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Appendix A - mathematical proofs

Proof. of proposition 1.

(1) Take equations (1) to (8) as given and check whether this equilibrium exists and is optimal.

(2) Solve for the informed agent’s optimization problems in t = 1 and t = 2.

(2a)Start with t = 2

maxx2 (v0 + ε− p2)

with p2 defined by (4). The first order condition results in (2) with β2 = 1
2λ2
. The second order condition

yields λ2 > 0.

(2b)Move to t = 1.

maxx1 (v0 + ε− p1) + πE [x2 (v0 + ε− p2)]

Plugging in for (3) and (4), E [x2 (v0 + ε− p2)] can be rewritten as

1

4λ2

[
(ε− λ1x1)2 + λ2

1σ
2
u1

]
The first order condition gives (1), with β1 given by (5). The second order condition yields

πλ2
1

2λ2
< 2λ1

From the second order condition from t = 2, we know that λ2 > 0 . This implies that λ1 > 0. In addition,

4λ2 > πλ1 (15)

(3) Solve for the inference problems of the market maker.

(3a) Start in t = 1.

The only signal (apart from v0) the market maker observes is y1 = β1ε + u1. Because ε and u1 are

independent and normally distributed,

E [ε|y1] = λ1y1

with λ1 given by (7). p1 will be given by (3).

(3b) Move to t = 2.

In the second period the market maker has two signals available, y1 = β1ε+u1 and y2 = β2 [ε− (p1 − v0)]+

u2. If y1 and y2 are independent (proof of this follows), we can simply write

E [ε|y1, y2] = p1 + E [ε− (p1 − v0) |y2]

= p1 + λ2y2

with λ2 = β2var[ε|p1−v0]

β22var[ε|p1−v0]+σ2u2
. Combining this with β2 = 1

2λ2
we arrive at (8) and (6).

Using simple properties of linear projection, it can be shown that

var [ε|p1 − v0] = (1− λ1β1)σ2
ε

(3c) Proof of independence of y1 and y2

Note that

cov (y1, y2) = β2

[
β1 (1− λ1β1)σ2

ε − λ1σ
2
u1

]
50



Using (7) to rewrite (1− λ1β1) it can be shown that cov (y1, y2) = 0.

Proof. of corollary 2.

cov(p1 − v0, ε) = λ1β1σ
2
ε

λ1 > 0 because of the second order conditions for the informed agent (see proof of proposition 1).

β1 > 0 follows from (7) and λ1 > 0.

Proof. of corollary 3.

cov(p2 − p1, ε) = λ2β2(1− λ1β1)σ2
ε

λ2 > 0 because of the second order conditions for the informed agent in t = 2 (see proof of proposition

1).

β2 > 0 follows from λ2 > 0 and β2 = 1
2λ2
.

(1− λ1β1) > 0 follows from

λ1β1 =
1

2

λ2 − 1
2πλ1

λ2 − 1
4πλ1

which indicates that λ1β1 <
1
2 .

Proof. of corollary 4.

cov(p1 − v0, ε) = λ1β1σ
2
ε

It is suffi cient to show that
δ
√
λ1β1

δπ
< 0

Start with expression (5) for β1. Using expressions (7) and (8) for λ1 and λ2 (and rearranging) this can

be rewritten as

z2 =
θ − πz
2θ − πz (16)

with

z =
√
λ1β1 =

√
β2

1σ
2
ε

β2
1σ

2
ε + σ2

u1

and

θ =

√
σ2
u1

σ2
u2

Equation (16) can be rewritten as

πz3 − 2θz2 − πz + θ = 0

Using implicit differentiation it can be shown that

δz

δπ
=

z(1− z2)

π(3z2 − 1)− 4θz

By definition 0 < z < 1 , so the numerator is positive. Using expressions (7) and (8) for λ1 and λ2 (and

rearranging) the second order condition from (15) can be rewritten as

θ

π
>

1

2
z
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and it can be shown that

π

[
(3z2 − 1)− 4

θ

π
z

]
< 0

since

z2 < 1

Proof. of prediction 1

Part 1: ρA|L

ρA
> 0

ρA > 1 follows directly from equation (11).

