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1 Introduction

One of the most controversial debates in academic circles concerns the relative importance of an

individual’s innate qualities ("nature") versus environmental factors ("nurture") in determining

individual differences in physical and behavioral traits.1 For many years, researchers in the social

sciences could only examine the relative importance of a multitude of environmental factors on

various individual outcomes, as data on genetic variation between individuals was unavailable.

Yet, with the decoding of the human genome, this limitation no longer exists, and recent years

have been characterized by substantial amounts of research in the biomedical literature examining

whether specific point mutations in genetic code (aka single nucleotide polymorphisms (SNPs))

between dizygotic twins (among other family-based samples) are associated with specific diseases

and outcomes. Findings from these studies have not only led to new drug discoveries but also

improved diagnostic tools, therapies, and preventive strategies for a number of complex medical

conditions.2 As clinical researchers identify unique genetic bases for many complex health behaviors,

1This debate has been traced back to 13th-century France and the field of quantitative behavioural genetics basi-

cally compares trait similarities across individuals that systemically differ in the genetic or environmental influences

they have in common (e.g. identical vs. fraternal twins, adoptive vs. biological children), to decompose the variation

of quantitative traits, and their covariances with other traits, into genetic and environmental (co)variance compo-

nents. Within economics, Cesarini et al. [2008, 2009] utilize these methodologies to demonstrate that preferences

for cooperative behavior, risk and giving have a significant genetic component. The relative importance of nature

and nurture is of particular relevance for public policy. For example, consider education policy. If nurture factors

drive the success of children in school, inequality in educational opportunity may well come from sources such as

failing capital markets suggesting that specific policies could reduce future inequalities in schooling. However, if

inequality in educational opportunity reflects the distribution of innate ability among the population, there is fewer

opportunities to design policies that can reduce future inequality. That being said, the notion that nurture inputs

are more easily susceptible to policy remediation relative to nature, is a non sequitur.
2For example, see Johnson [2003], Kelada et al. [2003], Goldstein et al. [2003], Zerhouni [2003] and Merikangas

and Risch [2003].
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diseases and other outcomes,3 opportunities arise for social scientists to exploit this knowledge and

use differences in specific sets of genetic information to gain new insights into a variety of questions.

In this paper, we exploit differences in genetic inheritance among children within the same

family to estimate the impact of several poor health conditions on academic outcomes via a family

fixed effects instrumental variables strategy. Understanding the consequences of growing up in poor

health for adolescent development has presented serious challenges to empirical researchers due to

endogeneity that arises from both omitted variables and measurement error problems pertaining to

health.4 Empirical research that has attempted to estimate a causal link have either used a within-

family strategy (i.e. Currie and Stabile [2006], Fletcher and Wolfe [2008a,2008b], and Fletcher

[2008]) or instrumental variables approach (i.e. Ding et al. [2006,2009], Behrman and Lavy [1998],

Norton and Han [2008] as well as Glewwe and Jacoby [1995]) and in general researchers find large

negative impacts of poor health on academic outcomes.5 Our empirical strategy combines both

elements and identifies the causal impact of health on education by exploiting exogenous variation

in genetic inheritance among both siblings and dizygotic twins.

Differences in genetic inheritance occur at conception and remain fixed between family mem-

bers at every point in the lifecycle, irrespective of all nurture investments an individual faces (even

3Using similar methodologies, economists have begun to explore whether specific genetic loci are associated with

financial risk preferences (e.g. Dreber et al [2009], Benjamin et al. [2009]).
4Grossman and Kaestner [1997] and Strauss and Thomas [1998] present surveys of the literature of the impact

of health on, respectively, education and income. The majority of empirical studies discussed in the surveys report

correlational relationships.
5Several other studies that use alternative empirical approaches are worth noting. Kremer and Miquel [2004]

randomly assign health treatments to primary schools in Kenya and find that health improvements from the clinical

treatment significantly reduced school absenteeism but did not yield any gains in academic performance. Bleakley

(2007) uses a quasi-experimental strategy that exploits different timing at which cohorts were exposed to a large-

scale public health intervention against hookworm in childhood. He finds that the treatment boosted health, and

was associated with larger gains in income and higher rates of return to schooling later in life.
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those that occur in utero).6 Since a great deal of variation in characteristics and outcomes is found

within families, exploiting the genetic processes that affect development (but are not self-selected

by the individuals themselves) presents a potential strategy to identify differences within families.7

However, it is worth stating explicitly that this identification strategy relies on assumptions re-

garding how specific genetic markers affect health and academic outcomes in adolescence. As the

biomedical literature has not reached a consensus on how specific genetic markers operate, concerns

could exist that, despite no detectable evidence in the biomedical literature,8 the specific genetic

markers we use in our analysis are not only related to poor health in adolescence but also to genetic

factors that directly impact education outcomes. In our analysis, we examine the sensitivity of our

empirical results to the degree in which the exclusion restriction assumption is potentially violated,

6Genes consist of two alleles, and a child randomly inherits one of the two alleles from each parent at the time

of conception. The child’s genome consists of approximately 3.2 billion base pairs, along which there are 9.2 million

candidate SNPs (International HapMap Consortium, 2005), which are specific locations where a mutation in the

genetic code is known to occur in the population. This variaility in the genetic code may influence an indiviudual’s

susceptibility to various developmental outcomes such as developing an illness. In other words, our empirical strategy

exploits these differences in the coding of a specific marker between full siblings and can intuitively be viewed as an

experiment in “nature”.
7Ding et al. [2006, 2009] was the first empirical study within economics to explicitly use differences in genetic

information across individuals as an instrumental variable in estimating the effects of poor health on high school

grade point average (GPA). More recently, Norton and Han [2008] use genetic information to attempt to estimate

the impact of obesity on employment. Neither study exploited variation in genetic inhertitance within families

(the “genetic lottery”), which we show to be important empirically and improves the plausibility of the exclusion

restriction.
8Plomin et al. [2006] and de Quervain and Papassotriopoulos [2006] present recent surveys on which genes are

believed to be directly associated with intelligence and memory ability respectively. Using maps of the location

between these genes and the specific genetic markers in our study, we find no evidence that they are located closely

on the genome, suggesting that linkage in inheritance is unlikely. Researchers have found no direct links between

several of the genes in this study and intelligence (i.e. Moises et al. [2001]) or cognitive ability (e.g. Petrill et al.

[1997]), and we hypothesize that if a link exists, that it operates through specific health measures.
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finding that our main results are not sensitive to the plausibility of the instruments at reasonable

levels. Since nearly every social, behavioral and health outcome has a unique genetic basis, this

identification strategy can potentially shed light on a large number of questions.9

Our empirical analysis reaches three major conclusions. First, we find that the impact of poor

mental health outcomes on academic achievement is substantial. Our preferred estimates examine

the relationship with a sample consisting only of same sex dizygotic twins, and they indicate that

inattention leads on average to a one standard deviation decrease in academic performance.10 The

significant negative impacts of inattention on academic performance remain large and significant if

we examine the relationship using other family-based samples.

Second, we conduct a variety of specification tests which indicate that family fixed effects esti-

mators by themselves cannot fully account for the endogeneity of poor health. This indicates that

the commonly observed differences in health and education outcomes between full biological siblings

should not be treated as random in empirical analyses.

Third, we find that differences in specific portions of the genetic code have desirable properties to

identify the impact of poor health on education within families, as there are, statistically significant

correlations with each endogenous health variables that are consistent with the biomedical literature.

In addition, sensitivity analyses indicate that our results are robust to reasonable violations of the

exclusion restriction assumption.11

9These ideas are not new, having been discussed in Harrison (1970) and Allen (1970).
10Similarly large negative impacts of poor health on measures of later cognitive achievement have been found in

studies that exploit shocks to an individual’s prenatal conditions such as in utero exposure to the flu (Almond, 2006)

and low levels of radiation (Almond, Edlund and Palme, 2008).
11The importance of the sensitivity analysis should not be understated, since poor health conditions often occur

simultaneously and it is hard to identify a unique source of genetic or environmental variation to identify the impact

of specific disorders due to the potential presence of unmeasured comorbid conditions. As we discuss in the results

section in our context, the main threats are schizophrenia and Tourette’s syndrome, health measures which were

not collected in the data set. We argue that this concern is unlikely to be a serious threat to our main results as
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The rest of the paper is organized as follows. In Section II, we provide an overview of the data

we employ in the study. We also review the scientific literature linking the genes in our dataset

to health behaviors and health outcomes. The empirical framework that guides our investigation

and our identification strategy is described in Section III. The empirical results are presented and

discussed in Section IV. A concluding section summarizes our findings and discusses directions for

future research.

2 Data

This project makes use of the National Longitudinal Study of Adolescent Health (Add Health),

a nationally representative longitudinal dataset.12 The dataset was initially designed as a school-

based study of the health-related behaviors of 12 to 18 year old adolescents who were in grades 7 to

12 in 1994/5. A large number of these adolescents have subsequently been followed and interviewed

two additional times in both 1995/6, and 2001/2. To develop our identification strategy, we use a

specific subsample of the respondents for which DNA measures were collected during the 2001/2

interview and for which there were multiple family members in the survey. This specific subsample is

composed of monozygotic twins, dizygotic twins and full biological siblings, and includes information

on 2,101, 2,147, and 2,275 individuals who completed the survey at each interview point. Excluding

those individuals for whom there is incomplete education, health and DNA measures for multiple

family members reduces the sample to 1684 individuals.

schizophrenia does not manifest itself among adolescents and Tourette’s syndrome is extremely uncommon, with

current estimates indicating that it affects approximately 0.5 to 3 people in 1000.
12Add Health selected schools in 80 communities that were stratified by region, urbanicity, school type (public,

private, or parochial), ethnic mix and size. In each community, a high school was initially selected but since not all

high schools span grades 7-12, a feeder school (typically a middle school) was subsequently identified and recruited.

In total, there are 132 schools in the sample. Additional details on the construction of the sample are provided in

Harris et al. [2003].
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The dataset contains information on a number of health conditions, including depression, ADHD

and obesity. Depression is assessed using 19 responses to the Center for Epidemiologic Studies-

Depression Scale (CES-D), a 20-item self-report measure of depressive symptoms. Items on the

CES-D are rated along a four-point Likert scale to indicate how frequently in the past week each

symptom occurred (0 = never or rarely; 3 = very often). The sum of these items is calculated

to provide a total score, where higher scores indicate a greater degree of depressive symptoms.

To determine whether an individual may be depressed, we followed findings from earlier research

with adolescent samples (Roberts, Lewinsohn, and Seeley [1991]) and use specific age and gender

cutoffs. We also use adult-based cutoffs to capture a broader measure of depressive symptoms in

our analyses. The primary indicator of childhood ADHD symptoms is taken from an 18-question

retrospective rating collected during the third data wave. Since there is evidence that the effects of

ADHD may vary by whether the symptoms are of the inattentive or hyperactive type,13 we examine

the effects of these different domains as well as the clinical measure of ADHD of any type. Finally,

overweight and obesity are calculated from each individual’s self-reported height and weight applied

to age and gender specific definitions obtained from the Center for Disease Control.

While concerns may exist regarding the use of self-reports to construct indicators for health

measures such as ADHD or obesity, we believe this is a limited concern for our study. Not only

are we using an instrumental variables approach, but past research with this data (Goodman et al.

[2000]) indicates that there is a strong correlation between measured and self-reported height (0.94),

and between measured and self-reported weight (0.95). There is no evidence that reporting errors are

correlated with observed variables such as race, parental education, and household income. Further,

several reviews have concluded that childhood experiences are recalled with sufficient accuracy to

provide useful information in retrospective studies (e.g. Kessler et al. 2005).

