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ABSTRACT

This paper is an attempt to assess the existence and magnitude of local research spillovers in France.
We rely on the model of an extended production function (Cobb-Douglas and Translog) with both
local and neighborhood R&D capital stocks. We estimate this model on 312 employment areas as
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elasticities of productivity with respect to R&D capital are significant and plausible, both within own-area
and across neighboring areas as well as within own-industry, but they are weaker across different industries.
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1 Introduction 
 

Assessing the local spillover impacts of firms’ R&D investments on the various 

dimensions of economic development: productivity, employment, innovation, …, both in the 

geographic area where they are located and in neighboring areas, is one the most difficult and 

important challenge of recent empirical investigations in the economics of research and 

innovation1. Since the seminal book of KRUGMAN [1991] and the renewal of economic 

geography, these issues and the related ones of understanding the determinants and 

consequences of the localization and agglomeration of firms’ activities have received 

increasing attention. Firms tend to locate where the factors of production are abundant and 

less expensive, or where the demand for their products is strongest. They have, however, to 

balance production costs and costs of transportation. Many authors recognize that various 

types of externalities play also a major role in the localization of firms, arising from particular 

historical and geographical contexts, from policies of regional planning, from the 

agglomeration of natural, human and other economic resources, and in particular from that of 

specific knowledge assets leading to local increasing returns. 

 

As emphasized by GRILICHES [1992], the search for knowledge spillovers is 

specially challenging. While other externalities can be assessed more or less directly, even if 

not easily, knowledge spillovers are not directly observed. Economists can only strive to 

measure the effects of knowledge flow and stock variables on outcome variables like numbers 

of innovations or patents, and labor or total factor productivity. A related and difficult issue is 

to assess the spatial extent of knowledge spillovers. Other major problems are encountered in 

                                                 
1 See AUDRETSCH, FELDMAN [2004] for a survey, and AUTANT-BERNARD, MAIRESSE, MASSARD 

[2007] for a summary account of recent empirical studies published in a special issue of Papers in Regional 

Science on “Spatial Knowledge Diffusion through Collaborative Networks”. 



trying to understand and analyze the underlying channels and “mechanisms” by which they 

operate, and the conditions allowing firms to benefit from them2. 

 

In this exploratory econometric analysis, we basically try to identify local 

knowledge spillovers by estimating the effects of firms’ R&D investments on productivity at 

the aggregate level of some 300 French employment areas for 1999. We do so by relying on 

the framework of an extended production with both local and neighborhood R&D capital 

stocks, in addition to the more traditional factors of production of labor and physical capital3. 

We specify this production function both as a simple Cobb-Douglas function and a more 

general Translog function, and we estimate it for the French economy as a whole as well as 

for five large manufacturing industries. On the basis of this framework and our data, we can 

distinguish between local R&D spillovers within the range of employment areas themselves 

and within the range of neighboring areas. We thus focus on estimating as our two main 

parameters of interest the elasticities of productivity with respect to R&D capital, both 

“within own-area” and “across neighboring areas”: first for the whole economy in Section 3, 

and then separately by manufacturing industry in Section 4. In this last Section, we also try to 

distinguish between local R&D spillovers “within own-industry” and “across other 

industries”. 

 

Although our results remain exploratory, they are surprisingly encouraging, leading 

to estimates of R&D capital elasticities both within own-area and across neighboring areas 

which are statistically significant and seem economically plausible. Local spillovers thus 

                                                 
2 See for example COHEN, LEVINTHAL [1989], COCKBURN, HENDERSON [1998] or AGRAWAL [2002]. 
3 For a presentation of the extended production framework, and an in-depth discussion of its relevance and 

usefulness as well as many of the conceptual, measurement and econometric issues it raises, see the seminal 

article of GRILICHES [1979]. 



extend largely beyond the average range of employment areas, but they also appear to be 

limited to neighboring employment areas that does not reach farther than an average of 100 

km. We also find evidence that local spillovers tend to be mostly industry specific, with 

significant estimates for R&D capital elasticities within own-industry in all five 

manufacturing industries, and significant ones for elasticities across other industries for two 

industries out of the five: consumption goods and equipment goods industries. 

 

Before turning in Sections 3 and 4 to the detailed presentation of our results, we 

have in Section 2 to explain briefly the construction of the data at the level of the French 

employment areas in 1999, and comment on some the descriptive statistics for our main 

variables, stressing in particular the extreme geographical concentration of R&D firms’ 

investments. 

 

 

2 Data and main descriptive statistics 

 

 

2.1 Construction of the necessary data at the level of French employment 

areas for 1999 

 

Many previous studies in order to assess the importance of geographical knowledge 

spillovers have been relying on regional or departmental data4. We investigate this issue here 

                                                 
4 See for example CICCONE [2002], GAMBARDELLA, MARIANI, TORRISI [2002], or AUTANT-

BERNARD, LESAGE [2008]. 



for France at more detailed geographical level which is a priori preferable, that of the 

“employment areas (“bassins d’emploi”). 

 

The data we use relate to the non-agricultural business sector excluding financial 

activities and interim employment, for “Metropolitan” France without Corsica5. They are 

constructed at the level of “employment areas” for the year 1999. Employment areas are 

economic zones where local firms are likely to hire their workers. They have been precisely 

defined by INSEE and the Ministry of Labor, first in 1983 and then revised in 1994, on the 

basis of statistics on residence-to-work displacements6. Employment areas are much smaller 

than regions and departments (which correspond respectively to the NUTS 2 and NUTS 3 

levels of the European Union classification). There are 341 of them in Metropolitan France 

(without Corsica), of which we retain only 312 in our analysis, after discarding 29 as 

unsuitable because they had no or very small R&D investments or very low employment 

levels (with an estimated R&D capital stock of less than 100 K€, or with less than 5 000 

workers)7.  

