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Technical Appendix

This appendix contains more detailed proofs than the ones sketched in the article.

Lemma 1: For later reference, we prove a more general version of Lemma 1. In particular, we
cover three cases: (i) the new economy does not exist, and learning only occurs only by observing
the old economy; (ii) the new economy exists, and learning occurs for ¢ € [t*,¢**]; (iii) the new
economy exists, adoption takes place at t** and learning occurs for ¢ > t**. The learning dynamics
for ¢t > t** in the case of no adoption at t** is identical to case (i7). For ¢t > t* we then have

d&t = UtC¢det4—CNUt i1<1—- 0Z0>(izlt (Bl)
sy 0\ 2
o (Ut) g (B2)

where g, ¢ and cy are constants given by

o= () o) (-2

(1,0) if only old economy exists
(c,en) = (1,1) if ¢ >t** and adoption occurs at t** (B4)
(0,1) otherwise
This implies that
~—2 -1 .
o (Ut** +g(t— t**)) if ¢ > t** and switch occurs at t**
Oy = 9 -1 ) (B5)
(at* +g(t t*)) otherwise

Proof: We consider only case (i) and (ii7). The simpler case (i) can be shown using similar steps.
In these two cases, the new economy exists and thus the observation equations are

dpt — ¢ (ﬁ + Cw - pt) dt + 0.0dZ(Lt
dpN = ¢ (p +p— piv) dt + onodZos + on1dZy ¢

where ¢ is given in (B4). Defining s; = (p;, pI¥)’, this can be written compactly as

ds; = (A + Bz + Ci) dt + TdZ

2:<a 0 )
ONO ON,1

Liptser and Shiryaev (1977) show that the process for ;ﬁt = E; [¢] is given by

where C = (c¢, ¢)' and

dip, = 52C' ()~ dZ (B6)

where Z; = (ZM, ZLt)’ follows the process

5 _ -1 dpg dpy



and )
dﬁt _ ~2 2 n—1
E_—(at) c(=x)'c
Substituting C and ¥, we find immediately

c (=)' = (c?, —ep N0 i)

g OON,1 ON,1
Substituting this expression in (B6) and defining ¢ = C’' (£X')"! C we obtain (B1) and (B2) for
ey = 1. Tt is simple to verify that (B5) satisfies (B2), yielding the conclusion. Q.E.D.

It is convenient to rewrite the original processes under the filtered measure. Let b, = log (By)
and b)Y = log (B{V) For ¢t > t* we have

db, = pydt (B7)
dpy, = ¢ (ﬁ + ey — pt) dt + UdZO,t (B8)
dp = Gle= dZot +enGE—— ¢ (1 - —) dZy (B9)
ON,1 o
2 C¢ ¢ 2 o 2
5} = (%) ((—) +en (—) (1 - cﬂ> ) dt (B10)
g ON,1 g
by = pNdt (B11)
dpN = ¢ (ﬁ + 9, — piv) dt + on0dZos + on1dZ) (B12)

Lemma A1l: Let 7 =T —t. The expectation in equation (6) is given by

~ By 'l BT
V(Btvpm%ﬁ?ﬁ) :Etl T ] t oAo(T)+H(1=7)AL(T)p+(1— ’Y)Az(TWH— (1—7)2 As(r)?57 (B13)

1—7 1_7
where
201 _ N2 ey e
1—e @7
A (1) = TandAQ(T):T_Al(T)

Proof: By definition
V (bt7 pta wt7 3?, t7 T) = (1 _ ,)/)—1 Et |:e(1_,y)bT:|

Denoting x; = (bt, D wt, at) the Feynman-Kac theorem shows that V' has to satisfy the PDE

oV OV
+2 5,

ot o, D ldwil + 5 Z Z

0= Et [dx;dx,]

with boundary condition V (x7) = (1 —~) ' =217 Using (B7) - (B10) with ¢ = 1 and ¢y = 0,
it is simple to verify that (B13) satisfies this PDE with the boundary condition. Finally, As (7) > 0



is immediate. Rewrite As (7) = f (1) = 7—1=¢?" Note that f (0) = 0. Since f/ (1) = 1—e~%" > 0,
we have f (7) > 0 for every 7 > 0. QED.