13For example, Babinski et al. [1999], Ding et al. [2009], and Fletcher and Wolfe [2008a] present empirical evidence

of different impacts from these two diagnoses.
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Regarding academic outcomes, the data contains information on GPA and an age standardized

score on a common verbal test.14 The data also provides a rich set of information on environmental

and demographic variables (i.e. family income, gender, parental education, family structure, etc.)

that are used as control variables in our analysis. Finally, the restricted Add Health data allows

community-level variables from the Census Bureau and school input variables from the NCES

common core of data to be matched to the individuals in the dataset to serve as additional controls.

Summary statistics on our sample are provided in Table 1. Household income for the full

sample (column 1) is slightly higher than US averages and the majority of mothers have attended

college. Both the sibling and twins subsamples respectively presented in columns 2 and 3 appear

gender balanced. With the sole exception of race variables, there are few differences in any of

the summary statistics between the subsample of siblings and twins. While the mean verbal test

score for each sample approximates the national average, the standard deviation of test scores is

slightly smaller than those obtained with nationally representative samples.15 Unlike the education

and demographic variables that are similar to those obtained from nationally represented surveys,

the incidence of poor mental health outcomes differ. On the one hand, roughly 8% of the sample

is coded with ADHD, which exceeds the 6% national average. On the other hand, adolescents

classified as being depressed in our sample is lower than the 1999 estimate of the fraction of the

adolescent population being clinically depressed (12.5%) from the U.S. Department of Health and

Human Services. Similarly, both obesity rates and rates of being overweight rates fall slightly below

the national average for this period. Only the separate diagnoses of AD and HD fall within standard

ranges observed with adolescent samples.

14The test is an abridged version of the Peabody Picture Vocabulary Test-Revised and consists of 78 items. The test

was administered at the beginning of the in-home interview and first involves the interviewer reading a word aloud.

The respondent then selects the illustration that is the closest match to the word from four simple black-and-white

illustrations. The test is arranged in a multiple-choice format.
15See http://www.agsnet.com/assessments/technical/ppvt.asp for details.
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Table 2 documents the well-known positive association between good health and educational

outcomes. Individuals classified as depressed and obese have significantly lower (one sided t-tests)

verbal test scores. Surprisingly, individuals classified to have HD score higher on average than those

who are not coded with this disorder.

2.1 Genetic Data

The DNA samples were drawn in the third collection and were genotyped for six candidate poly-

morphisms.16 The specific markers that have been collected in this study were selected based upon

a large and growing body of research showing a strong correlation between their variation and

health outcomes such as obesity, ADHD and depression, controlling for other relevant factors. It is

important to state that these health outcomes are polygenic–they are affected by many mutations

at many genetic loci (including many that are not collected in the study) as well as the environment

an individual encounters throughout her life (as well as possible gene-environment interactions).17

However, only an individual’s genetic make-up is both assigned at conception prior to any inter-

action with the environment and remains invariant to all nurture investments over the life-cycle,

16Complete details of the sampling and laboratory procedures for DNA extraction, genetic typing and

analysis are provided in an online document prepared by Add Health Biomarker Team available at

http://www.cpc.unc.edu/addhealth/files/biomark.pdf/. Note that the method to genotype varies across markers

and different assays were conducted. In addition to reduce coding errors, genotypes were scored independently by

two individuals. To control for potential genotyping errors, any analysis that is questionable for routine problems

(i.e. poor amplification, gel quality, software problems, etc.) is repeated.
17More recently, evidence indicates that differences within families, even among identical twins, can exist because

of epigenetic factors. Epigenetics refer to natural chemical modifications that occur in a person’s genome shortly after

conception and that act on a gene like a gas pedal or a brake, marking it for higher or lower activity. For instance,

identical twins have different fingerprints. The general pattern of their fingerprints is determined by genetic factors

and is initially identical; however the exact pattern changes in utero based on when and how each twin touched the

amniotic sac (Jain et al. 2002).
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eliminating concerns related to reverse causality.

The set of genetic markers we use in our analysis includes the dopamine transporter (DAT),

dopamine D4 receptor (DRD4), serotonin transporter (5HTT), monoamine oxidase A (MAOA),

dopamine D2 receptor (DRD2) and cytochrome P4502A6 (CYP2A6) gene. Mutations in the coding

of these genes, not the genes themselves, are believed to impact multiple health outcomes and

behaviors. Scientists hypothesize that these point mutations distort cell functions and/or processes,

leading to the higher propensities for specific disorders. It is important to state explicitly that

individual point mutations can have phenotypic effects of any strength, including quite mild effects,

and it is likely that each genetic marker has pleiotropic effects.18

The genetic markers collected in the Add Health study are primarily linked to the transmis-

sion of two specific neurotransmitters in the primitive limbic system of the brain: dopamine and

serotonin.19 The scientific hypothesis of how these genetic markers predispose individuals to poor

health is that these genetic markers each impact the synaptic level of dopamine and serotonin,

which provides larger signals of pleasure from the limbic system and leads individuals to forego

other basic activities.20 The specific markers are believed to achieve these impacts as follows: Indi-

18Pleiotropy refers to the heterogeneous impacts that a difference in specific genetic marker occurs. Intuitively the

operation is similar to a "power grid", as a single-gene mutation may also affect the expression of other genes, which

together leads to changes in behaviors and outcomes.
19The effect of a neurotransmitter comes about by its binding with receptor proteins on the membrane of the

postsynaptic neuron. As long as the neurotransmitter remains in the synapse, it continues to bind its receptors

and stimulate the postsynaptic neuron. In the brain, dopamine and serotonin function as a neurotransmitter as

they are commonly believed to provide individuals with feelings of enjoyment. Caplin and Dean [2008] and Caplin

et al. [2009] have recently developed formal neuroeconomic models that are consistent with specific neuroscientific

hypotheses that respectively explain how dopamine affects individual decision making and belief formation.
20The limbic system is highly interconnected with the region of the brain associated with reward and pleasure.

This region was initially discovered in Olds and Milner [1954], who reported that if given the choice of food versus

stimulation by electrodes of the neurons within this region of the brain, rodents ended up dying from starvation and

exhaustion, rather than lessening the stimulation of their pleasure center. Recent studies using mice whose genes have
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viduals with the A1 allele variants of the DRD2 gene have fewer dopamine D2 receptors than those

with the A2 allele, thereby requiring larger consumption of substances to achieve the same level of

pleasure. The DAT and 5HTT genes code for proteins that lead to the reuptake of dopamine and

serotonin respectively. For each of these genes, longer lengths are believed to affect the speed at

which production of these proteins occur. The MAOA gene product is primarily responsible for the

degradation of dopamine, serotonin and norepinephrine in several regions of the brain. A SNP of

this gene is believed to have decreased productivity of this protein, thereby increasing the risk for

a number of poor outcomes. Individuals with a longer version of the DRD4 gene are more inclined

to partake in additional novelty or sensation-seeking activities to achieve similar levels of reward

as those with shorter variants. The CYP2A6 gene is primarily located in the liver and affects the

rate of metabolism for tobacco, drugs and other toxins. Once these compounds are broken down,

they travel in the bloodstream to the brain where they generally lead to neurotransmitters being

released. Finally, in our analysis we will not only consider the SNPs by themselves but also allow for

gene-gene interactions, which may also have potentially powerful effects.21 We present and discuss

the genetic characteristics of our sample and unconditional relationships with poor health outcomes

in the results section of the paper.

been mutated to affect dopamine and serotonin production have confirmed that these markers affect basic activities.
21For example, Dremencov et al. [2004] present evidence that the SNPs of the 5HTT gene interacts with genes

that release dopamine and suggest this channel could impact the speed at which certain pharmaceutical treatments

become effective. Similarly, since many addictors stimulate dopamine release in the nucleus accumbens, it is likely

that the rate of metabolism of these drugs (which is in part determined by the CYP2A6 gene) interacts with the

DRD2 genes.
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3 Empirical Framework

The empirical framework that underlies our analysis involves the estimation of a system of equations

generated from a simple extension to the model developed in Ding et al. [2009]. We assume that in

each period, altruistic parents select inputs to maximize the household indirect utility function after

receiving noisy signals of their children’s health status, health behaviors and ability endowment.

Subsets of these inputs enter both an education production function and health production function,

generating stocks of human capital for each child. The parents provide children who have different

abilities and health outcomes with different inputs where in equilibrium the marginal returns to

investments in schooling of one child is equated to the marginal returns to investments in health in

their sibling.

First, consider a linear representation of the child’s education production function, which trans-

lates a set of inputs into human capital as measured by a score on an achievement test as

AifjT = β0 + β1XiT + β2HiT + β3QjT + β4NiT + vf + εifjT (1)

where AifjT is a measure of achievement for child i in family f, in school j in year t, the vector

X contains individual and family characteristics (child gender, race, parental education, birth or-

der, family income and family structure),22 the vector H consists of variables that capture health

measures, the vector Q contains school quality variables, the vector N contains information on

community and neighborhood inputs, vf is an unobserved family effect and εifjT is an idiosyncratic

error term. Notice that HiT is directly included as an input to the education production function.

22Ex ante, one could hypothesize that parental education and family income are positively associated with mea-

sures of academic performance. In genetic studies, controlling for ethnicity and race are important as it has been

hypothesized that there are differences in allele frequencies across race and ethnic groups (e.g. Cooper et al. [2003)).

Within families, birth order effects could exist as higher rank children are more likely to have older parents at birth,

which could affect the amount of time invested by parents. Similarly, across families, higher rank children are more

likely to be born into larger families, which can also capture family size effects.
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We hypothesize that there are several possible channels under which health status potentially affects

academic performance. First, it may affect the physical energy level of a child which determines the

time (including classroom attendance) that can be used for learning. Second, it affects the child’s

mental status that may have a direct impact on academic performance. Lastly, a child’s health

status may affect the way a child is treated by teachers, parents and peers; which can in part shape

the learning environment that is encountered.

The major empirical challenge in estimating equation (1) is that the health vector (HiT ) is

likely to be endogenous.23 That is, individuals with a higher health "endowment" could obtain

improved academic performance because of genetic characteristics or parental investments that

are also unobserved to the analyst. The inclusion of family fixed effects (vf) in equation (1) di-

rectly accounts for unobserved to the researcher family factors that are common across siblings and

may be related to both individual health and education outcomes. This allows the researcher to

simultaneously control (assuming constant impacts between family members) for many parental

characteristics/behaviors and some genetic factors. However, it does not provide any guidance as to

why, within a twin or sibling pair, the subjects differ in explanatory characteristics such as health

status. Thus, estimating equation (1) using a family fixed effects approach may overcome biases

from correlations between the health vector and the family effect vf , but it may not completely

solve the endogeneity problem, as correlations may remain the health variables and the error term

(i.e. Cov(HiT −Hf , εifjT − εf) 6= 0).

Supplementing the family fixed effects strategy with instrumental variables can potentially over-

come the endogeneity bias arising from Cov(HiT −Hf , εifjT − εf). We propose to use exogenous

variation from the "genetic lottery" between family members to identify the impact of poor health

23An equally important challenge occurs in measuring the health vector from omitted variables. If the researcher

omits comorbid conditions, biased estimates of the impacts of poor health on academic outcomes will be recovered.

This empirical challenge is discussed in detail in Section 4.4 of the text.

