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Abstract

This study simulates the impacts of higher temperatures resulting from anthropogenic cli-
mate change on residential electricity consumption for California. Flexible temperature response
functions are estimated by climate zone, which allow for differential effects of days in different
temperature bins on households’ electricity consumption. The estimation uses a comprehensive
household level dataset of billing data for California’s three investor-owned utilities (Pacific Gas
and Electric, San Diego Gas and Electric, and Southern California Edison). The results suggest
that the temperature response varies greatly across climate zones. Simulation results using a
downscaled version of the National Center for Atmospheric Research global circulation model
suggest that holding population constant, total consumption for the households considered may
increase by up to 55% by the end of the century. The study further simulates the impacts of
higher electricity prices and different scenarios of population growth. Finally, simulations were
conducted consistent with higher adoption of cooling equipment in areas which are not yet sat-
urated, as well as gains in efficiency potentially due to aggressive energy efficiency policies.
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1. Introduction

Forecasts of electricity demand are of central importance to policy makers and utilities for purposes of

adequately planning future investments in new generating capacity. Total electricity consumption in

California has more than quadrupled since 1960, and the share of residential consumption has grown

from 26% to 34% (EIA SEDS 2008). Today, California’s residential sector alone consumes as much

electricity as Argentina, Finland, or roughly half of Mexico. The majority of electricity in California

is delivered by three investor-owned utilities and over a hundred municipal utilities.

On a per capita basis, California’s residential consumption has stayed almost constant since the

early 1970s, while most other states have experienced rapid growth in per capita consumption. The

slowdown in growth of California’s per capita consumption coincides with the imposition of aggressive

energy efficiency and conservation programs during the early 1970s. The average annual growth rate

in per capita consumption during 1960-1973 was approximately 7% and slowed to a remarkable 0.29%

during 1974-1995. Growth rates during the last decade of available data have increased to a higher

rate of 0.63%, and this difference in growth rates is statistically significant.

California’s energy system faces several challenges in attempting to meet future demand (CEC

2005). In addition to rapid population growth, economic growth and an uncertain regulatory envi-

ronment, the threat of significant global climate change has recently emerged as a factor influencing

the long term planning of electricity supply. The electric power sector will be affected by climate

change through higher cooling demand, lower heating demand, and potentially stringent regulations

designed to curb emissions from the sector.

This paper simulates how the residential sector’s electricity consumption will be affected by dif-

ferent scenarios of climate change. We make four specific contributions to the literature on simulating

the impacts of climate change on residential electricity consumption. First, through an unprecedented

opportunity to access the complete billing data of California’s three major investor-owned utilities, we

are able to provide empirical estimates of the temperature responsiveness of electricity consumption

based on micro-data. Second, we allow for a geographically specific response of electricity consump-

tion to changes in weather. Third, we provide simulations of future electricity consumption under

constant and changing climate, electricity price, and population scenarios. Finally, we provide worst
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and best case simulation results, assuming uniform “best” and “worst” climate sensitivities for the

entire state based on our estimation results. These simulations provide us with upper and lower

bound estimates from different adaptation scenarios.

The paper is organized as follows: Section 2 reviews the literature assessing the impacts of

climate change on electricity consumption. Section 3 describes the sources of the data used in this

study. Section 4 contains the econometric model and estimation results. We simulate the impacts of

climate change on residential electricity consumption in Section 5 and conclude in Section 6.

2. Literature Review

The historical focus of the literature forecasting electricity demand has been on the role of changing

technology, prices, income, and population growth (e.g., Fisher and Kaysen 1962). Early studies in

demand estimation have acknowledged the importance of weather in electricity demand and explicitly

controlled for it to prevent biased coefficient estimates, as well as wanting to gain estimation efficiency

(e.g., Houthakker and Taylor, 1970). Simulations based on econometrically estimated demand func-

tions had therefore focused on different price, income, and population scenarios, while assuming a

stationary climate system. The onset of anthropogenic climate change has added a new and impor-

tant dimension of uncertainty over future demand, which has spawned a small academic literature on

climate change impacts estimation, which can be divided into two approaches.

In the engineering literature, large-scale bottom-up simulation models are utilized to simulate

future electricity demand under varying climate scenarios. The advantage of the simulation model

approach is that it allows one to simulate the effects of climate change given a wide variety of

technological and policy responses. The drawback to these models is that they contain a large

number of response coefficients and make a number of specific and often untestable assumptions

about the evolution of the capital stock and its usage. The earliest impacts papers adopt this

simulation approach and suggest that global warming will significantly increase energy consumption.

Cline (1992) provides the earliest study on the impacts of climate change in his seminal book The

Economics of Climate Change. The section dealing with the impact on space cooling and heating
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relies on an earlier report by the U.S. Environmental Protection Agency (1989). That study of the

potential impact of climate change on the United States uses a utility planning model developed

by Linder et al. (1987) to simulate the impact on electric utilities in the United States and finds

that increases in annual temperatures ranging from 1.0◦C-1.4◦C (1.8◦F-2.5◦F) in 2010 would result

in demand of 9% to 19% above estimated new capacity requirements (peak load and base load) in

the absence of climate change. The estimated impacts rise to 14% and 23% for the year 2055 and an

estimated 3.7◦C (6.7◦F) temperature increase.

Baxter and Calandri (1992) provide another early study in this literature and focus on Cal-

ifornia’s electricity use. In their study they utilize a partial equilibrium model of the residential,

commercial, agriculture, and water pumping sectors, to examine total consumption as well as peak

demand. They project electricity demand for these sectors to the year 2010 under two global warming

scenarios: a rise in average annual temperature of 0.6◦C (1.1◦F) (Low scenario) and of 1.9◦C (3.4◦F)

(High scenario). They find that electricity use increases from the constant climate scenario by 0.6%

to 2.6%, while peak demand increases from the baseline scenario by 1.8% to 3.7%. Rosenthal et al.

(1995) focus on the impact of global warming on energy expenditures for space heating and cooling

in residential and commercial buildings. They estimate that a 1◦C (1.8◦F) increase in temperature

will reduce U.S. energy expenditures in 2010 by $5.5 billion (1991 dollars).

The economics literature has favored the econometric approach to impacts estimation, which

is the approach we adopt in the current study. While there is a large literature on econometric

estimation of electricity demand, the literature on climate change impacts estimation is small and

relies on panel estimation of heavily aggregated data or cross-sectional analysis of more micro-level

data. The first set of papers attempts to explain variation in a cross section of energy expenditures

based on survey data to estimate the impact of climate change on fuel consumption choices. Mansur et

al. (2008) and Mendelsohn (2003) endogenize fuel choice, which is usually assumed to be exogenous.

