

leverage along with the simpler assumption that the dividend decline, like the consumption

decline, is permanent.

20The value µ = 2.52% reflects an adjustment for Jensen’s inequality.
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Other novel parameters are (implicitly) the elasticity of intertemporal substitution, the

mean reversion of the disaster intensity, κ, and the volatility parameter for the disaster in-

tensity, σλ. The EIS is set equal to 1 for tractability. A number of studies have concluded

that reasonable values for this parameter lie in a range close to one, or slightly lower than 1

(e.g. Vissing-Jørgensen (2002)). Mean reversion κ is chosen to match the annual autocorrela-

tion of the price-dividend ratio in postwar U.S. data. Because λt is the single state variable,

the autocorrelation of price-dividend ratio implied by the model is determined almost en-

tirely by the autocorrelation of λt. Setting κ equal to 0.080 generates an autocorrelation for

the price-dividend ratio equal to 0.92, its value in the data. The volatility parameter σλ is

chosen to be 0.067; as will be discussed below, this generates a reasonable level of volatility

in stock returns. The quantity σλ itself is hard to interpret economically; for this reason the

table also reports σλE
[
λ1/2

]
, which is a measure of the annual volatility of λt. This measure

indicates that λt varies (approximately) by 1.14 percentage points a year. That is, when λt

is one standard deviation above its mean, its value is 4.49%.

3.2 Simulation Results

Table 2 describes moments from a simulation of the model as well as moments from postwar

U.S. data. The model is discretized using an Euler approximation (see Glasserman (2004,

Chapter 3)) and simulated at a monthly frequency for 50,000 years; simulating the model

at higher frequencies produces negligible differences in the results.21 First I simulate the

series λt and ∆ logCt. Given the simulated series λt, the price-dividend ratio is given by

(22) and the yield on government debt, rLt , is given by (13). Equity returns are computed

using the series for the price-dividend ratio and for consumption growth, while bond returns

are computed using (A.41). The resulting series for monthly returns and growth rates in

fundamentals are then compounded to an annual frequency.

The model can be rejected if it offers unrealistic implications for the mean and volatility

21The discrete-time approximation requires setting λt to equal zero in the square root when it is negative.

However, this occurs in less than 1% of the simulated draws.
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of the aggregate market, Treasury bills and consumption and dividend growth as well as for

predictability of stock returns and consumption growth.22 These particular measures have

been the focus of much of the recent asset pricing literature. As I argue below, the model’s

implications are in fact realistic. Table 2 shows that the model generates a realistic equity

premium. In population, the equity premium is 7.6%, while, conditional on no disasters,

the equity premium is 8.9%. In the historical data it is 7.1%. The expected return on the

government bill is 1% in population, 1.36% conditional on no disasters, and 1.34% in the

data. The model predicts equity volatility of 19.9% per annum in population and 17.7%

conditional on no disasters. The observed volatility is 17.7%. The Sharpe ratio is 0.39 in

population, 0.49 conditional on no disasters and 0.40 in the data.

The model is able to generate reasonable volatility for the stock market without gener-

ating excessive volatility for the government bill or for consumption and dividends. Note

that the parameter values were not explicitly chosen to target a low interest rate volatility.

The volatility of the government bill is 3.8% in population, much of which is due to realized

disasters; it is 2.0% conditional on no disasters. This compares with a volatility of 2.7%

in the data. Given that interest rate volatility in the data arises largely from unexpected

inflation that is not captured by the model, the data volatility should be viewed as an upper

bound on reasonable model volatility.

The volatilities for consumption and dividends predicted by the model for periods of no

disasters are also below their data counterparts. Conditional on no disasters, consumption

volatility is 2.0%, compared with 1.3% in the data. Dividend volatility is 5.2%, compared

with 6.6% in the data. Including rare disasters in the data simulated from the model has

a large effect on dividend volatility. When the disasters are included, dividend volatility is

16.5%. The difference between the effect of including rare disasters on returns as compared

with the effect on fundamentals is striking. Unlike dividends, returns exhibit a relatively

small difference in volatility when calculated with and without rare disasters: 19.9% versus

22While the calibration approach that I adopt has the advantages of transparency and comparability to

the results of other models, it has the disadvantage that it does not offer a formal test of quantitative success.
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17.7%. This is because a large amount of the volatility in returns arises from variation in the

equity premium. Risk premia are equally variable regardless of whether disasters actually

occur in the simulated data or not.

I next discuss the model’s implications for excess return and consumption predictability.

These moments are not explicit targets of the calibration, but follow naturally given the

model’s properties, as described in Section 2.4. Table 3 reports the results of regressing long-

horizon excess returns (the log return on equity minus the log return on the government bill)

on the price-dividend ratio in simulated data. I calculate this regression for returns measured

over horizons ranging from 1 to 10 years. Table 3 reports results for the entire simulated

data set (“population moments”) for periods in the simulation in which no disasters occur

(“conditional moments”) and for the historical sample.

Panel A of Table 3 shows population moments from simulated data. The coefficients on

the price-dividend ratio are negative: a high price-dividend ratio corresponds to low disaster

risk and therefore predicts low future expected returns on stocks relative to bonds. The

R2 is 4% at a horizon of 1 year, rising to 26% at a horizon of 10 years. Panel B reports

conditional moments. The conditional R2s are larger: 13% at a horizon of 1 year, rising to

63% at a horizon of 10 years. The unconditional R2 values are much lower because, when a

disaster occurs, nearly all of the unexpected return is due to the shock to cash flows.

The data moments are higher than the population values, but, more relevantly, lower

than the conditional values. As demonstrated in a number of studies (e.g. Campbell and

Shiller (1988), Cochrane (1992), Fama and French (1989), Keim and Stambaugh (1986))

and replicated in this sample, high price-dividend ratios predict low excess returns. While

returns exhibit predictability over a wide range of sample periods, the high persistence of

the price-dividend ratio leads sample statistics to be unstable (see, for example, Lettau and

Wachter (2007) for calculations of long-horizon predictability using this data set but for

differing sample periods), and unusually low when calculated over recent years. For this

reason, the R2 statistics in the data should be viewed as an approximate benchmark.

Another potential source of variation in returns is variation in expected future consump-
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tion growth. According to the model, a low price-dividend ratio indicates not only that the

equity premium is likely to be high in the future, but also that consumption growth is likely

to be low because of the increased probability of a disaster. However, a number of studies

(e.g. Campbell (2003), Cochrane (1994), Hall (1988), Lettau and Ludvigson (2001)) have

found that consumption growth exhibits little predictability at long horizons, a finding repli-

cated in Panel B of Table 4. It is therefore of interest to quantify the amount of consumption

growth predictability implied by the model.

Table 4 reports the results of running long-horizon regressions of consumption growth on

the price-dividend ratio in data simulated from the model and in historical data. Panel A

shows the population moments implied by the model. The model does imply some pre-

dictability in consumption growth, but the effect is very small. The R2 values never rise

above 6%, even at long horizons. This predictability arises entirely from the realization of

a rare disaster. When these rare disasters are conditioned out, there is zero predictability

because consumption follows a random walk (in simulated data, the coefficient values are

less than .001 and the R2 values are less than .0001). Thus the model accounts for both

the predictability in long-horizon returns and the absence of predictability in consumption

growth.