13



on measures of achievement. In the first stage equation, we explain differences in health outcomes

between family members using differences in the coding of specific genetic markers between family

members as an instrumental variable, while controlling for other individual and family characteristics

that affect health and education outcomes. Formally the first stage presents a linear representation

of the child’s health production function

HifT = γ0 + γ1XiT + γ2G
H
i + γ3QjT + γ4NiT + vf + υifjT , (2)

where GH
i is a vector of genetic markers that may provide endowed predispositions to the current

state of health status.

Our identification relies on the assumption that the vectors of genetic markers that impact health

outcomes (GH
i ) are unrelated to unobserved components (εifjT ) of the achievement equation. While

there might not be any existing evidence that the markers considered in this study have any impact

on the education production process, it remains possible. Additionally, our strategy is valid as

long as this set of genetic markers only affects AifjT via the health outcomes we consider, and

not through some other channel. Using multiple genetic instruments also allows the use of over-

identification tests of the validity of our choice of instruments. Finally, an additional advantage of

our identification strategy is that there are no concerns regarding reverse causality, as these genetic

markers are assigned at conception, prior to any health outcome or selection of any parental choice

input to the health production function (even in utero).

We not only estimate the system of equations (1) and (2) via fixed effects instrumental variables

methods, but also consider family fixed effects estimation of equation (1) as well as both OLS

and instrumental variables estimation of the system of equations described above where vf = 0.

Estimates from these alternative approaches are used to conduct specification tests that can shed

light on the source of the endogeneity in estimating the impact of poor health on academic outcomes.

In the analysis, we consider two different health vectors that consist of multiple health problems.

The first health vector includes depression, overweight, and ADHD. The second health vector in-
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cludes depression and overweight but decomposes ADHD into being inattentive (AD) or hyperactive

/ impulsive (HD). We make this distinction as ADHD is often denoted by AD/HD since, as defined

in the American Psychiatric Association’s Diagnostic and Statistical Manual, it encompasses the

“Inattentive Type” marked by distractibility and difficulty following through on tasks as well as the

“Hyperactive Type,” which includes excessive talking, impulsivity and restlessness. It is not un-

common for people to be diagnosed with the “Combined Type,” showing a history of both features,

but ex-ante we would imagine that inattention and hyperactivity could have different impacts on

academic performance as well as other human capital outcomes.

Finally, to examine the robustness of our results, we consider including an individual’s birth

weight (both linearly and up to a quartic) as an additional control variable(s) in equations (1) and

(2).24 An individual’s birth weight can be viewed as an imperfect proxy for an individual’s initial

stock of health capital. While birth weight is known to have a large genetic component (e.g. Lunde

et al. [2007] it is well established to differ even among monozygotic twins. Royer [2009] presents

evidence that these birth weight differences between twins have impacts on educational attainment

and Christensen et al. [2001] demonstrates differences in birth weight also affects health later in

life between twins. Accounting for differences in birth weight can capture additional differences in

both genetic factors and pre-natal environments between full biological siblings.

24It is well documented by many authors that better health early in life is associated with higher educational

attainment (e.g. (Grossman [1975], Perri [1984]) and that more educated individuals in turn have better health later

in life (e.g. Grossman and Kaestner [1997], and Cutler and Lleras-Muney [2007]).
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4 Results

4.1 Genetic Associations

Our empirical identification relies on the validity of the “genetic lottery” to serve as a source

to identify the impact of adolescent health on education outcomes. Statistically, for the genetic

markers to serve as instruments, they must possess two properties. First, they must be correlated

with the potentially endogenous health variables. Second, they must be unrelated to unobserved

determinants of the achievement equation.

Prior to describing our instrument set and conducting formal tests, we present some summary

information in our data that motivates the notion that these markers and their two-by-two polygenic

interactions are good candidates to serve as instruments for adolescent health outcomes. Table

3 contains the conditional mean, standard deviation and odds ratio of alternative poor health

outcomes for individuals that possess a particular marker. For each genetic marker, we use at most

three discrete indicators that are defined by specific allelic combinations.25

For each poor health outcome and behavior, there is at least one gene in which a specific SNP

exhibits a higher propensity. Statistically different odds ratios in Table 3 are denoted with an

asterisk. For depression, individuals with the A2A2 allele of the DRD2 gene and two 7-repeats of

the DRD4 gene have significantly lower odds. For ADHD, individuals with two 4-repeats of the

25The DAT genotypes are classified with indicator variables for the number of 10-repeat alleles (zero, one, or two).

The MAOA genotypes is classified with indicator variables for the number of 4-repeat alleles (zero, one, or two).

Similarly, the DRD4 genotype is classified with indicator variables for the number of 7-repeat alleles (zero, one, or

two). The DRD2 gene is classified as A1/A1, A1/A2 or A2/A2 where the A1 allele is believed to code for reduced

density of D2 receptors. The SLC6A4 gene is classified as SS, SL or LL where S denotes short and L denotes long.

A2/A2. Finally, we include indicator variables for the two possible variants of the CYP gene. We organize the genetic

data reported in the empirical table in order of the raw number of individuals who possess each particular marker

within that gene from lowest frequency to most common.
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MAOA gene have greater odds and individuals with one 4-repeat of the MAOA gene have lower

odds. These relationships also show up for inattention (AD) and hyperactivity (HD). For obesity,

those with no repeats of the DAT1 gene have substantially lower odds.

The significant correlations between the SNPs and the heath outcomes are also consistent with

the scientific hypotheses outlined in Section 2. Each of the health disorders we consider in this

paper is believed to have a large genetic component and be polygenic.26 To date, the scientific

literature has not identified a unique depression, ADHD or obesity gene. Concerns could exist that

the genetic markers we use in our analysis are not only related to poor health in adolescence but

also to genetic factors that directly impact education outcomes. To examine this concern, we first

present evidence that there are no direct links between the inheritance of the specific genetic markers

in our study with other portions of the genetic codes. Second, we present over-identification tests

of our instrument sets. Last, we use a procedure developed in Conley, Hansen and Rossi [2007] to

examine the sensitivity of our estimates to the degree in which the exclusion restriction assumption

is violated.

Regarding whether the inheritance of different portions of the genetic code are correlated, we

examine the extent to which genetic linkages occurs in our sample.27 Appendix Table 1 presents

26Polygenic refers to a phenotype that is determined by multiple genes. For example, the ninth annual Human

Obesity Gene Map released in 2006 identified more than 300 genes and regions of human chromosomes linked to

obesity in humans. Several of the genetic markers contained in Add Health are listed but one should reasonably

expect that they only account for a limited amount of variation in the health outcomes.
27Examining whether genetic linkages occur is an active area of study as it presents a test of whether Mendel’s

law of independent assortment is supported. This law suggests that different genes are inherited independently

of each other, and scientists have essentially concluded that there is an independent assortment of chromosomes

during meiosis. however, alleles that are in close proximity on the same chromosome may be inherited as a group.

Studies finding small links in genetic assortment have been obtained from samples consisting only of family members.

However, there appears to be evidence that different groups of alleles are transmitted together across families when

many of these studies and samples are examined jointly. Thus, violations are not systematic.
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cross-tabulations of different genetic combinations for both the full sample as well as by the first

and second family member in the data. We constructed the sample of single family members

based on their relative age, since one could expect linkages within families. Whether Mendel’s law

of independent assortment is violated can only be tested across families. Each cell in Appendix

Table 1 provides the raw count of people and conditional probability (based on possessing the gene

given by the row variable) of possessing that specific genetic combination. We conducted tests

for homogeneity of odds ratios to see whether possessing a polymorphism in one genetic marker

increases the odds of possessing a specific polymorphism in a different genetic marker. We did not

find any evidence indicating a systematic relationship between markers of any two of the genes for

either sample that contains only one family member, lessening concerns regarding linkage.28. This

was not a surprise as linkage was highly unlikely due to the location of these markers on the genome.

Additionally, using maps of the location between the specific genetic markers in our study and those

which have been hypothesized to be linked to education outcomes (Plomin et al. [2007], see footnote

8 for more details), we find no evidence that they are located closely on the genome, suggesting that

linkage in inheritance is unlikely. Nearly all of the cells in Appendix Table 1 are populated with

multiple individuals, which indicates that the polygenic interactions can be identified both within

and across families.

To construct the instrument set, we only included genetic markers or their interactions that had

statistically significant (at the 2% level) differences in the odds ratio of suffering from one of the four

conditions.29 It is unlikely that the majority of these unconditional relationships are due to chance

28As dissussed in the preceding footnote, this result is consistent with a large amount of evidence presented in the

scientific literature.
29Recall that Table 3 demonstrated that significant correlations do indeed exist between health outcomes and the

genetic markers in our data. To construct the instrument set, we considered two alternative strategies. First, we

followed Klepinger, Lundberg and Plotnick [1999], who used forward stepwise estimation to select a subset of these

markers and their interactions. This implementation is identical to Ding et al. [2006, 2009] and this approach has
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and we also considered whether the direction of the odds ratio was biologically plausible. We do

not vary our instrument set across samples so that any observed difference in terms of health effects

is not the result of the selection of different instrument sets that vary based on genetic similarity

between family members. It is worth repeating that these genes are pleiotropic and cannot credibly

account for the majority of the variation in these health disorders. Thus, even if two siblings had

the same markers for many of these six genes, this would neither guarantee that they suffer from

the same disorders nor that these particular genes would affect the siblings in a similar fashion.

4.2 Estimates of the Empirical Model

We now examine whether poor health is related to academic outcomes in adolescence. Table 4

presents estimates of equation (1) for the full sample. In the odd columns, results are presented

for the first health vector, which includes depression, overweight and ADHD. The even columns

decompose the classification of ADHD into being inattentive (AD) or hyperactive / impulsive (HD)

in the health vector. The first four columns of Table 4 presents OLS and family fixed effects, which

either assume that health is exogenous or that health is only correlated with the family-specific

component of the residual.

the advantage of making it easier to replicate the study. The scientific literature provides some (arguably weak)

guidance for selecting particular markers, as the evidence tends to be inconsistent across studies, which tend to use

very small unrepresentative clinical samples. We examined the robustness of our results by using the complete set

of the markers in our study. The general pattern of IV and fixed effects IV results are robust to the instrument set

for the full sample. The first-stage properties are particularly weak for the full set of markers and their two by two

interactions, yet the partial R-squared for that instrument set is substantially larger than studies using dates of birth

in the labor economics literature. Finally, at the request of a seminar participant, we considered five other strategies

based on either stepwise regression using different criteria or retaining those markers with significant relationships

at the 5% level. Again the pattern of results was fairly consistent. These results are available from the authors upon

request.
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We find that depression is strongly negatively correlated with academic performance. However,

the estimated magnitude diminishes by over 50% when family fixed effects are included in the

specification. While the impacts of depression in the OLS specifications are fairly large relative to

the other health variables, they remain approximately half of the estimated magnitude of the race

variables. In addition to depression, the two other mental health conditions enter the equation in

a significant manner. AD is strongly negatively correlated and HD is positively correlated with

academic performance when family fixed effects are not included. Despite the evidence in Table

2 that overweight and obese students score significantly lower than non-overweight and non-obese

students, this state of health does not significantly affect verbal test scores in any of the specifi-

cations in Table 4, which is consistent with Kaestner and Grossman [2008]. The OLS results also

indicate that both African Americans and Hispanics score substantially lower on the verbal test

than Caucasian and Asian students, the children who are older in their families perform slightly

better than their siblings and that parental education and family income are positively correlated

with test scores. There does not appear to be any evidence indicating that gender differences exist

once family fixed effects are controlled.