They find that warming will result in fuel switching towards electricity. The drawback of the cross

sectional approach is that one cannot econometrically control for unobservable differences across firms

and households, which may be correlated with weather/climate. If that is the case, the coefficients

on the weather variables and corresponding impacts estimates may be biased.

Instead of looking at a cross section of firms or households, Franco and Sanstad (2008) explain
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pure time series variation in hourly electricity load at the grid level over the course of a year. They use

data reported by the California Independent System Operator (CalISO) for 2004 and regress it on a

population weighted average of daily temperature. The estimates show a nonlinear impact of average

temperature on electricity load, and a linear impact of maximum temperature on peak demand. They

link the econometric model to climate model output from three different global circulation models

(GCMs) forced using three Intergovernmental Panel for Climate Change (IPCC) scenarios (A1Fi, A2,

and B1) to simulate the increase in annual electricity and peak load from 2005-2099. Relative to the

1961-1990 base period, the range of increases in electricity and peak load demands are 0.9%-20.3%

and 1.0%-19.3%, respectively. Crowley and Joutz (2003) use a similar approach where they estimate

the impact of temperature on electricity load using hourly data in the Pennsylvania, New Jersey, and

Maryland Interconnection. Some key differences, however, are that they control for time-fixed effects

and define the temperature variable in terms of heating and cooling degree days. They find that a

2◦C (3.6◦F) increase in temperature results in an increase in energy consumption of 3.8% of actual

consumption, which is similar to the impact estimated by Baxter and Calandri (1992).

Deschênes and Greenstone (2007) provide the first panel data-based approach to estimating

the impacts of climate change on residential electricity consumption. They explain variation in U.S.

state-level annual panel data of residential electricity consumption using flexible functional forms

of daily mean temperatures. The identification strategy behind their paper, which is one we will

adopt here as well, relies on random fluctuations in weather to identify climate effects on electricity

consumption. The model includes state fixed effects, census division by year fixed effects, and controls

for precipitation, population, and income. The temperature data enter the model as the number of

days in 20 predetermined temperature intervals. The authors find a U-shaped response function

where electricity consumption is higher on very cold and hot days. The impact of climate change on

annual electricity consumption by 2099 is in the range of 15%-30% of the baseline estimation or 15 to

35 billion (2006 US$). The panel data approach allows one to control for differences in unobservables

across the units of observation, resulting in consistent estimates of the coefficients on temperature.

The current paper is the first paper using a panel of household level electricity billing data

to examine the impact of climate change on residential electricity consumption. Through a unique

agreement with California’s three largest investor-owned utilities, we gained access to their complete
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billing data for the years 2003-2006. We identify the effect of temperature on electricity consumption

using within household variation in temperature, which is made possible through variation in the

start dates and lengths of billing periods across households. Since our dataset is a panel, we can

control for household fixed effects, month fixed effects, and year fixed effects. The drawback of this

dataset is that the only other reliable information we have about each individual household is price

and the five-digit ZIP code location.

3. Data

3.1 Residential Billing Data

The University of California Energy Institute jointly with California’s investor-owned utilities es-

tablished a confidential data center, which contains the complete billing history for all households

serviced by Pacific Gas and Electric, Southern California Edison, and San Diego Gas and Electric for

the years 2003-2006. These three utilities provide electricity to roughly 80% of California households.

The data set contains the complete information for each residential customer’s bills over the

four year period. Specifically, we observe an ID for the physical location, a service account number1,

bill start-date, bill end-date, total electricity consumption (in kilowatt-hours, kWh) and the total

amount of the bill (in $) for each billing cycle as well as the five-digit ZIP code of the premises.

Only customers who were individually metered are included in the data set. For the purpose of this

paper, we define a customer as a unique combination of premise and service account number. It is

important to note that each billing cycle does not follow the calendar month and the length of the

billing cycle varies across households with the vast majority of households being billed on a 25-35

day cycle. While we have data covering additional years for two of the utilities, we limit the study to

the years 2003 to 2006, to obtain equal coverage. Hereafter, we will refer to this data set as “billing

data”. Figure 1 displays the ZIP codes we have data for, which is the majority of the state.

Due to the difference in climate conditions across the state, California is divided into 16

1The premise identification number does not change with the occupant of the residence. The service account number,
however, changes with the occupant of the residence.
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building climate zones, each of which require different minimum efficiency building standards specified

in an energy code. We expect this difference in building standards to lead to a different impact of

temperature change on electricity consumption across climate zones. We will therefore estimate the

impact of mean daily temperature on electricity consumption separately for each climate zone. We

assign each household to a climate zone via their five-digit ZIP code through a mapping, which we

obtained from the California Energy Commission. The climate zones are depicted in Figure 2.

The billing data set contains 300 million observations, which exceeds our ability to conduct

estimation using standard statistical software. We therefore resort to sampling from the population

of residential households to conduct econometric estimation. We designed the following sampling

strategy. First we only sample from households with regular billing cycles, namely 25-35 days in each

billing cycle and which have at least 35 bills over the period of 2003-2006.2 We also removed bills

with an average daily consumption less than 2 kWh or more than 80 kWh. The reason for this is

our concern that these outliers are not residential homes, but rather vacation homes and small scale

“home based manufacturing and agricultural facilities”. Combined with the fact that our data does

not contain single-metered multi-family homes, our sampling strategy is likely to result in a slight

under representation of multifamily and smaller single family homes. These are more likely to be

rental properties than larger single family units. Our results should be interpreted keeping this in

mind.3

From the population subject to the restrictions above, we take a random sample from each ZIP

code, making sure that the relative sample sizes reflect the relative sizes of the population by ZIP code.

We draw the largest possible representative sample from this population given our computational

constraints. For each climate zone we test whether the mean daily consumption across bills for our

sample is different from the population mean and fail to reject the null of equality, suggesting that

our sampling is indeed random, subject to the sample restrictions discussed above. We proceed with

estimation of our models by climate zone, which makes concerns about sampling weights mute. Figure

2With the regular billing cycle, there should be 48 bills for the households in our sample during the period 2003 to
2006.

3After removing outlier bills, we compared the population average daily consumption of bills with billing cycles
ranging from 25-35 days to the average daily consumption of bills for any length. The average daily consumption by
climate zone in the subset of bills we sample from is roughly 1

10

th of a standard deviation higher than the mean daily
consumption of the complete population including bills of any length.
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3 displays the spatial distribution of 2006 consumption shares across ZIP codes.

Finally, California has a popular program for low-income families - California Alternate Rates

for Energy (CARE) - where program eligible customers receive a 20% discount on electric and natural

gas bills. Eligibility requires that total household income is at or below 200% of federal poverty

level. For the first set of models, we exclude these households from our sample. We then explore the

robustness of our simulations by including these households in a separate simulation. The concern here

is that omitting these smaller homes with lower HVAC saturation rates may lead to an overestimation

of impacts.