Of possible concern is the dependence of these results on the assumed probability of

default, equal to 0.4. Barro (2006) calculates this value based on the number of times a

disaster results in default, divided by the total number of disasters. However, one might

expect that the default is more likely to occur during the worst disasters. The value 0.4

does not take this correlation into account.23 To evaluate the sensitivity of the results to

23One could extend the model to allow for such a correlation, without affecting tractability. Consider the

current specification of the price process for government liabilities, described in detail in Appendix A.5:

dLt
Lt

= rLt dt+
(
eZL,t − 1

)
dNt,

where

ZL,t =

 Zt with probability q

0 otherwise.

28



this assumption, I consider a higher probability of default, namely q = 0.6 (keeping all other

parameters the same). This change has the effect of raising the expected rate of return on

government debt to 2.1% (conditional on no disasters), as compared with a value of 1.3%

when 0.4 is used. The bond volatility falls from 2% to 1.4%. Because the government bill

rate is higher, the equity premium relative to the government bill is lower: 8.10% rather

than 8.85%. The Sharpe ratio is lower as well: 0.45 rather than 0.49. The predictability of

excess stock returns is slightly lower under this calibration: R2 values range from 11% to

56%. Other results do not change. Thus, except for the average government bill rate, this

change improves the fit of the model to the data. While the implied average government

bill rate of 2% is slightly higher than the sample average, it is not unreasonable given the

difficulties of measuring the mean for a highly persistent process (alternatively one could

further lower this rate by lowering β; this has very little effect on the other results).

Other models succeed in matching the mean and volatility of stock returns. Two such

models are those of Bansal and Yaron (2004) and of Campbell and Cochrane (1999). Despite

the fact that all three models can capture these first two unconditional moments of returns,

they generate different implications for other observable quantities. The principle mechanism

in the Bansal-Yaron model is a persistent, time-varying mean of consumption growth. Their

model therefore implies that consumption growth should be predictable at long horizons.

However, it is difficult to see evidence for this in the data (Table 4). Because this model

implies a smaller degree of predictability, and only then in samples in which a disaster

occurs, it is more in line with the data in this respect. The Campbell-Cochrane model is

driven by shocks to consumption growth, and as such implies a perfect correlation between

consumption and stock returns. However, the correlation in the data is very low, and, while

time-aggregation in consumption over longer horizons mitigates this concern, it does not

Replace the latter equation by

ZL,t =

 Zt if Zt < k

0 otherwise

for some threshold value k. In the absence of more complete data on defaults, and to maintain the simplicity

of the present model, I do not pursue this route here.
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eliminate it. The present model implies zero correlation in samples without a disaster.

This model also imposes different, and arguably more reasonable, requirements on the

utility function of the representative agent. In the main calibration, risk aversion is assumed

to equal 3. In contrast, in the model of Bansal and Yaron (2004), it is assumed to equal

10, while the model of Campbell and Cochrane (1999) assumes a time-varying risk aversion,

which equals 35 when the state variable is at its long-run mean. Bansal and Yaron also require

a higher elasticity of intertemporal substitution (1.5 rather than 1); independent evidence

discussed above supports the lower value. While a full comparison of these three models

is outside the scope of this study, it appears that the present model may offer advantages

relative to leading alternative explanations for the high equity premium and the volatility

puzzle.

3.3 Implied disaster probabilities

This section describes the disaster probabilities implied by the historical time series of stock

prices. Equation 22 shows that, in the model, the price-dividend ratio as a strictly decreasing

function of the disaster probability. In principle, given observations on the price-dividend

ratio, one could invert this function to find the values of λt implicit in the historical data.

I follow a slightly modified approach: rather than using the price-dividend ratio itself, I

use price divided by smoothed earnings, as in Shiller (1989, Chap. 26). Dividend payouts

appear to have shifted downwards in the latter part of the sample (Fama and French (2001)).

Because the process assumed for dividends does not allow for this shift, requiring the model

to match the price-dividend ratio in the data could yield misleading results.24 For this

exercise it is particularly useful to have a longer time series. I therefore use data on the

S&P 500, which can be found on Robert Shiller’s website. These data begin in 1880 and are

updated to the present. Because the levels of the price-earnings ratio and the price-dividend

24The predictability of returns and consumption is very similar regardless of which measure is used; thus

the choice of the price-dividend versus the price-earnings ratio has little impact on the results in Tables 3

and 4.
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ratio are different, I adjust the level of the series in the data so it is comparable to that in the

model. That is, I subtract the sample mean from the historical time series of the log price-

earnings ratio. Then I add the population mean of the log price-dividend ratio computed

from the simulation of the model. I invert the resulting time series to find the implied values

of λt using (22). A few observations (namely, those corresponding to the highest observed

price-earnings ratios) imply negative values of λt. In these instances, I set λt to zero.

Figure 8 shows the resulting time series for λt. The peak in the series occurs in 1920,

with a disaster probability of 14%. This year corresponds not only to a recession, but also to

an influenza epidemic. In fact, one of the two U.S. disasters as defined by Barro and Ursua

(2008) occurs at this time. A second peak in the series occurs in 1932 during the Great

Depression, which is the second disaster in U.S. data. The disaster probability was relatively

high in the 1950s, declining in the 1960s, and rising again in the 1970s. The highest postwar

values of the probability occur in the 1980s, corresponding to a period of heightened fears

of a third World War. In contrast, the disaster probability was very low in the 1990s and

early part of this century (rising very slightly with the bursting of the “tech bubble”). The

financial crisis of late 2008 and early 2009 coincides with a rapid increase in the probability

of a disaster, from 0 to 5%. In 2010, the probability falls to less than 2%

3.4 Alternative calibrations

Table 5 shows the results of two alternative calibrations of the model. Panel A shows

the results of calibrating the disaster distribution to disasters in OECD countries only, as

described in Section 3.1. This calibration, by focusing on mainly developed economies,

alleviates the concern that the disaster distribution is not applicable to the U.S. Under this

calibration, there are fewer disasters, implying a lower mean of λ̄, namely 2.86%. I keep all

other parameters the same.25 The equity premium conditional on no disasters is 7.83% per

annum, lower than in the base calibration, but still higher than in the data. The average

25Rather than keeping σλ the same, namely 6.4%, it might seem natural to hold σλE
[
λ1/2

]
fixed, and

raise σλ accordingly. However, it is not possible to do this and keep the value function well-defined.
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government bill rate is 1.86% per annum, higher than before, but not far from the data

mean of 1.34% per annum. Other quantities, such as return volatility, the Sharpe ratio,

volatility of consumption and dividends and predictability (not shown), the results are also

quite similar. This change makes little difference because, while disasters are less frequent

under the OECD calibration, they are also more severe (see Figure 2).