 

Our R&D data come from the annual surveys conducted by the Ministry of Research, 

which give detailed information on firms’ internal and external R&D expenditures, numbers 

of R&D employees, financial sources, … These individual data are allocated to one of the 

36 000 French local municipalities on the basis of the postal code (ZIP code) of the firms’ 

main laboratories, and then aggregated at the level of the employment areas. Finally, using 

                                                 
5 Financial activities and interim employment are excluded for lack of good coverage in the administrative data 

we use. Corsica is left out because of geographical distance and its insular situation (and very little R&D 

investments).  
6 See INSEE [1994]. 
7 10 employment areas are excluded on the basis of these two criteria, 13 only on that of very small R&D 

investment, and 6 of very small employment.  



here only the internal R&D expenditures obtained for the six years 1993 – 1998, and applying 

the so called permanent inventory method with a 15% depreciation rate, we can construct an 

R&D capital stock K at the beginning of 1999 for all employment areas. (See Appendix A for 

more details.) In order to investigate the spatial range of local spillovers beyond the 

employment areas, besides measuring the local R&D capital stocks K, we have also computed 

so called “neighborhood R&D capital stocks” such as K100 or K200. For a given 

employment area, these are simply computed as the sums of the R&D capital stocks K of all 

their neighboring employment areas in a “circle” of 100 km or 200 km. (See also Appendix A 

for more details.) 

 

The employment data come from the firms’ declarations to the Social Security (i.e. 

the Déclarations Annuelles de Données Sociales or DADS). Being separately available for the 

different firms’ establishments, they can be merged into an INSEE database constructed at the 

establishment level which provides other economic key variables for 1999: total sales, value 

added, gross earning before interests and taxes, and the book value of fixed assets8. 

Establishments being localized at the municipality level, these variables are aggregated at the 

level of the employment areas as in the case of R&D. The General Census of Population of 

1999 is also a source of complementary information at the level of municipalities and 

employment areas.9 

 

 

 
                                                 
8 In fact this establishment database is constructed on the basis of firm level statistics. For mono-establishment 

firm, this evidently raises no difficulties, but for multi-establishments firms this has been achieved by using, 

various methods of imputation based on very detailed industry ratios by establishment size and localization.  

 
9 See JULIA [2003] for more detailed explanations on these aspects of the construction of our database. 



2.2 Main descriptive statistics 

 

Table 1 gives the mean, standard deviation, minimum, median and maximum, as 

computed over the 312 employment areas, for the main variables in our investigation. It 

shows the very large dispersion and skewness (asymmetry) of most of these variables in 

absolute levels (that is before being normalized by size and being taken in logs). While the 

surface (S) of the largest employment area (Toulouse) is already 140 times that of the smallest 

one (Vitry-sur-Seine) and the mean surface (1600km2) is about 10% higher than the median 

surface (1430km2), the employment (L) of the largest employment area (Paris) is of about 190 

times that of the smallest one (Gannat), and the mean employment (40160) is about twice the 

median employment (20510). These two max-to-min and mean-to-median ratios are even 

larger for value-added (Y) and physical capital (C) than for employment, and even much more 

so for local R&D capital (K) and our preferred measure of neighborhood R&D capital 

(K100). As could be expected, however, when we normalize by employment size and 

consider labor productivity (Y/L), physical capital intensity (C/L), and local and 

neighborhood R&D capital intensities (K/L and K100/L), we see that their distributions 

across employment areas appear much less dispersed and skewed. Going one step further and 

taking logarithms which is what do when estimating the Cobb-Douglas and Translog 

production functions regressions, we can also see that their log-distributions become roughly 

symmetrical.  

 

 

Table 1: Main Descriptive Statistics  (ABOUT HERE) 

 

 



The distributions of the local and neighborhood Log R&D capital stocks per 

employee [Log(K/L) and Log(K100/L)] remain nonetheless very dispersed across the 

employment areas, as compared to Log labor productivity [Log(Y/L)] and to Log physical 

capital stock per employee [Log(K/L)]. This corresponds to an extremely high concentration 

of firms R&D activities in a few zones. This geographical concentration of R&D activities is 

particularly striking since it much more pronounced than that of productive activities. This 

appears most clearly by looking at the Lorenz curves shown in Figure 1 respectively for the 

surface (S), total employment (L), value added (Y) and local and neighborhood R&D capital 

(K) and (K100), and by comparing the corresponding Gini coefficients10. We can see that the 

10% (i.e. the 31) largest employment areas in terms of surface, employment, value-added and 

physical capital correspond to 23 %, 47 %, 53 % and again 53 % of the total surface, total 

employment, total value-added and physical capital respectively, while the 10% largest 

employment areas in terms of local and neighborhood R&D capital account respectively for 

as much as 88 % of the total R&D capital stock and for as much as 71 % of the “total 

neighborhood R&D capital stock”11. 

 

 

Figure 1: Concentration Curves and Gini Coefficients  (ABOUT HERE) 

 

                                                 
10 The Gini coefficients for physical capital (C) and value-added (Y) are nearly equal, and we cannot distinguish 

their Lorenz curves (3) and (4) in Figure 1. Note also that the Lorenz curve for the neighborhood R&D capital 

K100 appears less concentrated than that for local R&D capital K, because of the fact that the different 

neighborhood areas are by construction greatly overlapping, and the fact that local R&D capital stocks K are 

very small for most employment areas.  
11 Note that because of the high concentration of R&D capital K in few employment areas in Paris, Lyon, 

Toulouse, Grenoble and their neighborhood areas, and because of the important overlap of these neighborhood 

areas, the mean neighborhood R&D capital K100 appears much larger (by a factor of nearly 30!) than the mean 

R&D capital stock K. 



 

Figure 2 shows the localization and importance of R&D activities in terms of 

employment in the 312 employment zones in France. These activities are mainly concentrated 

in the Paris region, and to a lesser extent in the Rhône-Alpes region with Lyon and Grenoble, 

and in the Toulouse region, and they are quite modest or negligible in most other parts of 

France. The huge concentration we already stressed in terms of R&D capital is of course also 

true for R&D employment. About 90% of the R&D employees (researchers and technicians) 

employed by firms are located in the 40 employment areas largest in terms of R&D 

employment, and 70% in the 10 first of them: 7 in Paris Region and 3 in the province (i.e. by 

decreasing order: Nanterre, Versailles, Boulogne-Billancourt, Paris, Toulouse, Lyon, Les 

Mureaux, Grenoble, Saint-Denis, Vitry-sur-Seine). 