No single ZIP code is responsible for more than 0.5% of total consumption. Table 1 displays

the summary statistics of our consumption sample by climate zone. There is great variability in

average usage across climate zones, with the central coast’s (zone 3) average consumption per bill at

roughly 60% that of the interior southern zone 15. The average electricity price is almost identical

across zones, at 13 cents per kWh.

3.2 Weather Data

To generate daily weather observation to be matched with the household electricity consumption data,

we use the Cooperative Station Dataset published by National Oceanic and Atmospheric Administra-

tion’s (NOAA) National Climate Data Center (NCDC). The dataset contains daily observations from

more than 20,000 cooperative weather stations in the United States, U.S. Caribbean Islands, U.S.

Pacific Islands, and Puerto Rico. Data coverage varies by station. Since our electricity data cover

the state of California for the years 2003-2006, the dataset contains 370 weather stations reporting

daily data. In the dataset we observe daily minimum and maximum temperature as well as total

daily precipitation and snowfall. Since the closest meaningful geographic identifier of our households

is the five-digit postal ZIP code, we select stations as follows. First, we exclude any stations not

reporting data in all years. Further we exclude stations reporting fewer than 300 observations in

any single year and stations at elevations more than 7000 feet above sea level, which leaves us with

269 “valid” weather stations.4 Figure 1 displays the distribution of these weather stations across the

4The cutoff of 300 valid days is admittedly arbitrary. If we limit the set of weather stations to the ones providing
a complete record, we would lose roughly half of all stations. We conducted robustness checks using different cutoff
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state. While there is good geographic coverage of weather stations for our sample, we do not have a

unique weather station reporting data for each ZIP code. To assign a daily value for temperature and

rainfall, we need to assign a weather station to each ZIP code. We calculate the Vincenty distance

of a ZIP code’s centroid to all valid weather stations and assign the closest weather station to that

ZIP code. As a consequence of this procedure, each weather station on average provides data for

approximately ten ZIP codes.

Since we do not observe daily electricity consumption by household, but rather monthly bills

for billing periods of differing length, we require a complete set of daily weather observations. The

NCDC data have a number of missing values, which we fill in using the following algorithm. First,

we calculate the Vincenty distance of each ZIP code’s geographic centroid to all qualifying weather

stations. We then identify the ten closest weather stations to each centroid, provided that each is less

than 50 miles from the monitor. Of these stations, we identify the ”primary station” as the closest

station reporting data for at least 200 days a year. We fill in missing values by first regressing, for

observations in which the primary weather station was active, the relevant climate weather variable

for the primary station onto the same variable for the remaining nine closest stations. We use the

predicted values from that regression to replace missing values. Following this step, primary station

observations are still missing whenever one of the remaining nine closest stations is also missing an

observation. To estimate the remaining missing values, we repeat the above step with the 8 closest

stations, then the 7 closest, etc. To check the performance of our algorithm, we conduct the following

experiment. First, we select the set of data points for which the primary weather station has an

observation. We then randomly set 10% of the temperature data for this station to missing. After

applying the algorithm described above to this sample, we compare the predicted temperature data

to the observations we had set aside. Even for observations in which a single additional weather

station was used to predict a missing temperature, the correlation coefficient between actual and

predicted temperatures exceeds 0.95. Plotting the actual and predicted series against each other

provides an almost perfect fit. We therefore feel confident that our algorithm provides us with a close

representation of the true data generating process for missing weather observations. We end up with

a complete set of time series for minimum temperature, maximum temperature and precipitation for

numbers and the results are robust.
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the 269 weather stations in our sample. For the remainder of our empirical analysis, we use these

patched series as our observations of weather.5

3.3 Other Data

In addition to the quantity consumed and average bill amount, all we know about the households

is the five-digit ZIP code in which they are located. We purchased socio demographics at the ZIP

code level from a firm aggregating this information from census estimates (zip-codes.com). We only

observe these data for a single year (2006). The variables we will make use of are total population and

average household income. The final sample used for estimation comprises households in ZIP codes

which make up 81% of California’s population. Table 2 displays summary statistics for all ZIP codes

in California with registered residential population, broken down by whether we observe households

in a given ZIP or not. We observe households for 1,325 ZIP codes and do not observe households for

239 ZIP codes. The 239 ZIP codes are not served by the three utilities, which provided us with access

to their billing data. Table 2 shows that the ZIP codes in our sample are more populated, have larger

households, are wealthier, and are at lower elevations. There seems to be no statistically significant

difference in population, median age, or land area. Taking these differences into consideration is

important when judging the external validity of our estimation and simulation results.

4. Econometric Estimation

As discussed in the previous section, we observed each household’s monthly electricity bill for the

period 2003-2006. Equation (1) below shows our main estimating equation, which is a simple log-

linear specification commonly employed in aggregate electricity demand and climate change impacts

estimation (e.g., Deschênes and Greenstone 2007).

log(qit) =
k∑

p=1

βpDpit + γZit + αi + φm + γy + εit (1)

log(qit) is the natural logarithm of household i’s electricity consumed in kilowatt-hours during

5We also tried an inverse distance weighting algorithm for filling in missing data and the results are almost identical.
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billing period t. For estimation purposes our unit of observation is a unique combination of premise

and service account number, which is associated with an individual and structure. We thereby

avoid the issue of having individuals moving to different structures with more or less efficient capital

or residents with different preferences over electricity consumption moving in and out of a given

structure. California’s housing stock varies greatly across climate zones in its energy efficiency and

installed energy consuming capital. We estimate equation (1) separately for each of the sixteen

climate zones discussed in the data section, which are also displayed in Figure 2. The motivation

for doing so is that we would expect the relationship between consumption and temperature to vary

across these zones, as there is a stronger tendency to heat in the more northern and higher altitude

zones and a stronger tendency to cool, but little heating taking place in the hotter interior zones of

California.

The main variables of interest in this paper are those measuring temperature. The last five

columns of Table 1 display the median, first, fifth, ninetieth, and ninety-fifth percentile of the mean

daily temperature distribution by climate zone. The table shows the tremendous differences in this

distribution across climate zones. The south eastern areas of the state for example, are significantly

hotter on average, yet also have greater variances.

Following recent trends in the literature we include our temperature variables in a way that

imposes a minimal number of functional form restrictions in order to capture potentially important

nonlinearities of the outcome of interest in weather (e.g., Schlenker and Roberts 2006). We achieve

this by sorting each day’s mean temperature experienced by household i into one of k temperature

bins.6 In order to define a set of temperature bins, there are two options found in the literature.

The first is to sort each day into a bin defined by specific equidistant (e.g., 5 degree Fahrenheit)

cutoffs. The second approach is to split each of the sixteen zones temperature distributions into a set

of percentiles and use those as the bins used for sorting. The latter strategy allows for more precisely

estimated coefficients, since there is guaranteed coverage in each bin. The equidistant bins strategy

runs the risk of having very few observations in some bins and therefore leading to unstable coefficient

estimation, especially at the extremes.