ρA|L from equation (12) can be rewritten as

ρA|L = ΩL
[
ρAvar

(
θA
)
− ρLcov(θA, θB)

]
(17)

with

ΩL =
var

(
θL
)

var
(
θL
)
var

(
θA
)
− cov

(
θA, θL

)2 (18)

ΩL > 0 follows from cov
(
θA, θL

)
< var

(
θi
)
for i = A,L.

Using (11) and rearranging, this means that ρA|L > 0 is equivalent to

σ2
ε

(
1− cov(θA, θB)

var
(
θL
) )

> 0

Note that as long as cov
(
θA, θL

)
< var

(
θL
)
this condition is met.

Part 2: (ρL − ρL|A) > 0

This follows directly from (12) and ρA|L > 0.

Proof. of predictions 3a and 3b

Using, (11) equation (17) can be rewritten as

ρA|L

ρA
= ΩLvar

(
θA
) [

1− cov(θA, θB)

var
(
θL
) ]

Keeping var
(
θL
)
constant, var(θA) can be interpreted as the precision of signal θA.

δ
[
ρA|L

ρA

]
δvar(θA)

=

[
1− cov(θA, θB)

var
(
θL
) ] [

ΩL +
δΩL

δvar
(
θA
)var (θA)]

Using (18) it can be shown that

δ
[
ρA|L

ρA

]
δvar(θA)

= ΩL

[
1− cov(θA, θB)

var
(
θL
) ] [

1− var(θA)ΩL
]

= −ΩL

[
1− cov(θA, θB)

var
(
θL
) ]

cov
(
θA, θL

)2
var

(
θL
)
var

(
θA
)
− cov

(
θA, θL

)2
As long as 0 < cov

(
θA, θL

)
< var

(
θi
)
,
δ

[
ρA|L
ρA

]
δvar(θA)

< 0.

In a similar way it can be shown that
δ

[
ρA|L
ρA

]
δvar(θL)

> 0.
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Appendix B - additional figures and tables

Figure 14: Impulse response functions AMS-LND, EIC
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Impulse response estimates of innovations in London prices on Amsterdam prices
and vice versa.
Non­orthogonalized one sd innovations, estimated in a VECM with 5 lags
September 1771 ­ December 1777 & September 1783 ­ March 1787 (1498 obs)
One lag corresponds to 2 or 3 days (Mon­Wed, Wed­Fri or Fri­Mon)
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Figure 15: Co-movement LND post-departure and AMS post-arrival news returns

Figure 16: Co-movement LND post-departure and AMS post-arrival non-news returns
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Figure 17: Co-movement LND post-departure and AMS post-arrival news returns - next boat < 3.5 days

Figure 18: Co-movement LND post-departure and AMS post-arrival news returns - next boat > 3.5 days
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Figure 19: Co-movement LND post-departure and AMS post-arrival news returns - next boat < 3.5 days

Figure 20: Co-movement LND post-departure and AMS post-arrival news returns - next boat > 3.5 days
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Table 7: Co-movement of returns, BoE

(1) (2)

AMS post-arrival AMS post-arrival

news return, RAk,t=1 non-news return, RAk,t=2

LND post-departure 0.224 0.268

return, RLk (0.046)*** (0.080)***

Public news shock, 0.375 0.116

∆Nk−1 (0.037)*** (0.061)**

Constant 0.017 0.019

(0.015) (0.026)

Obs 629 315

R2 0.32 0.09

Chi2 test 0.21

(p-value) (0.648)

Estimates of co-movement between London post-departure and Ams-

terdam post-arrival returns. Estimates are adjusted for the possible

continuation (momentum) of public news by including ∆Nk−1.