A second concern is that the results in this paper assume that the disasters are perma-

nent, rather than allowing for faster growth following a disaster (see Gourio (2008a)). It

would be of interest to consider a model allowing for time-variation in the mean of consump-

tion and dividends along with time-variation in the probability of disaster. Such a change

would significantly complicate the model, so for the present paper I consider a simpler mod-

ification. I consider the OECD above as a starting point, and reduce the percent declines in

consumption by half. This is the fraction of the decline that is, on average, permanent as

estimated by Nakamura, Steinsson, Barro, and Ursua (2011). That is, I assume that half of

the observed decline is noise, in the sense that it is immediately reversed.26 The results are

given in Panel B. Under these more conservative assumptions, the model can still capture

most of the equity premium and volatility with slightly higher risk aversion, namely with

γ = 6.

Finally, the results also assume disasters are instantaneous, rather than occurring over

multiple periods (see Constantinides (2008)). Nakamura, Steinsson, Barro, and Ursua (2011)

estimate and numerically solve a model of multiperiod disasters with recoveries. While they

assume a constant disaster probability, their results provide insight into how multiperiod dis-

asters would effect the calibration in the current paper. Indeed, Nakamura et al. show that

a model with multiperiod disasters can match the equity premium with risk aversion that is

moderately higher than that required by a model with single-period disasters. The mecha-

nism, which is also operative in the present model, is that the agent with recursive utility

26This is a conservative calibration, not only in that it assumes the reversal is instantaneous. Any variation

in the amount of the decline that is reversed, along with uncertainty about the average reversal would increase

the risk of disasters to the agent.
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considers future consumption growth to be a source of risk along with current consumption

growth.27

4 Conclusion

This paper has shown that a continuous-time endowment model in which there is time-

varying risk of a rare disaster can explain many features of the aggregate stock market.

Besides explaining the equity premium without assuming a high value of risk aversion, it

can also explain the high level of stock market volatility. The volatility of the government

bill rate remains low because of a tradeoff between an increased desire to save due to an

increase in the disaster probability and a simultaneous increase in the risk of default. The

model therefore offers a novel explanation of volatility in the aggregate stock market that is

consistent with other macroeconomic data. Moreover, the model accounts for economically

significant excess return predictability found in the data, as well as the lack of long-run

consumption growth predictability. Finally, the model can be solved in closed form, allowing

for straightforward computation and for potential extensions. While this paper has focused

on the aggregate stock market, the model could be extended to price additional asset classes,

such as long-term government bonds, options and exchange rates.

27Both multiperiod disasters and recoveries could in principle be introduced in the present framework

without affecting tractability. Allowing, for example, jumps in the drift rate of consumption growth would

imply disasters unfolding over multiple periods. Mean reversion in the drift rate would also imply faster

recoveries following disasters.
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Appendix

A Solution to the recursive utility model

A.1 Value function

The value function J(W,λ) satisfies

sup
αt,Ct

{
JW
(
Wtαt(µ− rt + l−1) +Wtrt − Ct

)
+ Jλκ(λ̄− λt)+

1

2
JWWW

2
t α

2
tσ

2 +
1

2
Jλλσ

2
λλt + λtEν

[
J(Wt(1 + αt(e

Zt − 1)), λt)− J(Wt, λt)
]}

+ f(Ct, J) = 0. (A.1)

In equilibrium, α = 1 and C = l−1W . Substituting these policy functions into (A.1) implies

JWWtµ+ Jλκ(λ̄− λt) +
1

2
JWWW

2
t σ

2 +
1

2
Jλλσ

2
λλt +

λtEν
[
J(Wte

Zt , λt)− J(Wt, λt)
]

+ f(Ct, J) = 0. (A.2)

Conjecture that the solution to this equation takes the form

J(W,λ) =
W 1−γ

1− γ
I(λ). (A.3)

It is helpful to solve for the consumption-wealth ratio prior to solving for I(λ); because

ψ is equal to 1, the expression for the consumption-wealth ratio is very simple. By definition

f(C, V ) = β(1− γ)V

(
logC − 1

1− γ
log((1− γ)V )

)
. (A.4)

Note that

fC(C, V ) = β(1− γ)
V

C
. (A.5)

The envelope condition fC = JW , together with (A.5) and the conjecture (A.3) implies

β(1− γ)
W 1−γ

1− γ
I(λ)

1

l−1W
= W−γI(λ)

Solving for l yields l = β−1.

34



Given the consumption-wealth ratio, it follows that

f(C(W ), J(W,λ)) = βW 1−γI(λ)

(
log(βW )− 1

1− γ
log(W 1−γI(λ))

)
= βW 1−γI(λ)

(
log β − log I(λ)

1− γ

)
. (A.6)

Substituting (A.3) and (A.6) into (A.2) implies

I(λt)µ+ I ′(λt)(1− γ)−1κ(λ̄− λt)−
1

2
γI(λt)σ

2 +
1

2
(1− γ)−1I ′′(λt)σ

2
λλt

+ (1− γ)−1I(λt)λtEν
[
e(1−γ)Z − 1

]
+ βI(λt)

(
log β − log I(λt)

1− γ

)
= 0. (A.7)

Conjecture that a function of the form

I(λ) = ea+bλ (A.8)

solves (A.7). Substituting (A.8) into (A.7) implies

µ+ b(1− γ)−1κ(λ̄− λt)−
1

2
γσ2 +

1

2
b2σ2

λλt(1− γ)−1 +

(1− γ)−1λtEν
[
e(1−γ)Z − 1

]
+ β

(
log β − (1− γ)−1(a+ bλt)

)
= 0.

Collecting terms in λt results in the following quadratic equation for b:

1

2
σ2
λb

2 − (κ+ β)b+ Eν
[
e(1−γ)Z − 1

]
= 0,

implying

b =
κ+ β

σ2
λ

±

√(
κ+ β

σ2
λ

)2

− 2
Eν [e(1−γ)Z − 1]

σ2
λ

. (A.9)

Collecting constant terms results in the following characterization of a in terms of b:

a =
1− γ
β

(
µ− 1

2
γσ2

)
+ (1− γ) log β + b

κλ̄

β
. (A.10)

For the value function to exist, the term inside the square root in (A.9) must be non-negative.

This places a joint restriction on the severity of disasters, the agent’s risk aversion and rate
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of time preference, and the volatility and permanence of shocks to λt. Note also that κ > 0

and β > 0 are standing assumptions that are required for the existence of λt and of the value

function respectively.

While the presence of two roots in (A.9) suggests multiple possible solutions, a simple

thought experiment reveals that only one of these roots displays reasonable economic prop-

erties. Consider the case of Z identically equal to zero; namely the Poisson process Nt has

positive realizations, but that these have no economic consequence. There are no disasters

in this case and the value function should reduce to its counterpart under the standard

diffusion model. However, the choice of the positive root in (A.9) implies that the represen-

tative agent’s utility is reduced by an increased likelihood of these inconsequential Poisson

realizations. The choice of the negative root does not suffer from this defect.28

Taking the derivative of (A.1) with respect to portfolio choice α, evaluating at α = 1 and

setting to zero implies

µ− rt + l−1 = γσ2 − λtEν
[
e−γZ(eZ − 1)

]
. (A.11)

Because l−1 = β, it follows that the equation for the riskfree rate is given by

rt = β + µ− γσ2 + λtEν
[
e−γZ

(
eZ − 1

)]
.

