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1 Results Alluded to in the Main Text

1.1 First-Pass Estimates of Betas

Table 1 provides �rst-pass estimates of the betas for the base case discussed in Section 2 of

the main text. The �rst pass is a time series regression of each portfolio�s excess return on

the vector of risk factors:

Reit = ai + f
0
t�i + �it, t = 1; : : : ; T , for each i = 1; : : : ; n: (1)

Here �0i represents the ith row in �. The system of equations represented by (1) is estimated

using equation-by-equation OLS.

In Section 2 I also mention that tests of the SDF covariances lead to the same conclu-

sions as tests of the SDF betas. The p-values associated with the the null hypothesis that

cov(Reit;mt) = c for all i are 0:94, 0:91, and 0:89 for SDF models (i), (ii) and (iii), respec-

tively. The p-values associated with the the null hypothesis that cov(Reit;mt) = 0 for all i

are 0:81, 0:70, and 0:70 for SDF models (i), (ii) and (iii), respectively.

Table 2 provides �rst-pass estimates of the betas for the case discussed in Section 4.3 of

the main text.

1.2 Weak Identi�cation

In this section I argue that tests of the pricing errors fail to reject LV�s model at low lev-

els of signi�cance due to an identi�cation problem. In the second-pass regression with the

constant, the parameters 
 and � are identi�ed under the assumption that �+ = ( � � )

has full column rank, where � is an n � 1 vector of ones. In the second-pass regression
with no constant, � is identi�ed if � has full column rank. The same conditions must hold

for the GMM procedure used to estimate b. When the rank conditions fail, conventional

inference drawn from second pass regressions and GMM is unreliable because standard as-

ymptotic theory does not apply. As Burnside (2010) discusses, t-statistics for �̂ and b̂ have

non-standard distributions, and, most importantly, pricing-error tests cannot reliably detect

model misspeci�cation.

It is straightforward to test whether LV�s model is identi�ed using a rank test from

Jonathan H. Wright (2003). Table 3 presents tests of the null hypothesis that � has reduced

rank. Since there are three risk factors in the model, � has reduced rank if rank(�) < 3. As

Table 3 indicates, it is not possible to reject that rank(�) = 1 at conventional signi�cance
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levels. In fact, it is only when VARHAC standard errors are used that we can reject the null

hypothesis that rank(�) = 0, which is equivalent to the null that every element of � is zero.

Similar results are obtained when I test the rank of �+.

A standard tool for conducting inference under weak identi�cation is to construct con�-

dence sets for weakly identi�ed parameters using the objective function corresponding to the

continuously updated (CU) GMM estimator.1 To put this method into practice, I construct

an mt series using the following values of b: (i) the vector corresponding to LV�s two pass

estimates of �: bc = �21, bd = 130 and br = 4:5, (ii) the vector corresponding to LV�s

GMM estimates of b: bc = 37, bd = 75 and br = 4:7, (iii) the vector corresponding to the

calibrated model discussed in section I.E of LV�s paper: bc = 6:7, bd = 23 and br = 0:31. I

then treat �mt as a risk factor, and construct a robust con�dence set for �m, the price of

SDF risk, using the CU-GMM objective function corresponding to the two-pass regression

method (with no constant included in the regression). The reason for treating �mt as a risk

factor is that this reduces the dimensionality of the con�dence set to one parameter. The

objective function is evaluated at each possible value of �m, and the corresponding p-value

is calculated. Those values of �m for which the p-value exceeds 0.05 lie in the 95 percent

con�dence set for �m. The di¤erence between this approach and standard GMM is that the

weighting matrix is recalculated at each �m, and no degrees of freedom are lost because �m

is not estimated. The resulting con�dence sets are the entire real line in cases (i) and (iii).

In case (ii) the con�dence set is (�1; 0:75) [ (0:98;+1).2 While the rank tests are the

de�nitive indication that the data are uninformative about �, the fact that the con�dence

sets are so vast helps to illustrate the problem.

When con�dence sets for parameters are constructed using the CU-GMM objective func-

tion, lack of information about the parameters goes hand-in-hand with inability to reject the

model. Given the con�dence sets I have constructed, of course, we cannot formally reject

the model. It is easy to �nd parameter values for which the test of the over-identifying

restrictions fails to reject. But this hardly seems like a signal of the model�s success.

Table 4 presents results of rank tests for the cases where the six Fama-French equity

portfolios and the �ve Fama bond portfolios are added to the set of test assets. It also

presents results of rank tests for the cases where LV�s di¤erenced currency portfolios are used

1See James H. Stock and Wright (2000), Stock, Wright and Yogo (2002) and Yogo (2004) for details.
2The test for �m = 0 is equivalent to a test that the vector E(Re) is equal to zero, if the GMM errors are

demeaned before the long-run covariance matrix is computed. I do not demean the GMM errors, but doing
so does not change the fact that the con�dence region for �m encompasses most of the real line.
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as the test assets. The results of the tests suggest that the model remains underidenti�ed in

these cases.

1.3 Estimates of the Models with Additional Test Assets

Table 5 provides GMM estimates of the model with no constant for the case where the

currency portfolios and six Fama-French equity portfolios are used as test assets. Table 6

provides GMM estimates of the model with no constant for the case where the currency

portfolios, six Fama-French equity portfolios, and �ve Fama bond portfolios are used as test

assets.

2 Calculation of Standard Errors

2.1 Standard Errors for the Two-Pass Procedure

This section discusses the computation of standard errors for the two-pass regression proce-

dure. Lustig and Verdelhan compute standard errors under the assumption that the betas

are known. I �rst, consider this case, and then consider the case where the betas are treated

as generated regressors. The derivations here are reproduced from or based on Cochrane

(2005) and Shanken (1992).