See figure 4 for exact definitions of returns. London post-departure

returns are calculated over the three days after a boat departure. A

Chi2 test is performed on the equality of the RLk coeffi cients in columns

(1) and (2).

***,** denotes statistical significance at the 1, 5% level. Robust, boot-

strapped standard errors (1000 replications) are reported in parentheses.
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Table 8: Co-movement of returns, 3% Ann.

(1) (2)

AMS post-arrival AMS post-arrival

news return, RAk,t=1 non-news return, RAk,t=2

LND post-departure 0.220 0.304

return, RLk (0.055)*** (0.081)***

Public news shock, 0.506 0.176

∆Nk−1- (0.044)*** (0.058)***

Constant 0.017 0.004

(0.0173) (0.028)

Obs 779 432

R2 0.44 0.13

Chi2 test 0.50

(p-value) (0.480)

Estimates of co-movement between London post-departure and Ams-

terdam post-arrival returns. Estimates are adjusted for the possible

continuation (momentum) of public news by including ∆Nk−1.

See figure 4 for exact definitions of returns. London post-departure

returns are calculated over the three days after a boat departure. A

Chi2 test is performed on the equality of the RLk coeffi cients in columns

(1) and (2).

*** denotes statistical significance at the 1% level. Robust, boot-

strapped standard errors (1000 replications) are reported in parentheses.
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Table 9: Co-movement of returns, EIC (alternative RLk (1) )

AMS post-arrival AMS post-arrival

news return, RAk,t=1 non-news return, RAk,t=2

(1a) (2a) (3a) (1b) (2b) (3b)

LND post-departure

return, RLk

2 days after departure 0.388 0.156

(0.066)*** (0.072)**

4 days after departure 0.327 0.228

(0.044)*** (0.048)***

5 days after departure 0.282 0.188

(0.043)*** (0.035)***

Public news shock, 0.416 0.460 0.452 0.059 0.134 0.128

∆Nk−1 (0.037)*** (0.039)*** (0.038)*** (0.040) (0.040)*** (0.040)***

Constant 0.002 0.011 0.017 -0.032 -0.002 -0.003

(0.030) (0.026) (0.024) (0.035) (0.030) (0.029)

Obs 575 739 752 291 407 417

Adj. R2 0.33 0.38 0.37 0.03 0.11 0.12

Chi2 test 5.25 2.09 3.42

(p-value) (0.022) (0.148) (0.064)

Estimates of co-movement between London post-departure and Amsterdam post-arrival returns.

Estimates are adjusted for the possible continuation (momentum) of public news by including

∆Nk−1.

See figure 4 for exact definitions of returns. London post-departure returns are calculated over

the two, four or five days after a boat departure. A Chi2 test is performed on the equality of

the RLk coeffi cients in the (*a) and (*b) columns.

***,** denotes statistical significance at the 1, 5% level. Robust, bootstrapped standard er-

rors(1000 replications) are reported in parentheses.
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Table 10: Co-movement of returns, EIC (alternative RLk (2) )

.

AMS post-arrival

news return, RAk,t=1

LND post-departure

return, RLk

3 days after departure 0.335

excluding the 1st day (0.063)***

4 days after departure 0.294

excluding the 1st day (0.056)***

5 days after departure 0.258

excluding the 1st day (0.045)***

Public news shock, 0.432 (0.444) 0.439

∆Nk−1 (0.040)*** (0.009)*** (0.039)***

Constant -0.012 0.009 -0.016

(0.030) (0.027) (0.027)

Obs 580 715 736

R2 0.30 0.31 0.31

Estimates of co-movement between London post-departure and Ams-

terdam post-arrival returns. Estimates are adjusted for the possible

continuation (momentum) of public news by including ∆Nk−1.

See figure 4 for exact definitions of returns. London post-departure re-

turns are calculated over three, four and five days after a boat departure,

excluding the first day.

