Appendix 1: Proof of Lemma

From the definition of the price index:
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where the approximation results from a second-order Taylor expansion around

the zero inflation steady state. Thus, and up to second order, we have
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where E;{p:(i)} = fol pi(i) di is the cross-sectional mean of (log) prices.

In addition,
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where the last equality follows from the observation that, up to second order,
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Finally, using the definition of d) we obtain
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On the other hand,
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where the third equality follows from the fact that fol(nt(j) —nyg) dj ~

—1 fol (ne(4) —ne)? dj (using a second order approximation of the identity
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Log-linearizing the optimal hiring condition (11) around a symmetric

equilibrium we have

Thus
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implying




Appendix 2: Linearization of Participation Condition
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Lemma. Define Qy = fo ( )) SH(z) dz. Then, around a zero infla-

tion deterministic steady state we have

- SWw

gt = gy — = Ty

(W/P) O
1-6)G (1—0,,)(1-B1-0)0w)

/01 SH(z) dz

- 29 Stlt q
= EQ t\t |t q St|t)

where the first equality holds up to a first order approximation in a neigh-

where = = 5(

Proof of Lemma:
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borhood of a symmetric steady state.
Using the Nash bargaining condition (31) we have:

[e.9]

EQi=(1-¢) G +E1—0, Z (Shi—y—SiD

=0

Note however that
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Using the law of motion for the aggregate wage,
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where the approximation holds in a neighborhood of the zero inflation steady

state. It follows that
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or, equivalently, in (log) deviations from steady state values:
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Appendix 3: Log-linearized Equilibrium Conditions
e Technology, Resource Constraints and Miscellaneous Identities

Goods market clearing (44)
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where © = %.
Aggregate production function
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Aggregate hiring and employment
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e Decentralized Economy: Other Equilibrium Conditions

FEuler equation
c = Ey{cii1} — 1
Fisherian equation
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Inflation equation
T =0 E{mi1} — Ap iy
Optimal hiring condition
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Optimal participation condition (only when v > 0)
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where = = g(gli/g/)fg (1_91”)(12%(1_5)91”) (note = = 0 under flexible wages).

When 9 =0, 1, = fi; and ﬁ = 0 hold instead.

Interest rate rule
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o Wage Setting Block: Flexible Wages
Nash wage equation
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e Wage Setting Block: Sticky Wages
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e Social Planner’s Problem: Efficiency Conditions

ar—an;=(1—-9Q) (& + ol) +Q b

N ~ |
ct + ply = 1 T+ gt

_ (14+4)B
Whereﬁz%.



Appendix 4: Sketch of the Derivation of Loss Function

Combining a second order expansion of the utility of the representa-
tive household and the resource constraint around the constrained-efficient

allocation yields
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As shown in appendix 1 d} ~ § var;(p;(7)).and df ~ %1—_@ var;{w(j)}.
I make use of the following property of the Calvo price and wage setting en-
vironment:
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Proof: Woodford (2003, chapter 6).

Combining the previous results and letting L = —Fy Y 52, 5" U,(C/Y)

denote the utility losses expressed as a share of steady state GDP we can

write
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Next note that, up to first order,
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Thus we have:
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where 1 — Q = ]\]‘g—gi} =1- % is the steady state gap between the

marginal rate of substitution and the marginal product of labor resulting

from the existence of labor market frictions.