Proof of Proposition 1: Since v > 1 we have that V in (B13) is decreasing in 67. It
immediately follows that V' (Bt* (1 —=K), p, 0, 3?*,7'*) < V (B, pi,0,0,7) . Q.E.D.

Proof of Proposition 2: Using (B13) it is immediate to verify that equation (13) follows from
equation (14). Q.E.D.

To prove Proposition 3 we need the following lemmas, obtaining the closed form solution for
the value function in equation (15) in the paper:

Lemma A2: The density of @t** conditional on @t is normal and explicitly given by

{Lt**

b N (at’ U%,t)

where

2 =2 ~2
O-;Z)\t — Ut - Ut**

and 67 is given in (B5) for the case t < t**.

Proof: The process for the posterior mean ;ﬁt is a linear diffusion with deterministic volatility,
as given in (B1). The integral representation is

- S R L
Ypos = Py + —— G3dZ
ON,1 Jt

which immediately implies that

{Lt**

"Zt ~ N ("Ztv 0%715)

where

Using (B5) for ¢t < t** we can compute

[ @) -]

Thus O'i\t = 67 — G%.. In addition, it is then immediate that the probability of adoption is given
by 7
pt=0p (¢ta t) =Pr (¢t** > M?ﬁt) =1-N (% Py, U%,t)

where NV (.; a, 82) the cumulative density function of a normal distribution with mean a and variance
2
s7. Q.E.D.



Lemma A3: The value function

Wy
Ve = E4 lmax B l L H
yes,no 1— 0%

at time t* <t < t** is given by

V(B i) = ftl__v {(1=p) G} + G} (B14)
where
Gre = M= A()p,
GI® = G (1 — k)™ Ryel=0A2( Nt 51" Ao,
and

Rl G R e 1 A

w7t
_ )
N (g7 wtv U"Zi)
Proof: The value function is

Wy
Ve = E; lmaxEt**l L H =(1—py) l
yes,no 1— 0%

as the adoption at t** occurs if and only if ¢t** > 1. Starting with the first expectation, we can
use the law of iterated expectations

R =

(B15)

Wy
+pe By ll —

<v

-

1—v R 1—v R R
Et l‘f/i 5 |wt** < g‘| = Et lEt** l‘f/i 5 < g‘| |wt** < g‘|

We can use again equation (B13) to compute the inner expectation. In fact, if @t** < 7 the

technology does not change at t**. Moreover, eqn (B8) - (B9) show that p, and ¥, are independent
as ¢ =0 (see eqn. B4). Thus, Lemma A2 implies

VI/:L_’Y -~ Bl*_*’y * ok ek
By 1f7 < g] =V (Bp=, ppes, 0,0, T') = 1f—7e*‘o<f D+ AL T)pees

Thus,

Bl_’Y % % % %
Et tr* eA()(t ;T)+A1 (t ;T)pt**

~ Bl
wt** < w = Et LeAO(t**;T)"'Al(t**§T)Pt**
1—7 ¥

-y

1—y
By ' acer)raiwp,
-y

where the first equality stems from the independence of p; and ;ﬁt, and the second equality stems
from an application of Feynman - Kac thorem, similar to the argument used in Lemma Al.

The second expectation is more involved, as until t** capital employs the old technology, and
only then it switches to the new technology. In addition, the switch occurs only if .. is high
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enough, and this must be taken into account in the computation. Using again the law of iterated
expectations, we have

Wi Wi . ~
E l T |wt** > w] = Et [Et** l 1 i ’Y > g‘| |wt** > g‘|
= B[V (Bie (1= ), ppoes s s 5 T) [ > 0]

where the second equality stems from Lemma A1 and the fact that if @t** > 1, the adoption occurs.
We can use the explicit formula for V' (.) to compute this expectation. In particular, from (B7) -
(B10), 1, is independent of both p, and b;, and 6. is a known constant. Thus, we can write

By [V (Birs (1= K), ppess $poes s 55T [ > 0]

1_
(1—r) " E [e(l—v)bm+Ao(t**;T)+(1—“/)A1(t**; YPpn +5(1=7) A (£ )afm]
L=y

< E, [eu—v)Az(t**;Tﬂm

Yper > g]