 

 

Figure 2: Geographic Concentration of R&D Employment in France  (ABOUT HERE) 

 

 

Finally, Table 2 gives the Moran’s coefficients of spatial autocorrelation for our 

main variables (in logs) using four different contiguity matrices12. We can see that these 

spatial autocorrelation coefficients are statistically significant (at the 1% confidence interval) 

for all variables and for all four contiguity matrices. They also tend to be somewhat higher 

when more weight is given to close proximity, that is when they are computed with the first 

contiguity matrix (W1) based on the neighboring areas, or the fourth one (W4) based on the 

inverse of the squared distance. We note also that they are generally close enough for all the 

variables, in the range of 0.15 to 0.25, with few exceptions. This is a relatively modest order 

                                                 
12 See MORAN [1950] or CLIFF, ORD [1980]. 



of magnitude, which is high enough, however, to warrant the use of spatial econometric 

techniques. 

 

 

Table 2: Spatial Autocorrelation Coefficients and Tests  (ABOUT HERE) 

 

 

 

3 Local R&D Spillovers 

 

 

In order to assess the existence and magnitude of local and neighborhood R&D 

capital intensities on local productivity, we estimate the following extended simple Cobb-

Douglas production function (1):  
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and the more general extended Translog production function (2): 
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where i denotes the employment area i (i = 1 to 312), and where our main parameters of 

interest are γ1 and η1 for the Cobb-Douglas specification, together with γ2 and η2 (and 

possibly γ3 and γ4) for the Translog specification13. Note that all capital stocks (C, K and 

K100) are measured at the beginning of the year 1999. Note also that all the squared and cross 

product Log terms in the Translog specification are taken in deviations from the 

corresponding means, which implies for example that the estimated γ1 and η1 in the Translog 

specification directly measure the local and neighborhood R&D capital elasticities at the 

mean values of the variables, and that they should be not too different from the constant 

elasticities γ1 and η1 as estimated in the Cobb Douglas specification14. Note finally that in 

order to take into account the different industry structure of the employment areas, we have 

included in the two Cobb-Douglas and Translog productivity equations eleven control 

variables measuring the value added shares of the different industries (at the NES16 

classification level) in the employment areas. 
                                                 
13 We have not included in the Translog specification the three cross-terms involving Log(K100/L), that is 

Log(L)* Log(K100/L), Log(C/L) * Log(K100/L) and Log(K/L) * Log(K100/L), since these three variables are 

strongly collinear.  
14 In the Translog specification, the elasticities are not constant, but are function of the variables. For example, 

the elasticity of physical capital stock is : 

( ) ( )( ) ( )( ) ( ) ( )( )
1 2 3 4

ˆ 2 log log log log( ) log log/ / / /C L C L L L K L K Lβ β β β γ= + − + − + −  



 

As we have seen in the previous section, our main variables Log(Y), log(L), log(C), 

log(K) and Log(K100) are not only extremely dispersed but they also exhibit spatial 

autocorrelation patterns, and we can thus expect that the error terms ε in the productivity 

Cobb-Douglas and Translog equations (1) and (2) are also spatially autocorrelated. To take 

account of such a spatial autocorrelation, we rely on the spatial econometrics methods as 

developed in ANSELIN [1988], LESAGE [2000] or LE GALLO [2002]. After various 

experimentations, we have focused on the Spatial Autoregressive Regression (SAR) estimated 

by maximum likelihood. The SAR specification performs better than the usual regression as 

estimated by Ordinary Least Squares (OLS), that is when tested against the null hypothesis of 

no spatial autocorrelation (ρ = 0). It is also performs better when tested against the Spatial 

Error Model (SEM) in the framework the Spatial General Model (SGM) encompassing both 

the SAR and the SEM specifications. It also does well when tested with the Spatial Durbin 

Model (SDM). (See Appendix B for detailed explanations.) 

 

Tables 3 and 4 give the results of the estimation by maximum likelihood of the 

spatial autoregressive regression (SAR) for the Cobb-Douglas and Translog equations 

respectively. 

 

Table 3: Estimates of Cobb-Douglas production function with local R&D spillovers 

and 

Table 4: Estimates of Translog production function with local R&D spillovers 

 (ABOUT HERE) 

 

 



Making first a few general observations, we see that for all eight different 

regressions that we thought useful to document in these tables, the absence of spatial 

autocorrelation is rejected at 5% level, while the Spatial Autoregressive Regression (SAR) is 

accepted against the Spatial General Model (SGM). The spatial autocorrelation parameter (i.e. 

the coefficient of W*Log(Y/L)) is statistically significant of the order of 0.3 to 0.4 depending 

on the regressions. This can be interpreted as indirect evidence of local spillovers effects, 

other than the direct evidence provided by the estimates of the R&D capital stocks elasticities. 

 

We also observe that the general fit of the regressions are strongly improved when 

we move from the Cobb-Douglas to the Translog specifications. This is mainly accounted by 

the inclusion in the equations of the squared log-variables (and not by the cross-product 

terms), as indicated by the likelihood ratio tests. Following the interpretation of such a result 

proposed by CREPON-MAIRESSE [1993], we can view it as strong evidence of the 

heterogeneity of the production function across individual units: that is for us here across 

employment areas. The Translog equation takes explicitly into account such heterogeneity by 

including squares and cross-product of the log-variables, contrary to the more parsimonious 

Cobb-Douglas equation. Note, however, that, as could be expected, the estimates of average 

elasticities (i.e., when computed at the sample means of the variables for the Translog 

specification) are all practically the same for both type of equations. 

 

We find estimates of the average elasticity of physical capital stock Aβ̂ , which are 

both statistically very significant and of a reasonable order of magnitude of 0.25 in all eight 

regressions. The Translog estimates show, however, that the elasticity β is far from being 

constant across employment areas, increasing strongly with physical capital intensity: 

( ) ( )( )ˆ 0.23 0.28 log logC L C Lβ + − . We also find small but significant increasing returns to 



scale ν of about 3 to 5%, which appear to be practically constant across employment areas 

(contrary to β).  

