
Technical Appendix for “The Wealth-Consumption Ratio”

A Pricing Aggregate Consumption and Labor Income

Environment Let zt ∈ Z be the aggregate state vector. We use zt to denote the history of aggregate state

realizations. Section 1.3 describes the dynamics of the aggregate state zt of this economy, including the dynamics

of aggregate consumption Ct(z
t) and aggregate labor income Lt(z

t).

We consider an economy that is populated by a continuum of heterogeneous agents, whose labor income is subject

to idiosyncratic shocks. The idiosyncratic shocks are denoted by ℓt ∈ L, and we use ℓt to denote the history of these

shocks. The household labor income process is given by:

ηt(ℓ
t, zt) = η̂t(ℓ

t, zt)Lt(z
t).

Let Φt(z
t) denote the distribution of household histories ℓt conditional on being in aggregate node zt. The labor

income shares η̂ aggregate to one: ∫
η̂t(ℓ

t, zt)dΦt(z
t) = 1.

Trading in securities markets A non-zero measure of these households can trade bonds and stocks in

securities markets that open every period. These households are in partition 1. We assume that the returns of

these securities span Z. In other words, the payoff space is RZ×t in each period t. Households in partition 2 can

only trade one-period riskless discount bonds (a cash account). We use Aj to denote the menu of traded assets

for households in segment j ∈ {1, 2}. However, none of these households can insure directly against idiosyncratic

shocks ℓt to their labor income by selling a claim to their labor income or by trading contingent claims on these

idiosyncratic shocks.

Law of One Price We assume free portfolio formation, at least for some households, and the law of one price.

There exists a unique pricing kernel Λt in the payoff space. Since there is a non-zero measure of households that

trade assets that span zt, it only depends on the aggregate shocks zt. Formally, this pricing kernel is the projection

of any candidate pricing kernel on the space of traded payoffs Xt = RZ×t:

Λt

Λt−1
= proj(Mt|R

Z×t).

We let Pt be the arbitrage-free price of an asset with payoffs {Di
t}:

P i
t = Et

∞∑

τ=t

Λτ

Λt

Di
τ . (21)

for any non-negative stochastic dividend process Di
t that is measurable w.r.t zt.

Household Problem We adopted the approach of Cuoco and He (2001): We let agents trade a full set

of Arrow securities (contingent on both aggregate and idiosyncratic shock histories), but impose measurability

restrictions on the positions in these securities.
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After collecting their labor income and their payoffs from the Arrow securities, households buy consumption in spot

markets and take Arrow positions at+1(ℓ
t+1, zt+1) in the securities markets subject to a standard budget constraint:

ct + Et

[
Λt+1

Λt

at(ℓ
t+1, zt+1)

]
+
∑

i∈Aj

P j
t sj

t+1 ≤ θt,

where s denotes the shares in a security j that is in the trading set of that agent. In the second term on the left-hand

side, the expectations operator arises because we sum across all states of nature tomorrow and weight the price of

each of the corresponding Arrow securities by the probability of that state arising. Wealth evolves according to:

θt+1 = at(ℓ
t+1, zt+1) + ηt+1 +

∑

i∈Aj

[
P j

t+1 + Dj
t+1

]
sj

t ,

subject to a measurability constraint:

at(ℓ
t+1, zt+1) is measurable w.r.t. Aj

t (ℓ
t+1, zt+1), j ∈ {1, 2},

and subject to a generic borrowing or solvency constraint:

at(ℓ
t+1, zt+1) ≥ Bt(ℓ

t, zt).

These measurability constraints limit the dependence of total household financial wealth on (zt+1, ℓt+1). For exam-

ple, for those households in partition 2 that only trade a risk-free bond, A2
t (ℓ

t+1, zt+1) = (ℓt, zt), because their net

wealth can only depend on the history of aggregate and idiosyncratic states up until t. The households in partition

1, who do trade in stock and bond markets, can have net wealth that additionally depends on the aggregate state

at time t + 1: A1
t (ℓ

t+1, zt+1) = (ℓt, zt+1).

Pricing of Household Human wealth In the absence of arbitrage opportunities, we can eliminate trade

in actual securities (they are redundant), and the budget constraint reduces to:

ct + Et

[
Λt+1

Λt

at(ℓ
t+1, zt+1)

]
≤ at−1(ℓ

t, zt) + ηt.

By forward substitution of at(ℓ
t+1, zt+1) in the budget constraint, and by imposing the transversality condition on

household net wealth:

lim
t→∞

Λtat(ℓ
t, zt) = 0,

it becomes apparent that the expression for financial wealth is :

at−1(ℓ
t, zt) = Et

[
∞∑

τ=t

Λτ

Λt

(cτ (ℓτ , zτ ) − ητ (ℓτ , zτ))

]

= Et

[
∞∑

τ=t

Λτ

Λt

cτ (ℓτ , zτ )

]
− Et

[
∞∑

τ=t

Λτ

Λt

ητ (ℓτ , zτ)

]

The equation states that non-human wealth (on the left) equals the present discounted value of consumption minus

the present discounted value of labor income (human wealth). The value of a claim to c − y is uniquely pinned

down, because the object on the left hand side is traded financial wealth.
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Pricing of Aggregate Human Wealth Let Φ0 denote the measure at time 0 over the history of idiosyn-

cratic shocks. The (shadow) price of a claim to aggregate labor income at time 0 is given by the aggregation of the

valuation of the household labor income streams:

∫
E0

[
∞∑

t=0

Λt

Λ0

(
ĉt(ℓ

t, zt)Ct(z
t) − η̂t(ℓ

t, zt)Lt(z
t)
)
]

dΦ0

= E0

[
∞∑

t=0

Λt

Λ0

∫ (
ĉt(ℓ

t, zt)dΦt(z
t)Ct(z

t) − η̂t(ℓ
t, zt)dΦt(z

t)Lt(z
t)
)
]

,

= E0

[
∞∑

t=0

Λt

Λ0
[Ct(z

t) − Lt(z
t)]

]
,

where we have used the fact that the pricing kernel Λt does not depend on the idiosyncratic shocks, the labor income

shares integrate to one
∫

η̂t(ℓ
t, zt)dΦt(z

t) = 1, and the consumption shares integrate to one
∫

ĉt(ℓ
t, zt)dΦt(z

t) = 1,

in which Φt(z
t) is the distribution of household histories ℓt conditional on being in aggregate node zt.

Under the maintained assumption that the traded assets span aggregate uncertainty, this implies that aggregate

human wealth is the present discounted value of aggregate labor income and that total wealth is the present

discounted value of aggregate consumption, and the discounting is done with the projection of the SDF on the space

of traded payoff space. Put differently, the discount factor is the same one that prices tradeable securities, such as

stocks and bonds. This result follows directly from aggregating households’ budget constraints. The result obtains

despite the fact that human wealth is non-tradeable in this model, and therefore, markets are incomplete.

No Spanning If the traded payoffs do not span the aggregate shocks then the preceding argument still goes

through for the projection of the candidate SDF on the space of traded payoffs:

Λ∗

t

Λ∗

t−1

= proj (Mt|Xt) .

We can still price the aggregate consumption and labor income claims using Λ∗. The exact same reasoning applies.

In this case, the part of non-traded payoffs that is orthogonal to the traded payoffs, may be priced:

Et

[(
Ct+1 − proj

(
Ct+1|Xt+1

))
Λ∗

t+1

]
6= 0,

Et

[(
Yt+1 − proj

(
Yt+1|Xt+1

))
Λ∗

t+1

]
6= 0,

where we assume that X includes a constant so that the residuals are mean zero. In the main paper, we compute

a good-deal bound on the consumption and labor income claims.

B Data Appendix

B.1 Macroeconomic Series

Labor income Our data are quarterly and span the period 1952.I-2006.IV. They are compiled from the most

recent data available. Labor income is computed from NIPA Table 2.1 as wage and salary disbursements (line

3) + employer contributions for employee pension and insurance funds (line 7) + government social benefits to

persons (line 17) - contributions for government social insurance (line 24) + employer contributions for government

social insurance (line 8) - labor taxes. As in Lettau and Ludvigson (2001a), labor taxes are defined by imputing
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a share of personal current taxes (line 25) to labor income, with the share calculated as the ratio of wage and

salary disbursements to the sum of wage and salary disbursements, proprietors’ income (line 9), and rental income

of persons with capital consumption adjustment (line 12), personal interest income (line 14) and personal dividend

income (line 15). The series is seasonally-adjusted at annual rates (SAAR), and we divide it by 4. Because net

worth of non-corporate business and owners’ equity in farm business is part of financial wealth, it cannot also be

part of human wealth. Consequently, labor income excludes proprietors’ income.

Consumption Non-housing consumption consists of non-housing, non-durable consumption and non-housing

durable consumption. Consumption data are taken from Table 2.3.5. from the Bureau of Economic Analysis’

National Income and Product Accounts (BEA, NIPA). Non-housing, non-durable consumption is measured as the

sum of non-durable goods (line 6) + services (line 13) - housing services (line14).

Non-housing durable consumption is unobserved and must be constructed. From the BEA, we observe durable

expenditures. The value of the durables (Flow of Funds, see below) at the end of two consecutive quarters and

the durable expenditures allows us to measure the implicit depreciation rate that entered in the Flow of Fund’s

calculation. We average that depreciation rate over the sample; it is δ=5.293% per quarter. We apply that

depreciation rate to the value of the durable stock at the beginning of the current period (= measured as the end

of the previous quarter) to get a time-series of this period’s durable consumption.

We use housing services consumption (BEA, NIPA, Table 2.3.5, line 14) as the dividend stream from housing

wealth. The BEA measures rent for renters and imputes a rent for owners. These series are SAAR, so we divide

them by 4 to get quarterly values.

Total consumption is the sum of non-housing non-durable, non-housing durable, and housing consumption.

Population and deflation Throughout, we use the disposable personal income deflator from the BEA

(Table 2.1, implied by lines 36 and 37) as well as the BEA’s population series (line 38).

B.2 Financial Series

Stock market return We use value-weighted quarterly returns (NYSE, AMEX, and NASDAQ) from CRSP

as our measure of the stock market return. In constructing the dividend-price ratio, we use the repurchase-yield

adjustment advocated by Boudoukh, Michaely, Richardson, and Roberts (2004). We also add the dividends over the

current and past three quarters, so as to obtain a price-dividend ratio that is comparable with an annual number.