2.1.1 Betas are Known

Equation (1) can be rewritten as

Re
t = a+ �f t + �t

where a is an n � 1 vector formed from the individual ai, and �t is an n � 1 vector formed
from the individual �it. Traditionally the factors and errors are assumed to be i.i.d. over

time, with var(ft) = �f and var(�t) = �, but these assumptions can be generalized. Taking

averages over time:
�Re = a+ ��f + ��; (2)

where �Re, �f and �� are the sample means of Re
t , ft and �t.

Without a Constant When the betas are known and the second stage excludes a constant

�̂ = (�0�)�1�0 �Re. This implies that

�̂ = �Re � ��̂ =
�
I� �(�0�)�1�0

�
�Re =M�

�Re:
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Given that the beta representation implies that E(�Re) = ��, it follows that

plim �̂ =M�E(�R
e) =M��� = 0:

Also, the asymptotic covariance matrix of
p
T �̂ is


�̂ =M�
�RM�

where 
�R is the asymptotic covariance matrix of
p
T (�Re � ERe). Given (2) and the as-

sumptions made above:


�R = ��f�
0 +�

hence


�̂ =M� (��f�
0 +�)M� =M��M�:

Since 
�̂ has rank n� k, C = T �̂0
�1�̂ �̂ must be computed using a generalized inverse, and
C is distributed �2 with n � k degrees of freedom. Also, the asymptotic covariance matrix
of
p
T (�̂� �) is


�̂ = (�0�)�1�0
�R�(�
0�)�1

= �f + (�
0�)�1�0��(�0�)�1:

With a Constant When a constant is included in the second stage we have

�̂ = (X0X)�1X0 �Re

where � = ( 
 �0 )0, X = ( � � ) and � is an n� 1 vector of ones. Therefore,

û = �Re �X�̂ =
�
I�X(X0X)�1X0� �Re =MX

�Re:

The beta representation states that E(Re) = 
 + �� = X� where 
 = 0. So

E(û) =MXE(�R
e) =MXX

0� = 0:

Also, the asymptotic covariance matrix of
p
T û is


û =MX
�RMX:

The term �0�f� can be written as X~�fX
0 with

~�f =

�
0 0
0 �f

�
:
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Therefore we can rewrite 
�R as X~�fX
0 +� so that:


û =MX(X~�fX
0 +�)MX =MX�MX:

Since 
û has rank n� k � 1, C = T û0
�1
û û must be computed using a generalized inverse,

and C is distributed �2 with n� k � 1 degrees of freedom. Also, the asymptotic covariance
matrix of

p
T (�̂ � �) is


�̂ = (X0X)�1X0
�RX
0(X0X)�1

= (X0X)�1X0(X~�fX
0 +�)X0(X0X)�1

= ~�f + (X
0X)�1X0�X0(X0X)�1:

As suggested in the text, the constant should really be considered part of the pricing error.

As such, its signi�cance could be tested alone, as it is the �rst element of �̂. Alternatively

one might also consider a reformulated �2 test based on

�̂ = �Re � ��̂ = û+ 
̂:

Letting

P =

�
0 0
0 Ik

�
we have

�̂ = �Re �XP�̂ =
�
I�XP(X0X)�1X0� �Re = H�R

e
:

Therefore the asymptotic covariance matrix of
p
T �̂ is


�̂ = H(X~�fX
0 +�)H0 = H�H0:

As in the other cases, this means that a test statistic can be formed as C = T �̂0
�1
�̂ �̂. It

will be distributed �2n�k since 
�̂ is of rank n�k and must be computed using a generalized
inverse.

2.1.2 Shanken Corrections (Betas are Estimated)

When the betas are unknown the �rst stage estimates, �̂i, are given by

�̂i = (̂f
0f̂)�1f̂ 0Re

i

where Re
i is a T � 1 vector with elements Reit and f̂ is a T � k matrix with rows equal to

(ft � �f)0. Given the model, Re
i = ai + f�i + �i, where f is an T � k matrix with rows equal

to f 0t and �i is a T � 1 vector with elements �it. Hence
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�̂i = (̂f 0f̂)�1f̂ 0 (ai + f�i + �i)

= �i + (̂f
0f̂)�1f̂ 0�i:

Assuming that ft and �t are independent, the asymptotic covariance between
p
T (�̂i � �i)

and
p
T (�̂j � �j) is given by �ij��1f where �ij is the covariance between �it and �jt. If �̂ is

rearranged into a nk � 1 stacked vector,

�̂v =

0BBB@
�̂1
�̂2
...
�̂n

1CCCA ;
the asymptotic covariance matrix of

p
T (�̂v � �v) is �
��1f .

Without a Constant When the second stage excludes a constant �̂ = Â�R
e
, where

Â = (�̂
0
�̂)�1�̂

0
. To work out the asymptotics we proceed as follows. De�ne

�� = �+�f � �: (3)

The model implies that ERe = a+�� = ��. Hence we can write a = �(���). Substituting
this result into (2) we get

�Re = �(�� �+�f) + ��:

Using (3) we have

�Re = ��+ ��

= �̂��+ ��� (�̂ � �)��: (4)

Premultiplying (4) by Â we get

�̂ = ��+ Â[��� (�̂ � �)��];

so that

�̂� �� = Â[��� (�̂ � �)��]: (5)

Now

�̂� � = (�̂� ��) + (��� �)

= Â[��� (�̂ � �)��] + (�f � �):
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The �f � � term is uncorrelated with ��� (�̂ � �)�� following arguments in Shanken�s (1992)
Lemma 1. Also we can rewrite the term in brackets as ���(In
��

0
)(�̂v��v). Since plim �� = �,

and plim Â = A = (�0�)�1�0 this means that the asymptotic variance of
p
T (�̂� �) is


�̂ = A[�+ (In 
 �
0)
�
�
��1f

�
(In 
 �)]A0 +�f :

Using the rules for Kronecker products this reduces to


�̂ = (1 + �
0��1f �)A�A

0 +�f :

The pricing errors are

�̂ = �Re � �̂�̂ =
h
I� �̂(�̂0�̂)�1�̂0

i
�Re =M�̂

�Re

= M�̂

h
�̂��+ ��� (�̂ � �)��

i
= M�̂

h
��� (�̂ � �)��

i
Hence the asymptotic covariance matrix of

p
T �̂ is


�̂ = (1 + �
0��1

f �)M��M�:

Since 
�̂ has rank n� k, C = T �̂0
�1�̂ �̂ must be computed using a generalized inverse, and
C is distributed �2 with n� k degrees of freedom.

