Appendix 1: Proof of Lemma

From the definition of the price index:

$$
\begin{aligned}
1 & =\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{1-\epsilon} d i \\
& =\int_{0}^{1} \exp \left\{(1-\epsilon)\left(p_{t}(i)-p_{t}\right)\right\} d i \\
& \simeq 1+(1-\epsilon) \int_{0}^{1}\left(p_{t}(i)-p_{t}\right) d i+\frac{(1-\epsilon)^{2}}{2} \int_{0}^{1}\left(p_{t}(i)-p_{t}\right)^{2} d i
\end{aligned}
$$

where the approximation results from a second-order Taylor expansion around the zero inflation steady state. Thus, and up to second order, we have

$$
p_{t} \simeq E_{i}\left\{p_{t}(i)\right\}+\frac{(1-\epsilon)}{2} \int_{0}^{1}\left(p_{t}(i)-p_{t}\right)^{2} d i
$$

where $E_{i}\left\{p_{t}(i)\right\} \equiv \int_{0}^{1} p_{t}(i) d i$ is the cross-sectional mean of (log) prices.
In addition,

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{P_{t}(i)}{P_{t}}\right)^{-\epsilon} d i & =\int_{0}^{1} \exp \left\{-\epsilon\left(p_{t}(i)-p_{t}\right)\right\} d i \\
& \simeq 1-\epsilon \int_{0}^{1}\left(p_{t}(i)-p_{t}\right) d i+\frac{\epsilon^{2}}{2} \int_{0}^{1}\left(p_{t}(i)-p_{t}\right)^{2} d i \\
& \simeq 1+\frac{\epsilon}{2} \int_{0}^{1}\left(p_{t}(i)-p_{t}\right)^{2} d i \\
& \simeq 1+\frac{\epsilon}{2} \operatorname{var}_{i}\left\{p_{t}(i)\right\} \geq 1
\end{aligned}
$$

where the last equality follows from the observation that, up to second order,

$$
\begin{aligned}
\int_{0}^{1}\left(p_{t}(i)-p_{t}\right)^{2} d i & \simeq \int_{0}^{1}\left(p_{t}(i)-E_{i}\left\{p_{t}(i)\right\}\right)^{2} d i \\
& \equiv \operatorname{var}_{i}\left\{p_{t}(i)\right\}
\end{aligned}
$$

Finally, using the definition of d_{t}^{p} we obtain

$$
d_{t}^{p} \simeq \frac{\epsilon}{2} \operatorname{var}_{i}\left\{p_{t}(i)\right\} \geq 0
$$

On the other hand,

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{N_{t}(j)}{N_{t}}\right)^{1-\alpha} d j & =\int_{0}^{1} \exp \left\{(1-\alpha)\left(n_{t}(j)-n_{t}\right)\right\} d j \\
& \simeq 1+(1-\alpha) \int_{0}^{1}\left(n_{t}(j)-n_{t}\right) d j+\frac{(1-\alpha)^{2}}{2} \int_{0}^{1}\left(n_{t}(j)-n_{t}\right)^{2} d j \\
& \simeq 1-\frac{\alpha(1-\alpha)}{2} \int_{0}^{1}\left(n_{t}(j)-n_{t}\right)^{2} d j \leq 1
\end{aligned}
$$

where the third equality follows from the fact that $\int_{0}^{1}\left(n_{t}(j)-n_{t}\right) d j \simeq$ $-\frac{1}{2} \int_{0}^{1}\left(n_{t}(j)-n_{t}\right)^{2} d j$ (using a second order approximation of the identity $\left.1 \equiv \int_{0}^{1} \frac{N_{t}(j)}{N_{t}} d j\right)$.

Log-linearizing the optimal hiring condition (11) around a symmetric equilibrium we have

$$
n_{t}(j)-n_{t} \simeq-\frac{1-\Phi}{\alpha}\left(w_{t}(j)-w_{t}\right)
$$

Thus

$$
\int_{0}^{1}\left(\frac{N_{t}(j)}{N_{t}}\right)^{1-\alpha} d j \simeq 1-\frac{(1-\Phi)^{2}(1-\alpha)}{2 \alpha} \int_{0}^{1}\left(w_{t}(j)-w_{t}\right)^{2} d j
$$

implying

$$
d_{t}^{w} \equiv-\log \int_{0}^{1}\left(\frac{N_{t}(j)}{N_{t}}\right)^{1-\alpha} \simeq \frac{(1-\Phi)^{2}(1-\alpha)}{2 \alpha} \operatorname{var}_{j}\left\{w_{t}(j)\right\} \geq 0
$$