6We use mean daily temperature as our temperature measure. This allows a flexible functional form in a single
variable. An alternate strategy we will explore in future work is separating the temperature variables into minimum
and maximum temperature, which are highly correlated with our mean temperature measure.
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There is no clear guidance in the literature on which approach provides better estimates and

we therefore conduct our simulations using both approaches. For the percentile strategy, we split the

temperature distribution into deciles, yet break down the upper and bottom decile further to include

buckets for the first, fifth, ninety-fifth, and ninety-ninth percentile to account for extreme cold/heat

days. We therefore have a set of 14 buckets for each of the sixteen climate zones. The thresholds for

each vary by climate zone. For the equidistant bins approach, we split the mean daily temperature

for each household into a set of 5 degree bins. In order to avoid the problem of imprecise estimation

at the tails due to insufficient data coverage, we require that each bin have at least 1% of the data

values in it for the highest and lowest bin. The highest and lowest bins in each zone therefore contain

a few values which exceed the 5 degree threshold.

For each household, bin definition and billing period we then counted the number of days the

mean daily temperature falls into each bin and recorded this as Dpit. The main coefficients of interest

to the later simulation exercise are the βp’s, which measure the impact of one more day with a mean

temperature falling into bin p on the log of household electricity consumption. For small values,

βp’s interpretation is approximately the percent change in household electricity consumption due to

experiencing one additional day in that temperature bin.

Zit is a vector of observable confounding variables which vary across billing periods and house-

holds. The first of two major confounders we observe at the household level are the average electricity

price for each household for a given billing period. California utilities price residential electricity on a

block rate structure. The average price experienced by each household in a given period is therefore

not exogenous, since marginal price depends on consumption (qit). Identifying the price elasticity

of demand in this setting is problematic, and a variety of approaches have been proposed (e.g.,

Hanemann 1984; Reiss and White 2005). The maximum likelihood approaches are computationally

intensive and given our sample size cannot be feasibly implemented here. More importantly however,

we do not observe other important characteristics of households (e.g., income) which would allow us to

provide credible estimates of these elasticities. For later simulation we will rely on the income specific

price elasticities provided by Reiss and White (2005), who used a smaller sample of more detailed

data based on the national level RECS survey. We have run our models by including price directly,

instrumenting for it using lagged prices and omitting it from estimation. The estimation results are
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almost identical for all three approaches, which is reassuring. While one could tell a story that higher

temperatures lead to higher consumption and therefore higher marginal prices for some households,

this bias seems to be negligible given our estimation results. In the estimation and simulation results

presented in this paper, we omit the average price from our main regression.7 The second major time

varying confounder is precipitation in the form of rainfall. We calculate the amount of total rainfall

for each of the 269 weather stations, filling in missing values using the same algorithm discussed in

the previous section. We control for rainfall using a second order polynomial in all regressions.

The αi are household fixed effects, which control for time invariant unobservables for each

household. The φm are month-specific fixed effects, which control for unobservable shocks to electricity

consumption common to all households. The γy are year fixed effects which control for yearly shocks

common to all households. To credibly identify the effects of temperature on the log of electricity

consumption, we require that the residuals conditional on all right hand side variables be orthogonal

to the temperature variables, which can be expressed as E[εitDpit|D−pit, Zit, αi, φm, γy] = 0. Since

we control for household fixed effects, identification comes from within household variation in daily

temperature after controlling for shocks common to all households, rainfall, and average prices.

We estimate equation (1) for each climate zone using a least squares fitting criterion and

a clustered variance covariance matrix clustered at the zip code.8 Figure 4 plots the estimated

temperature response coefficients for each of the climate zones against the midpoints of the bins for

the percentile and equidistant bin approaches. The coefficient estimates are almost identical, which

is reassuring. We do not display the confidence intervals around the estimated coefficients. The

coefficients are so tightly estimated that for visual appearance, displaying the confidence intervals

simply makes the lines appear thick. From this figure, several things stand out. First, there is

tremendous heterogeneity in the shape of the temperature response of electricity consumption across

climate zones. Many zones have almost flat temperature response functions, such as southern coastal

zones (5, 6, and 7). Other zones display a very slight negative slope at lower temperatures, especially

the northern areas of the state (1, 2, and 11), indicating a decreased consumption for space heating

7The full set of estination results are available upon request from the authors.
8Clustering along the time dimension would be desirable, but due to the temporal nesting structure of the billing

dates not possible to our knowledge. We also used the White sandwich variance covariance matrix, which yielded
smaller standard errors than the ones obtained from clustering by zip.
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as temperatures increase. California’s households mostly use natural gas for space heating, which

explains why for most areas we do not see a steeper negative slope at lower temperatures. This is

consistent for a lower share of homes using electricity for heat in California (22%) than the national

average (30%). Further, many of these electric heaters are likely located in areas with very low heating

demand, given the high cost of using electricity for space heating compared to using natural gas. While

there is use of electricity for heating directly, a significant share of the increased consumption at lower

temperatures is likely to stem from the operation of fans for natural gas heaters. On the other end

of the spectrum, for most zones in the interior and southern part of the state we note a significant

increase in electricity consumption in the highest temperature bins (4, 8, 9, 10, 11, 12, 13, and

15). We further note that the relative magnitude of this approximate percent increase in household

electricity consumption in the higher temperature bins varies greatly across zones as indicated by the

differential in slopes at the higher temperatures across zones.

We now turn to simulating electricity consumption under different scenarios of climate change

using these heterogeneous response functions as the underlying functional form relationship between

household electricity consumption and temperature.

5. Simulations

In this section we simulate the impacts of climate change on electricity consumption under two differ-

ent SRES emissions scenarios, three different electricity price scenarios, and three different population

growth scenarios. We calculate a simulated trajectory of aggregate electricity consumption from the

residential sector until the year 2100, which is standard in the climate change literature. To under-

stand the impact of uncertainty surrounding these three different factors on aggregate consumption,

we introduce them sequentially.

5.1 Temperature Simulations

To simulate the effect of a changing climate on residential electricity consumption, we require es-

timates of the climate sensitivity of residential electricity consumption as well as a counterfactual
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climate. In the simulation for this section we use the estimated climate response parameters shown in

Figure 4. Using these estimates as the basis of our simulation has several strong implications. First,

using the estimated βp parameters implies that the climate responsiveness of consumption within

climate zones remains constant throughout the century. This is a strong assumption, since we would

expect that households in zones which currently do not require cooling equipment may potentially

invest in such equipment if the climate becomes warmer. This would lead us to believe that the tem-

perature responsiveness in higher temperature bins would increase over time. On the other hand, one

could potentially foresee policy actions such as more stringent appliance standards, which improve

the energy efficiency of appliances such as air conditioners. This would decrease the electricity per

cooling unit required and shift the temperature response curve downwards in the higher buckets. We

will deal with this issue explicitly in section 5.4.