With a Constant When a constant is included in the second stage, but the betas are

unknown, we have

�̂ = (X̂0X̂)�1X̂0 �Re

where � = ( 
 �0 )0, X̂ = ( �n �̂
0
) and �n is an n � 1 vector of ones. If X̂ is rearranged

into a n(k + 1)� 1 stacked vector,

X̂v =

0BBBBBBBBB@

1

�̂1
1

�̂2
...
1

�̂n

1CCCCCCCCCA
;

the asymptotic covariance matrix of
p
T (X̂v �Xv) is �
� where

� =

�
0 0
0 ��1f

�
:
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We have �̂ = Â�R
e
, where Â = (X̂0X̂)�1X̂0. The model implies that ERe = a + �� =


+�� = �� (since, under the null, 
 = 0). Hence we can write a = �(���). Substituting
this result into (2) we get

�Re = �(�� �+�f) + ��:

De�ning �� � ( 0 ��
0
)0 we can then write this as

�Re = X�� + ��

= X̂�� + ��� (X̂�X)��: (6)

Premultiplying (6) by Â we get

�̂ = �� + Â[��� (X̂�X)��];

so that

�̂ � �� = Â[��� (X̂�X)��]:

Now

�̂ � � = (�̂ � ��) + (�� � �)

= Â[��� (X̂�X)��] +
�

0
�f � �

�
:

The �f�� term in uncorrelated with the ���(X̂�X)�� term following arguments in Shanken�s
(1992) Lemma 1. And we can rewrite the term in brackets as ��� (In 
 ��

0
)(X̂v �Xv). Since

plim �� = � and plim Â = A = (X0X)�1X0 this means that the asymptotic variance of
p
T (�̂ � �) is


�̂ = A[�+ (In 
 �
0) (�
�) (In 
 �)]A0 + ~�f :

Using the rules for Kronecker products this reduces to


�̂ = (1 + �
0��)A�A0 + ~�f ;

but because of the form of � it can also be written as


�̂ = (1 + �
0��1f �)A�A

0 + ~�f :

The pricing errors are

û = �Re � X̂�̂ =
h
I� X̂(X̂0X̂)�1X̂0

i
�Re =MX̂

�Re

= MX̂

h
X̂�� + ��� (X̂�X)��

i
= MX̂

h
��� (X̂�X)��

i
8



Hence the asymptotic covariance matrix of
p
T û is


û = (1 + �
0��1

f �)MX�MX:

Since 
û has rank n� k � 1, C = T û0
�1û û must be computed using a generalized inverse,
and C is distributed �2 with n� k � 1 degrees of freedom.
As suggested in the text, the constant should really be considered part of the pricing error.

As such, its signi�cance could be tested alone, as it is the �rst element of �̂. Alternatively

one might also consider a reformulated �2 test based on

�̂ = �Re � �̂�̂ = û+ 
̂:

Letting

P =

�
0 0
0 Ik

�
we have

�̂ = �Re � X̂P�̂ =
h
I� X̂P(X̂0X̂)�1X̂0

i
�Re = Ĥ�R

e

= Ĥ
h
X̂�� + ��� (X̂�X)��

i
= Ĥ

h
��� (X̂�X)��

i
:

Therefore the asymptotic covariance matrix of
p
T �̂ is


�̂ = (1 + �
0��1

f �)H�H
0:

As in the other cases, this means that a test statistic can be formed as C = T �̂0
�1�̂ �̂. It

will be distributed �2n�k since 
�̂ is of rank n�k and the covariance matrix must be inverted
using a generalized inverse.

2.1.3 GMM Standard Errors (Betas are Estimated)

Without a Constant The model is estimated by exploiting the moment restrictions

E(Reit � ai � �0ift) = 0, E[(Reit � ai � �0ift)f 0t] = 0, and E(Reit � �0i�) = 0, i = 1, : : : ,

n. Let ~ft = ( 1 f 0t )
0, ~�i = ( ai �0i )

0 and

� =

0BBBBB@
~�1
~�2
...
~�n
�

1CCCCCA :
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De�ne the n(k + 2)� 1 vector

ut(�) =

0BBBB@
~ft(R

e
1t �~f 0t~�1)

~ft(R
e
2t �~f 0t~�2)
� � �

~ft(R
e
nt �~f 0t~�n)
Re
t � ��

1CCCCA ;

the n(k+2)� 1 vector gT (�) = 1
T

PT
t=1 ut(�), and the [n(k+1)+ k]� [n(k+2)� 1] matrix

aT =

�
In(k+1) 0

0 �̂
0
OLS

�
:

The GMM estimator that sets aTgT = 0 reproduces the two-pass estimates of a, �, and �.

De�ne

dT =
@gT (�)

@�0
=

 
�In 
M~f 0n(k+1)�k

�In 

�
0 �̂

0
�

��̂OLS

!
whereM~f =

1
T

PT
t=1
~ft~f

0
t.

Let a = plim aT and d = plimdT . The covariance matrix of
p
T (�̂ � �) is

V� = (ad)
�1aSa0

�
(ad)�1

�0
and the covariance matrix of

p
TgT (�̂) is

Vg = [I� d(ad)�1a]S[I� d(ad)�1a]0

where S is the asymptotic covariance matrix of
p
TgT (�). These results follow from the

facts that
p
T (�̂��) d�! (ad)�1a

p
TgT (�) and

p
TgT (�̂)

d�! [I�d(ad)�1a]
p
TgT (�). The

test statistic for the pricing errors is just TgT (�̂)0V�1
g gT (�̂), where the inverse is generalized.