Appendix 2: Linearization of Participation Condition

Lemma. Define $Q_{t} \equiv \int_{0}^{1}\left(\frac{H_{t}(z)}{H_{t}}\right) \mathcal{S}_{t}^{H}(z) d z$. Then, around a zero inflation deterministic steady state we have

$$
\widehat{q}_{t} \simeq \widehat{g}_{t}-\Xi \pi_{t}^{w}
$$

where $\Xi \equiv \frac{\xi(W / P)}{(1-\xi) G} \frac{\theta_{w}}{\left(1-\theta_{w}\right)\left(1-\beta(1-\delta) \theta_{w}\right)}$.
Proof of Lemma:

$$
\begin{aligned}
Q_{t} & \simeq \int_{0}^{1} \mathcal{S}_{t}^{H}(z) d z \\
& =\left(1-\theta_{w}\right) \sum_{q=0}^{\infty} \theta_{w}^{q} \mathcal{S}_{t \mid t-q}^{H} \\
& =\left(1-\theta_{w}\right) \sum_{q=0}^{\infty} \theta_{w}^{q}\left(\mathcal{S}_{t \mid t}^{H}+\mathcal{S}_{t \mid t-q}^{H}-\mathcal{S}_{t \mid t}^{H}\right)
\end{aligned}
$$

where the first equality holds up to a first order approximation in a neighborhood of a symmetric steady state.

Using the Nash bargaining condition (31) we have:

$$
\xi Q_{t}=(1-\xi) G_{t}+\xi\left(1-\theta_{w}\right) \sum_{q=0}^{\infty} \theta_{w}^{q}\left(\mathcal{S}_{t \mid t-q}^{H}-\mathcal{S}_{t \mid t}^{H}\right)
$$

Note however that

$$
\begin{aligned}
\mathcal{S}_{t \mid t-q}^{H}-\mathcal{S}_{t \mid t}^{H} & =E_{t}\left\{\sum_{k=0}^{\infty}\left((1-\delta) \theta_{w}\right)^{k} \Lambda_{t, t+k}\left(\frac{W_{t-q}^{*}}{P_{t+k}}-\frac{W_{t}^{*}}{P_{t+k}}\right)\right\} \\
& =\left(\frac{W_{t-q}^{*}-W_{t}^{*}}{P_{t}}\right) E_{t}\left\{\sum_{k=0}^{\infty}\left((1-\delta) \theta_{w}\right)^{k} \Lambda_{t, t+k}\left(\frac{P_{t}}{P_{t+k}}\right)\right\}
\end{aligned}
$$

Using the law of motion for the aggregate wage,

$$
\begin{aligned}
\left(1-\theta_{w}\right) \sum_{q=0}^{\infty} \theta_{w}^{q}\left(\mathcal{S}_{t \mid t-q}^{H}-\mathcal{S}_{t \mid t}^{H}\right) & =\left(\frac{W_{t}-W_{t}^{*}}{P_{t}}\right) E_{t}\left\{\sum_{k=0}^{\infty}\left((1-\delta) \theta_{w}\right)^{k} \Lambda_{t, t+k}\left(\frac{P_{t}}{P_{t+k}}\right)\right\} \\
& =-\pi_{t}^{w}\left(\frac{\theta_{w}}{1-\theta_{w}}\right) \frac{W_{t-1}}{P_{t}} E_{t}\left\{\sum_{k=0}^{\infty}\left((1-\delta) \theta_{w}\right)^{k} \Lambda_{t, t+k}\left(\frac{P_{t}}{P_{t+k}}\right)\right\} \\
& \simeq-\pi_{t}^{w}\left(\frac{\theta_{w}}{\left(1-\theta_{w}\right)\left(1-\beta(1-\delta) \theta_{w}\right)}\right)\left(\frac{W}{P}\right)
\end{aligned}
$$

where the approximation holds in a neighborhood of the zero inflation steady state. It follows that

$$
\xi Q_{t} \simeq(1-\xi) G_{t}-\xi\left(\frac{\theta_{w}}{\left(1-\theta_{w}\right)\left(1-\beta(1-\delta) \theta_{w}\right)}\right)\left(\frac{W}{P}\right) \pi_{t}^{w}
$$

or, equivalently, in (log) deviations from steady state values:

$$
\widehat{q}_{t} \simeq \widehat{g}_{t}-\Xi \pi_{t}^{w}
$$

where $\Xi \equiv \frac{\xi(W / P)}{(1-\xi) G} \frac{\theta_{w}}{\left(1-\theta_{w}\right)\left(1-\beta(1-\delta) \theta_{w}\right)}$.