Instrumental variable and family fixed effects IV estimates of the impacts of poor health on

education are presented in the last four columns of Table 4. The IV estimated impacts of depression,

AD and HD are very large relative to the OLS results, and the latter two are marginally significant.

As to the size of the impact, the results indicate that both depression and inattention lead to

substantial decreases in test scores whereas HD leads to a marked increase. The inclusion of family

fixed effects leads the IV point estimate of HD and depression to become statistically insignificant

in both health vectors. Notice in the last column that the magnitude of the coefficient on depression

and HD diminishes substantially as we add the family fixed effects into the IV analysis. Only the

IV fixed effects estimate of AD remains statistically significant once we account for family fixed

effects. It also increases by over 40% in magnitude. Focusing on the fixed effects IV specification in
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column 8 as a benchmark, the point estimate indicates that suffering from inattention would lead

to roughly a 26 point decline in academic performance. We note that the parameters in Table 4 are

reduced-form estimates. Since we have instrumented for poor health outcomes, we make the causal

assertion that AD significantly decreases verbal tests scores, while a range of other demographic

variables excluding race, birth order and maternal education have at best a tenuous impact on test

score performance.30

Attenuation bias due to measurement error in the AD and HD variables could account for some

of the difference between the OLS and instrumental variable estimates in Table 4. Recall that these

classifications are based on answers to retrospective questions, which are thought to be recorded with

error. By including statistical controls for common family influences, the fixed effects strategy only

uses information within families, attenuating the variance in the regressors. Thus, measurement

error imposes a degradation in the signal to noise ratio and a variable measured with error will be

severely biased toward zero. Interestingly, only the estimates on two health conditions, HD and

depression, become smaller when family fixed effects are accounted for when estimating equation

(1), suggesting this is not the explanation for the large difference in the impact of AD.

The estimates from Table 4 can also be used to examine the source of the endogeneity in the

health variables. Tests of joint significance of the family effects are statistically significantly for all

specifications. This indicates that one should account for family-specific heterogeneity. Random

effect estimates (not reported) were used to conduct Hausman tests of the endogeneity of the health

variables and the results suggest fixed effects indeed removes some of the endogeneity. We next

30While the estimated effect for AD is quite large (approximately two standard deviations in the test score) in

comparison to the estimated effects of depression and obesity, the effect size differences are consistent with differences

in the typical age of onset of the health outcomes. For AD and HD, symptoms occur at a young age, typically

during elementary school or earlier. In contrast, the age of onset for symptoms of depression is typically during

middle adolescence. There is also emerging evidence that children seem to outgrow HD symptoms to some extent

but not AD symptoms.
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examined whether accounting for family fixed effects eliminates the need to treat the health vector

as endogenous by testing the Null hypothesis that the IV estimates and the fixed effects IV estimates

are similar using a Hausman-Wu test. If the Null is accepted, this would suggest there are efficiency

gains from conducting family fixed effects estimates. For both health vectors, we can reject the Null

of IV and IV/FE coefficient equality, suggesting that the family fixed effects do not fully remove

the sources of endogeneity that bias estimates of the impacts of poor health.

Similarly, we conducted Hausman tests between the simple OLS and IV estimates. In the event

of weak instruments (as well as overfitting), the fixed effects IV estimates would be biased towards

the OLS estimates. We can reject the Null of exogeneity of health outcomes for each health vector

with each sample at the 5% level.

Testing the Validity of the Instruments

We considered several specification tests that examine the statistical performance of the instru-

ments for each health equation and sample. Since our IV estimates are over-identified, we use a

J-test to formally test the overidentifying restrictions. This test is the principal method to test

whether a subset of instruments satisfy the orthogonality conditions. The smallest of the p-values

for these tests is 0.29, providing little evidence against the overidentifying restrictions.31

In order to further examine whether these genetic markers are valid instruments, we considered

several specification tests to be used with multiple endogenous regressors. First, we used the Cragg—

Donald [1993] statistic to examine whether the set of instruments is parsimonious (i.e. the matrix

is of full rank) and has explanatory power. Second, in order to examine whether weak instruments

are a concern, we calculated the test statistic proposed by Stock and Yogo [2005].32 To demonstrate

31Many of the p-values are large and exceed 0.5. P-values are computed from Sargan tests of the joint Null

hypothesis that the excluded instruments are valid instruments for the health variables in the achievement equation.

Similarly with other instrument sets that we explored, we found evidence of large p-values above 0.2.
32This is an F-statistic form of the Cragg and Donald (1993) statistic and requires an assumption of i.i.d. errors,

which is more likely to be met in the specifications with family fixed effects. We are not aware of any studies on
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the strength of the instruments, we considered the most difficult test with our data is using the full

set of genetic instruments. That is, since using a large number of instruments or moment conditions

can cause the estimator to have poor finite sample performance, we will demonstrate results using

the full set of genetic instruments and their polygenic interactions. Our preferred instrument sets

are a subset, and one could argue that we achieved strong results in those contexts since we dropped

redundant instruments, thereby leading to more reliable estimates.33 The critical value for the Stock

and Yogo [2005] test is determined by the number of instruments, endogenous regressors and the

amount of bias (or size distortion) one is willing to tolerate with their IV estimator. With the

full set of instruments, the critical value increases substantially and we find that the Cragg-Donald

statistic is 45.73 and 46.11 in health vector 2 with and without family fixed effects respectively,

which exceeds the critical value.34 This suggests that even with this large set of instruments, the

estimator will not perform poorly in finite samples and that, with or without family fixed effects,

we can reject the Null hypothesis, suggesting an absence of a weak instruments problem. We also

considered more traditional F-statistics with our preferred set to test for the joint significance of the

full set of instruments in each first stage equation. The first stage F-statistics indicate that in each

equation the full set of instruments is jointly significant in both the specifications that include and

exclude family fixed effects.35 We also examined the partial R-squared for each outcome and they

ranged between 2.3% - 5.1%, which fit our prior, that since these disorders are polygenic, it would

be unlikely that these genes would account for more than 5% of the variation in the disorders.

To examine the sensitivity of both our IV and family fixed effect IV estimates to the degree

testing for weak instruments in the presence of non-i.i.d. errors.
33We did conduct Kleinbergen and Paap (2006) tests for the preferred instrument set reported in table 5 and can

reject the Null hypothesis at the 10% level. This suggests the matrix is of full rank and while overidentified the set

does provide identification of the health variables.
34For health vector 1, the results are 48.03 and 51.62.
35The F-statistics also suggest that our empirical results in Table 5 are not driven by the instruments performing

well in certain health equations and not in others.
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in which the exclusion restriction assumption is potentially violated, we considered the local to

zero approximation sensitivity analysis proposed in Conley, Hansen and Rossi [2007]. This analysis

involves making an adjustment to the asymptotic variance matrix, thereby directly affecting the

standard errors. While the variance matrix continues to account for the usual sampling behavior,

Conley, Hansen and Rossi [2007] suggest including a term that measures the extent to which the

exogeneity assumption is erroneous.36 The amount of uncertainty about the exogeneity assumption

is constructed from prior information regarding plausible values of the impact of genetic factors on

academic performance that are obtained from the reduced form. We successively increased by 5%

increments the amount of exogeneity error from 0% to 90% of the reduced form impacts. At levels

below 40% of the reduced form impacts, our results are robust as inattention continues to have a

statistically significant negative impact on verbal test scores. Our full set of results become statisti-

cally insignificant only if the extent of deviations from the exact exclusion restrictions are assumed

to be above 60% of the reduced form impacts. Since there does not exist any scientific evidence

that these specific markers directly affect academic achievement, the sensitivity analysis indicates

the levels at which our results are sensitive to the exclusion restriction assumption appear highly

implausible. The sensitivity analysis suggests that our quantitative results are robust to potentially

mild and moderate violations of the exogeneity assumption, further increasing our confidence in

Table 4.
36Essentially, the procedure involves estimates of the second stage equation with the instrumented health vector

where the instruments are additionally included in the specification. If the exclusion restriction assumption is satisfied,

the coefficients on the instrument are not identified. To conduct the analysis, we assume a prior distribution for

the estimated impact of these coefficients. In our analysis, the impacts are distributed N(0,δ2), where δ is the q%

percentage of the reduced form impact obtained from an OLS regression of academic achievement on the instruments

and exogenous factors. We vary q to conduct our sensitivity analysis.
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4.3 Robustness

In order to demonstrate the robustness of our empirical findings, we replicated the analysis on

various subsets of the data based on family relationships, zygosity and gender as well as additional

controls for health endowments. We considered these family relationship breakdowns as the inclusion

of family fixed effects ensures that only the dizygotic twins and siblings identify the fixed effect IV

estimates of β2. The measure of genetic relatedness does not differ in theory between dizygotic twins

and full siblings since dizygotic twins come from different eggs, they are as genetically similar as

any other non-twin sibling and have a genetic correlation of approximately half that of monozygotic

twins. However, the inclusion of family fixed effects also imposes an equal environment assumption

on the family members. That is 1) family inputs that are unobserved to the analyst do not differ

between family members, and 2) these factors have the same impact on achievement between

relations. This assumption of equal impacts from family factors is more likely to be satisfied with

data on twins than siblings as one could imagine that 1) parents make differential time-varying

investments across siblings, and 2) the impacts of particular family factors may differ for children of

different ages. In addition, sibling models do not effectively deal with endogeneity bias that could

result from parents adjusting their fertility patterns in response to the (genetic) quality of their

earlier children.37

While one could imagine that data on the subsample of twins would provide the strongest

robustness check, we imposed an additional sample restriction that the pairs (or trios) of children

are of the same gender. It is more likely that parents will make the same investments in the children

who are most similar.38 We replicate the above analysis only on the subsample of twins of the same

37A large empirical literature has documented that subsequent fertility decisions are influenced by prior birth

outcomes. For example, Angrist and Evans [1998] and Preston [1985], among others, have established that fertility

decisions are influenced by sex composition of exisiting children as well as past neo-natal or infant mortality.
38For example birth order, birth spacing and sex composition have been shown to affect differential levels of

investment by parents into children (e. g. Hanushek [1992], Black, Devereux, and Salvanes [2005] and Conley and
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gender and the results from all four estimation approaches are presented in Table 5.

Notice the OLS estimates (column 2) suggest a substantially larger role for ADHD (column 1)

and AD (column 2), whose magnitude is nearly twice as large as that for the full sample presented

in Table 4. On average, inattention leads to a six-point decline in verbal test scores. Depression no

longer enters the equation in a significant manner, though the magnitude is similar, and the impact

of being overweight on academic performance leads to a small decrease in academic performance

that is statistically significant at the 10% level. None of the health variables enter the equation

in a significant manner once we either include family fixed effects or use traditional IV analysis.

However, once we account for family fixed effects and also instrument the health conditions, AD

continues to enter the equation in a significant manner. On average, a child with AD scores almost

14 points lower. ADHD also now enters significantly in these specification and HD now enters in a

marginally significant manner but the sign of the coefficient has changed. The large impact of both

AD and HD are identified from dizygotic twin pairs, which differ in these classifications, but this

is the only specification in which the impacts of AD and HD enter in a significant manner and are

not significantly different. While neither depression or obesity enter the equation in a statistically

significant manner, it is important to stress that we have a very small sample size in which we are

able to identify effects and approximately 60% of the twin pairs are monozygotic, leading to larger

standard errors.39 However, the coefficient estimates for depression and overweight are practically

identical in magnitude and sign to those presented in Table 4. Additionally, tests of the validity of

the instrument continue to suggest that this set of genetic markers has good statistical properties

and Hausman tests between columns 2 and 6 of Table 5 reject the exogeneity of the health vector.