 

Turning now to our parameters of main interest: the elasticities of local and 

neighborhood R&D capital, we see first that in all eight regressions the average elasticity of 

local R&D capital γ̂
A

 is as statistically significant as the average elasticity of physical capital 

Aβ̂ , and about equal to 0.03. Such an order of magnitude, which may seem small, is in fact on 

the high side of what could be expected. The similar cross-sectional estimates of R&D capital 

elasticity performed at the firm level for samples of R&D doing firms in manufacturing 

industries are in the range of 0.05 to 0.1015. Considering that only a minority of firms do 

R&D, a simplistic guess would be that at the aggregate level of employment areas, the 

estimated elasticity of local R&D capital would be a great deal smaller. Finding that it is 

actually of about 0.03 is clear evidence for the existence of sizeable R&D spillovers within 

employment areas. The Translog estimates show that the elasticity γ, like β, is not constant 

across employment areas but is strongly increasing with the intensity of local R&D capital: 

( ) ( )( )ˆ 0.03 0.02 log logK L K Lγ + − .  

 

Looking next at the estimates of the average elasticity η̂
A

 of neighborhood R&D 

capital in regressions (2), (4), (7) and (8) where we used our preferred measure K100, we see 

                                                 
15 See for example CREPON-MAIRESSE [1993] for such cross-sectional estimates for French manufacturing 

industries. See also MAIRESSE-SASSENOU [1991] for a survey of both cross-sectional and time series types of 

estimates for other countries, which remains representative of the results that can be found in recent studies.  



that they are statistically significant and of nearly 0.015, half of the average elasticity γ̂
A

 16. 

The Translog estimates show again that the elasticity η is not constant across employment 

areas but appears to increase moderately with the intensity of the neighborhood R&D capital. 

In regressions (3) and (4), we present two among the different regressions we did in order to 

assess approximately the spatial range of R&D spillovers beyond employment areas, using 

different measures of neighborhood R&D capital stocks K80, K150, K200 and K250 

constructed as the R&D capital stocks of all employment areas in circles of increasing radius 

(respectively equal to 80km, 150km, 200km and 250km). We see in regression (3) that the 

average elasticity η̂
A

becomes not statistically different from zero if we use the broader 

definition of neighborhood R&D capital K200 instead of our preferred one K100. 

Equivalently, if in addition to Log(K100/L) we include in regression (4) the variable 

Log(K200-K100)/L measuring the intensity of R&D capital stocks in the neighboring 

employment areas centered in the 100km to 200km ring, we see that this variable is also not 

statistically different from zero. 

 

 

4 Industry R&D Spillovers 

 

 

In this section, we attempt both to confirm and be more specific about our findings 

on local R&D spillovers by pursuing our analysis at the level of five large manufacturing 

industries and by differentiating between own-industry and other-industry R&D spillovers. 
                                                 
16 Taking for K and K100 their median values (in Table 1) that only differ by 20%, this implies that the 

corresponding gross rate of return of neighborhood R&D capital would be about 60% of that of local R&D 

capital, which is quite high, still plausible enough. 



We have been able to partition our employment area database according to the French one-

digit industry classification NES 16, and we can focus on five large manufacturing industries, 

leaving aside trade, transport, services, and other industries which typically invest very little 

in R&D. These five broad manufacturing industries are the following: (B) Food and beverage 

industries; (C) Consumption good industries; (D) Motor vehicles industries; (E) Equipment 

good industries; and (F) Intermediate good industries.  

 

We are thus now considering a much larger sample of 1538 “industry-employment 

area” observations for which we computed, as we did previously for the whole economy, both 

an “own-industry” local R&D capital stock (K) and an “own-industry” neighborhood R&D 

stock (K100)17. To test whether we could find evidence of R&D spillovers across different 

industries, we also defined an “other-industry” local R&D capital stock (Kdif), simply 

computed for all industry-employment area observations as the sum of the own-industry local 

R&D capital for the four other industries18. 

 

Table 5 reports the estimates of the R&D capital stocks elasticities of interest for 

three regressions of the Translog productivity equation. All three regressions include fixed 

industry effects, and the results shown are the usual within-industry OLS estimates, since we 

do not find anymore significant evidence in favor of the (SAR) specification in our larger 

sample, once we control for industry effects. Regression (9) assumes that all parameters are 

                                                 
17 We deleted 22 observations (out of 5x312=1560) because of zero own industry local and neighborhood R&D 

capital stocks K and K100. 
18 We also computed an “other-industry” neighborhood R&D capital stock (Kdif100); however the regression 

estimates of the corresponding elasticities were very small and non significant, and not worthwhile to be reported 

here. The same observation applies for the estimates we obtained when we tried to include in the regressions 

separately the logs of the “own-industry” local R&D capital stocks for the other industries, as four additional 

separate variables instead of the log of their sum Log(Kdif).  



equal across industry (except for the industry fixed effects), while regression (10) only 

restricts the R&D capital elasticities to be equal across industry, and regression (11) also 

allows the R&D capital elasticities to be industry specific. The within-industry OLS estimates 

of regression (11) are thus the same as the OLS ones, when estimating it separately for each 

five industries. The complete estimates for regression (11), including the elasticities for 

physical capital, are recorded in Table C1 in Appendix C. 

 

 

Table 5: Estimates of Translog production function with local and industry R&D spillovers 

 (ABOUT HERE) 

 

 

Looking first at the χ2 tests of equality of the R&D capital stocks elasticities in 

regression (11), as well as the likelihood ratio tests of the fully pooled and semi-pooled 

regressions (9) and (10) against the more general regression(11), the evidence goes in favor of 

the latter specification. However, it also appears that the specification of regression (10) is 

mainly rejected because of very significant industry differences in the estimated elasticities of 

the local R&D capital Log(K/L). Actually, the estimates of the five other R&D capital 

elasticities in the Translog equation, that is for Log(Kdif/L), Log(K100/L), Log(K/L)2, 

Log(Kdif/L)2 and Log(K100/L)2 are not statistically different across industry at the 5% (or 

more) confidence level. 

 

Focusing now on the magnitude of the estimates, we see that the average elasticity 

γ̂
A

 of the local R&D capital, as estimated for all five industries in regressions (9) an (10), is 

again statistically very significant (as when estimated for the overall French business non 



agricultural economy in the previous section), but that it is of a much higher order of 

magnitude of about 0.09 (as against 0.03 before). This important difference in size is largely 

explained by the fact that we are now considering manufacturing industries only19. We also 

see that the elasticity γ is not constant across industry and employment areas and that it is 

increasing as before, but even more strongly, with the intensity of local R&D capital: 

( ) ( )( )γ̂ 0.09 0.05 log logK L K L= + − . We find, however, when considering regression (11), 

that the estimated average elasticity γ̂
A

 can be quite different across industries. It is 

significantly higher, of about 0.21, in the Motor vehicles industries, but falls in the range of 

0.05 to 0.10 in the other industries. It is noteworthy that the average elasticity γ̂
A

 remains 

statistically different from zero at the 1% confidence level, except in the Food industries 

where it only significant at the 10% confidence level. It is also interesting to observe that the 

elasticity γ tends to be significantly increasing with local R&D capital intensity Log(K/L) 

even within industry.  