Since S =
P1

j=�1E(utu
0
t�j), I use a variant of a VARHAC estimator for S: due to limited

sample size I only allow lags of an error to enter into the VAR equation for that error.

With a Constant The model is estimated by exploiting the moment restrictions E(Reit�
ai � �0ift) = 0, E[(Reit � ai � �0ift)f 0t] = 0, and E(Reit � 
 � �0i�) = 0, i = 1, : : : , n. Now let

� =

0BBBBBBB@

~�1
~�2
...
~�n


�

1CCCCCCCA
:
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De�ne the n(k + 2)� 1 vector

ut(�) =

0BBBB@
~ft(R

e
1t �~f 0t~�1)

~ft(R
e
2t �~f 0t~�2)
� � �

~ft(R
e
nt �~f 0t~�n)

Re
t � 
 � ��

1CCCCA ;
the n(k+2)� 1 vector gT (�) = 1

T

PT
t=1 ut(�);and the (n+1)(k+1)� [n(k+2)� 1] matrix

aT =

�
In(k+1) 0

0 X̂0

�
:

where X̂ = ( �n�1 �̂OLS ). The GMM estimator that sets aTgT = 0 reproduces the two-

pass estimates of a, �, 
 and �. De�ne

dT =
@gT (�)

@�0
=

 
�In 
M~f 0n(k+1)�(k+1)

�In 

�
0 �̂

0
�

�X̂

!
:

Let a = plim aT and d = plimdT . The covariance matrix of
p
T (�̂ � �) is

V� = (ad)
�1aSa0

�
(ad)�1

�0
and the covariance matrix of

p
TgT (�̂) is

Vg = [I� d(ad)�1a]S[I� d(ad)�1a]0

where S is the asymptotic covariance matrix of
p
TgT (�). These results follow from the facts

that
p
T (�̂� �) d�! (ad)�1a

p
TgT (�) and

p
TgT (�̂)

d�! [I�d(ad)�1a]
p
TgT (�). The test

statistic for the pricing errors is just TgT (�̂)0V�1
g gT (�̂), where the inverse is generalized. A

test of the pricing errors inclusive of the contest can be derived from the joint distribution

of
p
T (�̂ � �) and

p
TgT (�̂). Since S =

P1
j=�1E(utu

0
t�j), I use a variant of a VARHAC

estimator for S. Due to limited sample size I only allow lags of an error to enter into the

VAR equation for that error.

2.2 GMM Estimation of the Model

2.2.1 Model without a Constant

Asympotic Theory Let

u1t(b;�) = Re
t [1� (ft � �)0b] (7)

g1T (b;�) = T�1
TX
t=1

u1t(b;�) = �Re(1 + �0b)�DTb: (8)
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where DT = T
�1PT

t=1R
e
t f
0
t and �R

e = T�1
PT

t=1R
e
t . Also de�ne

u2t(�) = ft � � (9)

g2T (�) = T�1
TX
t=1

u2t(�) = �f � �: (10)

Finally, de�ne the stacked vectors

ut(b;�) =

�
u1t(b;�)
u2t(�)

�
gT (b;�) =

�
g1T (b;�)
g2T (�)

�
and the matrix

S = E[

1X
j=�1

ut(b0;�0)ut�j(b0;�0)
0]:

The parameters b and � are estimated by setting aTgT = 0, where

aT =

�
(DT � �Re�0)0WT 0

0 Ik

�
;

andWT is some weighting matrix. Given the de�nition of gT this means the GMM estimator

is the solution to�
(DT � �Re�0)0WT 0

0 Ik

��
�Re(1 + �0b)�DTb

�f � �

�
=

�
0
0

�
(11)

implying that

�̂ = �f (12)

b̂ = (d0TWTdT )
�1
d0TWT

�Re; (13)

where dT = DT � �Re�f 0.

In the �rst stage the weighting matrix is WT = In. In the second stage, Lustig and

Verdelhan follow Cochrane (2005) and set

WT =

"
T�1

TX
t=1

u1t(b̂; �̂)u1t(b̂; �̂)
0

#�1
(14)

where b̂ = (d0TdT )
�1 d0T �R

e and �̂ = �f are the �rst stage estimates of the parameters. In this

case

plimWT =W = S�111 where S11 = E[u1t(b0;�0)u1t(b0;�0)
0]:

Given (13), plim b̂ = b0. This follows from the fact that plimdT = d � E[Re
t (ft � �)0]

and that plim �Re = E(Re). We then get plim b̂ = (d0Wd)�1 d0WE(Re). The model implies
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that E(Re) = db0. Hence plim b̂ = b0. So the �rst and second stage estimates of b are

obviously consistent.

The derivation of the asymptotic distribution of (b̂; �̂) relies on deriving the distance

between gT (b̂; �̂) and gT (b0;�0). Using (8) and the consistency of b̂ and �̂ we can argue

that there is a pair (�b;��) between (b0;�0) and (b̂; �̂) such that

g1T (b̂; �̂) = g1T (b0;�0) +
�
�Re��0 �DT

�
(b̂� b0) + �Re�b0(�̂� �0): (15)

From (10) we also have

g2T (�̂) = g2T (�0)� (�̂� �0): (16)

Premultiplying (15) by d0TWT one obtains

0 = d0TWTg1T (b̂; �̂) = d
0
TWT [g1T (b0;�0) +

�
�Re��0 �DT

�
(b̂� b0) + �Re�b0(�̂� �0)] (17)

We can rewrite (16) and (17) together as

0 = âT

�
gT (b0;�0)��T

�
b̂� b0
�̂� �0

��
: (18)

where

âT =

�
d0TWT 0
0 Ik

�
�T =

� �
DT � �Re��0

�
��Re�b0

0 Ik

�
:

We have plim âT = a and plim�T =� where

a =

�
d0W 0
0 Ik

�
� =

�
d �db0b00
0 Ik

�
;

and I have used the fact that plim �Re = E(Re) = db0. Hence

p
T

�
b̂� b0
�̂� �0

�
d!
�
(d0Wd)�1 b0b

0
0

0 Ik

��
d0W 0
0 Ik

�p
TgT (b0;�0):

Thus we have

p
T (b̂� b0)

d!
�
(d0Wd)�1 d0W b0b

0
0

�p
TgT (b0;�0) = B

p
TgT (b0;�0)

p
T (�̂� �0)

d!
�
0 Ik

�p
TgT (b0;�0) =

p
Tg2T (b0;�0)

and the asymptotic covariance matrix of
p
T (b̂� b0) is

Vb = BSB
0: (19)
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The fact that � is estimated a¤ects Vb. If � was known the covariance matrix would reduce

to (d0Wd)�1 d0WS11Wd (d0Wd)�1.