We believe that the estimates in Table 5 present the strongest possible robustness check for

Glauber [2005]).
39For example birth order, birth spacing and sex composition have been shown to affect differential levels of

parental investment into their children (e. g. Hanushek [1992], Black, Devereux and Salvanes [2005] and Conley and

Glauber [2005]).
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our empirical evidence of causal impacts of poor mental health on academic achievement as the

family members are of the same age, race and gender. With the exception of health and education

outcomes, the only other measures contained in our data for which there are different values within

kids in these families are genetic markers. As noted above, these results are also robust to including

birth weight controls. The fixed effect-IV estimates presented in the last column continue to suggest

that poor mental health impacts academic performance, whereas our physical health measure has

no significant impact.

Since one must always be cautious in attributing external validity to an analysis with twins

data, we replicate the analysis that corresponds to Table 4 where we only utilize the subsamples

of siblings in Appendix Table 2. As discussed above, the equal family environment assumption

is inconsistent with many models of family behavior40 and the likelihood that the assumption is

valid is higher with the subsample of twins (of the same gender) versus siblings.41 However, results

with the siblings sample are likely of increased external validity (presented in Appendix Table 2),

so there is a clear trade-off. In the sibling sample, it is interesting to note that the AD condition

continues to lead to a significant decrease in test scores (column 8). The large penalty on academic

performance to a sibling with AD is striking, particularly if the assumption that parents are making

equal investments in their children holds. None of the other health variables enter the equation in a

significant manner in the family fixed effects and IV analyses. Ignoring family fixed effects, the IV

estimates indicate that both hyperactivity (HD) has a positive impact on test score performance and

depression has a negative impact that is marginally significant when we exclude family fixed effects

from the IV analysis. The change in sign in the estimated impact of HD on test scores between

Table 5 and Appendix Table 2 may suggest that other inputs in the production process are being

40See Rosenzweig and Wolpin [2000] for a discussion.
41Results for the full subsample of twins (n=617) are available upon request. There are few differences in the

significance and magnitude of the impacts from health variables.
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increased in response to the disorder.42 Finally, in this subsample, the instrument set continues to

have good first stage properties, the p-values of the overidentification tests are above 0.35, Hausman

tests suggest that the health vector should be treated as endogenous, and that family fixed effects

by themselves do not remove all of the potential biases.

As a final robustness check of our main results, we consider including an individual’s birth weight

(both linearly and up to a quartic) as an additional control variable(s) in equation (1). By directly

accounting for differences in birth weight we could potentially control for additional differences in

both genetic factors and prenatal environments between full biological siblings. We find that our

full set of results (available upon request) from Tables 4 through 7 are robust to both of these

specifications. In particular, inattention continues to negatively impact academic performance and

specification tests reject family fixed effects estimators in favor of family fixed effect IV estimators.

4.4 Comorbidity and Measurement Error

In our study, we used a rich vector of health outcomes in part to ensure that the exclusion restriction

property of the instrument holds. Using only a single health outcome to proxy for health could

lead to different results, since health disorders and risky health behaviors are known in the medical

literature to be more common among individuals with one particular disorder than among the

remaining population. Table 6 demonstrates the substantial presence of comorbidities in our sample.

Column 1 of Table 6 displays the number of individuals (and marginal distribution) in each wave

who smoke or have been classified with either AD, HD, ADHD, obesity or depression. Across each

row, we present the number of individuals (and conditional frequency) who also engage in smoking

or suffer other poor health outcomes. Not only are adolescents with ADHD more likely to smoke

but they also have a higher rate of being classified as either depressed or obese than their cohorts

(one sided t-tests). This result is not unique to ADHD, as we find that individuals with any of these

42We are grateful to Richard Blundell for identifying this difference.
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health disorders are significantly more likely to have a second disorder. In addition, those with any

health disorder are more likely to smoke cigarettes.

The majority of the empirical literature that estimates the impact or association of health

with socioeconomic outcomes generally include only a single explanatory measure such as obesity,

smoking or birth weight in their analysis. We considered what would happen to the sign, significance

and magnitude of the estimated impact of each specific disorder if we followed the usual practice

and did not control for comorbidities in the achievement equation. It is reasonable to hypothesize

that in OLS and family fixed effects strategies, omitted variable bias would arise, since many of the

neglected health conditions would be correlated with both the included health condition as well as

verbal test scores. Further, in these specifications, IV or family fixed effects IV estimates may not

overcome these biases, unless a subset of the genetic instruments are known to be scientifically unique

to that included health condition to ensure the plausibility of the exclusion restriction assumption.

Excluding significant comorbid conditions potentially leads to problems not only with sets of genetic

markers as instruments, but makes it equally difficult to imagine that any nurture or environmental

factor could break the statistical association between those included and excluded to the estimating

equation measures of poor health.43 In our application, there may be a concern that the genetic

markers used in the above analysis may also be associated with health measures not available in

the data. An exhaustive survey of PubMed indicates two potential disorders: schizophrenia and

Tourette’s syndrome. However, each of these disorders has low prevalence rates and low discordance

rates within families. Thus, we do not believe that this is a major issue with either the IV or fixed

effects IV specification reported earlier, but it remains an empirical question.

Table 7 presents OLS, family fixed effect, IV and fixed effects IV estimation of equation (1) where

43For example, Chou et al. [2004] and Gruber and Frakes [2006] examine whether higher cigarette prices affected

relative prices, thereby reducing smoking but increasing obesity. The former study finds evidence and the latter

examines the robustness and suggests that much of the results are implausible.
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the health vector includes only a single specific disorder at a time.44 Thus, each entry in Table 7

refers to the point estimate of that specific health outcome on verbal achievement, controlling for

the same set of observed controls as in Table 4. The empirical estimates of several disorders differ

from that obtained using the full health vector reported in Table 4. In the OLS regressions reported

in Table 7, HD no longer enters significantly and the magnitude of the impact of AD is substantially

smaller. The fixed effects results in Table 7 are very similar to those obtained in Table 4, which

could suggest that there are limited sets of twins/siblings that are discordant for multiple health

problems. Interestingly, the impact of depression does not vary substantially between Table 7 and

Table 4 in the OLS and fixed effects analysis.

The IV estimates in Table 7 differ greatly and it could be concluded that each health variable

(with the exception of AD) has a significant impact on academic performance. Depression is neg-

atively and significantly related to verbal test scores, but the estimated impact of hyperactivity

changes signs from that reported in Table 4. ADHD is highly negatively related to test scores and

enters in a significant manner at the 15% level. The estimated impact of being overweight now be-

comes significant at the 15% level and leads to a seven point increase in test scores on average when

estimating equation (1) using IV analysis. Regarding the preferred fixed effects IV specifications

from Table 7, we would conclude that AD and ADHD each has a negative and significant impact on

academic performance. The sign of the estimated impact on HD changes from negative to positive.

Interestingly, the addition of family fixed effects leads the estimated signs of the impacts of ADHD,

HD and obesity to change signs when instruments are also employed. Similar to Table 4, the es-

timated impact of depression decreases substantially when family fixed effects and instrumental

variables are used to estimate equation (1). Finally, sensitivity analysis for all IV and family fixed

effects IV estimates in Table 7 indicate that they are extremely sensitive to the degree in which the

exclusion restriction assumption is potentially violated. None of the results remain significant at

44The results reported in this subsection are robust to examining only the same-sex twin subsample.
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very low levels of exogeneity error (5-10% of the reduced form impacts), confirming that ignoring

comorbid conditions leads to the exclusion restriction assumption becoming implausible.

Overall, this investigation clearly demonstrates that controlling for comorbid conditions is an im-

portant issue to credibly estimate the impact of specific health conditions on educational outcomes.

We find that there are numerous differences in the estimated impacts of mental health disorders

when estimating equation (1) by OLS, IV and family fixed effects with IV, depending on whether

one comorbid conditions are accounted for in the specifications. To summarize, constructing an

appropriate health vector presents an additional challenge for empirical researchers, as the omission

of comorbid conditions could lead to either biases in coefficient estimates or invalidate exclusion

restriction assumptions.

5 Conclusions

Numerous studies have reported that within families, siblings and twins are often radically different

in personality traits, health, education and labor market outcomes. Researchers have traditionally

examined whether different environmental factors account for the development of these differences

within families but have concluded that these factors can only account for a limited amount of the

variation in outcomes within families. Each time a new sibling is conceived, a "genetic lottery"

occurs and roughly half of the genes from each parent are passed on to the child in a random

process. With recent scientific discoveries (most notably the decoding of the human genome), it is

now possible to collect data that provides a precise measure of specific genetic markers, permitting

researchers to directly explore a variable that empirical researchers traditionally viewed as unob-

served heterogeneity. In this paper, we exploit variation within siblings and twins from the "genetic

lottery" to identify the causal effect of several poor health conditions on academic outcomes via a

family fixed effect / instrumental variables strategy.
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We find evidence of large impacts from poor mental health to lower academic performance.

Inattention leads on average to a one standard deviation decrease in performance on a verbal tests

within families. Our results indicate that, while researchers should treat health as an endogenous

input when estimating education production functions, family fixed effects estimators by themselves

cannot fully remove the endogeneity bias. We present evidence that differences in genetic inheri-

tance have desirable properties to identify the impact of poor health on education within families as

there are, consistent with the biomedical literature, statistically significant correlations with each

endogenous health variables and sensitivity analyses indicate that our results are robust to reason-

able violations of the exclusion restriction assumption. Lastly, our results underscore the challenge

facing empirical researchers interested in identifying the impact of specific health conditions that

arises due to comorbidities.

The quantitative and qualitative patterns of our empirical results are robust to not only multiple

sample definitions, including the restriction to using only dizygotic twins of the same gender, but also

the inclusion of an individual’s birth weight. A potential limitation of this study deals with external

validity. It is important to consider whether our analysis of family members can be generalized to

larger populations of interest.