***,** denotes statistical significance at the 1, 5% level. Robust, boot-

strapped standard errors(1000 replications) are reported in parentheses.
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Table 11: Co-movement BoE, different expectations next boat

AMS post-arrival

news return, RAk,t=1

London post-departure 0.169 0.207

return, RLk (0.062)*** (0.064)***

RLk×E[A|simple] < 3.5 0.213

(0.087)**

E[A|simple] < 3.5 -0.046

(0.032)

RLk×E[A|extended] < 3.5 0.136

(0.095)

E[A|extended] < 3.5 0.004

(0.031)

Public news shock, 0.411 0.409

∆Nk−1 (0.037)*** (0.039)***

Constant 0.040 0.014

(0.022) (0.021)

Obs 595 595

R2 0.36 0.35

Estimates of co-movement between London post-departure and Ams-

terdam post-arrival returns. E[A] stands for the expected number of

days until the next boat arrival. E[A|simple] is calculated by adding
the median sailing time to the departure date of the next boat. For

E[A|extended] the median sailing time is replaced by a conditionally

expected sailing time which is estimated in a duration model using a

Gamma distribution, including a number of weather variables and month

dummies (see main text).

See figure 4 for exact definitions of returns. London post-departure

returns are calculated over three days after a boat departure.

***, * denotes statistical significance at the 1, 10% level. Robust, boot-

strapped standard errors (1000 replications) are reported in parentheses.
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Table 12: Co-movement 3% Ann., different expectations next boat

AMS post-arrival

news return, RAk,t=1

London post-departure 0.191 0.213

return, RLk (0.078)** (0.078)***

RLk×E[A|simple] < 3.5 0.176

(0.115)

E[A|simple] < 3.5 -0.013

(0.035)

RLk×E[A|extended] < 3.5 0.132

(0.106)

E[A|extended] < 3.5 0.001

(0.034)

Public news shock, 0.577 0.576

∆Nk−1 (0.048)*** (0.046)***

Constant 0.018 0.010

(0.023) (0.024)

Obs 722 722

R2 0.50 0.50

Estimates of co-movement between London post-departure and Amster-

dam post-arrival returns. E[A|simple] is calculated by adding the me-
dian sailing time to the departure date of the next boat. E[A|extended]

is calculated in a similar way, but here the expected sailing time is es-

timated in a duration model using a Gamma distribution, including a

wide range of weather variables and month dummies (see text).

See figure 4 for exact definitions of returns. London post-departure

returns are calculated over three days after a boat departure.

***, ** denotes statistical significance at the 1, 5% level. Robust, boot-

strapped standard errors (1000 replications) are reported in parentheses.
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Table 13: Co-movement EIC, different expectations next boat, alternative RLk

AMS post-arrival news return, RAk,t=1

London post-departure

return, RLk
2 days after departure 0.308 0.279

(0.080)*** (0.074)***

4 days after departure 0.264 0.272

(0.060)*** (0.064)***

5 days after departure 0.202 0.214

(0.045)*** (0.051)***

RLk×E[A|simple] < 3.5 0.178 0.161 0.204

(0.134) (0.094)* (0.082)**

E[A|simple] < 3.5 -0.026 -0.040 -0.037

(0.062) (0.053) (0.054)

RLk×E[A|extended] < 3.5 0.289 0.161 0.203

(0.116)*** (0.085)* (0.074)***

E[A|extended] < 3.5 -0.017 -0.025 -0.043

(0.061) (0.053) (0.051)

Public news shock, 0.447 0.443 0.498 0.495 0.493 0.489

∆Nk−1 (0.037)*** (0.037)*** (0.036)*** (0.038)*** (0.036)*** (0.038)***

Constant 0.013 0.005 0.022 0.012 0.027 0.023

(0.037) (0.043) (0.036) (0.034) (0.033) (0.034)

Obs 552 552 693 693 702 702

R2 0.35 0.36 0.40 0.40 0.41 0.41

Estimates of co-movement between London post-departure and Amsterdam post-arrival returns. E[A] stands

for the expected number of days until the next boat arrival. E[A|simple] is calculated by adding the median
sailing time to the departure date of the next boat. For E[A|extended] the median sailing time is replaced

by a conditionally expected sailing time which is estimated in a duration model using a Gamma distribution,

including a number of weather variables and month dummies (see main text).