A.2 State-price density

Calculation of prices and rates of return in the economy is simplified considerably by mak-

ing use of the state-price density, which determines the equilibrium compensation investors

require for bearing various risks in the economy. As discussed in Section 2.4, the state-price

density is given by

πt = exp

{∫ t

0

fV (Cs, Vs) ds

}
fC(Ct, Vt), (A.12)

28Two other considerations (perhaps not coincidentally) point toward choosing the negative root. First,

Tauchen (2005) suggests choosing the root such that the solution approaches a well-defined limit as σλ ap-

proaches zero (this holds for the negative root but not the positive root). Second, for the present calibration,

the choice of the negative root is more conservative in that it implies a smaller equity premium and lower

equity volatility than the choice of a positive root.
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Because the exponential term in (A.12) is (locally) deterministic, covariances of the state-

price density with fundamentals, and thus risk premia, are determined by the second term,

fC(C, V ). In equilibrium, Vt = J(β−1Ct, λt). Therefore,

fC(Ct, Vt) = β(1− γ)
Vt
Ct

= βγC−γt I(λt). (A.13)

Ito’s Lemma and (A.13) imply29

dπt
πt−

= µπ,t dt+ σπ,t[dBt dBλ,t]
> + (e−γZt − 1) dNt, (A.14)

where

σπ,t =
[
−γσ bσλ

√
λt

]
. (A.15)

It follows from no-arbitrage that

µπ,t = −rt − λtEν
[
e−γZ − 1

]
(A.16)

= −µ− β + γσ2 − λt
(
Eν
[
e−γZ(eZ − 1)

]
+ Eν

[
e−γZ − 1

])
, (A.17)

where (A.17) follows from (12).

In the event of a disaster, marginal utility (as represented by the state-price density)

jumps upward, as can be seen by the term multiplying the Poisson process in (A.14). This

implies that investors require compensation for bearing disaster risk, not surprisingly. The

first element of (A.15) implies that the standard diffusion risk in consumption is priced; more

interestingly, changes in λt are also priced as reflected by the second element of (A.15).

A.3 Pricing equity claims

Let Ft = F (Dt, λt) denote the price of the claim to the aggregate dividend. It follows from

the absence of arbitrage that

F (Dt, λt) = Et

[∫ ∞
t

πs
πt
Ds ds

]
. (A.18)

29To compute the term in (24) multiplying the Poisson shock, note that

πt − πt−
πt−

=
fC(Ct, Vt)− fC(Ct− , Vt−)

fC(Ct− , Vt−)
=
C−γt − C−γt−

C−γt−

where the second equality follows from (A.13).
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As discussed in Section 2.4, F is an integral of expressions of the form Et

[
πs
πt
Ds

]
. It is

convenient to calculate these expectations first, and then calculate F as the integral of

these expectations (since one-dimensional integrals are typically very simple to compute

numerically).

Let Ht = H(Dt, λt, s− t) denote the price of the asset that pays the aggregate dividend

at time T , namely,

H(Dt, λt, s− t) = Et

[
πs
πt
Ds

]
.

No-arbitrage implies that H(Ds, λs, 0) = Ds and that

πtH(Dt, λt, s− t) = Et [πsH(Ds, λs, 0)] .

That is, πtHt follows a martingale. Conjecture that

H(Dt, λt, τ) = Dt exp {aφ(τ) + bφ(τ)λt} . (A.19)

Ito’s Lemma then implies

dHt

Ht−
= µH,t dt+ σH,t[dBt dBλ,t]

> + (eφZt − 1) dNt, (A.20)

for processes µH,t and σH,t defined below. Applying Ito’s Lemma to πtHt implies that the

product can be written as

πtHt = π0H0 +

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s

)
ds+

∫ t

0

πsHs (σH,s + σπ,s) [dBs dBλ,s]
>

+
∑

0<si≤t

(
πsiHsi − πs−i Hs−i

)
, (A.21)

where si = inf {s : Ns = i} (namely, the time that the ith jump occurs).

I use (A.21) to derive a differential equation for H. The first step is to compute the

expectation of the jump term
∑

0<si≤t

(
πsiHsi − πs−i Hs−i

)
. Note that πt is the product of

a pure diffusion process and C−γt , while Ht is the product of a pure diffusion process and

Dt = Cφ
t . The pure diffusion processes are not affected by the jump. Therefore,

Eν

[
πtHt − πt−H−

πt−Ht−

]
=

1

C−γt− Dt−
Eν

[(
Ct−e

Zt
)−γ

Dt−e
φZt − C−γt− Dt−

]
= Eν

[
e(φ−γ)Z − 1

]
.
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Adding and subtracting the “jump compensation term” from (A.21) yields:

πtHt = π0H0 +

∫ t

0

πsHs

(
µH,s + µπ,s + σπ,sσ

>
H,s + λsEν

[
e(φ−γ)Z − 1

])
ds

+

∫ t

0

πsFs (σH,s + σπ,s) [dBs dBλ,s]
>

+

( ∑
0<si≤t

(
πsiHsi − πs−i Hs−i

)
−
∫ t

0

πsHsλsEν
[
e(φ−γ)Z − 1

]
ds

)
, (A.22)

Under mild regularity conditions analogous to those given in Duffie, Pan, and Singleton

(2000, Proposition 1), the second and the third terms on the right hand side of (A.22)

are martingales. Therefore the first term on the right hand side of (A.22) must also be a

martingale, and it follows that the integrand of this term must equal zero:

µH,t + µπ,t + σH,tσ
>
π,t + λtEν

[
e(φ−γ)Z − 1

]
= 0. (A.23)

Lastly, it follows from Ito’s Lemma that µH and σH are given by

µH,t =
1

H

(
HDµD +Hλκ(λ̄− λt)−

∂H

∂τ
+

1

2
Hλλσ

2
λλt

)
= µD + bφ(τ)κ(λ̄− λt)− (a′φ(τ) + b′φ(τ)λt) +

1

2
bφ(τ)2σ2

λλt, (A.24)

and

σH,t =
1

H

(
HDµD[σD 0] +Hλ[0 σλ

√
λt]
)

=
[
φσ bφ(τ)σλ

√
λt

]
, (A.25)

where HD and Hλ denote partial derivatives of H with respect to D and λ respectively, and

where Hλλ denotes the second derivative with respect to λ. Substituting these equations,

along with (25) and (A.17) into (A.23) implies

µD + bφ(τ)κ(λ̄− λt)− a′φ(τ)− b′φ(τ)λt +
1

2
b2φ(τ)σ2

λλt

− µ− β + γσ2 − λtEν
[
e−γZ(eZ − 1)