 

The estimates of the average elasticity η̂
A

 of the neighborhood R&D capital in 

regressions (9) and (10) remain statistically significant as before, but with the same order of 

magnitude of 0.015 (or perhaps just slightly higher), contrary to the average elasticity 

estimate γ̂
A

. We also find a moderate tendency for the elasticity η to increase with the 

intensity of neighborhood R&D capital. We observe in regression (11) that the industry 

estimates of η do not statistically differ and are roughly constant across industries, again 

contrary to the corresponding estimates γ for local R&D capital. 

                                                 
19 It is also explained by the related fact that γ̂A  is now measured at a different sample average value 

( )log K L  of the local R&D capital intensity, which is much higher for manufacturing industries than for the 

overall business economy. 



 

Finally, we only find weak evidence that local spillovers are not only industry 

specific, but are also significant and sizeable across different industries. The estimated 

elasticities of other-industry local R&D capital (Kdif) in regressions (9) and (10) are just 

significant at the 5% level of confidence and of about 0.01, that is much smaller by a factor of 

nearly 10 than the estimated elasticities of own-industry local R&D capital (K). In regression 

(11) we see that the elasticities of other-industry local R&D capital are significant and of 

about 0.02 for two industries out of the five: consumption goods and equipment goods 

industries20. 

 

 

5 Conclusion 

 

 

This note is a contribution to the existing literature on the effects of local R&D 

spillovers on productivity in their geographic and industrial dimensions. Our estimations of 

Cobb-Douglas and Translog extended production functions with local and neighborhood 

R&D capital are performed at the level of some 300 employment areas for the French non 

agricultural business economy as a whole in 1999. They are also generalized for five broad 

manufacturing industries, using a larger sample of some 1500 observations crossing industry 

and employment area data. Even though R&D investments are very highly concentrated in a 

few employment areas around Paris and other large French cities, we find statistically 

                                                 
20 Using data at the level of the 94 French departments for 11 manufacturing industries from 1992 to 2000, 

AUTANT-BERNARD, LESAGE [2008] find evidence of stronger cross-industry effects of private R&D 

activity on patenting than we do here for productivity. 



significant and large but plausible spillover effects of local R&D capital on productivity. In 

addition to these effects, we also find statistically significant but smaller effects for 

neighborhood R&D capital in the neighboring employment areas extending on average as far 

as 100km but not beyond. We also observe that these effects are not constant across 

employment areas, but increase very significantly with R&D capital intensity. These findings 

are strongly confirmed at the industry-employment area level, which show that local R&D 

spillovers tend to be mostly industry specific, while the evidence for R&D spillovers across 

different industries is much weaker. 

 

Although surprisingly good and robust, our results should still be considered as 

exploratory in view of many shortcomings related mainly to the data, and in particular its 

cross-sectional nature, and the consequences in terms of econometric modeling and 

estimation. Data on comparable cross-sectional employment areas data for a few number of 

years, and least one more recent year than 1999 would be very useful, but the data 

construction is complex and costly. An analysis at a more detail industry classification level 

might also be possible, though difficult. Investigating localized data at the establishment 

level, and preferably panel data, is a priori the preferable way to go; however, it also has its 

own important problems.21 

 

 

                                                 
21 See for example GRILICHES-MAIRESSE [1998] for a survey of the difficulties involved in the identification 

and estimation of the production function using micro-panel data. 
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Table 1: Main Descriptive Statistics 

 
  
 
 

  Mean Std. Dev. Min Median Max 

Surface in km² 1 601 1 015 45 1 432 6 264
Employment (L) workers 40 158 76 202 5 034 20 512 992 637
Value Added (Y) in K€ 2 045 815 4 861 684 187 652 915 745 61 077 052
Fixed Capital (C ) in K€ 3 092 345 8 300 117 224 538 1 314 853 116 760 038
R&D Capital (K) in K€ 42 151 216 005 115 2 956 2 598 767
Neighborhood R&D Capital 
(K100) in K€ 1 208 750 145 507 115 2 444 8 815 790

R&D Workers (LRD) workers 220 1 096 0 20 14 086
Y / L in K€ 44.842 9.101 33.015 42.391 115.461
C / L in K€ 69.546 31.040 35.974 63.558 269.548
K / L in K€ 0.467 1.394 0.006 0.148 14.819
K100 / L in K€ 56.699 8.717 0.038 10.027 1 051.815
log(Y / L)   3.7874 0.0095 3.4970 3.7469 4.7489
log(C / L)   4.1737 0.0196 3.5828 4.1520 5.5967
log(K / L)   -1.8693 0.0747 -5.1442 -1.9074 2.6959
log(K100 / L)   2.3685 0.0992 -3.2749 2.3053 6.9583
K / Y   0.85% 2.15% 0.02% 0.35% 29.34%
K / C   0.7% 2.1% 0.0% 0.2% 27.5%
LRD / L    0.2% 0.6% 0.0% 0.1% 5.7%
Study sample of 312 Employment Areas. 
 