Bond yields We use the nominal yield on a 3-month Treasury bill from Fama (CRSP file) as our measure of

the risk-free rate. We also use the yield spread between a 5-year Treasury note and a 3-month Treasury bill as a

return predictor. The 5-year yield is obtained from the Fama-Bliss data (CRSP file). The same Fama-Bliss yields

of maturities 1-, 2-, 3-, 4-, and 5-years are used to form annual forward rates and to form 1-year excess returns in

the Cochrane-Piazzesi excess bond return regression..

As additional yields to fit, we use the Fama-Bliss yields at the 1-year, and 3-year maturities. We also use yields

on nominal bonds at maturities 10 and 20 years. We use yield data from the Federal Reserve Bank of Saint Louis

(FRED II) for the latter, and construct the spread with the 5-year yield from FRED. The 10- and 20-year yields

we use are the sum of the 5-year Fama-Bliss yield and the 10-5 and 20-5 yield spread from FRED. This is to adjust

for any level differences in the 5-year yield between the two data sources. The 20-year yield data are missing in

from 1987.I until 1993.III. The estimation can handle these missing observations because it minimizes the sum of

squared differences between model-implied and observed yields, where the sum is only taken over available dates.
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In order to plot the average yield curve in Figure 1, and only for this purpose, we also use the 7-5 year and the

30-5 year spread from FRED II. We add them to the 5-year yield from Fama-Bliss to form the 7-year and 30-year

yield series. Since the 7-year yield data are missing from 1953.4-1969.6, we use spline interpolation (using the 1-, 2-,

5-, 10-, and 20-year yields) to fill in the missing data. The 30-year bond yield data are missing from 1953.4-1977.1

and from 2002.3-2006.1. We use the 20-year yield in those periods as a proxy. In the period where the 20-year yield

is absent, we use the 30-year yield data in that period as a proxy. The resulting average 5-year yield is 6.11% per

annum (straight from Fama-Bliss), the average 7-year yield is 6.25%, 10-year yield is 6.32%, 20-year is 6.51%, and

the average 30-year yield is 6.45%.

Additional cross-sectional stock and bond returns We also use the 25 size and value equity

portfolio returns from Kenneth French. We form log real quarterly returns.

C No-Arbitrage Model Details

C.1 Proof of Proposition 2

Proof. To find Ac
0 and Ac

1, we need to solve the Euler equation for a claim to aggregate consumption. This Euler

equation can either be thought of as the Euler equation that uses the nominal log SDF m$
t+1 to price the nominal

total wealth return πt+1 + rc
t+1 or the real log SDF m$

t+1 + πt+1 to price the real return rc
t+1:

1 = Et[exp{m$
t+1 + πt+1 + rc

t+1}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′

tεt+1 + π0 + e′πzt+1 + µc + e′∆czt+1 + Ac
0 + Ac′

1 zt+1 + κc
0 − κc

1 (Ac
0 + Ac′

1 zt)}]

= exp{−y$
0(1) + π0 − e′ynzt −

1

2
L′

tLt + e′πΨzt + κc
0 + (1 − κc

1)A
c
0 + µc − κc

1A
c′
1 zt + (e′∆c + Ac′

1 )Ψzt} ×

Et

[
exp{−L′

tεt+1 + (e∆c + eπ + Ac
1)

′Σ
1
2 εt+1}

]

First, note that because of log-normality of εt+1, the last line equals:

exp

{
1

2

(
L′

tLt + (e∆c + eπ + Ac
1)

′Σ(e∆c + eπ + Ac
1)

′ − 2(e∆c + eπ + Ac
1)

′Σ
1
2 Lt

)}

Substituting in for the expectation, as well as for the affine expression for Lt, we get

1 = exp{−y$
0(1) + π0 − e′ynzt + κc

0 + (1 − κc
1)A

c
0 + µc − κc

1A
c′
1 zt + (e∆c + eπ + Ac

1)
′Ψzt} ×

exp{
1

2
(e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1) − (e∆c + eπ + Ac
1)

′Σ
1
2 (L0 + L1zt)}

Taking logs on both sides, an collecting the constant terms and the terms in z, we obtain the following:

0 = {−y$
0(1) + π0 + κc

0 + (1 − κc
1)A

c
0 + µc +

1

2
(e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1) − (e∆c + eπ + Ac
1)

′Σ
1
2 L0} +

{−e′yn − κc
1A

c′
1 + (e∆c + eπ + Ac

1)
′Ψ − (e∆c + eπ + Ac

1)
′Σ

1
2 L1}zt
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This equality needs to hold for all zt. This is a system of N + 1 equations in N + 1 unknowns:

0 = −y$
0(1) + π0 + κc

0 + (1 − κc
1)A

c
0 + µc +

1

2
(e∆c + eπ + Ac

1)
′Σ(e∆c + eπ + Ac

1) − (e∆c + eπ + Ac
1)

′Σ
1
2 L0,(22)

0 = (e∆c + eπ + Ac
1)

′Ψ − κc
1A

c′
1 − e′yn − (e∆c + eπ + Ac

1)
′Σ

1
2 L1. (23)

The real short yield yt(1), or risk-free rate, satisfies Et[exp{mt+1 + yt(1)}] = 1. Solving out this Euler equation,

we get:

yt(1) = y$
t (1) − Et[πt+1] −

1

2
e′πΣeπ + e′πΣ

1
2 Lt

= y0(1) +
[
e′yn − e′πΨ + e′πΣ

1
2 L1

]
zt (24)

y0(1) ≡ y$
0(1) − π0 −

1

2
e′πΣeπ + e′πΣ

1
2 L0 (25)

The real short yield is the nominal short yield minus expected inflation minus a Jensen adjustment minus the

inflation risk premium. Using the expression (25) for y0(1) in equation (22) delivers equation (6) in the main text.

Likewise, using (24) in equation (23) delivers equation (7).

Corollary 5. The log price-dividend ratio on human wealth is a linear function of the (demeaned) state vector zt

pdl
t = Al

0 + Al
1zt

where the following recursions pin down Al
0 and Al

1:

0 = κl
0 + (1 − κl

1)A
l
0 + µl − y0(1) +

1

2
(e′∆l + Al′

1 )Σ(e∆l + Al
1) − (e′∆l + Al′

1 )Σ
1
2

(
L0 − Σ

1
2
′eπ

)
,

0 =
(
e∆l + eπ + Al

1

)′
Ψ − κl

1A
l′
1 − e′yn − (e∆l + eπ + Al

1)
′Σ

1
2 L1.

The proof is identical to the proof of Proposition 2, and obtains by replacing µc by µl and the selector vector

ec by e∆l. The linearization constants κl
0 and κl

1 relate to Al
0 through the analog of equation (3).

C.2 Campbell-Shiller Variance Decomposition

By iterating forward on the total wealth return equation (2), we can link the log wealth-consumption ratio at time

t to expected future total wealth returns and consumption growth rates:

wct =
κc

0

κc
1 − 1

+

H∑

j=1

(κc
1)

−j
∆ct+j −

H∑

j=1

(κc
1)

−j
rc
t+j + (κc

1)
−H

wct+H . (26)

Because this expression holds both ex-ante and ex-post, one is allowed to add the expectation sign on the right-hand

side. Imposing the transversality condition as H → ∞ kills the last term, and delivers the familiar Campbell and

Shiller (1988) decomposition for the price-dividend ratio of the consumption claim:

wct =
κc

0

κc
1 − 1

+ Et




∞∑

j=1

(κc
1)

−j
∆ct+j



− Et




∞∑

j=1

(κc
1)

−j
rt+j



 =
κc

0

κc
1 − 1

+ ∆cH
t − rH

t . (27)
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where the second equality follows from the definitions

∆cH
t ≡ Et




∞∑

j=1

(κc
1)

−j ∆ct+j



 = e′cΨ(κc
1I − Ψ)−1zt, (28)

rH
t ≡ Et




∞∑

j=1

(κc
1)

−j rt+j



 = [(ec + Ac
1)

′Ψ − κc
1A

c′
1 ] (κc

1I − Ψ)−1zt, (29)

where I is the N × N identity matrix. The first equation for the cash-flow component ∆cH
t follows from the

VAR dynamics, while the second equation for the discount rate component rH
t follows from Proposition 2 and the

definition of the total wealth return equation (2).

Using expressions (29) and (28) and the log-linearity of the wealth-consumption ratio, we obtain analytical expres-

sions for the following variance and covariance terms:

V [wct] = Ac′
1 ΩAc

1 (30)

Cov
[
wct, ∆cH

t

]
= Ac′

1 Ω(κc
1I − Ψ′)−1Ψ′ec (31)

Cov
[
wct,−rH

t

]
= Ac′

1 Ω
[
Ac

1 − (κc
1I − Ψ)−1Ψ′e′c

]
(32)

V
[
∆cH

t

]
= e′cΨ(κc

1I − Ψ)−1Ω(κc
1I − Ψ′)−1Ψ′ec (33)

V
[
rH
t

]
= [(e′c + Ac′

1 )Ψ − κc
1A

c′
1 ] (κc

1I − Ψ)−1Ω(κc
1I − Ψ′)−1 [Ψ′(ec + Ac

1) − κc
1A

c
1] (34)

Cov
[
rH
t , ∆cH

t

]
= [(e′c + Ac′

1 )Ψ − κc
1A

c′
1 ] (κc

1I − Ψ)−1Ω(κc
1I − Ψ′)−1Ψ′ec (35)

where Ω = E[z′tzt] is the second moment matrix of the state zt.

C.3 Nominal Term Structure

Proposition 6. Nominal bond yields are affine in the state vector:

y$
t (τ) = −

A$(τ)

τ
−

B$(τ)′

τ
zt,

where the coefficients A$(τ) and B$(τ) satisfy the following recursions

A$(τ + 1) = −y$
0(1) + A$(τ) +

1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)
−
(
B$(τ)

)′
Σ

1
2 L0, (36)

(
B$(τ + 1)

)′
=

(
B$(τ)

)′
Ψ − e′yn −

(
B$(τ)

)′
Σ

1
2 L1, (37)

initialized at A$(0) = 0 and B$(0) = 0.