Appendix 3: Log-linearized Equilibrium Conditions

- Technology, Resource Constraints and Miscellaneous Identities

Goods market clearing (44)

$$
\widehat{y}_{t}=(1-\Theta) \widehat{c}_{t}+\Theta\left(\widehat{g}_{t}+\widehat{h}_{t}\right)
$$

where $\Theta \equiv \frac{\delta N G}{Y}$.
Aggregate production function

$$
\widehat{y}_{t}=a_{t}+(1-\alpha) \widehat{n}_{t}
$$

Aggregate hiring and employment

$$
\delta \widehat{h}_{t}=\widehat{n}_{t}-(1-\delta) \widehat{n}_{t-1}
$$

Hiring cost

$$
\widehat{g}_{t}=\gamma \widehat{x}_{t}
$$

Job finding rate

$$
\widehat{x}_{t}=\widehat{h}_{t}-\widehat{u}_{t}^{o}
$$

Effective Market Effort

$$
\widehat{l}_{t}=\left(\frac{N}{L}\right) \widehat{n}_{t}+\left(\frac{\psi U}{L}\right) \widehat{u}_{t}
$$

Labor force

$$
\widehat{f}_{t}=\left(\frac{N}{F}\right) \widehat{n}_{t}+\left(\frac{U}{F}\right) \widehat{u}_{t}
$$

Unemployment:

$$
\widehat{u}_{t}=\widehat{u}_{t}^{o}-\frac{x}{1-x} \widehat{x}_{t}
$$

Unemployment rate

$$
\widehat{u r}_{t}=\widehat{f}_{t}-\widehat{n}_{t}
$$

- Decentralized Economy: Other Equilibrium Conditions

Euler equation

$$
\widehat{c}_{t}=E_{t}\left\{\widehat{c}_{t+1}\right\}-\widehat{r}_{t}
$$

Fisherian equation

$$
\widehat{r}_{t}=\widehat{i}_{t}-E_{t}\left\{\pi_{t+1}\right\}
$$

Inflation equation

$$
\pi_{t}=\beta E_{t}\left\{\pi_{t+1}\right\}-\lambda_{p} \widehat{\mu}_{t}^{p}
$$

Optimal hiring condition

$$
\begin{gathered}
\alpha \widehat{n}_{t}=a_{t}-\left[(1-\Phi) \widehat{\omega}_{t}+\Phi \widehat{b}_{t}\right]-\widehat{\mu}_{t}^{p} \\
\widehat{b}_{t}=\frac{1}{1-\beta(1-\delta)} \widehat{g}_{t}-\frac{\beta(1-\delta)}{1-\beta(1-\delta)}\left(E_{t}\left\{\widehat{g}_{t+1}\right\}-\widehat{r}_{t}\right)
\end{gathered}
$$

Optimal participation condition (only when $\psi>0$)

$$
\widehat{c}_{t}+\varphi{\widehat{l_{t}}}_{t}=\frac{1}{1-x} \widehat{x}_{t}+\widehat{g}_{t}-\Xi \pi_{t}^{w}
$$

where $\Xi \equiv \frac{\xi(W / P)}{(1-\xi) G} \frac{\theta_{w}}{\left(1-\theta_{w}\right)\left(1-\beta(1-\delta) \theta_{w}\right)}$ (note $\Xi=0$ under flexible wages). When $\psi=0, \widehat{l}_{t}=\widehat{n}_{t}$ and $\widehat{f}_{t}=0$ hold instead.

Interest rate rule

$$
\widehat{i}_{t}=\phi_{\pi} \pi_{t}+\phi_{y} \widehat{y}_{t}+v_{t}
$$

- Wage Setting Block: Flexible Wages

Nash wage equation

$$
\widehat{\omega}_{t}=(1-\Upsilon)\left(\widehat{c}_{t}+\varphi \widehat{l}_{t}\right)+\Upsilon\left(-\widehat{\mu}_{t}^{p}+a_{t}-\alpha \widehat{n}_{t}\right)
$$

where $\Upsilon \equiv \frac{(1-\xi) M R P N}{W / P}$

- Wage Setting Block: Sticky Wages

$$
\begin{gathered}
\widehat{\omega}_{t}=\widehat{\omega}_{t-1}+\pi_{t}^{w}-\pi_{t}^{p} \\
\pi_{t}^{w}=\beta(1-\delta) E_{t}\left\{\pi_{t+1}^{w}\right\}-\lambda_{w}\left(\widehat{\omega}_{t}-\widehat{\omega}_{t}^{\operatorname{tar}}\right) \\
\widehat{\omega}_{t}^{\operatorname{tar}}=(1-\Upsilon)\left(\widehat{c}_{t}+\varphi \widehat{l}_{t}\right)+\Upsilon\left(-\widehat{\mu}_{t}^{p}+a_{t}-\alpha \widehat{n}_{t}\right)
\end{gathered}
$$

- Social Planner's Problem: Efficiency Conditions

$$
\begin{gathered}
a_{t}-\alpha \widehat{n}_{t}=(1-\Omega)\left(\widehat{c}_{t}+\varphi \widehat{l}_{t}\right)+\Omega \widehat{b}_{t} \\
\widehat{c}_{t}+\varphi \widehat{l}_{t}=\frac{1}{1-x} \widehat{x}_{t}+\widehat{g}_{t}
\end{gathered}
$$

where $\Omega \equiv \frac{(1+\gamma) B}{M P N}$.