To get a test of the pricing errors, Cochrane (2005) follows Hansen (1982) in showing

that the asymptotic distribution of
p
TgT (b̂; �̂) is normal with covariance matrix

[I��(a�)�1a]S[I� a0(a�)�1�0]:

Some algebra shows that this implies that
p
Tg1T (b̂; �̂) is normal with covariance matrix

V0 = [I� d (d0Wd)
�1
d0W]S11[I�Wd (d0Wd)

�1
d0]:

This is the same expression as one obtains when � is known. Since the test of the pricing

errors is obtained as Tg1T (b̂; �̂)0V�1
T g1T (b̂; �̂), where the inverse is generalized, and VT is

a consistent estimate of V0, the fact that � is estimated has no e¤ect on the statistic as

compared to the case where � is treated as known.

Factor Risk Premia The GMM estimator produces estimates of b and �. To obtain an

estimate of � we can use the expression � = �fb. This requires estimation of �f . This can

be done by adding moment conditions that identify the unique elements of �f :

E[(fit � �i)
�
fjt � �j

�
��f ;ij], i = 1; : : : ; k; j = i; : : : ; k: (20)

The estimate �̂f then corresponds to the sample covariance matrix of ft. Of course, standard

errors for �̂ should take into account estimation of �f .

Equivalence Between the First Stage of GMM and the Two-Pass Procedure The

�rst stage estimate of b based on W = In is b̂ = (d0TdT )
�1 d0T �R

e. The matrix dT is the

sample covariance between Rt and ft. Hence �̂ = dT �̂�1f , where �̂f is the sample covariance

of the risk factors. Therefore dT = �̂�̂f and b̂ = (�̂f �̂
0
�̂�̂f )

�1�̂f �̂
0 �Re = �̂�1

f �̂. Since

�̂GMM � �̂f b̂, �̂GMM = �̂ from the two-pass procedure.

VARHAC Spectral Density Matrix Since S =
P1

j=�1E(utu
0
t�j), I estimate it as

follows. De�ne u1t and u2t as in (7) and (9). I use a VARHAC estimator for S, imposing

the restriction that Eu1tu0t�j = 0 for j � 1. This means that the VARHAC estimator for

S11, the sub-block of S equal to
P1

j=�1E(u1tu
0
1t�j), is the same as the HAC estimator for

S11. But this is not true for the S12, S21 and S22 sub-blocks. In practice, the VARHAC

14



procedure typically �nds persistence in some elements of u2t because these are the GMM

errors corresponding to ft � �̂. Since some of the risk factors are persistent it is important
to allow for this possibility, which is not ruled out by theory.

Equivalence of the Pricing Error Test at the First and Second Stages of GMM

At the �rst stage of GMM we have

b̂1 = (d
0
TdT )

�1
d0T �R

e

so the pricing errors are �̂1 = �Re � dT b̂1 =Md
�Re where Md = I � dT (d0TdT )

�1 d0T . The

estimated covariance matrix of �̂1 is VT =MdŜ11Md, so the test statistic is

T
�
�Re
�0
Md(MdŜ11Md)

�1Md
�Re

where the inverse is generalized.

At the second stage of GMM we have

b̂2 = (d
0
TWTdT )

�1
d0TWT

�Re

so the pricing errors are �̂2 = �Re�dT b̂2 =MW
�Re whereMW = [I�dT (d0TWTdT )

�1 d0TWT ]�R
e.

The estimated covariance matrix of �̂2 is VT =MWŜ11M
0
W so the test statistic is

T
�
�Re
�0
M0

W(MWŜ11M
0
W)

�1MW
�Re:

BecauseMd(MdŜ11Md)
�1Md =M

0
W(MWŜ11M

0
W)

�1MW, whenW = Ŝ�111 , the two statis-

tics are the same.

2.2.2 Model with a Constant

Asymptotic Theory Let

u1t(b;�; 
) = �Re[1� (ft � �)0b]� 
 (21)

g1T (b;�; 
) = T�1
TX
t=1

u1t(b;�; 
) = �Re(1 + ��0�b)� �DT
�b: (22)

where �b = ( 
 b0 )0, �� = ( 0 �0 )0 and �DT = ( �n�1 DT ).

De�ne u2t and g2T as in (9) and (10). De�ne the stacked vectors

ut(b;�; 
) =

�
u1t(b;�; 
)
u2t(�)

�
gT (b;�; 
) =

�
g1T (b;�; 
)
g2T (�)

�
15



and the matrix

S = E[

1X
j=�1

ut(b0;�0; 
0)ut�j(b0;�0; 
0)
0]:

The parameters �b and � are estimated by setting aTgT = 0, where

aT =

�
(�DT � �Re��0)0WT 0

0 Ik

�
;

andWT is some weighting matrix. Given the de�nition of gT this means the GMM estimator

is the solution to�
(�DT � �Re��0)0WT 0

0 Ik

��
�Re(1 + ��0�b)� �DT

�b
�f � �

�
=

�
0
0

�
(23)

implying that

�̂ = �f (24)b�b =
�
�d0TWT

�dT
��1 �d0TWT

�Re; (25)

where �dT = �DT � �Reb��0 = ( �n�1 DT )� �Re( 0 �f 0 ) = ( �n�1 dT ).