= b A (BT A A (T oy 5 (1) A (£ T) 5 [eu—v)Az(t**;Tﬂm

Ypor > g]

Since from Lemma A2, ¢t** ~ N (wt, ot — a?**) we have that the conditional density required to
compute the last expectation is given by

f('(zt*h&tvat Ut**) {¢t**>¢}
N (o et

f (;ﬁt**@t** > Q) =

Using this density, we find

e w1 — )Ame(l—v)Az(t s f (B e
try 0 7 Opxx P

. ) A%(T**)(Uf—at**)+(1—7)A2(T**)@tR (@t)

E [e(l—v)Az(t**?Tﬂt** {Lt** > w]

where R (;bt) = Ry is given in (B15). Putting all these elements together, we obtain (B14).

Lemma A4: G/ < GJ°.

Proof: Consider the expression

Jy=FE,; [e(l_’y) log(1—rk)+(1—7) A2 (t*; )d)t**‘f' (1=9)?Ag (t**T crt**

«w»w]

Using the definition of v in equation (13) of the paper, this can be written as

Jo=

(11— R _108(1_“) _A _ 1l **. 0’ * ok -~
Et [e (1 "{)AQ( )|: AQ(T*) wt** 2(1 ’Y)AQ(t ) ) t :| wt** >w]

— Et |:e(1_’Y)A2(T I:wt** ]|wt** > w:|

bt



Thus, J; < 1, as it is the expectation of a random variable that is constrained to be less than 1.
By using the same steps as in Lemma A3, we find

Jt — Et [e(l_v)AQ(T**)[at**_ﬁ] |{Lt** > w:|

e (Gl oF [e(l—v)Az(T**)@m Dpen > g]

~2  ~2

= (A (o) A (T 5 (1-1)? A2 (72 (5,50 ) o .

= M losArH(1) Ao ()it 5 (1) A2 ()07 g

yes

G
no

G

yielding the conclusion. Q.E.D.

Proposition 3: Experimenting is always optimal at time ¢*, that is
V(By, pyes 0,525 7) > V (Bye, pye, 0,057)
where V (B, py«, 0,0; 7%) is defined in equation (B13).
Proof: Since G{“® < G7°, the result follows from the fact that we can rewrite V (B, py«, 0, 0; 7%) =

1—v
?t_*v 72 and v > 1. Q.E.D.

Proof of Proposition 4: The proof is identical to the one of Lemma A3, where “(1 —~)” is
substituted with “—~”. Using this fact, we have

m= AT B (1= p) GEo 4 pGY ) (B16)
where
Gro = eMn-rAmp, (B17)
GI = o (1— k)™ R A et e (B18)
and

b’ Pt

1-N (% ;ﬁt — qyAs (77%) 0% | 02 >
1
1= (w9002, )

Ry =

(B19)

In this proposition,

0.2 2 1— e—2¢7’ 1— e—¢T
Ay (7) = 7B (7 = AL () + 5 g {7+ -2

¢
Q.E.D.

Proof of Corollary 1: The corollary follows from an application of Ito’s Lemma, so that

d?Tt ~
— = —0 A2y
Tt



where
Ot =7YAL(T) O+S7 1044

and
s} _ L Ip yes Ip Ao
(’YA2 (7*%) PrY > Gy aGt
Sut = = (B20)
(1 —pt) G?O + ptG?

. = ( ) =1-N (% ;bt —~yAs (T7F) U%7t, a%t)
and o =(0,0) , oy = (0 U?L) Q.E.D.

where

Proof of Proposition 5 (old economy): The result about the old economy is immediate
from the pricing formula M; = Ey [rrBr] /7 = E} [Bilp_ﬂ’} /7¢, and the results in Lemma A3 and
Proposition 4. Q.E.D.