See figure 4 for exact definitions of returns. London post-departure returns are calculated over the two, four

or five days after a boat departure. The observation of November 20, 1772 is dropped from the regression

analysis to make sure that this outlier does not drive the positive interaction effect (see figures 17 and 19 in

appendix B). Inclusion of this datapoint leads to slightly higher estimates of the interaction effect.

***, ** denotes statistical significance at the 1, 5% level. Robust, bootstrapped standard errors (1000

replications) are reported in parentheses.
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Table 14: Feedback effects - BoE

London returns between t∗ + l + 1 and t∗ + l (pLt∗+l+1 − pLt∗+l)
(1) (2) (3) (4) (5)

Amsterdam news returns 0.052 0.064 0.065 0.068 0.079

(pAt+a − pLt∗) (0.050) (0.049) (0.049) (0.049) (0.049)

London pre-news returns −0.043 −0.045 −0.039 −0.046

(pLt∗+l − pLt∗) (0.048) (0.048) (0.049) (0.048)

Amsterdam period a −0.013 −0.012

(0.013) (0.017)

a×
(
pAt+a − pLt∗

)
0.010 0.056

(0.021) (0.031)∗

London period l −0.007 0.000

(0.008) (0.011)

l×
(
pAt+a − pLt∗

)
−0.013 −0.042

(0.014) (0.021)∗∗

constant 0.018 0.020 0.017 0.018 0.018

(0.019) (0.019) (0.019) (0.019) (0.020)

χ2 test
(
pAt+a − pLt∗

)
: (1) = (2) 0.70

(p-value) (0.403)

N 684 684 684 684 684

Adj. R2 0.00 0.01 0.01 0.01 0.02

This table provides estimates of the feedback effect of Amsterdam returns in London prices.

See figure 10 for a definition of the timing and the returns. a measures the number of days

between the arrival of a signal in Amsterdam and the departure of the next boat to London.

l measures the number of days it takes for the private signal to “bounce off”from Amsterdam.

Variation in a and l is driven by weather conditions. All estimates, including the benchmark

coeffi cient on(pAt+a − pLt∗) are at median values of l (11 days) and a (3 days).

*,**, *** indicate significance at the 1, 5, and 10% level.
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Table 15: Feedback effects - 3 % Annuities

London returns between t∗ + l + 1 and t∗ + l (pLt∗+l+1 − pLt∗+l)
(1) (2) (3) (4) (5)

Amsterdam news returns 0.005 0.009 0.011 0.011 0.020

(pAt+a − pLt∗) (0.032) (0.032) (0.032) (0.033) (0.033)

London pre-news returns −0.027 −0.031 −0.028 −0.032

(pLt∗+l − pLt∗) (0.037) (0.037) (0.037) (0.038)

Amsterdam period a −0.026 −0.034

(0.012) (0.018)∗
a×

(
pAt+a − pLt∗

)
0.021 0.039

(0.013) (0.020)∗

London period l −0.012 0.007

(0.007) (0.012)

l ×
(
pAt+a − pLt∗

)
0.002 −0.019

(0.009) (0.014)

constant 0.007 0.008 0.001 0.005 0.001

(0.018) (0.018) (0.019) (0.018) (0.019)

χ2 test
(
pAt+a − pLt∗

)
: (1) = (2) 0.70

(p-value) (0.403)

N 845 845 845 845 845

Adj. R2 0.00 0.00 0.01 0.00 0.01

This table provides estimates of the feedback effect of Amsterdam returns in London prices.