The �rst and second stage estimates are calculated as in the case with the constant. In

the �rst stageWT = In. In the second stage,WT is the inverse of a consistent estimator for

S11 = E[u1t(b0;�0; 
0)u1t(b0;�0; 
0)
0].

Equivalence Between the First Stage of GMM and the Two-Pass Procedure

The �rst stage estimate of �b based on W = In is b�b = ��d0T �dT ��1 �d0T �Re. The matrix �dT =

( �n�1 dT ), which can be rewritten as �dT = ( �n�1 �̂�̂f ). Hence

b�b =

 
�0� �0�̂�̂f
�̂f �̂

0
� �̂f �̂

0
�̂�̂f

!=1�
�0 �Re

�̂f �̂
0 �Re

�

=

"�
1 0

0 �̂f

� 
�0� �0�̂

�̂
0
� �̂

0
�̂

!�
1 0

0 �̂f

�#�1�
�0 �Re

�̂f �̂
0 �Re

�

=

�
1 0

0 �̂�1f

� 
�0� �0�̂

�̂
0
� �̂

0
�̂

!�1�
�0 �Re

�̂
0 �Re

�
:

The two-step estimator of 
 and � is�

̂

�̂

�
=

 
�0� �0�̂

�̂
0
� �̂

0
�̂

!�1�
�0 �Re

�̂
0 �Re

�
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Hence b�b = � 1 0

0 �̂�1f

��

̂

�̂

�
=

�

̂

�̂�1f �̂

�
:

So the GMM estimator of 
 is identical to the two-step estimator of 
. Also �̂GMM � �̂f b̂,

�̂GMM = �̂ from the two-pass procedure.

3 Replication of Lustig and Verdelhan�s Results

Some results in my paper are directly comparable to results presented in LV�s original article.

In some cases di¤erences arise, and I try to explain these di¤erences in this section.

Their Table 5 (column EZ-DCAPM) and Table 14 (panel B, column C) are directly

comparable to my Table 3. The point estimates of �, OLS standard errors, and R2 are

identical. The p-values for the pricing error test are di¤erent. They report a p-value of

0:628, while I report a p-value of 0:483. The value of my test statistic is 3:4666. When

a constant is included in the model, the covariance matrix of the error vector has rank

n � k � 1 = 4. The p-value for a statistic of 3:4666, with 4 degrees of freedom is 0:483.

If one incorrectly uses the n � k = 5 as the degrees of freedom for the test, one obtains

LV�s p-value, 0:628. The Shanken standard errors are di¤erent. For consumption growth,

durables growth and the market return, I report standard errors of 2:11, 2:42 and 18:8.

They report slightly larger standard errors: 2:15, 2:52 and 19:8. I believe that this may

be due to them using the formula [1 + (�0��1
f �)](A�A

0 + ~�f ) in computing the standard

errors instead of [1 + (�0��1f �)]A�A
0 + ~�f (the meaning of these expressions is explained

in a previous section of the appendix). When I use the incorrect formula, I reproduce their

standard errors to within one decimal place. We report di¤erent types of GMM standard

errors (they use HAC, while I used VARHAC), so they are not directly comparable. The

reported mean absolute pricing errors also di¤er. I cannot account for this di¤erence.

LV�s Table 6 reports individual factor betas, not partial factor betas obtained in the �rst

pass regressions, so it is not comparable to Table 1 in this appendix.

Table 8 of LV�s paper appears to repeat a typo contained in Yogo (2006). The structural

parameters of the Yogo model map to the bs according to

b1 = �(1=� + �(1=�� 1=�)) (26)

b2 = ��(1=� � 1=�) (27)

b3 = 1� � (28)
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where � = (1� 
)=(1� 1=�). This corresponds to equation (19) is Yogo (2006).
Given estimates of the bs, Yogo�s approach is to set a value for � and then solve the

three equations above for �, 
 and �. The solutions Yogo (2006) states in his paper near

the bottom of page 557 are

� =
1� b3
b1 + b3

(29)


 = b1 + b2 + b3 (30)

� =
b2

b1 + b2 + (b3 � 1) =�
: (31)

The expression for � (29) is wrong and should be:

� =
1� b3
b1 + b2

(32)

With bc = �21:0, bd = 130 and br = 4:46 I obtain � = �0:032 using (32). Using the
incorrect formula in (29) gives � = 0:21, as in Lustig and Verdelhan�s paper. This error does

not a¤ect values of structural parameters given in Yogo (2006), as the error appears to only

be in the text, not in calculations.

LV�s Table 14 (panel A, column C) is directly comparable to my Tables 7 and 8. Our

reported point estimates are identical. They appear to report the MAE for the �rst stage of

GMM rather than the second stage. We report di¤erent types of GMM standard errors, so

they are not directly comparable. However, I believe their reported HAC standard errors to

be incorrect. My code can be used for the HAC case, and I do not replicate their results. I

believe their code ignores the sampling uncertainty induced by � being estimated.

When �0 is known, the expression in (19) is simpler, and reduces to

Vk = (d
0Wd)

�1
d0WS11Wd (d0Wd)

�1
: (33)

In the second stage of GMMW0 = S
�1
11 so (33) reduces to

Vk =
�
d0S�111 d

��1
: (34)

I believe that LV base their GMM standard errors on (34). However, this is inappropriate

when �0 must be estimated. This is because Vb, given in (19), does not reduce to Vk

unless b0 = 0 or �0 is known. This problem does not bias the standard errors sharply in a

consistent direction, and the di¤erences it induces are small.

Finally, my Tables 5(b) and 6(b) in this appendix are not directly comparable to LV�s

Table 14 (panel A, columns E/C and E/B/C). The reason is that LV do not provide the

18



equity and bond portfolio data in their archive. Consequently, di¤erences between our data

series for these test assets probably account for any di¤erencs in results.