]
− λtEν

[
e−γZ − 1

]
− γσ2φ+ bφ(τ)bσ2

λλt + λtEν
[
e(φ−γ)Z − 1

]
= 0.
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Collecting constant terms results in the following ordinary differential equation for aφ

a′φ(τ) = µD − µ− β + γσ2 − γσ2φ+ κλ̄bφ(τ) (A.26)

while collecting terms multiplying λ results in the following ordinary differential equation

for bφ.

b′φ(τ) =
1

2
σ2
λbφ(τ)2 + (bσ2

λ − κ)bφ(τ) + Eν
[
e(φ−γ)Z − e(1−γ)Z

]
. (A.27)

The boundary conditions are aφ(0) = bφ(0) = 0. The solutions are

aφ(τ) =

(
µD − µ− β + γσ2(1− φ)− κλ̄

σ2
λ

(ζφ + bσ2
λ − κ)

)
τ

− 2κλ̄

σ2
λ

log

(
(ζφ + bσ2

λ − κ)
(
e−ζφτ − 1

)
+ 2ζφ

2ζφ

)
(A.28)

bφ(τ) =
2Eν

[
e(1−γ)Z − e(φ−γ)Z

] (
1− e−ζφτ

)
(ζφ + bσ2

λ − κ) (1− e−ζφτ )− 2ζφ
, (A.29)

where

ζφ =

√
(bσ2

λ − κ)
2

+ 2Eν [e(1−γ)Z − e(φ−γ)Z ]σ2
λ. (A.30)

Assume conditions sufficient for the existence of λt and Vt (see Sections 2.1 and 2.2). Then

the conditions Z < 0, σλ > 0 and φ > 1 are sufficient for the existence of aφ(τ) and

bφ(τ) at all values of τ .30 First, because Z is negative, Eν
[
e(1−γ)Z − e(φ−γ)Z

]
> 0, and

thus the term inside the square root of (A.30) is guaranteed to be positive. Moreover,

ζφ > |bσ2
λ − κ| ≥ bσ2

λ − κ, implying that the denominator (ζφ + bσ2
λ − κ)

(
1− e−ζφτ

)
− 2ζφ is

strictly negative for all τ . This argument also establishes that bφ(τ) < 0 for all τ .

The last discussion shows that bφ(τ) exists and is negative for all τ . I now show that

bφ(τ) converges as τ goes to infinity. It follows from (A.29) that

lim
τ→∞

bφ(τ) =
2Eν

[
e(φ−γ)Z − e(1−γ)Z

]
ζφ + κ− bσ2

λ

= − 1

σ2
λ

(
ζφ − κ+ bσ2

λ

)
,

30These functions also exist for the limiting cases of φ = 1, σλ = 0, and Z = 0. If φ = 1, G(λ) equals the

wealth-consumption ratio: bφ(τ) = 0 and aφ(τ) = −βτ . If σλ = 0, G(λ) can be shown to converge to its

analogue in a model with constant disaster risk. If Z = 0, the expressions converge to the standard model

with only normal shocks to consumption.
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where the second line follows from the fact that ζ2φ−(κ−bσλ)2 = −2Eν
[
e(φ−γ)Z − e(1−γ)Z

]
σ2
λ.

The constant term aφ(τ) does not approach a finite limit itself, but its asymptotic slope is

given by

lim
τ→∞

aφ(τ)

τ
= µD − µ− β + γσ2(1− φ)− κλ̄

σ2
λ

(
ζφ + bσ2

λ − κ
)
.

Finally, let re,(τ) denote the instantaneous expected return on zero-coupon equity with

maturity τ . Because zero-coupon equity pays only a terminal dividend at maturity, its

instantaneous expected return is simply the drift plus the expected percent change in price

in the event of a disaster:

r
e,(τ)
t ≡ µH,t + λtEν

[
eφZ − 1

]
.

Therefore, it follows from (A.16) and (A.23) that the risk premium is given by

r
e,(τ)
t − rt = −σπ,tσ>H,t − λt

(
Eν
[
e(φ−γ)Z − 1

]
− (Eν

[
e−γZ − 1

]
− Eν

[
eφZ − 1

])
.

It follows that

r
e,(τ)
t − rt = φγσ2 − λtbφ(τ)bσ2

λ + λtEν
[(
e−γZ − 1

)
(1− eφZ)

]
. (A.31)

A.4 Equity Premium

To derive an expression for the premium on the aggregate market, I first return to the

expression for the price of the dividend claim given in Appendix A.3:

F (Dt, λt) = Et

[∫ ∞
t

πs
πt
Ds ds

]
. (A.32)

I use this expression to derive a “local” no-arbitrage condition analogous to (A.23). Multi-

plying each side of (A.32) by πt implies

πtFt = Et

∫ ∞
t

πuDu du. (A.33)

The same equation must hold at any time s > t:

πsFs = Es

∫ ∞
s

πuDu du. (A.34)
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Combining (A.33) and (A.34) implies

πtFt = Et

[
πsFs +

∫ s

t

πuDu du

]
. (A.35)

Adding
∫ t
0
πuDu du to both sides of (A.35) implies

πtFt +

∫ t

0

πuDu du = Et

[
πsFs +

∫ s

0

πuDu du

]
. (A.36)

Therefore πtFt +
∫ t
0
πuDu du is a martingale. Further, as in Appendix A.3

πtFt +

∫ t

0

πsDs ds =

∫ t

0

πsFs

(
µF,s + µπ,s +

Ds

Fs
+ σπ,sσ

>
F,s + λsEν

[
e(φ−γ)Z − 1

])
ds

+

∫ t

0

πsFs (σF,s + σπ,s) [dBs dBλ,s]
>

+

( ∑
0<si≤t

(
πsiFsi − πs−i Fs−i

)
−
∫ t

0

πsFsλsEν
[
e(φ−γ)Z − 1

]
ds

)
, (A.37)

where si = inf {s : Ns = i}. The second and the third terms on the right hand side of (A.37)

are martingales. Therefore the first term in (A.37) must also be a martingale, and it follows

that the integrand of this term must equal zero:

µF,t + µπ,t +
Dt

Ft
+ σπ,tσ

>
F,t + λtEν

[
e(φ−γ)Z − 1

]
= 0. (A.38)

Substituting (A.16) into (A.38) and re-arranging implies

µF,t +
Dt

Ft
− rt = −σπ,tσ>F,t − λt

(
Eν
[
e(φ−γ)Z − 1

]
− Eν

[
e−γZ − 1

])
. (A.39)

The left hand side of (A.39) is the instantaneous equity premium conditional on no disasters

occurring. The instantaneous equity premium in population is given by this quantity, plus

the expected percentage change if a disaster occurs. That is, if ret is defined as

ret ≡ µF,t +
Dt

Ft
+ λtEν [e

φZ − 1],

then, from (A.39), it follows that the equity premium in population equals

ret − rt = −σπ,tσ>F,t − λt
(
Eν
[
e(φ−γ)Z − 1

]
− Eν

[
e−γZ − 1

]
− Eν [eφZ − 1]