We believe that there is substantial potential from explicitly using data on genetic markers in

social science research. As the scientific literature is developing an ever-increasing understanding of

how genetic inheritance relates to individual (health) outcomes, this knowledge can be used to refine

searches for potential genetic markers to serve as instrumental variables. Genetic markers have a

great deal of conceptual validity as instruments for many (health) outcomes since i) the markers are

inherited at conception prior to any interaction with the environment, eliminating concerns related

to reverse causality, ii) a large body of literature exists that documents robust correlations between

specific markers and individual (health) outcomes, iii) studies of genetic inheritance and measures of

genetic distance frommaps of the human genome are available to investigate whether genetic linkage
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is a valid concern, and iv) most genes are pleiotropic so that a predisposition can be viewed as a

form of inherited encouragement. In addition, researchers could investigate the sources of pleiotropy

by examining how different environmental disturbances affect gene expression and how that relates

to a variety of economic outcomes. In summary, we believe that integrating biological findings

into the social sciences has the potential to not only address open research questions but also help

develop policies that can promote human capital development. However, unlike biological measures

such as height, weight, blood pressure, blood alcohol content, cholesterol levels or hormones whose

measures are influenced by behavioral inputs, genetic markers are time-invariant and cannot be

modified by environmental influences. However, within families, any differences in the inheritance

of specific markers present the opportunity for additional experiments in “nature”.
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Table 1: Summary Statistics 
 
Variable Full Sample Sibling Sample Twin Sample 

Test Score 100.552 
(13.564) 

100.794 
(13.324)          

100.107 
(13.984)          

AD 0.050 
(0.218) 

0.049 
(0.215)          

0.056 
(0.229)          

HD 0.049 
(0.215) 

0.052 
(0.223)           

0.043 
(0.203)           

ADHD 0.077 
(0.266) 

0.077 
(0.266)           

0.078  
(0.268)           

Depression 0.062 
(0.241) 

0.067 
(0.251)           

0.052 
(0.223)           

Obesity 0.072 
(0.258) 

0.081 
(0.272)           

0.060 
(0.238)           

Age in Initial Data 
Collection 

17.03 
(1.687) 

17.054 
(1.700)          

16.990   
(1.667)          

Male 0.489 
(0.500) 

0.479 
(0.500)           

0.504 
(0.500)           

African American 0.169 
(0.375) 

0.131 
(0.338)           

0.234 
(0.424)           

Hispanic 0.141 
(0.348) 

0.140 
(0.348)           

0.145 
(0.352)           

Family Income 
(*$1,000) 

46.807 
(40.158) 

45.206 
(30.734)           

49.828     
(53.873)           

Mother’s Education 13.200 
(2.203) 

13.166 
(2.105)           

13.232    
 (2.356)           

Parental Age 41.850 
(5.337) 

41.382 
(5.017)          

42.527    
 (5.750)          

Observations 1684 1068 629 
Note: Standard deviations in parentheses.
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Table 2: Summary Statistics on Peabody Verbal Test Score Performance by Health 
Disorder and Health Behavior 
 

 Full sampling Sibling Twin 
Depression 92.00 

(14.19) 
94.03 

(13.53) 
91.63 

(15.87) 
No depression 101.03 

(13.38) 
101.23 
(13.16) 

100.70 
(13.73) 

T-statistic 5.705 4.44 3.66 
ADHD 100.19 

(12.336) 
101.5 

(12.167) 
98.06 

(12.44) 
No ADHD 100.58 

(13.664) 
100.68 
(13.40) 

100.40 
(14.09) 

T-statistic 0.312 -0.527 1.13 
HD 102.18 

(11.550) 
103.11 
(11.77) 

100.39 
(11.09) 

No HD 100.49 
(13.657) 

100.62 
(13.38) 

100.22 
(14.10) 

T-statistic -1.112 -1.34 -0.06 
AD 98.45 

(12.41) 
99.56 

(11.92) 
96.84 

(13.11) 
No AD 100.66 

(13.62) 
100.81 
(13.38) 

100.42 
(14.01) 

T-statistic 1.456 0.646 1.46 
Obese 98.00 

(12.755) 
98.84 

(13.22) 
96.02 

(11.50) 
Not obese 100.74 

(13.68) 
100.91 
(13.31) 

100.48 
(14.08) 

T-statistic 2.14 1.37 1.86 
Overweight 
 

100.798 
(13.44) 

99.70 
(14.42) 

97.32 
(13.76) 

Not overweight 98.92 
(14.22) 

100.92 
(13.12) 

100.61 
(13.97) 

T-statistic 1.92 1.02 1.89 
Smoke Cigarettes 100.12 

(12.22) 
100.65 
(11.93) 

99.27 
(12.69) 

Does not smoke 
cigarettes 

100.71 
(13.97) 

100.79 
(13.73) 

100.57 
(14.38) 

T-statistic 0.757 0.14 1.01 
Note: Most cells present the mean verbal test score and standard deviations in parentheses 
for individuals by health category. 
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Table 3: Relationship between Genetic Markers and Health Outcomes 

Note: Each cell presents the conditional mean, the standard deviation in round parentheses and the odds 
ratio for outcomes (excluding BMI) in square parentheses. ***, **, *, +, denote the Null of homogeneity of 
odds across markers by genotype from a chi-squared test is rejected at the 1%, 5%, 10%, and 15% level 
respectively. The tests were conducted with the same sample used to construct Table 1. 

 Gene Variant ADHD AD HD Obese Depression Smoking 

A1A1 

0.076 
(0.266) 
[0.987] 

0.038 
(0.192) 
[0.734] 

0.053 
(0.224) 
[1.103] 

0.061 
(0.240) 
[0.822] 

0.053 
(0.225) 
[0.840] 

0.220 
(0.416) 
[0.879] 

A1A2 

0.071 
(0.257) 
[0.876] 

0.054 
(0.225) 
[1.130] 

0.038 
(0.191) 
[0.671]+ 

0.072 
(0.259) 
[1.014] 

0.071 
(0.257) 
[1.280] 

0.237 
(0.426) 
[0.967] 

DRD2 
  
  A2A2 

0.081 
(0.273) 
[1.136] 

0.049 
(0.216) 
[0.963] 

0.056 
(0.229) 
[1.398]+ 

0.073 
(0.260) 
[1.041] 

0.057 
(0.231) 
[0.827]+ 

0.246 
(0.431) 
[1.071] 

Two short 
alleles 

0.058 
(0.234) 
[0.700] 

0.032 
(0.176) 
[0.576]* 

0.038 
(0.191) 
[0.726] 

0.067 
(0.250) 
[0.912] 

0.076 
(0.265) 
[1.328] 

0.223 
(0.417) 
[0.882] 

One 
short/one 
long allele 

0.084 
(0.278) 
[1.218] 

0.058 
(0.234) 
[1.362] 

0.051 
(0.221) 
[1.111] 

0.072 
(0.259) 
[1.017] 

0.054 
(0.226) 
[0.781] 

0.230 
(0.421) 
[0.900] 

SLC6A4 
  
  

Two long 
alleles 

0.077 
(0.267) 
[1.016] 

0.050 
(0.218) 
[0.998] 

0.052 
(0.221) 
[1.097] 

0.074 
(0.262) 
[1.047] 

0.064 
(0.244) 
[1.049] 

0.265 
(0.442) 
[1.222]* 

No 10 
repeats 

0.065 
(0.247) 
[0.823] 

0.032 
(0.178) 
[0.621] 

0.043 
(0.204) 
[0.872] 

0.032 
(0.178) 
[0.416]+ 

0.054 
(0.227) 
[0.856] 

0.194 
(0.397) 
[0.745] 

One ten 
repeat 

0.088 
(0.284) 
[1.279] 

0.059 
(0.236) 
[1.324] 

0.059 
(0.236) 
[1.381] 

0.078 
(0.268) 
[1.147] 

0.062 
(0.242) 
[1.017] 

0.241 
(0.428) 
[1.005] 

DAT1 
  
  

Two ten 
repeats 

0.071 
(0.257) 
[0.822] 

0.046 
(0.210) 
[0.832] 

0.043 
(0.204) 
[0.754] 

0.072 
(0.259) 
[1.005] 

0.062 
(0.241) 
[1.016] 

0.244 
(0.430) 
[1.057] 

No seven 
repeats 

0.082 
(0.274) 
[1.125] 

0.052 
(0.223) 
[1.172] 

0.051 
(0.219) 
[1.128] 

0.073 
(0.260) 
[1.039] 

0.066 
(0.249) 
[1.256] 

0.242 
(0.429) 
[1.025] 

One 
seven 
repeat 

0.070 
(0.255) 
[0.866] 

0.047 
(0.212) 
[0.919] 

0.045 
(0.208) 
[0.896] 

0.068 
(0.252) 
[0.917] 

0.058 
(0.235) 
[0.920] 

0.242 
(0.428) 
[1.006] 

DRD4 
  
  

Two 
seven 
repeats 

0.044 
(0.207) 
[0.546] 

0.029 
(0.170) 
[0.567] 

0.044 
(0.207) 
[0.898] 

0.088 
(0.286) 
[1.263] 

0.015 
(0.121) 
[0.219]* 

0.209 
(0.410) 
[0.827] 

CYP 
  Main SNP 

0.076 
(0.265) 
[0.822] 

0.049 
(0.215) 
[0.604] 

0.049 
(0.216) 
[1.275] 

0.073 
(0.260) 
[1.433] 

0.061 
(0.239) 
[0.769] 

0.237 
(0.426) 
[0.687]+ 

No four 
repeats 

0.075 
(0.264) 
[0.973] 

0.046 
(0.209) 
[0.875] 

0.050 
(0.217) 
[1.025] 

0.075 
(0.264) 
[1.074] 

0.069 
(0.254) 
[1.198] 

0.235 
(0.424) 
[0.953] 

One four 
repeat 

0.046 
(0.209) 

[0.507]*** 

0.028 
(0.165) 

[0.477]** 

0.030 
(0.172) 
[0.546]* 

0.061 
(0.239) 
[0.795] 

0.081 
(0.273) 
[1.491]* 

0.218 
(0.414) 
[0.848] 

MAOA 
  
  

Two four 
repeats 

0.093 
(0.291) 

[1.547]** 

0.064 
(0.245) 

[1.735]** 

0.057 
(0.233) 
[1.420]+ 

0.075 
(0.264) 
[1.100] 

0.047 
(0.212) 

[0.616]** 

0.256 
(0.437) 
[1.169] 
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Table 4: Estimates of the Achievement Equation for the Full Sample 

Note: Corrected standard errors in parentheses. ***, **, * denote statistical significance 
at 1%, 5%, 10% level respectively. 
 
 
 
 
 
 
 

Estimation 
Approach 

 
OLS 

 
Family Fixed Effects 

 
Instrumental 

Variables 

 
Family Fixed Effects 

Instrumental Variables 

AD N/A 
 

-3.447 
(1.307)** 

N/A 
 

-2.202 
(1.483) 

N/A 
 

-18.351 
(11.354) 

N/A 
 

-26.026 
(13.011)* 

HD N/A 
 

2.305 
(1.306)+ 

N/A 
 

1.810 
(1.542) 

N/A 
 

24.807 
(15.031)+ 

N/A 
 

2.553 
(12.896) 

ADHD -1.263 
(0.987) 

N/A 
 

-0.250 
(1.167) 

N/A 
 

-7.845 
(11.104) 

N/A 
 

-6.924 
(15.811) 

N/A 
 

Depression -4.318 
(1.333)** 

-4.282 
(1.333)** 

-2.083 
(1.249)+ 

-2.079 
(1.247)+ 

-10.046 
(17.953) 

-12.282 
(14.992) 

-10.854 
(15.186) 

-3.627 
(13.882) 

Obesity -0.468 
(0.750) 

-0.460 
(0.747) 

-0.007 
(0.893) 

0.051 
(0.893) 

3.335 
(7.661) 

3.179 
(7.333) 

-5.210 
(9.875) 

4.630 
(8.072) 

Age 5.483 
(3.263)+ 

5.439 
(3.259)+ 

1.191 
(3.658) 

0.886 
(3.657) 

4.659 
(3.829) 

3.836 
(3.970) 

1.015 
(6.065) 

1.431 
(5.580) 

Age squared -0.165 
(0.096)+ 

-0.163 
(0.096)+ 

-0.029 
(0.107) 

-0.019 
(0.107) 

-0.141 
(0.115) 

-0.109 
(0.118) 

-0.023 
(0.175) 

-0.018 
(0.164) 

Male 1.240 
(0.595)* 

1.204 
(0.594)* 

-0.609 
(0.691) 

-0.618 
(0.689) 

1.668 
(1.076) 

0.730 
(0.837) 

-0.155 
(1.157) 

0.003 
(1.037) 

African 
American 

-9.245 
(0.852)** 

-9.270 
(0.850)** 

  
  

  
  

-9.461 
(1.130)** 

-9.354 
(1.083)** 

  
  

  
  

Hispanic -7.185 
(0.944)** 

-7.156 
(0.942)** 

  
  

  
  

-7.755 
(1.668)** 

-6.887 
(1.571)** 

  
  

  
  

Sibling 0.482 
(0.623) 

0.436 
(0.623) 

  
  

  
  

0.237 
(0.934) 

0.097 
(0.972) 

  
  

  
  

Birth order -1.236 
(0.311)** 

-1.249 
(0.311)** 

-1.647 
(0.780)* 

-1.616 
(0.779)* 

-1.240 
(0.398)** 

-1.335 
(0.406)** 

-1.813 
(1.187) 

-0.818 
(1.143) 

Family Income 
 

0.021 
(0.006)** 

0.020 
(0.006)** 

  
  

  
  

0.021 
(0.008)** 

0.020 
(0.008)* 

  
  

  
  

Maternal Years 
of Education 

1.139 
(0.153)** 

1.134 
(0.153)** 

  
  

  
  

1.301 
(0.371)** 

1.068 
(0.344)** 

  
  

  
  

Parents Age 
 

0.266 
(0.062)** 

0.262 
(0.062)** 

  
  

  
  

0.249 
(0.080)** 

0.229 
(0.083)** 

  
  

  
  

Parents Married 
 

0.082 
(0.733) 

0.110 
(0.733) 

  
  

  
  

-0.007 
(0.953) 

0.250 
(1.034) 

  
  

  
  

Observations 1684 1684 1684 1684 1684 1684 1684 1684 
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Table 5: Estimates of the Achievement Equation for the Sample of Twins of the Same 
Gender 

Note: Corrected standard errors in parentheses. ***, **, * denote statistical significance 
at 1%, 5%, 10% level respectively. 
  