Proof. We conjecture that the t + 1-price of a τ -period bond is exponentially affine in the state

log(P $
t+1(τ)) = A$(τ) +

(
B$(τ)

)′
zt+1

and solve for the coefficients A$(τ + 1) and B$(τ + 1) in the process of verifying this conjecture using the Euler
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equation:

P $
t (τ + 1) = Et[exp{m$

t+1 + log
(
P $

t+1(τ)
)
}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′

tεt+1 + A$(τ) +
(
B$(τ)

)′
zt+1}]

= exp{−y$
0(1) − e′ynzt −

1

2
L′

tLt + A$(τ) +
(
B$(τ)

)′
Ψzt} ×

Et

[
exp{−L′

tεt+1 +
(
B$(τ)

)′
Σ

1
2 εt+1}

]

We use the log-normality of εt+1 and substitute for the affine expression for Lt to get:

P $
t (τ + 1) = exp{−y$

0(1) − e′ynzt + A$(τ) +
(
B$(τ)

)′
Ψzt +

1

2

(
B$(τ)

)′
Σ
(
B$(τ)

)
−
(
B$(τ)

)′
Σ

1
2 (L0 + L1zt)}

Taking logs and collecting terms, we obtain a linear equation for log(pt(τ + 1)):

log
(
P $

t (τ + 1)
)

= A$(τ + 1) +
(
B$(τ + 1)

)′
zt,

where A$(τ + 1) satisfies (36) and B$(τ + 1) satisfies (37).

Real bond yields, yt(τ), denoted without the $ superscript, are affine as well with coefficients that follow similar

recursions:

A(τ + 1) = −y0(1) + A(τ) +
1

2
(B(τ))

′
Σ (B(τ)) − (B(τ))

′
Σ

1
2

(
L0 − Σ

1
2
′eπ

)
,

(B(τ + 1))
′

= (eπ + B(τ))
′
Ψ − e′yn − (eπ + B(τ))

′
Σ

1
2 L1.

For τ = 1, we recover the expression for the risk-free rate in (24)-(25).

C.4 Dividend Strips

We define the return on equity conform the literature as Rm
t+1 =

P m
t+1+Dm

t+1

P m
t

, where Pm
t is the end-of-period price on

the equity market. A log-linearization delivers:

rm
t+1 = κm

0 + ∆dm
t+1 + κm

1 pdm
t+1 − pdm

t . (38)

The unconditional mean stock return is rm
0 = κm

0 + (κm
1 − 1)Am

0 + µm, where Am
0 = E[pdm

t ] is the unconditional

average log price-dividend ratio on equity and µm = E[∆dm
t ] is the unconditional mean dividend growth rate. The

linearization constants κm
0 and κm

1 are different from the other wealth concepts because the timing of the return is

different:

κm
1 =

eAm
0

eAm
0 + 1

< 1 and κm
0 = log

(
eAm

0 + 1
)
−

eAm
0

eAm
0 + 1

Am
0 . (39)

Even though these constants arise from a linearization, we define log dividend growth so that the return equation

holds exactly, given the CRSP series for {rm
t , pdm

t }. Our state vector z contains the (demeaned) return on the stock

market, rm
t+1 − rm

0 , and the (demeaned) log price-dividend ratio pdm − Am
0 . The definition of log equity returns

allows us to back out dividend growth:

∆dm
t+1 = µm +

[
(erm − κm

1 epd)
′Ψ + e′pd

]
zt + (erm − κm

1 epd)
′
Σ

1
2 εt+1

8



Proposition 7. Log price-dividend ratios on dividend strips are affine in the state vector:

pd
t (τ) = Am(τ) + Bm′(τ)zt,

where the coefficients Am(τ) and Bm(τ) follow recursions

Am(τ + 1) = Am(τ) + µm − y0(1) +
1

2
(erm − κm

1 epdm + Bc(τ))
′
Σ (erm − κm

1 epdm + Bm(τ))

− (erm − κm
1 epdm + Bm(τ))′ Σ

1
2

(
L0 − Σ

1
2 eπ

)
,

Bm(τ + 1)′ = (erm − κm
1 epdm + eπ + Bm(τ))

′
Ψ + e′pdm − e′yn − (erm − κm

1 epdm + eπ + Bm(τ))
′
Σ

1
2 L1,

initialized at Am(0) = 0 and Bm(0) = 0.

Proof. We conjecture that the log t + 1-price of a τ -period strip, scaled by the dividend in period t + 1, is affine in

the state

pd
t+1(τ) = log

(
P d

t+1(τ)
)

= Am(τ) + Bm(τ)′zt+1

and solve for the coefficients Am(τ + 1) and Bm(τ + 1) in the process of verifying this conjecture using the Euler

equation:

P d
t (τ + 1) = Et[exp{m$

t+1 + πt+1 + ∆dm
t+1 + log

(
pm

t+1(τ)
)
}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′

tεt+1 + π0 + e′πzt+1 + ∆dm
t+1 + Am(τ) + Bm(τ)′zt+1}]

= exp{−y$
0(1) − e′ynzt −

1

2
L′

tLt + π0 + e′πΨzt + µm +
[
(erm − κm

1 epd)
′Ψ + e′pd

]
zt + Am(τ) + Bm(τ)′Ψzt} ×

Et

[
exp{−L′

tεt+1 + (erm − κm
1 epd + eπ + Bm(τ))

′
Σ

1
2 εt+1

]

We use the log-normality of εt+1 and substitute for the affine expression for Lt to get:

P d
t (τ + 1) = exp{−y$

0(1) − e′ynzt + π0 + µm + Am(τ) +
[
(erm − κm

1 epd + eπ + Bm(τ))
′
Ψ + e′pd

]
zt +

1

2
(erm − κm

1 epd + eπ + Bm(τ))
′
Σ (erm − κm

1 epd + eπ + Bm(τ)) − (erm − κm
1 epd + eπ + Bm(τ))

′
Σ

1
2 (L0 + L1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pm
t (τ + 1):

pd
t (τ + 1) = Am(τ + 1) + Bm(τ + 1)′zt,

where

Am(τ + 1) = Am(τ) + µm − y$
0(1) + π0 +

1

2
(erm − κm

1 epd + eπ + Bc(τ))
′
Σ (erm − κm

1 epd + eπ + Bm(τ))

− (erm − κm
1 epd + eπ + Bm(τ))′ Σ

1
2 L0,

Bm(τ + 1)′ = (erm − κm
1 epd + eπ + Bm(τ))

′
Ψ + e′pd − e′yn − (erm − κm

1 epd + eπ + Bm(τ))
′
Σ

1
2 L1

We recover the recursions of Proposition 7 after substituting out the expressions for the nominal yields using

equations (24) and (25).
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C.5 Consumption Strips

Proposition 8. Log price-dividend ratios on consumption strips are affine in the state vector:

pc
t(τ) = Ac(τ) + Bc′(τ)zt,

where the coefficients Ac(τ) and Bc(τ) follow recursions:

Ac(τ + 1) = Ac(τ) + µc − y0(1) +
1

2
(ec + Bc(τ))

′
Σ (ec + Bc(τ)) − (ec + Bc(τ))

′
Σ

1
2

(
L0 − Σ

1
2 eπ

)
,

Bc(τ + 1)′ = (ec + eπ + Bc(τ))
′
Ψ − e′yn − (ec + eπ + Bc(τ))

′
Σ

1
2 L1.

initialized at Ac(0) = 0 and Bc(0) = 0.

Proof. We conjecture that the t + 1-price of a τ -period strip is exponentially affine in the state

pc
t+1(τ) = Ac(τ) + Bc(τ)′zt+1

and solve for the coefficients Ac(τ + 1) and Bc(τ + 1) in the process of verifying this conjecture using the Euler

equation:

P c
t (τ + 1) = Et[exp{m$

t+1 + πt+1 + ∆ct+1 + log
(
pc

t+1(τ)
)
}]

= Et[exp{−y$
t (1) −

1

2
L′

tLt − L′

tεt+1 + π0 + e′πzt+1 + ∆ct+1 + Ac(τ) + Bc(τ)′zt+1}]

= exp{−y$
0(1) − e′ynzt −

1

2
L′

tLt + π0 + e′πΨzt + µc + e′∆cΨzt + Ac(τ) + Bc(τ)′Ψzt} ×

Et

[
exp{−L′

tεt+1 + (e∆c + eπ + Bc(τ))′Σ
1
2 εt+1

]

We use the log-normality of εt+1 and substitute for the affine expression for Lt to get:

P c
t (τ + 1) = exp{−y$

0(1) − e′ynzt + π0 + µc + Ac(τ) + (e∆c + eπ + Bc(τ))′ Ψzt +
1

2
(e∆c + eπ + Bc(τ))′ Σ (e∆c + eπ + Bc(τ))

− (e∆c + eπ + Bc(τ))
′
Σ

1
2 (L0 + L1zt)}

Taking logs and collecting terms, we obtain a log-linear expression for pc
t(τ + 1):

pc
t(τ + 1) = Ac(τ + 1) + Bc(τ + 1)′zt,

where

Ac(τ + 1) = Ac(τ) + µc − y$
0(1) + π0 +

1

2
(e∆c + eπ + Bc(τ))

′
Σ (e∆c + eπ + Bc(τ)) − (e∆c + eπ + Bc(τ))

′
Σ

1
2 L0,

Bc(τ + 1)′ = (e∆c + eπ + Bc(τ))
′
Ψ − e′yn − (e∆c + eπ + Bc(τ))

′
Σ

1
2 L1

We recover the recursions of Proposition 8 after substituting out the expressions for the nominal yields using

equations (24) and (25).

We decompose the yield on a τ -period consumption strip from Proposition 8, yc
t (τ) = −pc

t(τ)/τ , into the yield

on a τ -period real bond adjusted for consumption growth plus the yield on the consumption cash-flow risk security

10



yccr
t (τ):

yc
t (τ) = (yt(τ) − µc) + yccr

t (τ).

The former can be thought of as the period-τ coupon yield on a real perpetuity with cash-flows that grow at a

deterministic rate µc, while the latter captures the cash-flow risk in the consumption claim. We have that yccr
t (τ) =

−pccr
t (τ)/τ . Since the log price-dividend ratio of the consumption strips and the log real bond prices are both affine,

so is the log price-dividend ratio of the consumption cash-flow risk security: log pccr
t (τ) = Accr(τ) + Bccr(τ)zt. It is

easy to show that its coefficients follow the recursions:

Accr(τ + 1) = Accr(τ) +
1

2
(ec + Bccr(τ))′ Σ (ec + Bccr(τ)) + (ec + Bccr(τ))′ ΣB(τ)

− (ec + Bccr(τ))
′
Σ

1
2

(
L0 − Σ

1
2 eπ

)
,

Bccr(τ + 1)′ = (ec + Bccr(τ))
′
Ψ − (ec + Bccr(τ))

′
Σ

1
2 L1.