)
= −σπ,tσ>F,t + λtEν

[
(e−γZ − 1)(1− eφZ)

]
. (A.40)
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A.5 Default

Consider government debt with an instantaneous maturity. Namely, let Lt be the price

process resulting from rolling over instantaneous government debt. Then Lt follows the

process

dLt
Lt

= rLt dt+
(
eZL,t − 1

)
dNt, (A.41)

where rLt is the “face value” of government debt (i.e. the amount investors receive if there is

no default), ZL,t is a random variable whose distribution will be described shortly and Nt is

the same Poisson process that drives the consumption process. Assume that, in event of a

disaster, there will be a default on government liabilities with probability q. I follow Barro

(2006) and assume that in the event of default, the percent loss is equal to the percent fall

in consumption. Therefore,

ZL,t =

 Zt with probability q

0 otherwise
(A.42)

By no-arbitrage, the process Lt must satisfy

rLt + µπ.t + λtEν
[
e−γZeZL − 1

]
= 0. (A.43)

Equation (A.43) is the analogue of the equity pricing equation (A.38) (note that the “divi-

dend” on government liabilities is zero). It follows from the definition of ZL that

Eν
[
e−γZeZL − 1

]
= qEν

[
e(1−γ)Z − 1

]
+ (1− q)Eν

[
e−γZ − 1

]
. (A.44)

The expression for µπ,t is given by (A.17). Substituting into (A.43) and solving for rLt yields

rLt = rt + λtEν
[
e−γZt − 1

]
− λt

(
(1− q)Eν

[
e−γZt − 1

]
+ qEν

[
e(1−γ)Zt − 1

])
,

which reduces to (13), the expression in the text.

B Prices and returns on long-term bonds

The price at time t of a real, default-free zero-coupon bond maturing at time s > t is given

by Et[πs/πt]. The steps in Appendix A.3 can be followed to conclude that this price is given
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by

Et

[
πs
πt

]
= exp {a0(τ) + b0(τ)λt} ,

where a0(τ) and b0(τ) satisfy the differential equations:

a′0(τ) = −µ− β + γσ2 + κλ̄b0(τ) (B.1)

b′0(τ) =
1

2
σ2
λb0(τ)2 + (bσ2

λ − κ)b0(τ) + Eν
[
e(−γ)Z − e(1−γ)Z

]
. (B.2)

and boundary conditions a0(τ) = b0(τ) = 0. These correspond to the differential equations

in Appendix A.3, with φ = 0 and µD = 0.

The fact that long-term bond prices move with the disaster probability, combined with the

fact that changes in the disaster probability are priced in the model, implies that expected

returns on long-term bonds differ from the riskfree rate. Specifically, let r
(τ)
t denote the

instantaneous expected return on a default-free zero coupon bond with maturity τ . The

same reasoning used to derive (A.31) shows

r
(τ)
t − rt = −λtb0(τ)bσ2

λ. (B.3)

Risk premia on default-free bonds arise only from the correlation with the time-varying

probability of a disaster (namely, there is no covariance with shocks to consumption, during

a disaster or otherwise). Intuitively, this risk premium should be negative, because bond

prices rise when interest rates fall, which occurs when disaster risk is high (keeping in mind

that the investor requires a premium to hold assets with prices positively correlated with

disaster risk). Indeed, as I show below, b0(τ) is positive for relevant parameter values.

Because b is positive (as shown in Section 2.2) risk premia on bonds are negative and the

real default-free term structure will be downward sloping.

I now give the solutions to (B.1) and (B.2). Unlike for equities, there are two cases.31

31The difference arises from the fact that the analogue to Eν
[
e−γZ − e(1−γ)Z

]
in the case of equities is

Eν
[
e(φ−γ)Z − e(1−γ)Z

]
, which is negative rather than positive.
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Case 1: (bσ2
λ − κ)

2 − 2Eν
[
e−γZ − e(1−γ)Z

]
σ2
λ > 0

In this case, the solution resembles that of equities. Namely, the solution is given by (18–20),

with µD = φ = 0:

b0(τ) =
2Eν

[
e−γZ − e(1−γ)Z

] (
e−ζ0τ − 1

)
(ζ0 + bσ2

λ − κ) (1− e−ζ0τ )− 2ζ0
(B.4)

ζ0 =

√
(bσ2

λ − κ)
2 − 2Eν [e−γZ − e(1−γ)Z ]σ2

λ, (B.5)

and

a0(τ) =

(
−µ− β + γσ2 − κλ̄

σ2
λ

(ζ0 + bσ2
λ − κ)

)
τ

− 2κλ̄

σ2
λ

log

(
(ζ0 + bσ2

λ − κ)
(
e−ζ0τ − 1

)
+ 2ζ0

2ζ0

)
. (B.6)

These functions exist for all τ provided that bσ2
λ < κ. If, however, bσ2

λ > κ, then there is

some finite τ at which bond prices go to infinity.32

If bσ2
λ > κ, then b0(τ) is positive for all τ . This follows from the fact that the numerator

is negative because Eν
[
e−γZ − e(1−γ)Z

]
> 0. Moreover, ζ0 < |bσ2

λ − κ| = κ − bσ2
λ, so

ζ0 + bσ2
λ−κ < 0, implying that the denominator is also negative. If bσ2

λ < κ, then by similar

reasoning, b0(τ) is positive for τ less than the maturity at which bond prices become infinite.

Therefore, an increase in the risk of a disaster raises prices of long-term default-free bonds,

not surprisingly, since an increase in the risk of a disaster decreases the riskfree rate.

Case 2: (bσ2
λ − κ)

2 − 2Eν
[
e−γZ − e(1−γ)Z

]
σ2
λ < 0

This case applies for the calibrations given in this paper. Here, the solution takes the form

b0(τ) =
1

σ2
λ

η tan

(
1

2
ητ + arctan

(
bσ2

λ − κ
η

))
−
(
bσ2

λ − κ
σ2
λ

)
, (B.7)

32Consider the case of bσ2
λ−κ < 0. Then ζ0 < κ−bσ2

λ. It follows that the denominator in (B.4) is negative

for all τ , and that b0(τ) exists for all τ > 0. Now consider bσ2
λ−κ > 0. Then ζ0 < bσ2

λ−κ. For τ sufficiently

small, the second term in the denominator 2ζ0 exceeds the first term (ζ0 + bσ2
λ − κ)

(
1− e−ζ0τ

)
, and so the

denominator is negative. As τ approaches infinity, however, the denominator approaches bσ2
λ − κ− ζ0 > 0.