See figure 10 for a definition of the timing and the returns. a measures the number of days

between the arrival of a signal in Amsterdam and the departure of the next boat to London.

l measures the number of days it takes for the private signal to “bounce off”from Amsterdam.

Variation in a and l is driven by weather conditions. All estimates, including the benchmark

coeffi cient on(pAt+a − pLt∗) are at median values of l (11 days) and a (3 days).

*,**, *** indicate significance at the 1, 5, and 10% level.
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Table 16: Co-movement BoE, bad weather

AMS post-arrival

no-news return, RAk,t=2

London post-departure return, RLk 0.309 0.281 0.330

(0.089)*** (0.109)*** (0.085)***

RLk×badweather(A) 0.159

(0.213)

badweather(A) 0.021

(0.074)

RLk×badweather(B) 0.164

(0.169)

badweather(B) 0.035

(0.049)

RLk×badweather(C) 0.075

(0.306)

badweather(C) 0.041

(0.050)

Public news shock 0.179 0.188 0.182

∆Nk−1 (0.125)*** (0.061)*** (0.060)***

Constant 0.012 0.003 0.002

(0.028) (0.035) (0.033)

Obs - total 327 327 363

Obs - badweather(A) 59

Obs - badweather(B) 106

Obs - badweather(C) 59

R2 0.15 0.16 0.15

Estimates of co-movement between London post-departure and Amsterdam post-

arrival non-news returns, conditional on good or bad weather conditions. See the

text for a description of the three definitions (A, B, and C) of bad weather.

See figure 4 for exact definitions of returns. London post-departure returns are

calculated over three days after a boat departure.

*** denotes statistical significance at the 1% level. Robust, bootstrapped standard

errors (1000 replications) are reported in parentheses.

66



Table 17: Co-movement 3% Ann., bad weather

AMS post-arrival

no-news return, RAk,t=2

London post-departure return, RLk 0.392 0.357 0.388

(0.122)*** (0.113)*** (0.092)***

RLk×badweather(A) -0.037

(0.173)

badweather(A) 0.093

(0.084)

RLk×badweather(B) 0.068

(0.193)

badweather(B) 0.050

(0.062)

RLk×badweather(C) -0.057

(0.378)

badweather(C) 0.052

(0.062)

Public news shock 0.207 0.210 0.205

∆Nk−1 (0.059)*** (0.058)*** (0.060)***

Constant -0.025 -0.022 -0.025

(0.030) (0.033) (0.033)

Obs - total 444 444 444

Obs - badweather(A) 80

Obs - badweather(B) 135

Obs - badweather(C) 76

R2 0.16 0.16 0.12

Estimates of co-movement between London post-departure and Amsterdam post-

arrival non-news returns, conditional on good or bad weather conditions. See the

text for a description of the three definitions (A, B, and C) of bad weather.

See figure 4 for exact definitions of returns. London post-departure returns are

calculated over three days after a boat departure.

*** denotes statistical significance at the 1% level. Robust, bootstrapped standard

errors (1000 replications) are reported in parentheses.
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Table 18: Co-movement EIC, badweather, alternative RLk

AMS post-arrival

no-news return, RAk,t=2

(1) (2) (3)

LND post-departure return, RLk

2 days after departure 0.165

(0.097)*

4 days after departure 0.264

(0.055)***

5 days after departure 0.198

(0.039)***

RLk×badweather(A) 0.132 0.009 0.079

(0.178) (0.126) (0.124)

badweather(A) 0.090 0.102 0.092

(0.142) (0.104) (0.103)

Public news shock, 0.106 0.180 0.169

∆Nk−1 (0.046)** (0.043)*** (0.044)***

Constant -0.079 -0.037 -0.038

(0.035) (0.032) (0.032)

Obs - total 303 420 430

Obs - badweather(A) 53 73 74

R2 0.14 0.14 0.14

Estimates of co-movement between London post-departure and Amsterdam post-

arrival non-news returns, conditional on good or bad weather conditions. See the

text for a description of bad weather sample (A).