Appendix 4: Sketch of the Derivation of Loss Function

Combining a second order expansion of the utility of the representative household and the resource constraint around the constrained-efficient allocation yields

$$
E_{0} \sum_{t=0}^{\infty} \beta^{t} \widetilde{U}_{t} \simeq-E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\frac{1}{1-\Theta}\left(d_{t}^{p}+d_{t}^{w}\right)+\frac{1}{2}(1+\varphi) \chi L^{1+\varphi} \widetilde{l}_{t}^{2}\right)
$$

As shown in appendix $1 d_{t}^{p} \simeq \frac{\epsilon}{2} \operatorname{var}_{i}\left(p_{t}(i)\right)$.and $d_{t}^{w} \simeq \frac{(1-\Phi)^{2}(1-\alpha)}{2 \alpha} \operatorname{var}_{j}\left\{w_{t}(j)\right\}$. I make use of the following property of the Calvo price and wage setting environment:

Lemma:

$$
\begin{aligned}
\sum_{t=0}^{\infty} \beta^{t} \operatorname{var}_{i}\left\{p_{t}(i)\right\} & =\frac{\theta_{p}}{\left(1-\theta_{p}\right)\left(1-\beta \theta_{p}\right)} \sum_{t=0}^{\infty} \beta^{t}\left(\pi_{t}^{p}\right)^{2} \\
\sum_{t=0}^{\infty} \beta^{t} \operatorname{var}_{j}\left\{w_{t}(j)\right\} & =\frac{\theta_{w}}{\left(1-\theta_{w}\right)\left(1-\beta \theta_{w}\right)} \sum_{t=0}^{\infty} \beta^{t}\left(\pi_{t}^{w}\right)^{2}
\end{aligned}
$$

Proof: Woodford (2003, chapter 6).
Combining the previous results and letting $\mathbb{L} \equiv-E_{0} \sum_{t=0}^{\infty} \beta^{t} \widetilde{U}_{t}(C / Y)$ denote the utility losses expressed as a share of steady state GDP we can write
$\mathbb{L} \equiv \frac{1}{2} E_{0} \sum_{t=0}^{\infty} \beta^{t}\left[\frac{\epsilon}{\lambda_{p}}\left(\pi_{t}^{p}\right)^{2}+\frac{(1-\Phi)^{2}(1-\alpha)}{\alpha \lambda_{w}^{*}}\left(\pi_{t}^{w}\right)^{2}+(1+\varphi)\left(\chi C L^{1+\varphi} / Y\right) \widetilde{l}_{t}^{2}\right]$
where $\lambda_{w}^{*} \equiv\left(1-\theta_{w}\right)\left(1-\beta \theta_{w}\right) / \theta_{w}$.
Next note that, up to first order,

$$
\begin{aligned}
\widetilde{l}_{t} & =\left(\frac{N}{L(1-\alpha)}\right) \widetilde{y}_{t}+\left(\frac{\psi U}{L}\right) \widetilde{u}_{t} \\
& =\left(\frac{N}{L(1-\alpha)}\right)\left(\widetilde{y}_{t}+\frac{(1-\alpha) \psi U}{N} \widetilde{u}_{t}\right)
\end{aligned}
$$

Thus we have:
$\mathbb{L} \equiv \frac{1}{2} E_{0} \sum_{t=0}^{\infty} \beta^{t}\left[\frac{\epsilon}{\lambda_{p}}\left(\pi_{t}^{p}\right)^{2}+\frac{(1-\Phi)^{2}(1-\alpha)}{\alpha \lambda_{w}^{*}}\left(\pi_{t}^{w}\right)^{2}+\frac{(1+\varphi)(1-\Omega) N}{(1-\alpha) L}\left(\widetilde{y}_{t}+\frac{(1-\alpha) \psi U}{N} \widetilde{u}_{t}\right)^{2}\right]$
where $1-\Omega \equiv \frac{M R S}{M P N}=1-\frac{B(1+\gamma)}{M P N}$ is the steady state gap between the marginal rate of substitution and the marginal product of labor resulting from the existence of labor market frictions.