As is standard in this literature, the counterfactual climate is generated by a General Cir-

culation Model (GCM). These numerical simulation models generate predictions of past and future

climate under different scenarios of atmospheric greenhouse gas (GHG) concentrations. The quanti-

tative projections of global climate change conducted under the auspices of the IPCC and applied in

this study are driven by modeled simulations of two sets of projections of twenty-first century social

and economic development around the world, the so-called “A2” and “B1” storylines in the 2000 Spe-

cial Report on Emissions Scenarios (SRES) (IPCC 2000). The SRES study was conducted as part of

the IPCC’s Third Assessment Report, released in 2001. The A2 and B1 storylines and their quantita-

tive representations represent two quite different possible trajectories for the world economy, society,

and energy system, and imply divergent future anthropogenic emissions, with projected emissions in

the A2 being substantially higher. The A2 scenario represents a “differentiated world”, with respect

to demographics, economic growth, resource use, energy systems, and cultural factors, resulting in

continued growth in global CO2 emissions, which reach nearly 30 gigatons of carbon (GtC) annually

in the marker scenario by 2100. The B1 scenario can be characterized as a “global sustainability”

scenario. Worldwide, environmental protection and quality and human development emerge as key

priorities, and there is an increase in international cooperation to address them as well as conver-

gence in other dimensions. A demographic transition results in global population peaking around

mid-century and declining thereafter, reaching roughly 7 billion by 2100. Economic growth rates are
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higher than in A2, so that global economic output in 2100 is approximately one-third greater. In the

B1 marker scenario, annual emissions reach about 12 GtC in 2040 and decline to about 4 GtC in

2100.

We simulate consumption for each scenario using the National Center for Atmospheric Re-

search Parallel Climate Model 1 (NCAR). These models were provided to us in their downscaled

version for California using the Bias Correction and Spatial Downscaling (BCSD) and the Con-

structed Analogues (CA) algorithms (Maurer and Hidalgo 2008). There is no clear guidance in the

literature as to which algorithm is preferable for impacts estimation. We therefore provide simulation

results using both methods. To obtain estimates for a percent increase in electricity consumption for

the representative household in ZIP code j and period t + h, we use the following relation:

qj,t+h

qj,t

=
exp

(∑k
p=1 β̂pjDpj,t+h

)

exp
(∑k

p=1 β̂pjDpj,t

) (2)

We implicitly assume that the year fixed effect and remaining right hand side variables are

the same for period t + h and period t, which is a standard assumption made in the majority of the

impacts literature. Figure 5 shows the change in the number of days spent in each 5 degree bin of

the temperature distribution from 1980-1999 to 2080-2099 using the NCAR PCM forced by scenarios

A2 and B1 for six selected California locations. A clear upward shift of the temperature distribution

is apparent for all six locations. For locations with upward sloping temperature response functions,

this entails increases in electricity consumption due to more days spent in higher temperature bins.

Inspecting these graphs for all major urban centers in California, in addition to the six displayed

here, confirms the pattern emerging from Figure 5. The areas with the steepest response functions

at higher temperature bins happen to be the locations with highest increases in the number of high

and extremely high temperature days. While this is not surprising, this correspondence leads to very

large increases in electricity consumption in areas of the state experiencing the largest increases in

temperature, which also happen to be the most temperature sensitive in consumption - essentially

the southeastern parts of the state and the Central Valley.

The first simulation of interest generates counterfactuals for the percent increase in residential

electricity consumption by a representative household in each ZIP code. We feed each of the two
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climate model scenarios through equation (2) using the 1980-1999 average number of days in each

temperature bin as the baseline. Figure 6 displays the predicted percent increase in per household

consumption for the periods 2020-2039, 2040-2059, 2060-2079 and 2080-2099 using the NCAR PCM

model forced by the A2 scenario using the percentile bins. Figure 7 displays the simulation results

for the SRES forcing scenario B1.

Changes in per household consumption are driven by two factors: the shape of the weather-

consumption relationship and the change in projected climate relative to the 1980-1999 period. The

maps show that for most of California, electricity consumption at the household level will increase.

The increases are largest for the Central Valley and areas in south eastern California, which have

a very steep temperature response of consumption and large projected increases in extreme heat

days. Simulation results for this model and scenario suggest that some ZIP codes in the Central

Valley by the end of the century may see increases in household consumption in excess of 100%. The

map also shows that a significant number of ZIP codes are expected to see drops in household level

electricity consumption-even at the end of the current century. It is important to keep in mind that

the current projections assume no change in the temperature electricity response curve. Specifically,

the current simulation rules out an increased penetration of air conditioners in areas with currently

low penetration rates (e.g., Santa Barbara) or improvements in the efficiency of these devices. The

projected drops essentially arise from slightly reduced heating demand. We conduct a simulation

below, which addresses this concern. Figure 7 displays the simulated household increase in electricity

consumption by ZIP code for the lower emissions scenario B1. The maps display an almost identical

spatial pattern, yet a smaller overall increase in consumption.

While changes in per household consumption are interesting, from a capacity planning per-

spective it is overall consumption that is of central interest from this simulation. We use the projected

percent increase in household consumption by ZIP code and calculate the weighted overall average

increase, using the number of households by ZIP code as weights, in order to arrive at an aggregate

percent increase in consumption. The top panel of Table 3 displays these simulation results for ag-

gregate consumption. Predicted aggregate consumption across all ZIP codes in our dataset ranges

from an 18% increase in total consumption to 55% increase in total consumption by the end of the

century. To put this into perspective, this represents an annual growth rate of aggregate electricity
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consumption between 0.17% and 0.44%, if all other factors are equal. These growth rates accelerate

from period to period, as the number of extreme heat days predicted from the GCMs increases in

a slightly non-linear fashion. For the first 20-year period, the simulated annual growth rates range

from 0.10% per year to 0.29% per year. Since these simulations hold population constant, the correct

comparison of these growth rates for the current simulation is therefore one with current growth in

per capita household electricity consumption for California. Figure 8 depicts historical per capita

electricity consumption since 1960 (EIA 2008). The average annual growth rate in per capita con-

sumption during 1960-1973 was approximately 7% and slowed down to a remarkable 0.29% during

1974-1995. Growth rates during the last decade of available data have increased to a higher rate of

0.63%, and this difference in growth rates is statistically significant. The estimates from our simu-

lation are lower than this growth rate and for the 2000-2019 period suggest that 26%-60% of this

growth may be due to changing climate.

5.2 Temperature and Price Simulations

The assumed flat prices from the previous section should be considered as a comparison benchmark.