For better referencing, it is convenient to restate Proposition 5 for the new economy:

Proposition 5 (new economy) Let 7 = T —¢. For t* <t < t**, the market to book ratio of
the new economy is given by
MY (1= py) K™ + p KV

BN T (1-p) Gro 4 p GV

where G7° and GY* are given in Proposition 3, and

(B21)

K™ = KR},

Kv* = (1-r)"KNRY,
K, = Com—rAmotAi(n)ol +A2(7)d,+5A43()a;
KN = K14 5rAs () (A (1) —245(7)3)

and

(w Y, + ol 0%

> with ol = Ay (1)67 — Ay (7%%) 52

Ri\f’t — yip Pyt 5
N (w002, )
N (¢ betog v T > H L 2
Ry, = v — with o, = oy, — 7A2 (77) 0%
- (g7 wba't/j)\,t)
Above, Cy (1) is given by
Co(r) = (I=7)p(r—AL(7))
1 1—e207  1—e97) /5 o 5 5
+2752 {7'—1' % -2 3 }(7 o —270N,00+(UN,0+UN,1))
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We start the proof with two lemmas:

Lemma A5: Fort >t let =T —t. Then
vy (bt, biv,pt,piv,zzt,ﬁfm) = FE; [e_“’bT“ng]
is given by
VN (bn N, py. pN 9, 52, 7.) _ oAb +Co(T) =y AL () p, A1 (1) + A (1), + 5 (1-cv)2 A3 (7)o, (B22)
where ¢ = 1 if the adoption occurred at time t** | and 0 otherwise, A; (.) and As(.) are as in
Lemma Al, and

1 —e 207

%ovzu—wﬁw—Auﬂw+$(f+ -

~ 24, m) S (o)

and
(U*)2 =% + U?\/,o + U?\m — 2yo N 00

Proof: Asin Lemma A1, denoting x; = (bt, bN, py, pr ,wt, at) the Feynman-Kac theorem shows

that VY has to satisfy the PDE

8VN

Z 8 E;[dz;) + = ZZ@ Iz, Ey [dxidzx ;]

with the boundary condition V (x7) = (1 —~) ' e 717227 Using (B7) - (B12) for the cases
where ¢ = 1 or ¢ = 0 (with ¢y = 1) in Lemma 1, it is simple to verify that (B22) satisfies this PDE
with the boundary condition provided. Q.E.D.
Lemma A6: Define
Yper = —Ybies 4 bite — VAL (T7) pres + A1 (T7) pife + (1= €1) Ag (77) Py

where ¢; > 0 is a constant. Then

Ppos vy )7\ Tyy 0% 4

where
fye = —be Y + (1—)pa(t) — vA1 (T) py + A1 () p + (Aa (1) — e1 4z (7))
02 = (1=e1)’ Ao (70 (67 = 6% ) + a (1) 67 + 240 (7) (1 = c1) a (£) 57 + (0%) a2 (1)
0-;2!)\715 — 3? - 3?**
o = (1—c) As () (67 — 5. ) +a(t) &



and

e_¢(T_t**) — e_¢(T_t)

a(t) = t™—t— 3 (B23)
1 ok e_2¢(T_t**) — e_2¢(T_t) e_¢(T_t**) — e_¢(T_t)

as (t) = pe (t —t+ > - 3 (B24)

(0% = 70 + ok o+ ok~ 20N00 (B25)

Proof: The proof of this lemma is rather lengthy, and so it is provided separately below.

Proof of Proposition 5 (new economy): The pricing formula is M} = E; [ﬂ'TBQJY} /7¢. Thus,
we need to compute

BBy BY| = (1= p) By [By BY [y < ¢ + oy [ BV BY [ > ¢ (B26)
Starting with the first expectation, note that if ;ﬁt** < %, no adoption occurs at t**. Thus,
E[By BY [ < ¢| = Ey[Bee B BY [y < ¢] [0 < ]

= FE [VN (bt**, bi\f*,pt**,pﬁ*,@t**ﬁ?**,t**;T) [y0n < ﬂ

* ok o\ 2
L OO+ AR

< E, [e—vbtwbﬁ*—vAlw**)ptm+A1<T**>p§i*+A2<T**>ww

Dpn < g]

where the first equality stems from the law of iterated expectations, the second from the fact that
Y« 18 known at t**, the third from Lemma A5, with ¢ = 0 as the adoption does not occur at t**.
Note that the exponent in the expectation is simply y;++ in Lemma A6 with ¢; = 0. For notational

convenience, let
ag (t) = (L =) pa(t).