Appendix References not Included in the Main Article

Stock, James H. and Jonathan H. Wright (2000) �GMM with Weak Identi�cation,�Econo-

metrica 68, 1055�96.

Stock, James H., Jonathan H. Wright and Motohiro Yogo (2002) �A Survey of Weak In-

struments and Weak Identi�cation in Generalized Method of Moments� Journal of

Business and Economic Statistics 20: 518�29.

Yogo, Motohiro (2004) �Estimating the Elasticity of Intertemporal Substitution When In-

struments Are Weak,�Review of Economics and Statistics 86: 797�810.
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TABLE 1 (Part 1): First-Pass Estimates of the Betas, Portfolios P1�P4

Portfolio Factor (fj) Test of

(Pi) �c �d rW �ij = 0 8j
P1 0:201 0:028 �0:068

(0:852) (0:612) (0:055) (0:600)
[0:643] [0:563] [0:049] [0:492]

h�1:4; 2:0i h�1:4; 1:0i h�0:19; 0:03i
P2 0:740 0:091 �0:034

(0:889) (0:638) (0:058) (0:579)
[0:620] [0:470] [0:062] [0:164]

h�1:0; 2:1i h�0:8; 1:6i h�0:16; 0:13i
P3 �0:639 0:962 0:019

(0:882) (0:633) (0:057) (0:464)
[1:026] [0:814] [0:058] [0:645]

h�2:6; 1:5i h�0:8; 1:6i h�0:13; 0:11i
P4 �0:546 0:982 �0:089

(1:095) (0:786) (0:071) (0:156)
[1:075] [0:749] [0:069] [0:065]

h�2:6; 2:3i h�1:3; 1:7i h�0:25; 0:04i

Notes: Annual data, 1953�2002. The regression equation is Reit = ai + f
0
t�i + �it, where R

e
it is the

excess return of portfolio i at time t, ft = ( �ct �dt rWt )
0, �c is real per household consump-

tion (nondurables & services) growth, �d is real per household durable consumption growth, and
rW is the value weighted US stock market return. The portfolios are equally-weighted groups of
short-term foreign-currency denominated money market securities sorted according to their interest
di¤erential with the United States, where P1 and P8 are the portfolios with, respectively, the small-
est and largest interest di¤erentials. The table reports �̂ij and p-values for tests of the hypotheses
that �ij = 0 8j for each portfolio i. For estimates of betas, OLS standard errors are in parentheses,
and GMM-VARHAC standard errors are in square brackets. Bootstrapped 95 percent con�dence
regions appear in angled brackets. For test statistics, corresponding p-values are presented.
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TABLE 1 (Part 2): First-Pass Estimates of the Betas, Portfolios P5�P8

Portfolio Factor (fj) Test of

(Pi) �c �d rW �ij = 0 8j
P5 0:180 0:485 0:009

(1:006) (0:722) (0:065) (0:740)
[0:754] [0:714] [0:065] [0:746]

h�1:5; 2:4i h�1:4; 1:5i h�0:15; 0:14i
P6 �0:755 1:079 0:023

(1:089) (0:781) (0:071) (0:556)
[0:958] [0:833] [0:068] [0:595]

h�2:2; 2:5i h�1:6; 1:6i h�0:14; 0:15i
P7 0:036 1:234 �0:027

(1:044) (0:749) (0:068) (0:101)
[0:797] [0:730] [0:063] [0:126]

h�1:2; 2:8i h�1:1; 1:7i h�0:21; 0:09i
P8 �1:342 1:426 0:079

(1:674) (1:201) (0:108) (0:684)
[1:646] [1:225] [0:114] [0:700]

h�6:0; 1:9i h�1:2; 2:8i h�0:18; 0:34i

Notes: Annual data, 1953�2002. The regression equation is Reit = ai + f
0
t�i + �it, where R

e
it is the

excess return of portfolio i at time t, ft = ( �ct �dt rWt )
0, �c is real per household consump-

tion (nondurables & services) growth, �d is real per household durable consumption growth, and
rW is the value weighted US stock market return. The portfolios are equally-weighted groups of
short-term foreign-currency denominated money market securities sorted according to their interest
di¤erential with the United States, where P1 and P8 are the portfolios with, respectively, the small-
est and largest interest di¤erentials. The table reports �̂ij and p-values for tests of the hypotheses
that �ij = 0 8j for each portfolio i. For estimates of betas, OLS standard errors are in parentheses,
and GMM-VARHAC standard errors are in square brackets. Bootstrapped 95 percent con�dence
regions appear in angled brackets. For test statistics, corresponding p-values are presented.
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TABLE 2: First-Pass Estimates of the Betas, Portfolios DQ2�DQ6

Portfolio Factor (j) Test of

(i) �c �d rW �ij = 0 8j
DQ2 0:072 �0:522 0:081

(0:722) (0:609) (0:034) (0:073)
[0:750] [0:579] [0:060] [0:165]

DQ3 0:264 0:147 0:082
(0:770) (0:650) (0:037) (0:132)
[0:939] [0:695] [0:054] [0:500]

DQ4 �0:745 0:060 0:091
(0:978) (0:825) (0:047) (0:249)
[1:098] [0:833] [0:055] [0:298]

DQ5 0:043 �0:333 0:156
(0:948) (0:799) (0:045) (0:005)
[1:054] [0:760] [0:062] [0:030]

DQ6 �0:399 0:162 0:161
(1:087) (0:917) (0:052) (0:021)
[1:186] [0:862] [0:072] [0:163]

Notes: Quarterly data, 1976Q2�2010Q1. The regression equation is Reit = ai + f
0
t�i + �it, where