C.6 Point Estimates

Below, we report the point estimates for the VAR companion matrix Ψ, the Cholesky decomposition of the co-

variance matrix Σ.5 (multiplied by 100), and the market price of risk parameters L0 and L1 for our benchmark

specification. We recall that the market price of risk parameter matrix L1 pre-multiplies the state zt, which has a

(non-standardized) covariance matrix Ω.

Ψ =





0.3053 1.2456 -0.4565 3.3037 0 0 0 0 0 0

−0.0035 0.8965 0.1022 0.1590 0 0 0 0 0 0

-0.0371 0.1690 0.7312 0.0930 0 0 0 0 0 0

0.0086 0.0289 −0.0424 0.6973 0 0 0 0 0 0

0.3201 −2.3434 −0.9365 −2.8085 0.9131 −0.0230 0 0 0 0

0.2257 −1.8392 −1.5961 −0.9984 -0.0890 0.0429 0 0 0 0

0.0139 0.0466 −0.5851 0.6283 −0.0105 0.0708 0 0 0 0

0.1506 −0.2318 −0.6371 −0.0617 −0.0130 0.0769 0 0 0 0

0.0251 −0.0202 −0.0557 0.0350 0.0006 −0.0020 −0.0002 0.0068 0.3014 0

0.1032 −0.2691 0.0091 −0.6800 0.0016 −0.0064 0.0495 −0.0207 0.5887 −0.1390





Σ.5 × 100 =





1.4427 0 0 0 0 0 0 0 0 0

−0.0714 0.2331 0 0 0 0 0 0 0 0

−0.0519 0.0352 0.2998 0 0 0 0 0 0 0

0.0838 −0.1071 0.0136 0.1012 0 0 0 0 0 0

0.7999 −0.6542 −1.6896 −0.3572 7.8117 0 0 0 0 0

0.6247 −0.6375 −1.8040 −0.4144 7.3491 2.5131 0 0 0 0

0.4139 −0.1845 −0.4411 −0.1536 1.7789 0.5328 2.5774 0 0 0

1.0101 −0.4506 −0.6907 −0.1438 2.2836 0.8748 3.8193 4.7776 0 0

0.0292 −0.0569 0.0166 0.0106 0.0801 0.0593 0.1280 −0.0122 0.3631 0

0.1751 −0.0484 −0.0046 −0.0113 0.1342 −0.0335 0.2257 0.2664 0.3247 0.6503




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L′

0 =
[

0 -0.1781 0 0.0309 0 0.6601 −0.0712 0.1225 0 0
]

L1 =





0 0 0 0 0 0 0 0 0 0

4.1229 -70.9093 55.3549 -96.4021 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

-49.3448 131.6779 -48.3828 249.5507 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0.3578 −101.5409 −29.1252 −17.9823 -3.5997 1.7053 0 0 0 0

−3.7005 −5.7382 12.0120 41.0278 0.4508 2.3711 0 0 0 0

4.2683 −1.2674 1.0349 −29.7221 0.1894 −0.5990 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0





We compute OLS standard errors for the elements of Ψ and report the coefficients with a t-stat greater than

1.98 in bold. Bootstrap standard errors on the market price of risk parameters are available upon request. They

are derived as part of the method explained in Appendix C.7. Market price of risk estimates with bootstrap t-stats

above 1.98 are indicated in bold.

C.7 Bootstrap Standard Errors

We obtain standard errors on the moments of the estimated wealth-consumption ratio by bootstrap. More precisely,

we conduct two bootstrap exercises leading to two sets of standard errors. In each exercise, we draw with replacement

from the VAR innovations εt. We draw row-by-row in order to preserve the cross-correlation structure between the

state innovations (Step 1). Given the point estimates for Ψ and Σ as well as the mean vector µ, we recursively

reconstruct the state vector (Step 2). We then re-estimate the mean vector, companion matrix, and innovation

covariance matrix (Step 3). With the new state vector and the new VAR parameters in hand, we re-estimate the

market price of risk parameters in L0 and L1 (Step 4). Just as in the main estimation, we use 2500 quarters to

approximate the infinite-horizon sums in the strip price-dividend ratio calculations. We limit the estimation in Step

4 to 500 function evaluations for computational reasons. In some of the bootstrap iterations, the optimization in

Step 4 does not find a feasible solution. This happens, for example when no parameter choices keep the human

wealth share less than hundred percent or the consumption or labor income claim finite. We discard these bootstrap

iterations. These new market price of risk parameters deliver a new wealth-consumption ratio time series (Step

5). With the bootstrap time series for consumption growth and the wealth-consumption ratio, we can form all the

moments in Table 1. We repeat this procedure 1,000 times and report the standard deviation across the bootstrap

iterations. We conduct two variations on the above algorithm. The first set of standard errors are reported in

parentheses, the second set are in brackets in Table 1. Each bootstrap exercise takes about 12 hours to compute on

an 8-processor computer.

In the first exercise, we only consider sampling uncertainty in the last four elements of the state: the two

factor mimicking portfolios, consumption growth, and labor income growth. We assume that all the other variables

are observed without error. The idea is that national account aggregates are measured much less precisely than

traded stocks and bonds. This procedure takes into account sampling uncertainty in consumption growth and its
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correlations with yields and with the aggregate stock market. Given our goal of obtaining standard errors around

the moments of the wealth-consumption ratio, this seems like a natural first exercise. The second column of Table 4

reports the standard errors from this bootstrap exercise in parentheses. For completeness, it also reports the mean

across bootstrap iterations.

In a second estimation exercise, we also consider sampling uncertainty in the first six state variables (yields and

stock prices). Redrawing the yields that enter in the state space (the 1-quarter yield and the 20-1 quarter yield

spread) requires also redrawing the additional yields that are used in estimation (the 4-, 12-, 40-, and 80-quarter

yields) and in the formation of the Cochrane-Piazzesi factor (the 4-, 8-, 12-, and 16- quarter yields). Otherwise,

the bootstrapped time-series for the yields in the state space would be disconnected from the other yields. For this

second exercise, we augment the VAR with the following yield spreads: 4-20, 8-20, 12-20, 16-20, 40-20, and 80-20

quarter yield spreads. We let these spreads depend on their own lag and on the lagged 1-quarter yield. Additional

dependence on the lagged 20-1 quarter yield makes little difference. In Step 1, we draw from the yield spreads-

augmented VAR innovations. This allows us to take into account the cross-dependencies between all the yields in

the yield curve. In addition to recursively rebuilding the state variables in Step 2, we also rebuild the six yield

spreads. With the bootstrapped yields, we reconstruct the forward rates, one-year excess bond returns, re-estimate

the excess bond return regression, and re-construct the Cochrane-Piazzesi factor. Steps 3 through 5 are the same as

in the first exercise. One additional complication arises because the bootstrapped yields often turn negative for one

or more periods. Since negative nominal yields never happen in the data and make no economic sense, we discard

these bootstrap iterations. We redraw from the VAR innovations until we have 1,000 bootstrap samples with strictly

positive yields at all maturities. This is akin to a rejection-sampling procedure. One drawback is that there is an

upward bias in the yield curve. The average one-quarter yield is 5.13% per annum in our data sample, while it is

5.93% in our bootstrap sample. This translates in a small downward bias in the average wealth consumption ratio:

the average wealth-consumption ratio is 5.86 in the data and 5.69 in the bootstrap. The third column of Table 4

reports the standard errors from this bootstrap exercise in parentheses. As expected, the standard errors from the

second bootstrap exercise are somewhat bigger. However, their difference is small. We report the more conservative

standard errors in the main text.

D The Long-Run Risk Model

D.1 Preferences

Let Vt(Ct) denote the utility derived from consuming Ct, then the value function of the representative agent takes

the following recursive form:

Vt(Ct) =
[
(1 − β)C1−ρ

t + β(RtVt+1)
1−ρ
] 1

1−ρ

, (40)

where the risk-adjusted expectation operator is defined as:

RtVt+1 =
(
EtV

1−α
t+1

) 1
1−α .

For these preferences, α governs risk aversion and ρ governs the willingness to substitute consumption inter-

temporally. It is the inverse of the inter-temporal elasticity of substitution. In the special case where ρ = α,

they collapse to the standard power utility preferences, used in Breeden (1979) and Lucas (1978). Epstein and Zin
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Table 4: Bootstrap Standard Errors

This table displays bootstrap standard errors on the unconditional moments of the log wealth-consumption ratio wc, its first difference
∆wc, and the log total wealth return rc. The last but one row reports the time-series average of the conditional consumption risk
premium, E[Et[r

c,e
t ]], where rc,e denotes the expected log return on total wealth in excess of the risk-free rate and corrected for a Jensen

term. The first column repeats the point estimates from the main text (last column of Table 1). The second and third columns report
the results from two bootstrap exercises, described above. The table reports the mean and standard deviation (in parentheses) across
1,000 bootstrap iterations.

Moments Point Estimate Bootstrap 1 Bootstrap 2

Std[wc] 17.24% 16.26% 15.24%

(s.e.) (3.39) (4.30)

AC(1)[wc] .96 .95 .93

(s.e.) (.00) (.03)

AC(4)[wc] .85 .83 .74

(s.e.) (.01) (.08)

Std[∆wc] 4.86% 4.86% 5.07%

(s.e.) (0.98) (1.16)

Std[∆c] .44% .44% .44%

(s.e.) (.03) (.03)

Corr[∆c,∆wc] .11 .02 .12

(s.e.) (.06) (.06)

Std[rc] 4.94% 4.90% 5.16%

(s.e.) (2.21) (1.16)

Corr[rc,∆c] .19 .12 .21

(s.e.) (.07) (.07)

E[Et[r
c,e
t ]] .54% .46% 0.53%

(s.e.) (.11) (.16)

E[wc] 5.86 6.29 5.69

(s.e.) (.48) (.49)

(1989) show that the stochastic discount factor can be written as:

Mt+1 = β

(
Ct+1

Ct

)−ρ(
Vt+1

RtVt+1

)ρ−α

(41)

The next proposition shows that the ability to write the SDF in the long-run risk model as a function of consumption

growth and the wealth-consumption ratio is general. It does not depend on the linearization of returns, nor on the

assumptions on the stochastic process for consumption growth (see Hansen, Heaton, Lee, and Roussanov (2008)).