Using Lemma A6 with ¢; = 0 and denoting by L the corresponding quantities in Lemma A6 for
this case, we can compute

w * kK ” - " "
[ B oG] £ (Bvi Bus 3 ) i

Pr ({Lt** < g)

E [eyt**

Vpor < ﬂ =

where f (;ﬁt**;;ﬁt, U% t) is the density of a normal with mean @t and variance U% . The rules of

)

the conditional normal distribution yield the following expression for this expectation:

-~ _ _ . . N R A Y )

where RJL\{ , 1s given in Proposition 5. So, finally, the first expectation is given by
E, [Bj_“’YBJJYﬁLt** < g} _ Bt—"/Bl{VeCO(t**;T)-l—%Ag(t**;T)?r\f**eao(t)—’YAl(t§T)Pt+A1(t§T)P§V+A2(t§T);Z)\t+%”2L,yR]LV7t

—  BYBN Lot +EABWTIo] —y A (5T + AL (BT)pN + A2 5TV, RN
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where the second equality is obtained from the first after some tedious algebra.

We now turn to the second expectation in (B26). The methodology is the same as before,
although now we must set ¢ = 1 in (B22) and note that By« = (1 — k) By++, which implies by =
by +log (1 — k). Specifically, we have that for ¢ < ¢**

E, [B;VBJTV@M > g] - E [VN (1og(1 — k) + b, bi\[*,pt**,pi\[*,lzt**,ﬁf**,T) [Ppee > g]

* ok ox\ 2
= (1 _ﬁ)—"/ eCo(r )+ (1—y)? A3 (7)o pex >

—Vbprex BN =Y A1 (T7%) pprx+A1 (T7%) p N +(1—7) Ao (777 )b s
XEt e

Ypr > y]

Comparing to the case with {;ﬁt < g}, we see that the term in the expectation is identical,

but for the coefficient of zzt**, which is multiplied by (1 — ). The distribution of the exponent is
given in Lemma A6 for ¢; = . In this case, defining

Yt e = — Yo + bite — AL (T7) ppee + AL (77) pile + (1 = ) A2 (77%) Yo
we have that

Bitge = B lyme=] = —7be + b +ao (t) = vAL(7) pr+ A1 (1) pff + (A2 (1) = 742 (7))

The same steps then show

Et [eyH,t**

B> 0] = ! [ B e 3] 1 (D) e

1= N (0 02) 2
_ Bt—vBtNeao(t)—vAl(t;T)pt+A1(t;T)p§V+(A2 (T5T) =7 Az (t**;T))@ﬁ%quy R%t
where R%t is defined in Proposition 5.
So, we finally obtain
-~ *k 1 2 sk ) 202
E, [B;7B1N|wt** > g} — Bt—’YBl{V (1 _ H)—’Y eCo(T )5 (1=7) A (77%) “o e
x 200 =141 (TPt A (D)o HA (1) =y Ao ()it 50, N

— B7YBN (1 — k)77 Qo141 (D)ot A (n)pl +(Az(7) =y Aa (1))t 5 (Az (1) =y A2 (7)) 5 RY,

where the second equality is obtained from the first after some tedious algebra. Putting all terms
together, we obtain the expression in Proposition 5. Q.E.D.

Proof of Corollary 2: The proof follows from an application of Ito’s Lemma to the respective
pricing functions. We obtain

U% - Al (T)O-N + (S]]\\Zt + Sw,t) a-d)
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where ooy = (0n,0,0n,1) and

(A2(7)+%8th>Kno ((AQ(T)_WAQ( ) + o ath>K§,es

Pry 0O PHy O
Sy = ’ - B27
M (1 —pt) K7 + pe K} (B27)
with
p]LV,t = pp ('(Zt ) (¢ ¥, + o o ¢t) (B28)
e = ot (V0t) =1 =N (6 +0' 02 ) (B29)
For the old economy
oM = Al(T)O' + (SM¢ + Sw,t) 5‘¢
where
_@G?o + ((1 N 7) Ao (7_**) + 1 8P> Ges
SM t = ov esp o0 (B30)
’ (1 —pt) GY° + pGY
and R R
B = (Vt) = 1= N (i + (1 =) A2(7")02 0% )
Q.E.D.