Reit is the excess return of portfolio DQi at time t, ft = ( �ct �dt rWt )
0, �c is real per house-

hold consumption (nondurables & services) growth, �d is real per household durable consumption
growth, and rW is the value weighted US stock market return. The excess return to portfolio DQi
is the di¤erence between the quarterly excess returns of portfolios Qi and Q1. At the monthly
frequency the excess returns of the Q-portfolios are the payo¤s to holding long equally-weighted
one-month forward positions in foreign currencies sorted by forward discount versus the US dollar.
Q1 and Q6 are the portfolios with, respectively, the smallest and largest forward discounts. The
table reports �̂ij and p-values for tests of the hypotheses that �ij = 0 8j for each portfolio i. For
estimates of betas, OLS standard errors are in parentheses, and GMM-VARHAC standard errors
are in square brackets. For test statistics, corresponding p-values are presented.
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TABLE 3: Tests of the Rank of the Factor Beta Matrix

Test of H0: rank(�) = r Test of H0: rank(�+) = r + 1

r p-value r + 1 p-value

2 (0:615) 3 (0:529)
[0:657] [0:699]

1 (0:643) 2 (0:618)
[0:444] [0:326]

0 (0:639) 1 (0:562)
[0:000] [0:003]

Notes: Annual data, 1953�2002. The matrix � is obtained by running the regressions described
in Table 1. The matrix � must have full column rank (3) for � to be identi�ed in the two-pass
procedure without the constant. The matrix �+ = ( � � ) must have full column rank (4) for

 and � to be identi�ed in the two-pass procedure with the constant. The table presents tests
of the null hypothesis that these rank conditions fail. The p-values for the tests are presented in
parentheses (OLS standard errors) and square brackets (GMM-VARHAC standard errors).
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TABLE 4: Tests of the Rank of the Factor Beta Matrix with Different Test Assets

Tests of H0: rank(�) = r

r
Currencies &
Equities

Currencies,
Equities &
Bonds

Di¤erenced
Currencies
1953-2002

2 (0:422) (0:732) (0:529)
� � [0:706]

1 (0:415) (0:016) (0:618)
� � [0:134]

0 (0:000) (0:000) (0:562)
� � [0:001]

Tests of H0: rank(�+) = r + 1

r + 1
Currencies &
Equities

Currencies,
Equities &
Bonds

Di¤erenced
Currencies
1953-2002

3 (0:449) (0:728) (0:406)
� � [0:626]

2 (0:497) (0:182) (0:612)
� � [0:339]

1 (0:000) (0:000) (0:603)
� � [0:005]

Notes: See the note to Table 3. P-values for rank tests are presented in parentheses (OLS standard
errors) and square brackets (GMM-VARHAC standard errors). Dashes indicate cases where the
GMM-VARHAC standard errors cannot be calculated because the number of parameters in the
� matrix plus the number of equations (to account for the constants in the �rst pass regressions)
exceeds the sample size.
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TABLE 5: GMM Estimates of the Model with no Constant
Currency and Equity Portfolios as Test Assets

(a) 1st Stage (b) 2nd Stage (c) Iterated GMM

Factor b̂ �̂ b̂ �̂ b̂ �̂

�c 113:9 2:38 84:6 2:57 60:7 2:53
(82:1) (1:23) (55:4) (0:62) (51:9) (0:98)

�d �4:89 1:80 33:2 2:68 60:7 3:50
(65:8) (2:03) (27:9) (0:88) (45:6) (1:59)

rW 2:11 11:2 4:19 13:7 2:60 5:80
(3:37) (3:87) (1:71) (6:2) (2:14) (5:06)

R2 for currencies 0:03 �0:06 �0:76
MAE for currencies 1:44 1:37 1:88

Notes: Annual data, 1953�2002. The table reports GMM estimates of b and � obtained by
exploiting the moment restrictions EfRet [1 � (ft � �)

0 b]g = 0, E(ft � �) = 0 and E[(ft � �)(ft �
�)0��f ] = 0, where Ret is a vector of excess returns that includes the currency portfolios described
in Table 1, as well as Fama and French�s (1993) six equity portfolios created by sorting stocks
on the basis of size and value, ft = ( �ct �dt rWt )

0, �c is real per household consumption
(nondurables & services) growth, �d is real per household durable consumption growth, rW is the
value weighted US stock market return. GMM-VARHAC standard errors are in parentheses. The
R2 statistic and mean absolute pricing error (MAE) are presented for currency portfolios only, and
are comparable to the statistics in Tables 7 and 8 in the main text.
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TABLE 6: GMM Estimates of the Model with no Constant
Currency, Equity and Bond Portfolios as Test Assets

(a) 1st Stage (b) 2nd Stage (c) Iterated GMM

Factor b̂ �̂ b̂ �̂ b̂ �̂

�c 89:3 1:67 91:1 1:80 17:1 0:04
(61:1) (1:07) (33:5) (0:46) (23:2) (0:80)

�d �14:7 0:94 �12:2 1:00 �28:8 �1:33
(52:5) (1:73) (20:7) (0:67) (22:8) (0:74)

rW 1:92 10:4 3:04 13:7 6:09 21:6
(2:64) (3:24) (1:24) (5:5) (1:55) (10:8)

R2 for currencies 0:03 0:05 �1:35
MAE for currencies 1:40 1:42 1:64

Notes: Annual data, 1953�2002. The table reports GMM estimates of b and � obtained by
exploiting the moment restrictions EfRet [1 � (ft � �)

0 b]g = 0, E(ft � �) = 0 and E[(ft � �)(ft �
�)0��f ] = 0, where Ret is a vector of excess returns that includes the currency portfolios described
in Table 1, the equity portfolios described in Table 5, and �ve Fama bonds portfolios sorted by
maturity (from the Center for Research in Securities Prices, 2007), ft = ( �ct �dt rWt )

0, �c is
real per household consumption (nondurables & services) growth, �d is real per household durable
consumption growth, rW is the value weighted US stock market return. GMM-VARHAC standard
errors are in parentheses. The R2 statistic and mean absolute pricing error (MAE) are presented
for currency portfolios only, and are comparable to the statistics in Tables 7 and 8 in the main text.
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