 



 
 

Figure 1 : Concentration Curves and Gini Coefficients 
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Figure 2 : Geographic Concentration of R&D Employment in France 
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Table 2: Spatial Autocorrelation Coefficients and Tests  
 

Contiguity matrix 
 W1 W2 W3 W4 

Log(Y) 0.228 0.086 0.141 0.189 
(6.78) (4.24) (6.36) (6.87) 

Log(L) 0.198 0.056 0.108 0.156 
(5.88) (2.83) (4.91) (5.68) 

Log(C) 0.187 0.068 0.115 0.159 
(5.57) (3.37) (5.22) (5.80) 

Log(K) 0.211 0.125 0.172 0.211 
(6.27) (6.07) (7.70) (7.64) 

Log(K100) 0.764 0.695 0.728 0.759 
(22.48) (33.22) (32.16) (27.20) 

Log(Y/L) 0.278 0.211 0.249 0.282 
(8.23) (10.18) (11.11) (10.17) 

Log(C/L) 0.097 0.107 0.118 0.134 
(2.95) (5.22) (5.32) (4.91) 

Log(K/L) 0.168 0.137 0.168 0.195 
(5.01) (6.67) (7.51) (7.07) 

Log(K100/L) 0.474 0.393 0.417 0.448 
(13.99) (18.86) (18.48) (16.11) 

Moran's coefficients of spatial autocorrelation and the z-tests of no spatial 
autocorrelation are respectively shown in normal characters and in italic characters 
(in parentheses). Both are distributed as the standard normal variable under the 
null hypothesis of no spatial autocorrelation. Under this hypothesis the expected 
value of Moran's coefficients of spatial autocorrelation is equal to (-1/N) where N is 
the number of observations (i.e. = -1/312 =-0.003), and their standard errors 
depend on the contiguity matrix. They are respectively 0.034 , 0.021 , 0.023 and 
0.028  for W1, W2, W3 and W4.  
W1 = Contiguity Matrix based on Immediately Neighboring Employment Areas 
W2 = Contiguity Matrix based on  Neighboring Employment Areas  in a Circle of 
100 km  
W3 = Contiguity Matrix based on the Inverse of Geographical Distance 
W4 = Contiguity Matrix based on the Inverse of the Square of Geographical 
Distance 
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Table 3: Estimates of Cobb-Douglas production function with local R&D spillovers 

 
Regression 
 (1) (2) (3) (4) 

Estimated Parameters   (Standard Errors) 
                  
Constant 1.758** (0.238) 2.107** (0.254) 1.776** (0.239) 2.161** (0.258)
                  
Log(L) 0.030** (0.007) 0.045** (0.008) 0.035** (0.009) 0.039** (0.010)
                  
Log(C/L) 0.268** (0.024) 0.256** (0.024) 0.266** (0.024) 0.257** (0.024)
                  
                  
Log(K/L) 0.031** (0.005) 0.030** (0.005) 0.031** (0.005) 0.030** (0.005)
                  
log(K100/L)     0.014** (0.004)     0.013** (0.004)
                  
log(K200/L)         0.004 (0.004)     
                  
log((K200-K100)/L)             -0.005 (0.004)
                  
                  
W * Log(Y/L) 0.314* (0.139) 0.269* (0.137) 0.298* (0.140) 0.289* (0.137)
                  
                  
s 0.0814 0.0801 0.0814 0.0798 
R²-adjusted 0.7628 0.7700 0.7624 0.7706 
Log. Likelihood 338.09 344.63 338.55 345.55 
LM Test OLS vs. SAR 27.95 [0.000] 5.13 [0.029] 20.60 [0.000] 5.35 [0.021]
LM Test SAR vs. SGM 2.02 [0.156] 0.98 [0.323] 1.56 [0.212] 1.57 [0.211]
                  
Maximum Likelihood Estimation. 312 Observations. * : significant at 5% level; ** : significant at 1% level. 
All regressions include 11 industry shares (NES 16 level).         
LM Test OLS vs. SAR : Lagrange multiplier test of Autoregressive model vs. no spatial model (distributed as  
χ2 (1) under the null) with p-values under brackets. 

LM Test SAR vs. SGM : Lagrange multiplier test of spatial generalized model vs. spatial autoregressive 
model (distributed as  as  χ2 (1) under the null)  with p-values under brackets. 
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Table 4: Estimates of Translog production function with local R&D spillovers 
 

Regression 
 (5) (6) (7) (8) 

Estimated Parameters   (Standard Errors) 

Constant 1.787** (0.223) 1.926** (0.228) 2.171** (0.236) 2.321** (0.240)
                  
Log(L) 0.035** (0.007) 0.030** (0.007) 0.051** (0.008) 0.045** (0.008)
                  
Log(L)² -0.002 (0.004) -0.008 (0.005) -0.002 (0.004) -0.010* (0.005)
                  
Log(C/L) 0.244** (0.022) 0.236** (0.023) 0.232 (0.022) 0.226** (0.022)
                  
Log(C/L)² 0.137** (0.026) 0.139** (0.026) 0.139** (0.025) 0.141** (0.025)
                  
Log(K/L) 0.030** (0.005) 0.031** (0.005) 0.029** (0.004) 0.030** (0.004)
                  
Log(K/L)² 0.010** (0.002) 0.008** (0.002) 0.010** (0.002) 0.008** (0.002)
                  
Log(K100/L)         0.013** (0.003) 0.013** (0.003)
                  
Log(K100/L)²         0.002* (0.001) 0.002* (0.001)
                  
Log(L) * Log(C/L)     -0.009 (0.017)     -0.003 (0.017)
                  
Log(L) * Log(K/L)     0.009 (0.005)     0.011* (0.005)
                  
Log(C/L) * Log(K/L)     0.016 (0.011)     0.017 (0.011)
                  
W * Log(Y/L) 0.459** (0.128) 0.431** (0.128) 0.417** (0.125) 0.389** (0.124)
                  
                  
S 0.0739 0.0733 0.0719 0.071 
R² - adj. 0.8024 0.8038 0.812 0.8149 
Log. Likelihood 368.69 371.41 378.41 382.44 
LM Test SAR vs. OLS 22.54 [0.000] 19.89 [0.000] 2.43 [0.119] 1.68 [0.195]
LM Test SGM vs. SAR 1.14 [0.285] 0.82 [0.365] 0.58 [0.447] 0.67 [0.416]
LR Squared Variables 61.04  (3) [0.000]     67.54  (4) [0.000]     
LR Cross-Product Variables     5.61  (3) [0.132]     8.06  (3) [0.045]
LR Translog Variables     66.65  (6) [0.000]     75.61  (7) [0.000]
LR Neighborood Variables        19.59  (2) [0.000] 22.05 (2) [0.000]

See footnote to Table 3 
LR Tests: Likelihood ratio tests of squared, cross product and all translog variables, with degrees of freedom in 
parenthesis and p-values in squared brackets. 
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Table 5: Estimates of Translog production function with local and industry R&D 
spillovers 

 
Regression 

 (9) (10) (11) 

Estimated Parameters   (Standard Errors) 