Proposition 9. The log SDF in the non-linear version of the long-run risk model can be stated as

mt+1 =
1 − α

1 − ρ
log β − α∆ct+1 +

ρ − α

1 − ρ
log

(
ewct+1

ewct − 1

)
(42)

Proof. We start from the value function definition in equation (40) and raise both sides to the power 1 − ρ, and

subsequently divide through by (1 − β)C−ρ
t to obtain:

V 1−ρ
t

(1 − β)C−ρ
t

= Ct + β

(
EtV

1−α
t+1

) 1−ρ
1−α

(1 − β)C−ρ
t

(43)
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Some algebra and the definition of the risk-adjusted expectation operator imply that

Et(V
1−α
t+1 )

1−ρ
1−α = Et(V

1−α
t+1 )1−

ρ−α
1−α =

Et(V
1−α
t+1 )

Et(V
1−α
t+1 )

ρ−α
1−α

=
Et(V

1−α
t+1 )

(RtVt+1)ρ−α
= Et

[
V ρ−α

t+1 V 1−ρ
t+1

(RtVt+1)ρ−α

]

The left-hand side shows up in equation (43), and we substitute it for the right-hand side of the equation above.

Multiplying and dividing inside the expectation operator by C−ρ
t+1, we get:

V 1−ρ
t

(1 − β)C−ρ
t

= Ct + Et

[
β

(
Ct+1

Ct

)−ρ (
Vt+1

RtVt+1

)ρ−α V 1−ρ
t+1

(1 − β)C−ρ
t+1

]

Note that the first three terms inside the expectation are equal to the stochastic discount factor in equation (41).

This is a no-arbitrage asset pricing equation of an asset with dividend equal to aggregate consumption. The price

of this asset is Wt. Hence,

Wt = Ct + Et [Mt+1Wt+1] and Wt =
V 1−ρ

t

(1 − β)C−ρ
t

. (44)

This equation, together with E[Mt+1R
c
t+1] = 1 delivers the return on the total wealth portfolio:

Rc
t+1 =

Wt+1

(Wt − Ct)
=

V
1−ρ

t+1

(1−β)C−ρ
t+1

V
1−ρ

t

(1−β)C−ρ
t

− Ct

=

V
1−ρ

t+1

(1−β)C−ρ
t+1

β

(1−β)C−ρ
t

(RtVt+1)1−ρ
= β−1

(
Ct+1

Ct

)ρ(
Vt+1

RtVt+1

)1−ρ

, (45)

where the first equality is the return definition, the second one follows from the definition of Wt, and the third

equality from the Bellman equation (40).

One then rearranges this equation (after raising both sides to the power ρ−α
1−ρ

) to get a relationship between the

change in continuation values and the total wealth return:

(
Vt+1

RtVt+1

)ρ−α

= β
ρ−α
1−ρ

(
Ct+1

Ct

)−ρ
ρ−α
1−ρ (

Rc
t+1

) ρ−α
1−ρ .

Finally, we substitute it into the stochastic discount factor expression (41) to obtain an expression that depends

only on consumption growth and the return to the wealth portfolio:

Mt+1 = β
1−α
1−ρ

(
Ct+1

Ct

)−ρ 1−α
1−ρ (

Rc
t+1

) ρ−α
1−ρ (46)

Instead, we rewrite the return on the wealth portfolio in terms of the wealth-consumption ratio WC

Rc
t+1 =

WCt+1

WCt − 1

Ct+1

Ct

=
ewct+1

ewct − 1

Ct+1

Ct

,

Substituting this into equation (46) delivers an expression that depends only on consumption growth and the

wealth-consumption ratio:

Mt+1 = β
1−α
1−ρ

(
Ct+1

Ct

)−α(
WCt+1

WCt − 1

) ρ−α
1−ρ

= β
1−α
1−ρ

(
Ct+1

Ct

)−α(
ewct+1

ewct − 1

) ρ−α
1−ρ

(47)
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The log SDF expression in the Bansal and Yaron (2004) model is a special case of this general, non-linear formulation.

Indeed, one recovers the log SDF equation (48) below by using a first-order Taylor approximation of wct in equation

(42) around Ac
0.

mt+1 =
1 − α

1 − ρ
[log β + κc

0] − κc
0 − α∆ct+1 −

α − ρ

1 − ρ
(wct+1 − κc

1wct) (48)

This expression follows immediately from the results in Appendix D.2 below. Since κc
1 turns out to be essentially

1 under the Bansal and Yaron (2004) calibration, the second asset pricing factor in the SDF is essentially the log

change in the wealth-consumption ratio. A second special case obtains by approximating the last term in (42) using

a first-order Taylor expansion of wct+1 around wct instead. In that case, we obtain a three-factor model:

mt+1 ≈
1 − α

1 − ρ
log β − α∆ct+1 +

ρ − α

1 − ρ
log

(
ewct

ewct − 1

)
+

ρ − α

1 − ρ
∆wct+1. (49)

Expressions (49) and (48) are functionally similar because κc
1 is close to 1 and κc

0 equals ewct

ewct−1 when wct is evaluated

at its long-run mean A0.

D.2 Proof of Proposition 3

Setting Up Notation The starting point of the analysis is the Euler equation Et[Mt+1R
i
t+1] = 1, where

Ri
t+1 denotes a gross return between dates t and t + 1 on some asset i and Mt+1 is the SDF. In logs:

Et [mt+1] + Et

[
ri
t+1

]
+

1

2
V art [mt+1] +

1

2
V art

[
ri
t+1

]
+ Covt

[
mt+1, r

i
t+1

]
= 0. (50)

The same equation holds for the real risk-free rate yt(1), so that

yt(1) = −Et [mt+1] −
1

2
V art [mt+1] . (51)

The expected excess return becomes:

Et

[
re,i
t+1

]
= Et

[
ri
t+1 − yt(1)

]
+

1

2
V art

[
ri
t+1

]
= −Covt

[
mt+1, r

i
t+1

]
= −Covt

[
mt+1, r

e,i
t+1

]
, (52)

where re,i
t+1 denotes the excess return on asset i corrected for the Jensen term.

We adopt the consumption growth specification of Bansal and Yaron (2004), repeated from the main text:

∆ct+1 = µc + xt + σtηt+1, (53)

xt+1 = ρxxt + ϕeσtet+1, (54)

σ2
t+1 = σ̄2 + ν1(σ

2
t − σ2) + σwwt+1, (55)

where (ηt, et, wt) are i.i.d. mean-zero, variance-one, normally distributed innovations.

Proof of Linearity The proof closely follows the proof in Bansal and Yaron (2004), henceforth BY, but

adjusts all expressions for our timing of returns.

Proof. In what follows we focus on the return on a claim to aggregate consumption, denoted rc, where

rc
t+1 = κc

0 + ∆ct+1 + wct+1 − κc
1wct,
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and derive the five terms in equation (50) for this asset.

Taking logs on both sides of the non-linear SDF expression in equation (46) of Appendix D.1 delivers an expression

of the log SDF as a function of log consumption changes and the log total wealth return

mt+1 =
1 − α

1 − ρ
log β −

1 − α

1 − ρ
ρ∆ct+1 +

(
1 − α

1 − ρ
− 1

)
rc
t+1. (56)

We conjecture that the log wealth-consumption ratio is linear in the two states xt and σ2
t − σ̄2,

wct = Ac
0 + Ac

1xt + Ac
2

(
σ2

t − σ̄2
)
.

As BY, we assume joint conditional normality of consumption growth, x, and the variance of consumption growth.

We verify this conjecture from the Euler equation (50).

Using the conjecture for the wealth-consumption ratio, we compute innovations in the total wealth return, and its

conditional mean and variance:

rc
t+1 − Et

[
rc
t+1

]
= σtηt+1 + Ac

1ϕeσtet+1 + Ac
2σwwt+1

Et

[
rc
t+1

]
= r0 + (1 − (κc

1 − ρx)Ac
1)xt − Ac

2(κ
c
1 − ν1)

(
σ2

t − σ̄2
)

Vt

[
rc
t+1

]
= (1 + (Ac

1ϕe)
2)σ2

t + (Ac
2)

2σ2
w

r0 = κc
0 + Ac

0(1 − κc
1) + µc

These equations correspond to (A.8) and (A.9) in the Appendix of BY.

Substituting in the expression for the log total wealth return rc into the log SDF, we compute innovations, and the

conditional mean and variance of the log SDF:

mt+1 − Et [mt+1] = −ασtηt+1 −
α − ρ

1 − ρ
Ac

1ϕeσtet+1 −
α − ρ

1 − ρ
Ac

2σwwt+1,

Et [mt+1] = m0 − ρxt +
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2

(
σ2

t − σ̄2
)

Vt [mt+1] =

(
α2 +

(
α − ρ

1 − ρ

)2

(Ac
1ϕe)

2

)
σ2

t +

(
α − ρ

1 − ρ

)2

(Ac
2)

2σ2
w

m0 =
1 − α

1 − ρ
log β −

α − ρ

1 − ρ
[κc

0 + Ac
0(1 − κc

1)] − αµc (57)

These expressions correspond to equations (A.10) and (A.27), and are only slightly different due to the different

timing in returns.

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-

tation of the product of their innovations

Covt

[
rc
t+1, mt+1

]
= Et

[
rc
t+1 − Et

[
rc
t+1

]
, mt+1 − Et [mt+1]

]
=

(
−α −

α − ρ

1 − ρ
(Ac

1ϕe)
2

)
σ2

t −
α − ρ

1 − ρ
(Ac

2)
2σ2

w

Using the method of undetermined coefficients and the five components of equation (50), we can solve for the
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constants Ac
0, Ac

1, and Ac
2:

Ac
1 =

1 − ρ

κc
1 − ρx

, (58)

Ac
2 =

(1 − ρ)(1 − α)

2(κc
1 − ν1)

[
1 +

ϕ2
e

(κc
1 − ρx)2

]
, (59)

0 =
1 − α

1 − ρ
[log β + κc

0 + (1 − κc
1)A

c
0] + (1 − α)µc +

1

2
(1 − α)2

[
1 +

ϕ2
e

(κc
1 − ρx)2

]
σ̄2 +

1

2

(
1 − α

1 − ρ

)2

(Ac
2)

2σ2
w(60)

The first two correspond to equations (A.5) and (A.7) in BY. The last equation implicitly solves Ac
0 as a function of

all parameters of the model. Because κc
0 and κc

1 are non-linear functions of Ac
0, this system of three equations needs

to be solved simultaneously and numerically. Our computations indicate that the system has a unique solution.