It is meaningful and informative to imagine climate change imposed on today’s conditions. It is worth

pointing out, however, that real residential electricity prices in California have been on average flat

since the early-mid 1970s spike. In this section we will relax the assumption of constant prices and

provide simulation results for increasing electricity prices under a changing climate.

While we have no guidance on what will happen to retail electricity prices 20 years or further

out into the future, we construct two scenarios. The first scenario we consider is a discrete 30%

increase in real prices starting in 2020 and remaining at that level for the remainder of the century.

This scenario is based upon current estimates of the average statewide electricity rate impact by 2020

of AB 32 compliance combined with natural gas prices to generators within the electric power sector.

These estimates are based on analysis commissioned by the California Public Utilities Commission.

This scenario represents the minimum to which California is committed in the realm of electricity

rates. This scenario could be interpreted as one assuming very optimistic technological developments

post 2030, implying that radical CO2 reduction does not entail any cost increases, or as a California

17



and worldwide failure to pursue dramatic CO2 reductions such that California’s AB 32 effort is not

expanded. The second scenario we consider is one where electricity prices increase by 30% in 2020

and again by 30% in 2040 and remain at that level thereafter. We consider the additional increase

in mid-century price in essence as an “increasing marginal cost” story. Under this scenario, AB 32

is successfully implemented and a path towards achieving the 2050 targets is put in place. These

additional steps are assumed to be proportionally more expensive.

To simulate the effects of price changes on electricity consumption, we require good estimates

of the price elasticity of demand. In this paper we rely on the estimates of mean price elasticity

provided by Reiss and White (2005). Specifically, they provide a set of average price elasticities for

different income groups, which we adopt here. Since we do not observe household income, we assign

a value of price elasticity to each ZIP code based on the average household income for that ZIP code.

Households are separated into four buckets, delineated by $18,000, $37,000, $60,000 with estimated

price elasticities of -0.49, -0.34, -0.37, and -0.29 respectively. It is important to note that these price

elasticities are short-run price elasticities. These are valid if one assumes a sudden increase in prices,

as we do in this paper. To our knowledge, reliable long-term price elasticities based on micro data for

California are not available, but in theory they are larger than the elasticities used in this paper. The

second panel in Table 3 presents the simulation results under the two different scenarios of climate

change given a sudden persistent increase in electricity prices in the year 2020. Given the range of

price elasticity estimates, it is not surprising that the simulated increases in residential electricity

consumption for the first period after the price increase are roughly 6%-12% lower than the predicted

increases given constant prices. For the NCAR model under both considered forcing scenarios and

both downscaling algorithms, the path of electricity consumption under these price scenarios returns

to levels below its 1980-2000 mean for the 2020-2040 period, given this assumed price trajectory.

The third panel in Table 3 presents the simulation results for both forcing scenarios and

downscaling methods given the high price scenario. Given the significant increase in prices after 2020

and again in 2040, the consumption trajectory stays flat for the entire simulation period using the

NCAR model for the B1 scenario. The higher forcing scenario A2 shows a relatively flat trajectory,

yet still predicts significant increases in consumption for the last decades of the century-even in the

face of these higher prices. It is important to note that these effects are conditional on the estimated
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price elasticities being correct. Smaller elasticities would translate into price based policies, such as

taxes or cap and trade systems, being less effective at curbing demand compared to standards.

5.3 Temperature and Population

California has experienced an almost seven-fold increase in its population since 1929 (BEA 2008).

California’s population growth rate over that period (2.45%) was more than twice that of the national

average (1.17%). Over the past 50 years California’s population has grown by 22 million people to

almost 37 million in 2007 (BEA 2008). To predict what the trajectory of California’s population will

look like until the year 2100, many factors have to be taken into account. The four key components

driving future population are net international migration, net domestic migration, mortality rates,

and fertility rates. The State of California provides forecasts fifty-five years out of sample, which is

problematic since we are interested in simulating end-of-century electricity consumption. The Public

Policy Institute of California has generated a set of population projections until 2100 at the county

level.

The three sets of projections developed for California and its counties are designed to provide

a subjective assessment of the uncertainty of the state’s future population. The projections present

three very different demographic futures. In the low series, population growth slows as birth rates

decline, migration out of the state accelerates, and mortality rates show little improvement. In the

high series, population growth accelerates as birth rates increase, migration increases, and mortality

declines. The middle series, consistent with (but not identical to) the California Department of

Finance projections assumes future growth in California will be similar to patterns observed over

the state’s recent history, patterns that include a moderation of previous growth rates but still large

absolute changes in the state’s population. In the middle series, international migration flows to

California remain strong to mid-century and then subside, net domestic migration remains negative

but of small magnitude, fertility levels (as measured by total fertility rates) decline slightly, and

age-specific mortality rates continue to improve. The high projection is equivalent to an overall

growth rate of 1.47% per year and results in a quadrupling of population to 148 million by the end

of the century. The middle series results in a 0.88% annual growth rate and 2.3-fold increase in total
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population. The low series is equivalent to a 0.18% growth rate and results in a population 18%

higher than today’s. Projections are available at the county level and not at the ZIP code level. We

therefore assume that each ZIP code in the same county experiences an identical growth rate.

Table 4 displays the simulated aggregate electricity consumption given the three population

growth scenarios. This table holds prices constant at the current level and therefore presents a “worst

case scenario”. It is not surprising to see that population uncertainty has much larger consequences

for simulated total electricity consumption compared to uncertainty over climate or uncertainty over

prices. The simulations for the low forcing scenario B1 and the low population growth scenario show

65%-70% increase in residential electricity consumption. The same figure for the medium growth

scenario predicts a 179%-189% increase in consumption and the worst case scenario predicts a 350%

increase in consumption. If we consider the A2 forcing, the predicted low population average increase

in consumption is a 118% increase or a 478% increase for the high population growth scenario.

5.4 Adaptation Simulations

As mentioned at the beginning of this chapter, all previous simulation exercises we have conducted so

far assumed that the temperature response functions are fixed for each climate zone until the end of

the century. This implicitly assumes that people do not adapt to a changing climate, which is a crucial

and potentially non-credible assumption. If the coastal areas of California will experience higher mean

temperatures and more frequent extreme heat events, it is likely that newly constructed homes will

have built in central air conditioning. Further, owners of existing homes may install air conditioning

equipment ex-post. This type of adaptation would result in a stronger temperature response at higher

temperatures, whereby the temperature elasticity in the highest bins would increase over time. On

the other hand, forward-looking planners and policy makers may put in place more stringent building

codes for new construction combined with more stringent appliance standards, which would decrease

the energy intensity of existing capital and homes. California has a long history of these policies and

is considered a worldwide leader in these energy efficiency policies. These more stringent policies

are designed to offset future increases in consumption. Bottom up engineering models by design can

capture the impact of building- and device-specific changes due to regulations on energy consumption.
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Their drawback, however, is that they have to rely on a large number of assumptions regarding the

composition of the housing stock and appliances, as well as making behavioral assumptions about

the individuals using them.