  Common Common B C D E F 

Log(K/L) 0.089** 0.093** 0.040 0.091** 0.210** 0.075** 0.055**
  (0.013) (0.011) (0.021) (0.012) (0.035) (0.011) (0.011)
                
Log(Kdif/L) 0.009* 0.009* 0.008 0.018* -0.001 0.020** 0.003 
  (0.004) (0.004) (0.006) (0.007) (0.013) (0.007) (0.006)
                
Log(K100/L) 0.015** 0.019** 0.023** 0.019** 0,020 0.015* 0.014*
  (0.004) (0.004) (0.006) (0.007) (0.013) (0.006) (0.006)

Log(K/L)² 0.025** 0.025** 0.011 0.020** 0.045** 0.020** 0.016**
  (0.004) (0.004) (0.007) (0.004) (0.010) (0.005) (0.005)
                
Log(Kdif/L)² 0.000 0.001 0.001 0.005* -0.005 0.006* 0.002 
  (0.002) (0.002) (0.003) (0.002) (0.005) (0.003) (0.002)
                
Log(K100/L)² 0.003* 0.003* 0.002 -0.000 0.004 0.003 0.005*
  (0.001) (0.001) (0.002) (0.002) (0.004) (0.002) (0.002)
                
S 0.2297 0.2204 0.2141 
R² adj. 0.6288 0.6584 0.6777 
Log. Likelihood 91.81 182.74 240.20 
                
χ2 (5) for:    
Log(K/L)     22.734  [0.000] 
Log(Kdif/L)     5.577  {0.233] 
Log(K100/L)     1.439  [0.837] 
Log(K/L)²     0.534  [0.970] 
Log(Kdif/L)²     5.190  [0.268] 
Log(K100/L)²     8.378  [0.079] 
                
OLS Estimation with heteroskedastic-consistent standard-errors. 1 538 Observations. 
* : significant at 5% level; ** : significant at 1% level.         
Regression (9) is a pooled regression with industry specific effects.       
Regression (10) allows all non-R&D capital parameters to vary across industries. 
Regression (11) allows all parameters to vary across industries.       
B=Food industries; C=Consumption good industries; D=Motor vehicles industries;  
 E=Equipment good industries; F=Intermediate good industries.  
 χ2 (5) with p-values in brackets for the Wald test of equality of coefficients across five industries.  
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APPENDIX A: 

 

Measurement of local and neighborhood R&D capital variables 

 

The R&D data we use to measure the R&D capital stocks at the employment area 

level are provided by the annual surveys on firms’ R&D expenditures conducted by the 

statistical office of The French Ministry of Research since the seventies. In these surveys, 

since 1993, firms which have several laboratories or research centers are asked to report the 

geographical decomposition of their total internal R&D expenditures and total number of 

R&D workers by French “departments” (NUTS 3 level). We use this decomposition together 

with the postal addresses of firms’ establishments to determine the localization of their R&D 

expenditures and number of workers at the very detailed level of the some 36 000 French 

“communes” or municipalities. These estimates are then summed up to the level of the 341 

employment areas which are aggregates of municipalities. 

 

The local R&D capital stocks (K) at the beginning of year 1999 are estimated by the 

permanent inventory method applied on the basis of the past internal R&D expenditures (R) 

so obtained for the six years 1993 – 1998, after deflation by an overall R&D price index and 

after depreciation assuming a constant depreciation rate δ of 15 %, that is using the following 

formula:  
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 ( )∑
=τ τ

ττ−δ−=
1998

1993

1998
1999 1 RDP

R
K  (A-1) 

 

Note that we did not try to make any adjustment for the unknown initial stock of 

R&D capital in 1993, since this should not affect noticeably our cross-sectional estimates of 

the R&D capital elasticities of interest here. With a rate of depreciation δ of 15 %, it is also 

the case that about 38 % of the R&D capital stock at the beginning of 1992 is not depreciated 

at the beginning of 1999, which will represent about 28 % of the R&D capital stock at the 

beginning of year 1999, when assuming that R&D investments have been growing at an 

average annual growth rate of 5 %. 

 

The neighborhood R&D capital stock (K100) for any given employment area is 

simply computed by summing up the R&D capital stocks (K) in the employment areas which 

are in a circle of 100 km around this given area. In this procedure, we assume that all the 

R&D capital of an employment area is localized at its geographical center. Precisely, we have 

constructed a matrix A100 which indicates if the distance between two employment areas i and 

j is less then 100 km: 

 

 [ ] ( )
⎩
⎨
⎧ ≤<

==
otherwise0

100,  0 if1
 such that      ,,100

kmjidist
aaA jiji  (A-2) 

 

Denoting by K  the vector of local capital stock for all employment areas and by 

100K  the corresponding vector of neighborhood capital stock, we can compute simply the 

latter as:  
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 KAK 100100 =  (A-3) 

 

Note that by construction the matrix A100 is symmetric and the coefficients of its 

main diagonal are zeros. Note also that this matrix is not row-standardized as a classical 

spatial weight matrix since K100 is defined as the sum (not the average) of the local R&D 

capital stocks K for the neighboring areas.  

 

To assess approximately the spatial range of R&D spillovers we have also considered 

different measures of neighborhood R&D capital stocks, based on alternative choices of 

distance between the geographical centers of an employment area and its neighboring areas. 

Besides using K100, we have thus experimented with K80, K150, K200 and K250, costructed 

as the R&D capital stocks of all employment areas in circles of increasing radius (respectively 

equal to 80km, 150km, 200km and 250km). See Table 3 where we report different estimates 

of the Cobb-Douglas productivity equation using respectively K100 and K200 alone, and both 

K100 and (K200 – K100).  
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APPENDIX B:  

 

Brief overview of spatial econometric methods 

 

We use the classical spatial econometrics method developed by ANSELIN [1988], 

LESAGE [2000] or LE GALLO [2002]. We can treat the error terms as a first-order spatial 

autocorrelation process to give the Spatial Error Model (SEM), but we prefer to add the spatial 

lag of the dependent variable as an additional explanatory variable and consider the Spatial 

Autoregressive Regression (SAR), or spatial lag model. If we write y the vector of 

observations on the dependent variable, X the matrix of the regressors, and W the contiguity 

matrix, the (SAR) model can be written as:  

 

 ε+β+ρ= XWyy  (B-1) 

 

This model cannot be consistently estimated by least-squares because it includes the spatially 

lagged dependent variable as a regressor. We have instead to rely on the maximum likelihood 

method. Assuming normality of the error term: 

 

( ) ( )INXyWI 2,0 σ≈ε=β−ρ−  

 

the log likelihood function is the following: 
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Using the transformation proposed by ORD [1975], the log of the determinant |I – ρW| can be 

computed as: 

 

( )∑
=

ρω−=ρ−
N

i
iWI

1
1loglog  

 

where ωi are the eigenvalues of the contiguity matrix W, which can be computed themselves 

once for all in the iterative maximization procedure. The global solution for maximization of 

log likelihood function is quite fast using a Matlab estimation program software adapted from 

the routines provided by James LESAGE on the web site: http://www.spatial-

econometrics.com/. 