 
 
 
 
 
 
 

Estimation 
Approach 

 
OLS 

 
Family Fixed Effects 

 
Instrumental 

Variables 

 
Family Fixed Effects 

Instrumental Variables 

AD N/A 
 

-5.957 
(2.297)** 

N/A 
 

-3.049 
(2.552) 

N/A 
 

-4.292 
(6.218) 

N/A 
 

-14.991 
(7.475)* 

HD N/A 
 

2.061 
(2.592) 

N/A 
 

-0.172 
(2.749) 

N/A 
 

-4.213 
(8.633) 

N/A 
 

-15.994 
(10.828) 

ADHD -4.538 
(1.812)* 

N/A 
 

-2.155 
(2.153) 

N/A 
 

-6.643 
(14.245) 

N/A 
 

-18.075 
(6.473)** 

N/A 
 

Depression -3.184 
(2.969) 

-3.306 
(2.928) 

0.738 
(2.493) 

0.734 
(2.498) 

-7.181 
(17.247) 

-4.161 
(15.283) 

-12.229 
(21.557) 

-11.27 
(17.456) 

Obesity -2.853 
(1.427)* 

-2.93 
(1.421)* 

0.007 
(1.81) 

0.059 
(1.81) 

-3.379 
(9.682) 

-3.25 
(8.718) 

-3.884 
(6.880) 

-1.61 
(6.261) 

Male 3.597 
(1.127)** 

3.483 
(1.125)**     3.641 

(1.670)* 
3.619 

(1.515)*     

African 
American 

-8.318 
(1.463)** 

-8.311 
(1.463)** 

  
  

  
  

-8.464 
(2.009)** 

-8.345 
(1.970)** 

  
  

  
  

Hispanic -6.894 
(1.757)** 

-6.93 
(1.735)** 

  
  

  
  

-6.895 
(2.733)* 

-6.974 
(2.643)** 

  
  

  
  

Family Income 
 

0.012 
(0.004)** 

0.013 
(0.004)** 

  
  

  
  

0.012 
(0.007) 

0.012 
(0.007)+ 

  
  

  
  

Maternal Years 
of Education 

1.275 
(0.240)** 

1.249 
(0.240)** 

  
  

  
  

1.233 
(0.363)** 

1.26 
(0.346)** 

  
  

  
  

Parents Age 
 

0.184 
(0.099)+ 

0.184 
(0.099)+ 

  
  

  
  

0.197 
(0.134) 

0.187 
(0.134) 

  
  

  
  

Parents Married 
 

-1.659 
(1.263) 

-1.657 
(1.268) 

  
  

  
  

-1.795 
(1.652) 

-1.776 
(1.680) 

  
  

  
  

Observations 469 469 469 469 469 469 469 469 
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Table 6: Relationship Between Health Behaviors and Health Outcomes During 
Adolescence 
 
Behavior Total 

Number 
Nothing 
Else1 

Also 
ADHD

Also 
AD 

Also 
HD 

Also 
Obese 

Also 
Depressed 

Also 
Smokes

Full Sample 
Nothing 975 

[58.24]  
*** *** *** *** *** *** *** 

ADHD 
 

129 
[7.66] 

 67 
(51.94) 

------ ------ ------ 16 
(13.22)

11 
(8.53) 

46 
(35.66) 

AD 84 
[4.99]  

40 
(47.62) 

------ ------ 37 
(44.05)

11 
(13.10)

8 
(9.52) 

33 
(39.29) 

HD 82 
[4.87] 

41 
(50.00) 

------ 37 
(45.12)

------ 11 
(13.41)

5 
(6.10) 

30 
(36.59) 

Obese 121 
[7.19] 

69 
(57.50) 

16 
(12.40)

11 
(9.09) 

11 
(9.09) 

------ 14 
(11.57) 

32 
(26.67) 

Depression 104 
[6.18] 

48 
(46.15) 

11 
(11.93)

8 
(7.69) 

5 
(4.81) 

14 
(13.46)

------ 44 
(42.31) 

Smokes 
Cigarettes 

404 
[24.08] 

297 
(73.51) 

46 
(11.39)

33 
(8.17) 

30 
(7.43) 

32 
(7.92) 

44 
(10.89) 

------ 

Note: Each cell contains the number of individuals diagnosed with the respective row and 
column combination. The conditional frequency of dual diagnoses is presented in round 
parentheses. The marginal probability of being diagnosed with each outcome is presented 
in square [] parentheses. 
 
 

                                                 
1 For ADHD nothing else excludes AD and HD.  
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Table 7: Estimates of the Achievement Equation Where We Include Only a Single Health 
Condition by Itself 
Estimation 
Approach 

OLS Family Fixed 
Effects 

Instrumental 
Variables 

Family Fixed 
Effects and 

Instrumental 
Variables 

AD -2.275 
(1.176)+ 

-0.737 
(1.352) 

-0.904 
(6.040) 

-15.050 
(9.790) 

HD 1.106 
(1.142) 

1.356 
(1.408) 

13.510 
(9.600) 

-7.353 
(8.846) 

ADHD -1.208 
(0.981) 

0.317 
(1.142) 

3.304 
(7.077) 

-12.303 
(8.532) 

Depression -4.473 
(1.285)** 

-2.193 
(1.209)+ 

-23.265 
(11.010)* 

-5.742 
(8.625) 

Obesity -0.846 
(0.741) 

-0.06 
(0.877) 

7.879 
(5.308) 

-6.887 
(4.328) 

Estimates from Specifications which only include AD and HD separate diagnoses. 
AD -3.289 

(1.289)* 
-1.424 
(1.457) 

-19.900 
(12.456) 

-17.164 
(11.401) 

HD 2.495 
(1.302)+ 

1.912 
(1.519) 

31.573 
(14.986)* 

7.415 
(12.557) 

 
Note: Corrected standard errors in parentheses. Each cell of the table corresponds to a 
separate regression. The dependent variable of the regression differs by row. Columns 
reflect different estimation approaches as denoted in the first row. Regressions control for 
the same set of non-health inputs as in Table 5, including student demographics, parental 
characteristics and home environment variables. ***, **, * denote statistical significance 
at 1%, 5%, 10% level respectively. 
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Appendix Table 1 Summary Information on the Number of Individuals with Each 
Genetic Marker and Combination of Markers in the Sample 
  Total 

number 
of 
people 
with 
this 
gene 

A2A2 
combo  of 
DRD2 

Two long 
alleles of 
SLC6A4 

Two ten 
repeats of 
the DAT 
allele 

Two 
seven 
repeats of 
DRD4 

Main SNP 
of 
CYP2A6 
gene 

Two four 
repeats of 
MAOA 
gene 

A1A1 
132 

[7.84] 
N/A 

 
48 

(36.36) 
76 

(57.58) 
3 

(2.27) 
130 

(98.48) 
54 

(40.91) 

A1A2 
635 

[37.71] 
N/A 

 
211 

(33.23) 
386 

(60.79) 
20 

(3.15) 
600 

(94.49) 
292 

(45.98) 

D
R
D
2 
  
  

A2A2 
917 

[59.09] 
N/A 

 
323 

(35.22) 
552 

(60.20) 
45 

(4.91) 
877 

(95.64) 
438 

(47.76) 

Two short 
alleles 

343 
[20.37] 

187 
(54.52) 

N/A 
 

216 
(62.97) 

17 
(4.96) 

325 
(94.75) 

153 
(44.61) 

One 
short/one 
long allele 

759 
[45.07] 

407 
(53.62) 

N/A 
 

444 
(58.50) 

25 
(3.29) 

726 
(95.65) 

385 
(50.72) 

S
L
C
6
A
4 
  
  

Two long 
alleles 

582 
[34.56] 

323 
(55.50) 

N/A 
 

354 
(60.82) 

26 
(4.47) 

556 
(95.53) 

246 
(42.27) 

No 10 
repeats 

93 
[5.52] 

43 
(46.24) 

29 
(31.18) 

N/A 
 

1 
(1.08) 

91 
(97.85) 

51 
(54.84) 

One ten 
repeat 

577 
[34.26] 

322 
(55.81) 

199 
(34.49) 

N/A 
 

21 
(3.64) 

542 
(93.93) 

296 
(51.30) 

D
A
T
1 
  
  

Two ten 
repeats 

1014 
[60.21] 

552 
(54.44) 

354 
(34.91) 

N/A 
 

46 
(4.54) 

974 
(96.06) 

437 
(43.10) 

No seven 
repeats 

1086 
[64.49] 

569 
(52.39) 

358 
(32.97) 

658 
(60.59) 

N/A 
 

1030 
(94.84) 

506 
(46.59) 

One 7  
repeat 

530 
[31.47] 

303 
(57.17) 

198 
(37.36) 

310 
(58.49) 

N/A 
 

510 
(96.23) 

247 
(46.60) 

D
R
D
4 
  
  

Two 7 
repeats 

68 
[4.04] 

45 
(66.18) 

26 
(38.24) 

46 
(67.65) 

N/A 
 

67 
(98.53) 

31 
(45.59) 

Rare SNP 
77 

[4.57] 
40 

(51.95) 
26 

(33.77) 
40 

(51.95) 
1 

(1.30) 
N/A 

 
42 

(54.55) C
Y
P 
  Main SNP 

1607 
[95.43] 

877 
(54.57) 

556 
(34.60) 

974 
(60.61) 

67 
(4.17) 

N/A 
 

742 
(46.17) 

No four 
repeats 

505 
[29.99 ] 

266 
(52.67) 

187 
(37.03) 

321 
(63.56) 

24 
(4.75) 

489 
(96.83) 

N/A 
 

One four 
repeat 

395 
[23.46] 

213 
(53.92) 

149 
(37.72) 

256 
(64.81) 

13 
(3.29) 

376 
(95.19) 

N/A 
 

M
A
O
A 
  
  

Two four 
repeats 

784 
[46.56] 

438 
(55.87) 

246 
(31.38) 

437 
(55.74) 