This verifies the conjecture that the log wealth-consumption ratio is linear in the two state variables.

According to (52), the risk premium on the consumption claim is given by

Et

[
re
t+1

]
= Et

[
rc
t+1 − yt(1)

]
+ .5Vt[r

c
t+1] = −λm,ησ2

t + λm,eBσ2
t + λm,wAc

2σ
2
w, (61)

This corresponds to equation (A.11) in BY, with λm,η = −α, λm,e = α−ρ
1−ρ

Ac
1ϕe, and λm,w = α−ρ

1−ρ
Ac

2.

According to equation (51), the expression for the risk-free rate is given by

yt(1) = h0 + ρxt + h1(σ
2
t − σ̄2) (62)

h0 = −m0 − .5λ2
m,wσ2

w − .5
(
λ2

m,η + λ2
m,e

)
σ̄2

h1 = −
α − ρ

1 − ρ
(κc

1 − ν1)A
c
2 − .5

(
λ2

m,η + λ2
m,e

)

= .5(ρ − α)

(
1 +

ϕ2
e

(κc
1 − ρx)2

)
− .5

(
α2 + (α − ρ)2

ϕ2
e

(κc
1 − ρx)2

)

This corresponds to equation (A.25-A.27) in BY. Its unconditional mean is simply h0 (see A.28).

D.3 Quarterly Calibration LRR Model

The Bansal-Yaron model is calibrated and parameterized to monthly data. Since we want to use data on quarterly

consumption and dividend growth, and a quarterly series for the wealth-consumption ratio, we recast the model

at quarterly frequencies. We assume that the quarterly process for consumption growth, dividend growth, the low

frequency component and the variance has the exact same structure than at the monthly frequency, with mean

zero, standard deviation 1 innovations, but with different parameters. This appendix explains how the monthly

parameters map into quarterly parameters. We denote all variables, shocks, and all parameters of the quarterly

system with a tilde superscript. Our parameter values are listed at the end of this section, together with details on

the simulation approach.

Preference Parameters Obviously, the preference parameters do not depend on the horizon (α̃ = α and

ρ̃ = ρ), except for the time discount factor β̃ = β3. Also, the long-run average log wealth-consumption ratio at

the quarterly frequency is lower than at the monthly frequency by approximately log(3), because log of quarterly

consumption is the log of three times monthly consumption.
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Cash-flow Parameters We accomplish this by matching the conditional and unconditional mean and vari-

ance of log consumption and dividend growth. Log quarterly consumption growth is the sum of log consumption

growth of three consecutive months. We obtain ∆c̃t+1 ≡ ∆ct+3 + ∆ct+2 + ∆ct+1

∆c̃t+1 = 3µc + (1 + ρx + ρ2
x)xt + σtηt+1 + σt+1ηt+2 + σt+2ηt+3 + (1 + ρx)ϕeσtet+1 + ϕeσt+1et+2 (63)

Log quarterly dividend growth looks similar:

∆d̃t+1 = 3µd + φ(1 + ρx + ρ2
x)xt + ϕdσtut+1 + ϕdσt+1ut+2 + ϕdσt+2ut+3 + φ(1 + ρx)ϕeσtet+1 + φϕeσt+1et+2 (64)

First, we rescale the long-run component in the quarterly system, so that the coefficient on it in the consumption

growth equation is still 1:

x̃t = (1 + ρx + ρ2
x)xt.

Second, we equate the unconditional mean of consumption and dividend growth :

µ̃ = 3µ, µ̃d = 3µd.

These imply that we also match the the conditional mean of consumption growth:

Et[∆ct+3 + ∆ct+2 + ∆ct+1] = 3µ + (1 + ρx + ρ2
x)xt = µ̃ + x̃t = Et[∆c̃t+1]

Third, we also match the conditional mean of dividend growth by setting the quarterly leverage parameter φ̃ = φ.

Fourth, we match the unconditional variance of quarterly consumption growth:

V [∆c̃t+1] = (1 + ρx + ρ2
x)2V [xt] + σ2

[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

= (1 + ρx + ρ2
x)2

ϕ2
eσ

2

1 − ρ2
x

+ σ2
[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

=
ϕ̃2

eσ̃
2

1 − ρ̃2
x

+ σ̃2

The first and second equalities use the law of iterated expectations to show that

V [σt+jηt+j+1] ≡ E
[
Et+j

{
σ2

t+jη
2
t+j+1

}]
− (E [Et+j {σt+jηt+j+1}])

2
= E

[
σ2

t+j

]
− 0 = σ2

and the same argument applies to terms of type V [σt+jet+j+1]. Coefficient matching on the variance of consumption

expression delivers expressions for σ̃2 and ϕ̃e:

σ̃2 = σ2
[
3 + (1 + ρx)2ϕ2

e + ϕ2
e

]

ϕ̃2
e = ϕ2

e

(1 − ρ̃2
x)(1 + ρx + ρ2

x)2

1 − ρ2
x

σ2

σ̃2

=
(1 − ρ6

x)(1 + ρx + ρ2
x)2

1 − ρ2
x

ϕ2
e

3 + (1 + ρx)2ϕ2
e + ϕ2

e

,

where the third equality uses the first equality. Note that we imposed ρ̃x = ρ3
x, which follows from a desire to match

the persistence of the long-run cash-flow component. Recursively substituting, we find that the three-month ahead
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x process has the following relationship to the current value:

xt+3 = ρ3
xxt + ϕeσt+2et+3 + ρxϕeσt+1et+2 + ρ2

xϕeσtet+1

which compares to the quarterly equation

x̃t+1 = ρ̃xx̃t + ϕ̃eσ̃tẽt+1

The two processes now have the same auto-correlation and unconditional variance.

Fifth, we match the unconditional variance of dividend growth. Given the assumptions we have made sofar, this

pins down ϕd:

ϕ̃2
d =

3ϕ2
d + φ2(1 + ρx)2ϕ2

e + φ2ϕ2
e

3 + (1 + ρx)2ϕ2
e + ϕ2

e

Sixth, we match the autocorrelation and the unconditional variance of economic uncertainty σ2
t . Iterating forward,

we obtain an expression that relates variance in month t to the one in month t + 3:

σ2
t+3 − σ2 = ν3

1(σ2
t − σ2) + σwν2

1wt+1 + σwν1wt+2 + σwwt+3

By setting ν̃1 = ν3
1 and σ̃2

w = σ2
w(1 + ν2

1 + ν4
1 ), we match the autocorrelation and variance of the quarterly equation

σ̃2
t+1 − σ̃2 = ν̃1(σ̃

2
t − σ̃2) + σ̃ww̃t+1

Parameter Values We use ρ = 2/3, α = 10, and β = .997 for preferences; and µc = .45e−2, σ̄ = 1.35e−2,

ρx = .938, ϕe = .126, ν1 = .962, and σw = .39 ∗ 10−5 for the cash-flow processes in (14)-(16). The vector

ΘLRR = (α, ρ, β, µc, σ̄, ϕe, ρx, ν1, σw) stores these parameters. The corresponding monthly values are ΘLRR =
(
10, .6666, .998985, .0015, .0078, .044, .979, .987, .23 ∗ 10−5

)
. A simulation of the quarterly model recovered the an-

nualized cash-flow and asset return moments of the monthly simulation.

The quarterly calibration implies the following solution to the system of equations in (58)-(60): Ac,LRR
0 = 5.85,

Ac,LRR
1 = [5.16,−175.10]. The corresponding linearization constants are κc

0 = .0198 and κc
1 = 1.0029.

The quarterly parameters of the dividend claim are: φ = 3 and ϕd = 4.4960.

Simulation Most population moments of interest are known in closed-form in the LRR model, so that we do

not have to simulate. However, the simulation approach has the advantages of generating small-sample biases that

may also exist in the data and delivering (bootstrap) standard errors.

We run 5,000 simulations of the model for 236 quarters each, corresponding to the period 1948-2006. In each

simulation we draw a 236× 3 matrix of mutually uncorrelated standard normal random variables for the cash-flow

innovations (η, e, w) in (14)-(16). We start off each run at the steady-state (x0 = 0 and σ2
t = σ̄2). For each run, we

form log consumption growth ∆ct, the two state variables [xt, σ
2
t − σ̄2], the log wealth-consumption ratio wct and

its first difference, and the log total wealth return rc
t . We compute their first and second moments. These moments

are based on the last 220 quarters only, for consistency with the length for our data for consumption growth and the

growth rate of the wealth-consumption ratio (1952.I-2006.IV). This has the added benefit that the first 16 quarters

are “burn-in,” so that the first observation we use for the state vector is different in each run.
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D.4 Campbell-Shiller Decomposition

Expected discounted future returns and consumption growth rates are given by:

rH
t ≡ Et




∞∑

j=1

(κc
1)

−j rt+j



 =
rc
0

κc
1 − 1

+
ρ

κc
1 − ρx

xt − Ac
2(σ

2
t − σ̄2)

∆cH
t ≡ Et




∞∑

j=1

(κc
1)

−j ∆ct+j



 =
µc

κc
1 − 1

+
1

κc
1 − ρx

xt

These expressions use the definitions of the total wealth return and consumption, as well as their dynamics. Starting

from the affine expression for wc, we can write the wc ratio as a constant plus expected future consumption growth

minus expected future total wealth returns:

wct = Ac
0 + Ac

1xt + Ac
2(σ

2
t − σ̄2) = Ac

0 +
1

κc
1 − ρx

xt −

(
ρ

κc
1 − ρx

xt − Ac
2(σ

2
t − σ̄2)

)

= Ac
0 +

(
∆cH

t −
µc

κc
1 − 1

)
−

(
rH
t −

rc
0

κc
1 − 1

)
=

κc
0

κc
1 − 1

+ ∆cH
t − rH

t

The second equality uses the definition of Ac
1. The third equality uses the definition of rH

t and ∆cH
t . The fourth

equality uses the definition of rc
0.