Because the denominator is a continuous function, there must exist a τ for which it equals zero.
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where

η =

√
2Eν [e−γZ − e(1−γ)Z ]σ2

λ − (bσ2
λ − κ)

2
.

and where arctan(·) denotes the inverse tangent function.33 It follows that

a0(τ) =(
−µ− β + γσ2 − κλ̄

σ2
λ

(bσ2
λ − κ)

)
τ − 2κλ̄

σ2
λ

log

cos
(

1
2
ητ + arctan

(
bσ2
λ−κ
η

))
cos
(

arctan
(
bσ2
λ−κ
η

))
 . (B.8)

The functions a0(τ) and b0(τ) approach infinity as 1
2
ητ + arctan

(
bσ2
λ−κ
η

)
approaches π/2

(where π denotes the geometric constant). Real bond prices therefore become unbounded at

a finite maturity. For the baseline calibration, this occurs at a maturity of 33 years. While

this conclusion may seem extreme, it is useful to remember that even a very small probability

of default would change this result.

Figure B.1 shows zero-coupon bond yields for λ at zero, at its mean, and at the 90th

percentile, for parameter values given in Table 1. The figure shows that the yield curve

shifts down as the disaster probability shifts up. As mentioned above, the yield curves

are downward sloping because of the negative risk premia on bonds. The slope increases

in magnitude with an increase in the disaster probability. While Treasury yield curves

are upward sloping on average in the data, there are several differences between these yield

curves and the ones in the paper. First, Treasury bonds are subject to inflation risk. Because

inflation might be expected to rise in the event of a disaster, or perhaps with even an increased

probability of disaster, introducing inflation could very well lead to positive risk premia on

nominal bonds. Because inflation is a persistent process, long-term bonds carry greater

exposure to this risk than short-term bonds. This could lead to an upward slope of the term

structure. Second, all government bonds are subject to some risk of default, either through

inflation or outright. Because default could be expected to effect all debt outstanding when

it occurs, long-term bonds would again be exposed to more risk. To summarize, because

33While this solution appears very different from that in (B.7), they can both be expressed in terms of the

hyperbolic tangent.
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the main economic force causing very low yields is the protection that bonds offer in very

bad states (when short-term interest rates are low), introducing inflation or default in these

states would significantly change these results.

C Solution to the power utility model

Consider time-separable utility with

Vt = Et

∫ ∞
t

e−βs
C1−γ
s

1− γ
ds.

The state-price density for this model takes the familiar form

πt = e−βtC−γt . (C.1)

Ito’s Lemma implies that the state-price density follows the process

dπt
πt−

= µπ,t dt+ σπ,t[dBt dBλ,t]
> + (e−γZ − 1) dNt,

where

µπ,t = −β − γµ+
1

2
γ(γ + 1)σ2. (C.2)

and

σπ,t = [−γσ 0] . (C.3)

Risk of changes in the disaster probability are not priced in the power utility model.

The absence of arbitrage implies

µπ,t = −rt − λtEν
[
e−γZ − 1

]
, (C.4)

It follows from (C.2) that the riskfree rate under power utility is given by

rt = β + γµ− 1

2
γ(γ + 1)σ2 − λtEν

[
e−γZ − 1

]
.

As in the recursive utility model, let F (Dt, λt) denote the price of the dividend claim and

H(Dt, λt, τ) the price of zero-coupon equity with maturity τ . Equations (A.18) and (A.23)

are still satisfied, except of course the process for πt is different. The solution takes the form

H(Dt, λt, τ) = Dt exp {ap,φ(τ) + bp,φ(τ)λ} ,
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where ap,φ(τ) and bp,φ(τ) satisfy ordinary differential equations

a′p,φ(τ) = µD − γµ− β +
1

2
γ(γ + 1)σ2 − γσ2φ+ κλ̄bp,φ(τ)

and

b′p,φ(τ) =
1

2
σ2
λbp,φ(τ)2 − κbp,φ(τ) + Eν

[
e(φ−γ)Z − 1

]
.

with boundary conditions ap,φ(0) = bp,φ(0) = 0. These ordinary differential equations take

the same form as those in the recursive utility case and therefore have analogous solutions

given in the main text.

The equity premium for power utility can be computed in the same way as for recursive

utility (see Appendix A.4). The equity premium is given by

ret − rt = −σπ,tσ>F,t + λtEν
[
(e−γZ − 1)(1− eφZ)

]
.

Thus the equity premium takes the same general form as under recursive utility. However,

σπ,t is different. Ito’s Lemma implies

σF,t =
[
φσ (G′(λt)/G(λt))σλ

√
λt

]
.

Therefore, from (C.3), it follows that

ret − rt = φγσ2 + λtEν
[
(e−γZ − 1)(1− eφZ)

]
.
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Table 1: Parameters for the time-varying disaster risk model

Relative risk aversion γ 3.0

Rate of time preference β 0.012

Average growth in consumption (normal times) µ 0.0252

Volatility of consumption growth (normal times) σ 0.020

Leverage φ 2.6

Average probability of a rare disaster λ̄ 0.0355

Mean reversion κ 0.080

Volatility parameter σλ 0.067

σλE
[
λ1/2

]
0.0114

Probability of default given disaster q 0.40

Notes: The table shows parameter values for the time-varying disaster risk model. The

process for the disaster intensity is given by

dλt = κ(λ̄− λt) dt+ σλ
√
λt dBλ,t.

The consumption (endowment) process is given by

dCt = µCt dt+ σCt dBt + (eZt − 1)Ct− dNt,

where Nt is a Poisson process with intensity λt, and Zt is calibrated to the distribution of

large declines in GDP in the data. The dividend Dt equals Cφ
t . The representative agent

has recursive utility defined by Vt = Et
∫∞
t
f(Cs, Vs) ds, with normalized aggregator

f(C, V ) = β(1− γ)V

[
logC − 1

1− γ
log((1− γ)V )

]
.

Parameter values are in annual terms.
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Table 2: Population moments from simulated data and sample moments from the historical

time series

Model U.S. Data

Population Conditional

E[Rb] 0.99 1.36 1.34

σ(Rb) 3.79 2.00 2.66

E[Re −Rb] 7.61 8.85 7.06

σ(Re) 19.89 17.66 17.72

Sharpe Ratio 0.39 0.49 0.40

σ(∆c) 6.36 1.99 1.34

σ(∆d) 16.53 5.16 6.59

Notes: The model is simulated at a monthly frequency and simulated data are aggregated

to an annual frequency. Data moments are calculated using overlapping annual observations

constructed from quarterly U.S. data, from 1947 through the first quarter of 2010. With

the exception of the Sharpe ratio, moments are in percentage terms. The second column

reports population moments from simulated data. The third column reports moments from

simulated data that are calculated over years in which a disaster did not occur. The last

column reports annual sample moments. Rb denotes the gross return on the government

bond, Re the gross equity return, ∆c growth in log consumption and ∆d growth in log

dividends.
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Table 3: Long-horizon regressions: Excess returns