While we cannot conduct a detailed simulation incorporating specific policy changes, we con-

duct the following thought experiment. Our baseline simulation has assumed that each climate zone

maintains its specific response function throughout the remainder of the century. To bound how

important the heterogeneity in the response function is to the aggregate simulation results, we design

an “almost best case” scenario, where we assume that all zones have the response function of coastal

San Diego (Zone 7). This zone’s response function is relatively flat. The left panel of Table 5 shows

the simulation results assuming this optimistic scenario.

Worst-case increases under forcing A2 results in a 3% increase in electricity consumption

by the end of the century, which is essentially flat compared to the baseline simulation shown in

Table 3. Next we come up with an “almost worst case” scenario, where we let all of California

adopt the response function of Zone 12, the Central Valley. The right panel of Table 5 shows the

results from this simulation. The overall increases in simulated electricity consumption are more than

twice those of the baseline scenario across simulations considered in Table 3. The large impact of the

assumed temperature responsiveness function on overall simulated residential electricity consumption

underlines the importance of improving energy efficiency of buildings and appliances.

5.5 CARE Customers

All of the results presented in the paper so far have excluded CARE customers from the estimation

sample. One potential concern is that these households live on fewer square feet, are more likely

to be renting, have lower average use and lower HVAC saturation rates. This would suggest that

the temperature response for these households is potentially lower than for the households in the full

sample. The number of CARE households in California is large. SCE reports over 1 million customers

on CARE, which is roughly one quarter of residential accounts. For PG&E and SDG&E the share

of accounts is roughly 20%. We therefore separately sample from only the CARE households by

ZIP code, adopting the same sampling restrictions as in the non-CARE sample. We then estimate
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temperature response functions by climate zone, which are slightly less steep in the higher temperature

bins. We then conduct the simulations for the CARE households separately. To obtain an estimate

of the overall impacts, when we include CARE, we weight impacts for each ZIP code by the share

of CARE to non-CARE households in that ZIP code. Table 6 reports these results for the BCSD

downscaling algorithm and equidistant bin simulations. As suspected, the CARE households are

slightly less affected by higher temperatures, yet the overall weighted average is very close to the

simulations presented in table 3.

6. Conclusions

This study has provided the first estimates of California’s residential electricity consumption under

climate change based on a large set of panel micro-data. We use random and therefore exogenous

weather shocks to identify the effect of weather on household electricity consumption. We link climate

zone specific weather response functions to a state of the art downscaled global circulation model to

simulate growth in aggregate electricity consumption. We further incorporate potentially higher

prices and population levels to provide estimates of the relative sensitivity of aggregate consumption

to changes in these factors. Finally we show estimates of aggregate consumption under an optimistic

and pessimistic scenario of temperature response.

There are several novel findings from this paper. First, simulation results suggest much larger

effects of climate change on electricity consumption than previous studies. This is largely due to the

highly non-linear response of consumption at higher temperatures. Our results are consistent with

the findings by Greenstone and Deschênes (2007). They find a slightly smaller effect using national

data. It is not surprising that impacts for California, a state with a smaller heating demand (electric

or otherwise), would be bigger. Second, temperature response varies greatly across the climate

zones in California - from flat to U-shaped to hockey stick shaped. This suggests that aggregating

data over the entire state may ignore important nonlinearities, which combined with heterogeneous

climate changes across the state may lead to underestimates of future electricity consumption. Third,

population uncertainty leads to larger uncertainty over consumption than uncertainty over climate
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change. Finally, policies aimed at reducing the weather sensitivity of consumption can play a large

role in reducing future electricity consumption. Specifically, region specific HVAC standards may

play a significant role in offsetting some of the projecting increases in consumption.
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Figure 1. Observed residential electricity consumption 2003–2006 and NOAA cooperative 
weather stations

Note: The map displays five-digit zip codes with available geographic boundaries. 
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Figure 2. California Energy Commission building climate zones 

Source: California Energy Commission. 
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Figure 3. Share of total residential electricity consumption for 2006 by five-digit zip code 
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Figure 4. Estimated climate response functions for CEC climate zones 1–8.

Notes: The panels display the estimated temperature slope coefficients for each of the fourteen percentile bins (blue) 
and the equidistant bins (red) against the midpoint of each bin. The plots were normalized using the coefficient 
estimate for the 60–65 temperature bin.
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Figure 4 continued. Estimated climate response functions for CEC climate zones 9–16.

Notes: The panels display the estimated temperature slope coefficients for each of the fourteen percentile bins 

(blue) and the equidistant bins (red) against the midpoint of each bin. The plots were normalized using the 

coefficient estimate for the 60–65 temperature bin.
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Figure 5. Change in number of days in each 5-degree temperature bin for 2080–2099 relative to 
1980–1999 for six selected California cities and IPCC SRES Scenario A2 (Black) and B1 
(White) using the NCAR PCM with the constructed analogues downscaling method
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Figure 6. Simulated increase in household electricity consumption by zip code for the periods 
2020–2039 (a), 2040–2059 (b), 2060–2079 (c), and 2080–2099 (d) in percent over 1980–1999 
simulated consumption. Model NCAR PCM forced by IPCC SRES A2.
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Figure 7. Simulated increase in household electricity consumption by zip code for the periods 
2020–2039 (a), 2040–2059 (b), 2060–2079 (c), and 2080–2099 (d) in percent over 1980–1999 
simulated consumption. Model NCAR PCM forced by IPCC SRES B1.
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Figure 8. California residential per capita electricity consumption

Source: Author’s calculations based on EIA (2008) SEDS data.
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Table 1.  Summary statistics for non-CARE households

Notes: The table displays summary statistics for residential electricity consumption for the sample used in the 

estimation. 