The variance of the log wealth-consumption ratio can be written in two equivalent ways:

V
[
∆cH

t

]
+ V

[
rH
t

]
− 2Cov

[
rH
t , ∆cH

t

]
= V [wct] = Cov

[
wct, ∆cH

t

]
+ Cov

[
wct,−rH

t

]

In the LRR model, the terms in this expression are given by

V
[
∆cH

t

]
=

1

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0

V
[
rH
t

]
=

ρ2

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 + (Ac
2)

2 σ2
w

1 − ν2
1

> 0

Cov
[
rH
t , ∆cH

t

]
=

ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0

Cov
[
wct, ∆cH

t

]
=

1 − ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 > 0 ⇔ ρ < 1

Cov
[
wct,−rH

t

]
=

ρ2 − ρ

(κc
1 − ρx)2

ϕ2
e

1 − ρ2
x

σ̄2 + (Ac
2)

2 σ2
w

1 − ν2
1

> 0 ⇐ ρ > 1

We can break up expected future returns into a risk-free rate component and a risk premium component. The

former is equal to

Et




∞∑

j=1

(κc
1)

−j rf
t+j−1



 =
h0

κc
1 − 1

+
ρ

κc
1 − ρx

xt +
h1

κc
1 − ν1

(σ2
t − σ̄2), (65)

where the second equation uses the expression for the risk-free rate in equation (62) to compute future risk-free

rates and takes their time-t expectations. The risk premium component is simply the difference between rH
t and

the second expression.
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D.5 Pricing Stocks in the LRR Model

Dividend Growth Process We start by pricing a claim to aggregate dividends, where the dividend process

follows the specification in Bansal and Yaron (2004):

∆dt+1 = µd + φxt + ϕdσtut+1 (66)

The shock ut is orthogonal to (η, e, w).

Defining returns ex-dividend and using the Campbell (1991) linearization, the log return on a claim to the aggregate

dividend can be written as:

rm
t+1 = ∆dt+1 + pdm

t+1 + κm
0 − κm

1 pdm
t ,

with coefficients

κm
1 =

eAm
0

eAm
0 − 1

> 1, and κm
0 = − log

(
eAm

0 − 1
)

+
eAm

0

eAm
0 − 1

Am
0

which depend on the long-run log price-dividend ratio Am
0 .

Proof of Linearity We conjecture, as we did for the wealth-consumption ratio, that the log price dividend

ratio is linear in the two state variables:

pdm
t = Am

0 + Am
1 xt + Am

2 (σ2
t − σ̄2).

As we did for the return on the consumption claim, we compute innovations in the dividend claim return, and its

conditional mean and variance:

rm
t+1 − Et

[
rm
t+1

]
= ϕdσtut+1 + βm,eσtet+1 + βm,wσwwt+1

Et

[
rm
t+1

]
= rm

0 + [φ + Am
1 (ρx − κm

1 )]xt − Am
2 (κm

1 − ν1)
(
σ2

t − σ̄2
)

Vt

[
rm
t+1

]
= (ϕ2

d + β2
m,e)σ

2
t + β2

m,wσ2
w,

rm
0 = κm

0 + Am
0 (1 − κm

1 ) + µd

where βm,e = Am
1 ϕe and βm,w = Am

2 . These equations correspond to (A.12) and (A.13) in the Appendix of Bansal

and Yaron (2004). Finally, the conditional covariance between the log SDF and the log dividend claim return is

Covt

[
mt+1, r

m
t+1

]
= −λm,eβm,eσ

2
t − λm,wβm,wσ2

w

From the Euler equation for this return Et [mt+1] + Et

[
rm
t+1

]
+ 1

2Vt [mt+1] +
1
2Vt

[
rm
t+1

]
+ Covt[mt+1, r

m
t+1] = 0 and

the method of undetermined coefficients, we can use the same procedure as described in D.2, and solve for the

constants Am
0 , Am

1 , and Am
2 :

Am
1 =

φ − ρ

κm
1 − ρx

,

Am
2 =

[
α−ρ
1−ρ

Ac
2(κ1 − ν1) + .5Hm

]

κm
1 − ν1

,

0 = m0 + κm
0 + (1 − κm

1 )Am
0 + µd +

1

2
Hmσ̄2 +

1

2

(
Am

2 − Ac
2

α − ρ

1 − ρ

)2

σ2
w

22



where

Hm = α2 +

(
Am

1 ϕe + (
ρ − α

1 − ρ
)Ac

1ϕe

)2

+ ϕ2
d

Again, this is a non-linear system in three equations and three unknowns, which we solve numerically. The first two

equations correspond to (A.16) and (A.20) in BY.

Equity Risk premium and CS Decomposition The equity risk premium on the dividend claim

(adjusted for a Jensen term) becomes:

Et

[
re,m
t+1

]
≡ Et

[
rm
t+1 − yt(1)

]
+ .5Vt[r

m
t+1] = λm,eβm,eσ

2
t + λm,wβm,wσ2

w (67)

This corresponds to equation (A.14) in BY.

Expected discounted future equity returns and dividend growth rates are given by:

rm,H
t ≡ Et




∞∑

j=1

(κm
1 )

−j
rm
t+j



 =
rm
0

κm
1 − 1

+
ρ

κm
1 − ρx

xt − Am
2 (σ2

t − σ̄2) (68)

∆dH
t ≡ Et




∞∑

j=1

(κm
1 )

−j
∆dt+j



 =
µd

κm
1 − 1

+
φ

κm
1 − ρx

xt (69)

From these expressions, it is easy to see that pdm
t =

κm
0

κm
1
−1 + ∆dH

t − rm,H
t , and to compute the elements of the

variance-decomposition:

V [pdm
t ] = Cov[pdm

t , ∆dH
t ] + Cov[pdm

t ,−rm,H
t ] = V [∆dH

t ] + V [rm,H
t ] − 2Cov[∆dH

t , rm,H
t ].

E The External Habit Model

The organization of this EH model appendix exactly parallels the treatment of the LRR model in Appendix (D.2).

E.1 Proof of Proposition 4

Proof. We conjecture that the log wealth-consumption ratio is linear in the sole state variable (st − s̄),

wct = Ac
0 + Ac

1 (st − s̄) .

As Campbell and Cochrane (1999), henceforth CC, we assume joint conditional normality of consumption growth

and the surplus consumption ratio. We verify this conjecture from the Euler equation for total wealth.

We start from the canonical log SDF in the external habit model:

mt+1 = log β − α∆ct+1 − α∆st+1.

Substituting in the expression for returns into the log SDF, we compute innovations, and the conditional mean and
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variance of the log SDF:

mt+1 − Et [mt+1] = −α(1 + λt)σ̄ηt+1

Et [mt+1] = m0 + α(1 − ρs) (st − s̄)

Vt [mt+1] = α2 (1 + λt)
2 σ̄2

m0 = log β − αµc (70)

Likewise, we compute innovations in the consumption claim return, and its conditional mean and variance:

rc
t+1 − Et

[
rc
t+1

]
= (1 + Ac

1λt)σ̄ηt+1

Et

[
rc
t+1

]
= r0 − Ac

1(κ
c
1 − ρs) (st − s̄) (71)

Vt

[
rc
t+1

]
= (1 + Ac

1λt)
2σ̄2

r0 = κc
0 + Ac

0(1 − κc
1) + µc

The conditional covariance between the log consumption return and the log SDF is given by the conditional expec-

tation of the product of their innovations

Covt

[
mt+1, r

c
t+1

]
= −α (1 + λt) (1 + Ac

1λt) σ̄2

We assume that the sensitivity function takes the following form

λt =
S̄−1

√
1 − 2(st − s̄) + 1 − α

α − Ac
1

Using the method of undetermined coefficients and the five components of equation (50), we can solve for the

constants Ac
0 and Ac

1:

Ac
1 =

(1 − ρs)α − σ̄2S̄−2

κc
1 − ρs

, (72)

0 = log β + κc
0 + (1 − κc

1)A
c
0 + (1 − α)µc + .5σ̄2S̄−2 (73)

This verifies that our conjecture was correct.

It follows immediately that the log SDF can be written as a function of consumption growth and the change in the

log wealth-consumption ratio

mt+1 = log β − α∆ct+1 −
α

Ac
1

(wct+1 − wct) .

The risk premium on the consumption claim is given by Covt[r
c
t+1,−mt+1]:

Et

[
re
t+1

]
≡ Et

[
rc
t+1 − yt(1)

]
+ .5Vt[r

c
t+1] = α (1 + λt) (1 + Ac

1λt) σ̄2, (74)

where the second term on the left is a Jensen adjustment. The expression for the risk-free rate appears in the next

section E.2.
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E.2 The Steady-State Habit Level

Campbell and Cochrane (1999) engineer their sensitivity function λt to deliver a risk-free rate that is linear in the

state st − s̄. (They mostly study a special case with a constant risk-free rate.) The linearity of the risk-free rate is

accomplished by choosing

λCC
t = S̄−1

√
1 − 2 (st − s̄) − 1 (75)

Note that if the risk aversion parameter α = 2 and Ac
1 = 1, our sensitivity function exactly coincides with CC’s.

Instead, we engineer our sensitivity function to deliver a log wealth-consumption ratio that is linear in st − s̄.

As a result of our choice, the risk-free rate, yt(1) = −Et [mt+1] − .5Vt [mt+1], is no longer linear in the state, but

contains an additional square-root term:

yt(1) = h0 +

[
σ̄2α2S̄−2

(α − Ac
1)

2
− α(1 − ρs)

]
(st − s̄) − σ̄2α2 (1 − Ac

1)S̄
−1

(α − Ac
1)

2

(√
1 − 2 (st − s̄) − 1

)
(76)

h0 = − log β + αµc − .5σ̄2α2(1 + λ(s̄))2, where λ(s̄) =

(
S̄−1 + 1 − α

α − Ac
1

)
(77)

where λ(s̄) is obtained from evaluating our sensitivity function at st = s̄.