31 
(3.95) 

742 
(94.64) 

N/A 
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FIRST FAMILY MEMBER 

  Total 
number of 
people 
with this 
gene 

A2A2 
combo  of 
DRD2 

Two long 
alleles of 
SLC6A4 

Two ten 
repeats of 
the DAT 
allele 

Two 
seven 
repeats of 
DRD4 

Main SNP 
of 
CYP2A6 
gene 

Two four 
repeats of 
MAOA 
gene 

A1A1 
62 

[7.51] 
N/A 

 
24 

(38.71) 
35 

(56.45) 
3 

(4.84) 
60 

(96.77) 
28 

(40.58) 

A1A2 
312 

[37.77] 
N/A 

 
106 

(33.97) 
201 

(64.42) 
8 

(2.56) 
294 

(94.23) 
145 

(44.89) 

D
R
D
2 
  
  

A2A2 
452 

[54.72] 
N/A 

 
154 

(34.07) 
263 

(58.19) 
25 

(5.53) 
437 

(96.68) 
217 

(47.59) 
Two 
short 
alleles 

161 
[19.49] 

87 
(54.04) 

N/A 
 

103 
(63.98) 

9 
(5.59) 

156 
(96.89) 

73 
(43.71) 

One 
short/on
e long 
allele 

381 
[46.13] 

211 
(55.38) 

N/A 
 

221 
(58.01) 

13 
(3.41) 

363 
(95.28) 

193 
(49.87) 

S
L
C
6
A
4 
  
  

Two long 
alleles 

284 
[34.38] 

154 
(54.23) 

N/A 
 

175 
(61.62) 

14 
(4.93) 

272 
(95.77) 

124 
(42.18) 

No 10 
repeats 

53 
[6.42] 

25 
(47.17) 

17 
(32.08) 

N/A 
 

0 
(0.00) 

51 
(96.23) 

25 
(55.56) 

One ten 
repeat 

274 
[33.17] 

164 
(59.85) 

92 
(33.58) 

N/A 
 

11 
(4.01) 

261 
(95.26) 

151 
(51.36) 

D
A
T
1 
  
  

Two ten 
repeats 

499 
[60.41] 

263 
(52.71) 

175 
(35.07) 

N/A 
 

25 
(5.01) 

479 
(95.99) 

214 
(42.04) 

No 
seven 
repeats 

540 
[65.38] 

286 
(52.96) 

175 
(32.41) 

324 
(60.00) 

N/A 
 

514 
(95.19) 

248 
(46.18) 

One 7  
repeat 

250 
[30.27] 

141 
(56.40) 

95 
(38.00) 

150 
(60.00) 

N/A 
 

241 
(96.40) 

127 
(46.35) 

D
R
D
4 
  
  

Two 7 
repeats 

36 
[4.36] 

25 
(69.44) 

14 
(38.89) 

25 
(69.44) 

N/A 
 

36 
(100) 

15 
(40.54) 

Main 
SNP 

35 
[4.24] 

15 
(42.86) 

12 
(34.29) 

20 
(57.14) 

0 
(0.00) 

N/A 
 

18 
(51.43) C

Y
P 
  

No four 
repeats 

791 
[95.76] 

437 
(55.25) 

272 
(34.39) 

479 
(60.56) 

36 
(4.55) 

N/A 
 

371 
(46.90) 

No four 
repeats 

241 
[29.18] 

122 
(50.62) 

89 
(36.93) 

154 
(63.90) 

14 
(38.89) 

234 
(29.58) 

N/A 
 

One four 
repeat 

196 
[23.73] 

108 
(55.10) 

70 
(35.71) 

119 
(60.71) 

8 
(4.08) 

186 
(94.90) 

N/A 
 

M
A
O
A 
  
  

Two four 
repeats 

389 
[47.09] 

222 
(57.07) 

125 
(32.13) 

226 
(58.10) 

14 
(3.60) 

371 
(95.37) 

N/A 
 



 
 

49

 
SECOND FAMILY MEMBER 

  Total 
number of 
people 
with this 
gene 

A2A2 
combo  of 
DRD2 

Two long 
alleles of 
SLC6A4 

Two ten 
repeats of 
the DAT 
allele 

Two 
seven 
repeats of 
DRD4 

Main SNP 
of 
CYP2A6 
gene 

Two four 
repeats of 
MAOA 
gene 

A1A1 
68 
[8.23] 

N/A 
 

22 
(32.35) 

40 
(58.82) 

0 
(0.00) 

68 
(100) 

33 
(48.53) 

A1A2 
312 
[37.77] 

N/A 
 

101 
(32.37) 

179 
(57.37) 

11 
(3.53) 

295 
(94.55) 

139 
(44.55) 

D
R
D
2 
  
  

A2A2 
446 
[54.00] 

N/A 
 

163 
(36.55) 

276 
(61.88) 

20 
(4.48) 

421 
(94.39) 

208 
(46.64) 

Two 
short 
alleles 

175 
[21.19] 

97 
(55.43) 

N/A 
 

108 
(61.71) 

8 
(4.57) 

162 
(92.57) 

80 
(45.71) 

One 
short/one 
long 
allele 

365 
[44.19] 

186 
(50.960 

N/A 
 

214 
(58.63) 

12 
(3.29) 

350 
(95.89) 

183 
(50.14) 

S
L
C
6
A
4 
  
  

Two long 
alleles 

286 
[34.62] 

163 
(56.99) 

N/A 
 

173 
(60.49) 

11 
(3.85) 

272 
(95.10) 

117 
(40.91) 

No 10 
repeats 

40 
[4.84] 

18 
(45.00) 

12 
(30.00) 

N/A 
 

1 
(2.50) 

40 
(100.00) 

24 
(60.00) 

One ten 
repeat 

291 
[35.23] 

152 
(52.23) 

101 
(34.71) 

N/A 
 

10 
(3.44) 

269 
(92.44) 

155 
(53.26) 

D
A
T
1 
  
  

Two ten 
repeats 

495 
[59.93] 

276 
(55.76) 

173 
(34.95) 

N/A 
 

20 
(4.04) 

475 
(95.96) 

201 
(40.61) 

No seven 
repeats 

525 
[63.56] 

273 
(52.00) 

178 
(33.90) 

321 
(61.14) 

N/A 
 

495 
(94.29) 

238 
(45.33) 

One 7  
repeat 

270 
[32.69] 

153 
(56.67) 

97 
(35.93) 

154 
(57.04) 

N/A 
 

11 
(4.07) 

126 
(46.67) 

D
R
D
4 
  
  

Two 7 
repeats 

31 
[3.75] 

20 
(64.52) 

11 
(35.48) 

20 
(64.52) 

N/A 
 

30 
(96.77) 

16 
(51.61) 

Main 
SNP 

42 
[5.08] 

25 
(59.52) 

14 
(33.33) 

20 
(47.62) 

1 
(2.38) 

N/A 
 

9 
(21.43) C

Y
P 
  

No four 
repeats 

784 
[94.92] 

421 
(53.70) 

272 
(34.69) 

475 
(60.59) 

30 
(3.83) 

N/A 
 

247 
(31.51) 

No four 
repeats 

256 
[30.99] 

139 
(54.30) 

95 
(37.11) 

162 
(63.28) 

10 
(3.91) 

247 
(96.48) 

N/A 
 

One four 
repeat 

190 
[23.00] 

99 
(52.11) 

74 
(38.95) 

132 
(69.47) 

5 
(2.63) 

181 
(95.26) 

N/A 
 

M
A
O
A 
  
  

Two four 
repeats 

380 
[46.00] 

208 
(54.74) 

117 
(30.79) 

201 
(52.89) 

16 
(4.21) 

356 
(93.68) 

N/A 
 

Note: Each cell contains the number of individuals that possess the respective row and 
column combination of genetic markers. The conditional frequency of having the dual 
markers is presented in round parentheses. The marginal frequency of possessing a 
marker is presented in square parentheses. 
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Appendix Table 2: Estimates of the Achievement Equation for the Sibling Sample 
 

Note: Corrected standard errors in parentheses. ***, **, * denote statistical significance 
at 1%, 5%, 10% level respectively. 

Estimation 
Approach 

 
OLS 

 
Family Fixed Effects 

 
Instrumental Variables 

 
Family Fixed Effects 

Instrumental Variables 

AD N/A 
 

-2.875 
(1.767) 

N/A 
 

-2.908 
(1.950) 

N/A 
 

-3.750 
(15.331) 

N/A 
 

-27.485 
(12.308)* 

HD N/A 
 

3.352 
(1.676)* 

N/A 
 

2.714 
(1.957) 

N/A 
 

29.501 
(19.019) 

N/A 
 

12.137 
(15.757) 

ADHD 0.168 
(1.278) N/A 

-0.498 
(1.484) N/A 

14.521 
(13.885) N/A 

-22.874 
(20.178) N/A 

Depression -4.576 
(1.482)** 

-4.542 
(1.489)** 

-2.876 
(1.571)+ 

-2.973 
(1.569)+ 

-13.743 
(21.894) 

-19.112 
(14.605) 

-8.906 
(15.441) 

-7.605 
(12.444) 

Obesity 0.281 
(0.941) 

0.292 
(0.938) 

-0.784 
(1.106) 

-0.726 
(1.104) 

4.069 
(9.514) 

4.333 
(7.579) 

0.289 
(10.039) 

0.188 
(7.303) 

Age 2.344 
(3.854) 

2.075 
(3.862) 

0.794 
(3.802) 

0.288 
(3.801) 

0.872 
(4.152) 

-0.835 
(4.565) 

3.222 
(6.747) 

-1.966 
(5.720) 

Age squared -0.070 
(0.114) 

-0.061 
(0.114) 

-0.019 
(0.112) 

-0.003 
(0.112) 

-0.025 
(0.123) 

0.029 
(0.136) 

-0.082 
(0.193) 

0.079 
(0.169) 

Male 0.019 
(0.748) 

0.007 
(0.746) 

-0.499 
(0.831) 

-0.578 
(0.828) 

-1.496 
(1.475) 

-1.686 
(1.158) 

0.892 
(1.637) 

-0.391 
(1.255) 

African 
American 

-8.765 
(1.219)** 

-8.803 
(1.216)** 

  
  

  
  

-7.958 
(1.693)** 

-8.078 
(1.671)** 

  
  

  
  

Hispanic -7.357 
(1.198)** 

-7.340 
(1.198)** 

  
  

  
  

-6.324 
(2.144)** 

-6.059 
(1.830)** 

  
  

  
  

Birth order -1.392 
(0.383)** 

-1.415 
(0.386)** 

-1.857 
(0.839)* 

-1.824 
(0.839)* 

-1.523 
(0.527)** 

-1.677 
(0.565)** 

-1.456 
(1.256) 

-1.346 
(1.125) 

Family Income 
 

0.042 
(0.013)** 

0.041 
(0.013)** 

 
 

 
 

0.049 
(0.018)** 

0.048 
(0.017)**   

Maternal Years 
of Education 

1.148 
(0.211)** 

1.148 
(0.210)** 

 
 

 
 

1.079 
(0.569)+ 

1.006 
(0.430)*   

Parents Age 
 

0.264 
(0.082)** 

0.259 
(0.082)** 

 
 

 
 

0.277 
(0.107)** 

0.261 
(0.110)*   

Parents Married 
 

0.538 
(1.001) 

0.614 
(1.004) 

 
 

 
 

0.553 
(1.348) 

0.941 
(1.450) 

 
 

 
 

Observations 1044 1044 1044 1044 1044 1044 1044 1044 