Proof of Proposition 6: Consider the old economy first. Rewrite the M /B of the old economy

as
G1° + peHy

6?0 + peH,
where H; = Gfes — G}, and Ht GyeS C:’?" . Given the closed form formulas for all the functions,

we can compute the ﬁrst derivative of M B; with respect to the probability of adoption of the new
technology p; :

MB; =

OMB, H,Gp° — GyoH,
- ~ ~ \2
opi (G:&w + pth)

That is, the M/B increases in p; if and only if Ht@?" > G?Oﬁt. Substituting the closed form
expressions, we obtain the condition h,g > 0 where

hoa = —F+ Ao (7)1, + 3 (1 — 27) Ay (77%)? 52 (B31)
—log — (B32)
— . _ *% 2 2
N(%%&‘F (1—7) A2 (7 )U;ﬁ\,t’aﬂ;\,t>
Consider now the new economy
K(RY, + piJ
MBtN e PeJt
GY° + peHy



where J; = (1 — k)Y KN RY — K,RY. The first derivative with respect to p; is
oMBY TiGpe — KtR]L\{tﬁt
=T = —\2
Opr (G?O + pth)

Once again, the M/B of the new economy increases in p; if and only if 7té?0 — KtﬁtR]L\{ ;> 0.
Substituting, we obtain the condition hpe, > 0

N( ;A + ol %>
Y+ 0505,

Pnew = —7Ag(7%) Ag (1)62 — log —~ (B33)
) 2
N (g7 wtv O.;At)
(s ta e 2 )
o *x 2 L 2
1-N (g7 wt - 7142 (7_ )U;ﬁ\,t + O'yw, O.;ZJ\,t)
Proof of Proposition 7: Consider Aé[—]]\,v = %, where ®V and 7 are defined appropriately.

Then,

N ~ ~
0(Hv) 700N /o0, — ¥o7/0%, »
2 7

if and only if S A]\/},t + Szt > 0 where § ]\]\h, and Si; are defined above. The probability of adoption
as of time t* is given by

1.2
e 2% dx

o0 1
p * :/ R Er——
¢ f(/-z,'y,crf* ;T*) v 2

where

35*)_1 + (%)2 (™ — t¥)
52 (0—14;—1)2 (t — t*)

35 (v —1) Ap(7*)

() b (148 () o)’

f (/@, v, 3?*;7'*) = —log(1—k)/Ay(T™) (

_|_

Thus, p; is small whenever f (/@, v, 3?*;7'*) is large. We can see that f (/@, v, 52 7‘*) is large when

& is high, v is high and, finally, when 62 is small (if & > 0). (In addition, we can see that
f is large when (t** —¢*) is small and T is large, the latter due to the increase in As(7**) =

(T —t*) — (1 — e_¢(T_t**)) /®). In all of these cases, the formulas for the various quantities in

S]%t + S imply that the latter becomes positive. Q.E.D.

Proof of Lemma A6: Let

Yoo = —bpee + b = YAL(E5T) ppee + AL (5 T) pie + (1= c1) A (85 T) Yo

12



The fact that y++ and ;ﬁt** are jointly normally distributed stems from the linearity of all of the
processes. To compute the means, variances and covariances, we can compute the joint moment
generating function. That is, let a1, as > 0, and define

N (btabz{vaptapz{vawb&?vt) = Et [ealyt**—’—ath**]

where the processes of stochastic variables are given by (B7) - (B12) with ¢ = 0. Let x; =
(bt, bt s Pes Pt ,wt, at) the Feynman-Kac theorem shows that N must satisfy the PDE

ON ON
= ——F Ey |dx;
0 e + i oz, ¢ [dx] + = ZZ axza% ¢ [daida]

with the boundary condition NV (bt**, bl., pt**,pi\f*,@t**, at**,t**) = e Ta2¥ Tt can be veri-
fied that the solution to the PDE is given by

N, = o1 {74 =Y CLET)p+Cr (5T)pf }+a1Co(HT)+H{(1—e1)ar Cs (t:T) 42}y +a1C3 (6T

where
1_e_¢(T_t)
G (6T) = T:Al(t?T)
1
T) = Ay (T
Ca (T) 2 (87 )+(1_Cl)a(t)
aCs (5T) = Cs(tT)
1 1
= S ((1—c)eCr+a2)" = 5 (1) Az (£ T) + 02)”
and

a1Cy (T) = Co(;T)