CC obtain a similar expression, but without the last term. If α = 2 and Ac
1 = 1, the expression collapses to the one

in CC. A constant risk-free rate obtains in the CC model when S̄−1 = σ̄−1
√

1−ρs

α
because this choice makes the

linear term vanish. While there is no S̄ that guarantees a constant risk-less interest rate under our assumptions, we

choose S̄ to match the steady-state risk-free rate in CC, r̄ = − log β + αµ − .5α(1 − ρs). That is, we set st = s̄ in

the above equation, which then collapses to h0. Setting r̄ = h0 allows us to solve for S̄−1 as a function of Ac
1 and

the structural parameters α, ρs, and σ̄:

S̄−1 = (α − Ac
1)

(
σ̄−1

√
1 − ρs

α

)
− 1 + Ac

1. (78)

Substituting this expression back into the sensitivity function (20), we find that the steady-state sensitivity level

λ(s̄) = σ̄−1
√

1−ρs

α
− 1. This implies that we generate the same steady-state conditional covariance between the

surplus consumption ratio and consumption growth as in CC.

As in CC, we define a maximum value for the log surplus consumption ratio smax, as the value at which λt runs

into zero:

smax = s̄ +
1

2

(
1 − (α − 1)2S̄2

)

Note that if α = 2, this coincides with equation (11) in CC. It is understood that λt = 0 for st ≥ smax.

E.3 Alternative Way of Pinning Down S̄

To conclude the discussion of the EH model, we investigate an alternative way to pin down S̄. In our benchmark

method, outlined in Appendix E.2, we chose it to match the steady state risk-free rate in Campbell and Cochrane

(1999). Here, the alternative is to pin down S̄ to match the average wealth-consumption ratio of 26.75 in Campbell

and Cochrane (1999).

As before, we solve a system of three equations in (Ac
0, A

c
1, S̄), only the third of which is different and simply

imposes that eAc
0−log(4) = 26.75. We obtain the following solution: Ac

0 = 4.673, Ac
1 = 0.447, and S̄ = 0.0339. The

wealth-consumption ratio is higher and less sensitive to the surplus-consumption ratio than in the benchmark case.

The volatility of the surplus-consumption ratio is 41.6%, similar to the benchmark model. Because Ac
1 is lower, so is
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the volatility of the wc ratio. It is 18.6% in the model, still much higher than the 8.4% in the data. The volatilities

of the change in the wc ratio and of the total wealth return are also lowered, but remain too high. Since, we are no

longer pinning S̄ down to match the steady-state risk-free rate, the risk-free rate turns negative: -33 basis points

per quarter or -1.2% per year. It is also more volatile: .59% versus .03 in the main text and .55 in the data. The

consumption risk premium is down from 2.67% per quarter to 1.97% per quarter and the equity premium is down

from 3.30% per quarter to 2.23%. The main cost of this calibration is a price-dividend ratio that is too low. The

volatility of pdm is now only 12.5% per quarter compared to 27% in the data.

E.4 Quarterly Calibration EH Model

Preference Parameters Again, the preference parameter does not depend on the horizon (α̃ = α, except

for the time discount factor β̃ = β3). The surplus consumption ratio has the same law of motion as in the monthly

model, but we set its persistence equal to ρ̃s = ρ3
s.

Cash-flow Parameters Following a similar logic, we can match mean and variance of quarterly consumption

and dividend growth in the CC model. From matching the means we get:

µ̃ = 3µ, µ̃d = 3µd.

From matching the variances we get

σ̃2 = 3σ2, ϕ̃d = ϕd, χ̃ = χ.

Calibration We work with a quarterly calibration and set α = 2, ρs = .9658, and β = .971 for preferences, and

µc = .47e−2 and σ̄ = .75e−2 for the cash-flow process (18). We summarize the parameters in the vector ΘEH =

(α, ρs, β, µc, σ̄). The corresponding monthly values are ΘEH = (α, ρs, β, µc, σ̄) =
(
2, .9885, .990336, .1575e−2, .433e−2

)
.

We solve for the loadings of the state variables in the log wealth-consumption ratio form equations (72), (73), and

(78), and find: AEH
0 = 3.86, AEH

1 = 0.778, and S̄ = .0474. The corresponding Campbell-Shiller linearization

constants are κc
0 = .1046 and κc

1 = 1.021583.

For the dividend process described below, we set µd = µ, ϕd = 7.32, and χ = 0.20.

A simulation of the quarterly model recovered the annualized cash-flow and asset return moments of the monthly

simulation.

E.5 Campbell-Shiller Decomposition

Using (71) and the law of motion for st and consumption growth, expected discounted future returns and consump-

tion growth rates are given by:

rH
t ≡ Et




∞∑

j=1

(κc
1)

−j
rt+j



 =
rc
0

κc
1 − 1

− Ac
1(st − s̄)

∆cH
t ≡ Et




∞∑

j=1

(κc
1)

−j
∆ct+j



 =
µc

κc
1 − 1
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These expressions enable us to go back and forth between the affine log wealth-consumption ratio expression and

the Campbell-Shiller decomposition:

wct = Ac
0 + Ac

1(st − s̄) = Ac
0 +

(
∆cH

t −
µc

κc
1 − 1

)
−

(
rH
t −

rc
0

κc
1 − 1

)

=
κc

0

κc
1 − 1

+ ∆cH
t − rH

t ,

The variance of the log wealth-consumption ratio can be written in two equivalent ways:

V
[
∆cH

t

]
+ V

[
rH
t

]
− 2Cov

[
rH
t , ∆cH

t

]
= V [wct] = Cov

[
wct, ∆cH

t

]
+ Cov

[
wct,−rH

t

]

In the EH model, the terms in this expression are given by

V
[
∆cH

t

]
= 0, Cov

[
rH
t , ∆cH

t

]
= 0, Cov

[
wct, ∆cH

t

]
= 0

V
[
rH
t

]
= (Ac

1)
2

(
S̄−1 + 1 − α

α − Ac
1

)2
1

1 − ρ2
s

σ̄2 > 0

Cov
[
wct,−rH

t

]
= (Ac

1)
2

(
S̄−1 + 1 − α

α − Ac
1

)2
1

1 − ρ2
s

σ̄2 > 0

Likewise, there is no predictability in dividend growth (see equation 79). Therefore, V [pdt] = V
[
rH,m
t

]
, where the

latter is the unconditional variance of the expected return on the dividend claim.

E.6 Pricing Stocks in EH Model

The main difference with the analysis in the long-run risk model, and the analysis for the total wealth return in

the EH model is that the return to the aggregate dividend claim cannot be written as a linear function of the

state variables. Our choice of the sensitivity function makes the log wealth-consumption ratio linear in the surplus

consumption ratio. But, for that same sensitivity function, the log price-dividend ratio is not linear in the surplus-

consumption ratio. As a result, we need to resort to a non-linear computation of the price-dividend ratio on the

aggregate dividend claim.

Dividend Growth Process In Campbell and Cochrane (1999), dividend growth is i.i.d., with the same

mean µ as consumption growth, and innovations that are correlated with the innovations in consumption growth. To

make the dividend growth process more directly comparable across models, we write it as a function of innovations

to consumption growth η and innovations u that are orthogonal to η:

∆dt+1 = µd + ϕdσ̄ut+1 + ϕdσ̄χηt+1. (79)

It follows immediately that its (un)conditional variance equals ϕ2
dσ̄

2(1 + χ2) and its (un)conditional covariance

with consumption growth is ϕdσ̄
2χ. If correlation between consumption and dividend growth is corr, then χ =√

corr2/(1 − corr2). We set ϕd and χ to replicate the unconditional variance of dividend growth and the correlation

of dividend growth and consumption growth corr in Campbell and Cochrane (1999).

Computation of Price-Dividend Ratio Wachter (2005) shows that the price-dividend ratio on a claim

to aggregate dividends can be written as the sum of the price-dividend ratios on strips to the period-n dividend,
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for n = 1, · · · ,∞:

Pt

Dt

=

∞∑

n=1

P d
nt

Dt

(80)

We adopt her methodology and show it continues to hold for our slightly different dividend growth process in equation

(79). A similar approach works when there is cointegration between consumption and dividends (Appendix A in

Wachter (2005)).

The Euler equation for the period-n strip delivers the following expression for the price-dividend ratio

P d
nt

Dt

= Et

[
Mt+1

P d
n−1,t+1

Dt+1

Dt+1

Dt

]

We conjecture that the price-dividend ratio on the period-n strip equals a function Fn(st), which follows the recursion

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)+ 1
2

ϕ2
dσ̄2

Et

[
e[ϕdχ−α(1+λt)]σ̄ηt+1Fn−1(st+1)

]
,

starting at F0(st) = 1. We now verify this conjecture.

Proof. Substituting in the conjecture
P d

nt

Dt
= Fn(st) into the Euler equation for the period-n strip, we get

Fn(st) = Et

[
Mt+1Fn−1(st+1)

Dt+1

Dt

]
.

Substituting in for the stochastic discount factor M and the dividend growth process (79), this becomes

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)Et

[
e−α(1+λt)σ̄ηt+1Fn−1(st+1)e

ϕdσ̄ut+1+ϕdχσ̄ηt+1

]
.

Because u and η are independent, we can write the expectation as a product of expectations. Because u is standard

normal, the expectation in the previous expression can be written as

e
1
2
ϕ2

dσ̄2

Et

[
e[ϕdχ−α(1+λt)]σ̄ηt+1Fn−1(st+1)

]
.

This then verifies the conjecture for Fn(st).

Finally, let g(η) be the standard normal pdf, then we can compute this function through numerical integration

Fn(st) = βeµd−αµc+α(1−ρs)(st−s̄)+ 1
2

ϕ2
dσ̄2

∫ +∞

−∞

e[ϕdχ−α(1+λ(st))]σ̄ηt+1Fn−1(st+1)g(ηt+1)dηt+1,

starting at F0(st) = 1. The grid for st includes 14 very low values for st (-300, -250, -200, -150, -100, -50, -40,

-30, -20, -15, -10, -9, -8, -7), 100 linearly spaced points between -6.5 and s̄ ∗ 1.001 = −2.85, and the log of 100

linearly spaced points between S̄ and exp(1.0000001smax). The function evaluation Fn−1(st+1) is done using linear

interpolation (and extrapolation) on the grid for the log surplus-consumption ratio s. The integral is computed in

matlab using quad.m. The price dividend ratio is computed as the sum of the price-dividend ratios for the first 500

strips.
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