 

Following ANSELIN [1988] or ANSELIN-BERA-FLORAX-YOON [1996] and 

using Lagrange multiplier tests, we perform various specification tests of the SAR 

specification against other specifications. First of all, we can test the (SAR) regression for the 

null of no spatial autocorrelation (ρ = 0), that is against the usual regression as estimated by 

Ordinary Least Squares (OLS). We can also test the (SAR) model against a more general 

model called the Spatial Generalized Model (SGM), which allows spatial autocorrelation in 

the error term, and thus encompass the SEM specification as well as the SAR specification. 

The SGM model can be written as: 

 

 ε+λ=+β+ρ= WuuuXWyy ith           w  (B-2) 
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or also as the following second order spatial autoregressive model: 

 

 ( )ρ+λ ρλ β λβ   y W y W W y X W X ε= + + − +  (B-3) 

 

with one cofactor restriction on the parameters of the spatial lagged regressors. When there is 

no lagged dependent variable (ρ = 0), the spatial error model (SEM) is again obtained as: 

 

 ε+λβ−β+λ= WXXWyy  (B-4) 

 

Finally without the cofactor restriction, we obtain a model proposed by Durbin, 

called the Spatial Durbin Model (SDM), which can be tested against the previous SEM:  

 

 ε+γ+β+λ= WXXWyy  (B-5) 

 

Figure B1 summarizes the relations between the usual (non spatial) regression (OLS) 

and the four spatial regression models: SEM, SAR, SGM and SDM. We have tested that the 

SAR specification was preferable to the OLS and SEM specifications and was an acceptable 

restriction to the SGM and SDM specifications. 
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Figure B1: Relations between Spatial Regression Models 
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APPENDIX C:  

 
Table C1: Translog production function with local and industry 

R&D spillovers: Complete estimates of regression (11) 
 

 
 

Regression (11) 
 

Industry 
 

B C D E F 
            
Industry Dummy 1.278** 2.085** 2.665** 2.813** 2.514**
  (0.165) (0.131) (0.171) (0.182) (0.133) 
            
            
Log(L) 0.099** 0.074** 0.042 0.072** 0.027* 
  (0.017) (0.015) (0.024) (0.015) (0.014) 
Log(C/L) 0.403** 0.296** 0.215** 0.119* 0.261**
  (0.021) (0.024) (0.029) (0.049) (0.023) 
            
            
Log(K/L) 0.040 0.091** 0.210** 0.075** 0.055**
  (0.021) (0.012) (0.035) (0.011) (0.011) 
Log(Kdif/L) 0.008 0.018* -0.001 0.020** 0,003 
  (0.006) (0.007) (0.013) (0.007) (0.006) 
Log(K100/L) 0.023** 0.019** 0.020 0.015* 0.014* 
  (0.006) (0.007) (0.013) (0.006) (0.006) 
            
            
Log(L)² -0.276 0.005 0.005 0.001 0.004 
  (0.011) (0.006) (0.009) (0.008) (0.009) 
Log(C/L)² 0.069* 0.136** 0.050** 0.022 0.121* 
  (0.031) (0.043) (0.016) (0.086) (0.050) 
            
            
Log(K/L)² 0.011 0.020** 0.045** 0.021** 0.016**
  (0.007) (0.004) (0.010) (0.005) (0.005) 
Log(Kdif/L)² 0.001 0.005* -0.005 0.006* 0.002 
  (0.003) (0.002) (0.005) (0.003) (0.002) 
Log(K100/L)² 0.002 0.000 0.004 0.003 0.005* 
  (0.002) (0.002) (0.004) (0.002) (0.002) 
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Regression (11)- -continued 
 

Industry 
 

B C D E F 
      
Log(L) * Log(C/L) 0.055* -0.049 -0.030 0.025 -0.044 
  (0.023) (0.031) (0.018) (0.053) (0.026) 
Log(L) * Log(K/L) 0.006 -0.012 -0.355 -0.505 -0.483 
  (0.012) (0.007) (0.022) (0.011) (0.011) 
Log(L) * Log(Kdif/L) 0.006 0.022* -0.506 -0.553 0.019* 
  (0.007) (0.009) (0.010) (0.007) (0.009) 
Log(C/L) * Log(K/L) 0.018 0.020 -0.054* 0.030 -0.847 
  (0.017) (0.019) (0.023) (0.024) (0.021) 
Log(C/L) * Log(Kdif/L) -0.036** -0.030 -0.015 0.043* -0.037 
  (0.013) (0.022) (0.014) (0.018) (0.023) 
Log(K/L) * Log(Kdif/L) -0.550 0.002 0.016 -0.831 -0.177 
  (0.004) (0.006) (0.014) (0.005) (0.005) 
            
            
Sum of Squared residuals 65.8918 
Standard error of residuals 0.2141 
R² adjusted 0.6777 
            
LM Test Heteroskedasticity 15.60   [p-value : 0.000] 
            
LR Test Pooled Model (9) 296.76   (df = 72)  [p-value : 0.000] 
LR Test Semi-Pooled Model (10) 114.91   (df = 24)  [p-value : 0.000] 
            
OLS Estimation with heteroskedastic-consistent standard-error. 1538 observations.  
The regression includes three binary indicators for the few observations with respectively  
missing or zero values of C/L, K/L and Kdif/L. 
* : significant at 5% level; ** : significant at 1% level.       
B=Food industries; C=Consumption good industries; D=Motor vehicles industries;  
E=Equipment good  industries; F=Intermediate good industries.  

 
 
 
 
 