= a1 (1 —7)pal(t)+ % (1 = e1) a1Ay (5 T) + ag)? [3? a?**}

Above, a (t), ag (t) and o* are given by (B23) - (B25). Rewrite N, = €9(91:92) where

g (a1, 02) = {—71% +b) —yC1(6T) py + C1 (5T) p] }+00 (tT)+{(1 = c1) 1 Cy (6 T) + a2} +Cs ( T) 57

Thus
ON

don

oC, oCs .
=Y {(—vbt + b —yCip, + Cmiv) + 8—0 + (1 —¢1) Cotpy + 805 0?}

We can use
e}

St = (1=pa(t) + (1= c) aa Ay (75 T) + az) (1 = e1) Ao (™ T) [67 — 67..]
a1

+aq ()2 a (t)
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and

86’ ok *ok
o, = (1=a)aGtan) (1= ) Co = (L= e)anda (#5T) + a2) (1 = 1) Az (85 7)
Thus
ON N N — 7
im —— =y, = {—vbt +b; —vCip+ Cipy + (1 —7)pa(t) + (1 —c1) Czwt}
a1,a0—0 0oy
Similarly N N
ON aCy ~  8C3
. — 9 -2
8&2 € { 8&2 + wt + 8&2 ot
Since
aC, JORR
8—0 = ((1 — Cl) C\flAg (t**; T) + Ofg) [0’? - 0'?**}
Qg
aC .
9o, = (I=enaiCo+az) = (L-e)ands (5 T) + a2)
we find ON
lim ——— = p, =,

a1,a—0 Oy

Turning to the second moments

~ ~ 2
9°N aC, - 9C
T 9l N _ N\ 20 _ T3 52
oaZ € {( Ybe + by —yCipy + Cip; ) + Dory + (1 —c1) Copy + Dory Ut}
82Cy  0°Cs
g ~2
+e {—Oa% + —Oa% o
Since
82C, " JORN ;
W%O = (1= ) A (5 T) (67 = 5] + (0") aa (1)
82C o
Sz = (=) C)? = (1= ) A (17 T))°
a3
we obtain
. o\ B ~ 2
lim 2o = b0 —9Cipy+ Capll (L= ) pa () + (1= 1) Oty |
o1 ,00— 1
+ (1= 1) A (85 7)* 67 — 52| + (0) aa (1)
+ (1 =) o) = (1= 1) A3 (£ 7))*) &7
Thus
> gy, OV ( lim 8—N>2
% = 0417gzn—>0 804% a1,a0—0 Jay

= (1= A T) (67 - 6%.) +a (1) 67 + 245 (1) (1 — 1) a (7) 57 + (0%) a2 (1)
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Similarly,

82N 86’0 803 2 82610 826’3
— =9 — 52 g ~2
da3 ‘ {8@2 +¢ * b0y Oas } te da aa%'at
Since
0%Cy _
TQ% — |:0.? 0‘?**:|
oCs
2 =0
8052
we have .
N  ~2 9 9
i Fo =t (57 - 52.]
and thus , )
0“N ON
2 . O°N . ONN? 5
U'll) - alyliérl_’o 804% (al,lggl—>0 8a2> Ut Ut**
Finally
0N oG, aC aC aC
— g _ N N 9Co 1_ 3 9Co 3/\2
Banda ‘ {( 10+ by 701Pt+01pt)+8 + (1= c1) Cot, + aalat}{aaQ 1+ 55 o }
826~’0 8263
g ~2
e {80&28&1 + Oan oy Tt
Since
92C) R
Sonder = (- At T) 67 - 53]
92Cs
dogoa, — (Lma)(Ca—A(85T))
we have

O*N
a1,a2—0 OagOary

= {—75t +b) —C1p,+ Crpy + (1—=7)pa (t) + (1 — 1) 02¢t} {;ﬂ }
{0 =) A (5 T) [67 = 57| + (L= 1) (G2 — A2 (7)) 57 }

implying

o = lim PN — ( lim 8N> ( lim 8—N>
v = a1,a3—0 OagOary a1,a2—0 Jarg ar,az—0 Jag
= (1—c) A (t57) (67 - 5. ) +a(t) 57

Some additional algebra yields the formulas in Lemma A6. Q.E.D.
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