No. of obs No. of HH mean s.d. mean s.d. 1 5 50 95 99
Zone 1 1,459,578 31,879 550 354 0.13 0.03 34.5 37.5 54.7 77.0 80.0
Zone 2 2,999,408 65,539 612 385 0.13 0.03 36.0 39.0 55.5 77.5 80.5
Zone 3 3,200,851 69,875 469 307 0.13 0.02 42.0 44.3 57.0 75.0 78.0
Zone 4 4,232,465 92,294 605 362 0.13 0.03 40.5 42.8 57.8 81.4 85.5
Zone 5 2,621,344 57,123 504 317 0.13 0.03 42.0 44.3 58.8 76.0 78.5
Zone 6 2,970,138 64,145 529 334 0.13 0.03 48.5 50.4 62.0 78.0 81.0
Zone 7 3,886,347 85,169 501 327 0.15 0.04 47.0 48.9 61.5 77.5 80.0
Zone 8 2,324,653 50,373 583 364 0.14 0.03 49.5 51.5 63.3 80.6 83.3
Zone 9 3,067,787 66,231 632 389 0.13 0.03 48.0 50.3 63.0 81.0 83.5
Zone 10 3,202,615 70,088 700 416 0.14 0.03 35.5 39.0 61.0 81.8 84.5
Zone 11 4,106,432 90,245 795 455 0.13 0.03 28.5 32.8 54.8 84.3 87.0
Zone 12 3,123,404 68,342 721 420 0.13 0.03 38.5 40.8 58.5 84.0 87.0
Zone 13 3,827,483 84,493 780 464 0.13 0.03 36.6 39.3 59.0 87.8 90.0
Zone 14 4,028,225 88,086 714 413 0.13 0.03 32.0 35.0 57.5 91.3 95.0
Zone 15 2,456,562 54,895 746 532 0.13 0.03 34.5 37.8 63.8 97.0 99.5
Zone 16 3,401,519 74,644 589 409 0.13 0.02 22.5 26.5 52.3 83.0 86.5

Percentiles Daily Mean Temperature distribution
In Sample (Degree Fahrenheit)

Usage per bill
per billing cycle

(Kwh)

Average price
per billing cycle

($/Kwh)
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Table 2. Summary statistics for zip codes in and out of sample

Variable n Mean
Std. 
Dev. n Mean

Std. 
Dev. Difference

Not In Sample In Sample

Population 239 19.83 20.86 1325 20.39 20.67 0.56
Household Size 239 2.66 0.60 1325 2.79 0.60 0.14***
Household Income 239 39.52 19.39 1325 48.32 21.53 8.80***
House Value 239 200.08 177.33 1325 234.90 177.51 34.83***
Median Age 239 36.92 7.34 1325 36.85 7.50 -0.07
Elevation 239 1081.45 1526.95 1325 439.63 737.94 -642***

Land Area 239 69.66 130.12 1325 68.05 140.45 -1.61



37

Table 3. Simulated percent increase in residential electricity consumption relative to 1980–2000 
for the constant, low price, and high price scenarios

Bin Type Equidistant Percentile
Downscaling BCSD CA BCSD CA
IPCC Scenario A2 B1 A2 B1 A2 B1 A2 B1

Price 
Increase

2000-19 ±0% 5% 2% 5% 3% 6% 3% 5% 3%
2020-39 ±0% 5% 8% 7% 8% 6% 9% 7% 8%
2040-59 ±0% 15% 9% 17% 10% 17% 11% 17% 10%
2060-79 ±0% 24% 15% 28% 16% 28% 17% 28% 16%
2080-99 ±0% 48% 18% 50% 20% 55% 21% 50% 20%

2000-19 ±0% 5% 2% 5% 3% 6% 3% 5% 3%
2020-39 +30% -6% -3% -5% -4% -5% -3% -4% -3%
2040-59 +30% 3% -2% 3% -2% 6% -1% 5% -1%
2060-79 +30% 11% 3% 11% 2% 15% 5% 15% 4%
2080-99 +30% 33% 6% 29% 4% 39% 9% 35% 7%

2000-19 ±0% 5% 2% 5% 3% 6% 3% 5% 3%
2020-39 +30% -6% -3% -5% -4% -5% -3% -4% -3%
2040-59 +60% -9% -13% -8% -13% -6% -12% -7% -12%
2060-79 +60% -1% -9% -1% -10% 2% -7% 2% -8%
2080-99 +60% 18% -6% 15% -7% 24% -4% 20% -5%
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Table 4. Simulated percent increase in residential electricity consumption relative to 1980–2000 
for the low, middle, and high population scenarios

Bin Type
Downscaling
IPCC Scenario A2 B1 A2 B1 A2 B1 A2 B1

Low Population Growth Scenario
2000-19 17% 13% 16% 14% 18% 14% 16% 15%
2020-39 31% 34% 33% 34% 32% 35% 34% 35%
2040-59 48% 41% 50% 41% 52% 42% 53% 42%
2060-79 66% 52% 68% 51% 72% 55% 73% 54%
2080-99 113% 65% 113% 65% 124% 70% 123% 70%

2000-19 19% 15% 18% 16% 19% 16% 18% 16%
2020-39 48% 52% 51% 52% 50% 54% 52% 53%
2040-59 99% 88% 101% 89% 104% 91% 105% 91%
2060-79 154% 133% 157% 133% 164% 139% 166% 138%
2080-99 258% 179% 257% 179% 277% 189% 275% 188%

High Population Growth Scenario
2000-19 23% 19% 22% 20% 23% 20% 22% 20%
2020-39 64% 68% 66% 68% 66% 70% 68% 69%
2040-59 135% 123% 137% 123% 141% 126% 142% 125%
2060-79 240% 212% 243% 211% 252% 219% 254% 218%
2080-99 464% 342% 462% 342% 495% 357% 490% 356%

Medium Population Growth Scenario

BCSD CA BCSD CA
Equidistant Percentile
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Table 5. Simulated percent increase in residential electricity consumption relative to 1980–2000 
assuming a common low (Zone 7) and high (Zone 12) temperature response function

Zone 7 Zone 12
Forcing A2 B1 A2 B1
2000–19 1% -1% 13% 7%
2020–39 1% 1% 5% 7%
2040–59 2% 1% 29% 13%
2060–79 2% 1% 57% 28%

2080–99 3% 0% 122% 40%
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Table 6. Simulated percent increase in residential electricity consumption relative to 1980–2000 
for CARE and non-CARE households. 

 Bin Type
Downscaling
IPCC Scenario A2 B1 A2 B1 A2 B1

Price 
Increase

2000-19 ±0% 5% 2% 4% 2% 5% 2%
2020-39 ±0% 5% 8% 4% 6% 5% 7%
2040-59 ±0% 15% 9% 12% 8% 14% 9%
2060-79 ±0% 24% 15% 20% 12% 23% 14%
2080-99 ±0% 48% 18% 39% 15% 46% 17%

2000-19 ±0% 5% 2% 4% 2% 5% 2%
2020-39 30% -6% -3% -6% -4% -6% -4%
2040-59 30% 3% -2% 1% -3% 2% -2%
2060-79 30% 11% 3% 8% 1% 10% 2%
2080-99 30% 33% 6% 25% 3% 31% 5%

2000-19 ±0% 5% 2% 4% 2% 5% 2%
2020-39 30% -6% -3% -6% -4% -6% -4%
2040-59 60% -9% -13% -11% -14% -9% -13%
2060-79 60% -1% -9% -5% -10% -2% -9%
2080-99 60% 18% -6% 11% -9% 16% -7%

WEIGHTED
Equidistant

BCSD

NON-CARE
EquidistantEquidistant

BCSD

CARE

BCSD


