
Appendix 1: Proof of Lemma

From the definition of the price index:
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where the approximation results from a second-order Taylor expansion around

the zero inflation steady state. Thus, and up to second order, we have
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()  is the cross-sectional mean of (log) prices.
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where the last equality follows from the observation that, up to second order,Z 1
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Finally, using the definition of 
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On the other hand,Z 1

0

µ
()



¶1−
 =

Z 1

0

exp {(1− ) (()− )} 

' 1 + (1− )

Z 1

0

(()− )  +
(1− )2

2

Z 1

0

(()− )
2 

' 1− (1− )

2

Z 1

0

(()− )
2  ≤ 1

where the third equality follows from the fact that
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Log-linearizing the optimal hiring condition (11) around a symmetric

equilibrium we have
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Appendix 2: Linearization of Participation Condition

Lemma. Define  ≡
R 1
0

³
()


´
S () . Then, around a zero infla-

tion deterministic steady state we have
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Proof of Lemma:
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where the first equality holds up to a first order approximation in a neigh-

borhood of a symmetric steady state.

Using the Nash bargaining condition (31) we have:
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Using the law of motion for the aggregate wage,
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where the approximation holds in a neighborhood of the zero inflation steady

state. It follows that
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or, equivalently, in (log) deviations from steady state values:
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Appendix 3: Log-linearized Equilibrium Conditions

• Technology, Resource Constraints and Miscellaneous Identities

Goods market clearing (44)

b = (1−Θ) b +Θ (b + b)
where Θ ≡ 


.

Aggregate production function

b =  + (1− ) b
Aggregate hiring and employment

 b = b − (1− ) b−1
Hiring cost b =  b
Job finding rate b = b − b
Effective Market Effort

b = µ
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¶ b
Labor force b = µ
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¶ b
Unemployment: b = b − 

1− 
b

Unemployment rate c = b − b
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• Decentralized Economy: Other Equilibrium Conditions

Euler equation b = {b+1}− b
Fisherian equation b =b −{+1}

Inflation equation

 =  {+1}−  b
Optimal hiring condition

 b =  − [(1−Φ) b +Φ b]− b
b = 1

1− (1− )
b − (1− )

1− (1− )
({b+1}− b)

Optimal participation condition (only when   0)
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(1−)(1−(1−)) (note Ξ = 0 under flexible wages).

When  = 0, b = b and b = 0 hold instead.
Interest rate rule b =  + b + 

• Wage Setting Block: Flexible Wages

Nash wage equation

b = (1−Υ) (b + b) +Υ (−b +  −  b)
where Υ ≡ (1−)
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• Wage Setting Block: Sticky Wages

b = b−1 +  − 



 = (1− ) {+1}−  (b − b )

b = (1−Υ) (b + b) +Υ (−b +  −  b)
• Social Planner’s Problem: Efficiency Conditions
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Appendix 4: Sketch of the Derivation of Loss Function

Combining a second order expansion of the utility of the representa-

tive household and the resource constraint around the constrained-efficient

allocation yields
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As shown in appendix 1 
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I make use of the following property of the Calvo price and wage setting en-

vironment:
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Proof: Woodford (2003, chapter 6).

Combining the previous results and letting L ≡ −0
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denote the utility losses expressed as a share of steady state GDP we can

write
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Next note that, up to first order,
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Thus we have:
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where 1 − Ω ≡ 


= 1 − (1+)


is the steady state gap between the

marginal rate of substitution and the marginal product of labor resulting

from the existence of labor market frictions.
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