Horizon in years

1 2 4 6 8 10

Panel A: Model – Population moments

β1 -0.11 -0.22 -0.40 -0.56 -0.69 -0.82

R2 0.04 0.08 0.15 0.20 0.23 0.26

Panel B: Model – Conditional moments

β1 -0.16 -0.30 -0.56 -0.77 -0.95 -1.10

R2 0.13 0.24 0.41 0.52 0.59 0.63

Panel B: U.S. Data

β1 -0.13 -0.23 -0.33 -0.48 -0.64 -0.86

t-stat -2.62 -2.87 -3.64 -4.80 -5.82 -5.67

R2 0.09 0.17 0.23 0.30 0.38 0.43

Notes: Excess returns are regressed on the lagged price-dividend ratio in data simulated

from the model and in quarterly data from 1947 to 2010.1. Specifically, the table reports

coefficients β1, R
2 statistics and, for the sample, Newey-West t-statistics for regressions

h∑
i=1

log(Re
t+i)− log(Rb

t+i) = β0 + β1(pt − dt) + εt,

where Re
t+i and Rb

t+i are, respectively, the return on the aggregate market and the return

on the government bill between t + i − 1 and t + i and pt − dt is the log price-dividend

ratio on the aggregated market. The time-varying disaster risk model is simulated at a

monthly frequency and simulated data are aggregated to an annual frequency. Panel A

reports population moments from simulated data. Panel B reports moments from simulated

data that are calculated over years in which a disaster does not take place (for a horizon of

2, for example, all 2-year periods in which a disaster takes place are eliminated). Panel C

reports sample moments.
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Table 4: Long-horizon regressions: Consumption growth

Horizon in years

1 2 4 6 8 10

Panel A: Model – Population moments

β1 0.02 0.04 0.07 0.10 0.12 0.13

R2 0.01 0.02 0.04 0.05 0.06 0.06

Panel B: U.S. Data

β1 -0.001 -0.006 -0.009 -0.011 -0.016 -0.014

t-stat -0.22 -0.85 -1.02 -1.15 -1.09 -0.79

R2 0.0006 0.0137 0.0164 0.0180 0.0268 0.0162

Notes: Growth in aggregate consumption is regressed on the lagged price-dividend ratio in

data simulated from the model and in quarterly data from 1947 to 2010.1. Specifically, the

table reports coefficients β1, R
2 statistics and, for the sample, Newey-West t-statistics for

regressions
h∑
i=1

∆ct+i = β0 + β1(pt − dt) + εt,

where ∆ct+i is log growth in aggregate consumption between periods t + i − 1 and t + i

and pt − dt is the log price-dividend ratio on the aggregated market. The time-varying

disaster risk model is simulated at a monthly frequency and simulated data are aggregated

to an annual frequency. Panel A reports population moments from simulated data. Panel B

reports sample moments. The conditional moments, namely the slope coefficient and the R2

calculated over periods in the simulation without disasters, are equal to zero.
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Table 5: Results from alternative calibrations

Model U.S. Data

Population Conditional

Panel A: Calibration with OECD disasters

E[Rb] 1.56 1.86 1.34

σ(Rb) 3.38 1.75 2.66

E[Re −Rb] 6.82 7.83 7.06

σ(Re) 20.13 18.33 17.72

Sharpe Ratio 0.35 0.42 0.40

σ(∆c) 5.86 1.99 1.34

σ(∆d) 15.24 5.16 6.59

Panel B: Calibration with disasters of moderate severity and γ = 6

E[Rb] 2.74 2.89 1.34

σ(Rb) 1.58 0.61 2.66

E[Re −Rb] 5.48 6.06 7.06

σ(Re) 16.44 15.69 17.72

Sharpe Ratio 0.34 0.38 0.40

σ(∆c) 3.08 1.99 1.34

σ(∆d) 8.02 5.16 6.59

Notes: Panel A describes data simulated from the model when the distribution of disasters

are calibrated to those from OECD countries only. The average disaster probability λ̄ =

2.86% per annum; all other parameters (including σλ) is unchanged. Panel B describes data

simulated from the model when the distribution of disasters is as in Panel A, except that

realizations are cut in half. Risk aversion γ is set equal to 6, and λ̄ = 2.86%. All other

parameter values are unchanged.
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Figure 1: Distribution of the disaster probability, λt
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Notes: The top panel shows the probability density function for λt, the time-varying intensity

(per year) of a disaster. The solid vertical line is located at the unconditional mean of the

process. The bottom panel shows the probability that λ exceeds a value x, for x ranging

from 0 to 0.25. The y-axis on the bottom panel uses a log (base–10) scale. Parameter values

are given in Table 1.
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Figure 2: Distribution of consumption declines in the event of a disaster

Panel A: All countries
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Panel B: OECD countries
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Notes: Histograms show the distribution of large consumption declines (in percentages).

Panel A shows data for 22 countries, 17 of which are OECD countries and 5 of which are

not; Panel B shows data for the subsample of OECD countries. Data are from Barro and

Ursua (2008). Panel A is the distribution of 1− eZ in the baseline calibration, while Panel B

is the distribution of 1− eZ in the calibration discussed in Section 3.4.
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Figure 3: Government bill return in the time-varying disaster risk model
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Notes: This figure shows rb, the instantaneous expected return on a government bill; rL, the

instantaneous expected return on the bill conditional on no default and r, the rate of return

on a default-free security as functions of the disaster intensity λ. All returns are in annual

terms.
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Figure 4: Decomposition of the equity premium in the time-varying disaster risk model
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Notes: The solid line shows the instantaneous equity premium (the expected excess return

on equity less the expected return on the government note), the dashed line shows the equity

premium in a static model with disaster risk and the dotted line shows the what the equity

premium would be if disaster risk were zero.

63



Figure 5: Equity volatility in the time-varying disaster risk model
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Notes: The figure shows instantaneous equity return volatility as a function of the disaster

probability λt. All quantities are in annual terms.
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Figure 6: Sharpe ratio in the time-varying disaster risk model
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Notes: This figure shows the instantaneous equity premium over the government bill divided

by the instantaneous equity return volatility (the Sharpe ratio) as a function of disaster

probability λt. All quantities are in annual terms.
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Figure 7: Risk premia on zero-coupon equity
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Notes: This figure shows average risk premia on zero-coupon equity claims as a function of

maturity. Zero-coupon equity is a claim to the aggregate dividend at a single point in time

(referred to as the maturity). Risk premia are defined as expected excess returns less the

riskfree rate. The dotted line shows what risk premia would be if the disaster risk were zero.

The solid line shows risk premia in the model. Risk premia are expressed in annual terms.
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Figure 8: Implied disaster probabilities
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Notes: This figure shows the disaster probability λt implied by historical values of the ratio

of the price divided to the previous ten years of earnings for the S&P 500 index. This ratio

is de-meaned and set equal to the price-dividend ratio in the model (also de-meaned). The

disaster probability is found by inverting the equation for the price-dividend ratio; when the

resulting value of λt is negative, it is set to zero. The solid line marks the average value the

disaster probability.
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Figure B.1: Yields on zero-coupon bonds
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Notes: This figure shows continuously-compounded yields to maturity on default-free zero-

coupon bonds as a function of maturity. Yields are shown for three values of the disaster

probability: zero, average, and the 90th percentile critical value. Yields are in annual terms.
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