See figure 4 for exact definitions of returns. London post-departure returns are

calculated over two, four or five days after a boat departure.

***, **, * denotes statistical significance at the 1, 5, 10% level. Robust, bootstrapped

standard errors (1000 replications) are reported in parentheses.
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Table 19: Co-movement after zero returns in London, BoE

Amsterdam post-arrival Amsterdam post-arrival

news return, RAk,t=1 non-news return, RAk,t=2

London post-departure return, RLk 0.237 0.285

(0.056)*** (0.078)***

Zero London pre-departure return -0.029 0.010

(RLk−1 = 0) (0.037) (0.036)

× London post-departure return, RLk 0.074 -0.178

(0.120) (0.132)

Public news shock, ∆Nk−1 0.412 0.087

(0.038)*** (0.063)

Constant 0.023 0.002

(0.017) (0.028)

Obs - total 595 296

Obs - zero returns 103 47

Adj-R2 0.35 0.09

This table provides additional tests whether co-movement was driven by trading costs or limits

to arbitrage. Results in preceding tables show that co-movement was not driven by return

continuation. This table tests whether co-movement between Amsterdam and London was

stronger if past London returns (pre-departure returns RLk−1 = 0) had been zero. This proxies

for situations were trading costs or limits to arbitrage led to a delay in the incorporation of

public information into prices (Lesmond et al 1999).

See figure 4 for exact definitions of returns. London post-departure returns are calculated over

three days after a boat departure.

***, * denotes statistical significance at the 1, 5 and 10% level. Robust, bootstrapped standard

errors (1000 replications) are reported in parentheses.
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Table 20: Co-movement after zero returns in London, 3% Annuities

Amsterdam post-arrival Amsterdam post-arrival

news return, RAk,t=1 non-news return, RAk,t=2

London post-departure return, RLk 0.258 0.291

(0.068)*** (0.099)***

Zero London pre-departure return 0.032 -0.060

(RLk−1 = 0) (0.039) (0.060)

× London post-departure return, RLk -0.102 0.073

(0.112) (0.270)

Public news shock, ∆Nk−1 0.575 0.124

(0.049)*** (0.068)*

Constant 0.004 0.016

(0.021) (0.031)

Obs - total 722 393

Obs - zero returns 135 69

Adj-R2 0.50 0.09

This table provides additional tests whether co-movement was driven by trading costs or limits

to arbitrage. Results in preceding tables show that co-movement was not driven by return

continuation. This table tests whether co-movement between Amsterdam and London was

stronger if past London returns (pre-departure returns RLk−1 = 0) had been zero. This proxies

for situations were trading costs or limits to arbitrage led to a delay in the incorporation of

public information into prices (Lesmond et al 1999).

See figure 4 for exact definitions of returns. London post-departure returns are calculated over

three days after a boat departure.

***, * denotes statistical significance at the 1, 5 and 10% level. Robust, bootstrapped standard

errors (1000 replications) are reported in parentheses.
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Table 21: Permanent price changes? BoE

Amsterdam return over period T after episode k (pAk+T − pAk,t=1)

2/3 days 4/5 days 1 week 2 weeks 3 weeks 4 weeks

London return (RLk−1) 0.072 0.142 0.108 0.281 0.325 0.470

(0.043)∗ (0.069)∗∗ (0.074) (0.096) (0.124) (0.150)

Constant 0.026 0.054 0.078 0.144 0.247 0.306

(0.016)∗ (0.022)∗∗ (0.026)∗∗∗ (0.038)∗∗∗ (0.050)∗∗∗ (0.058)∗∗∗

N 705 705 702 695 688 685

Adj. R2 0.01 0.02 0.00 0.02 0.02 0.03

Estimates of regressions predicting future Amsterdam returns based on London returns.

The London return is defined as the London pre-departure return (RLk−1, see figure 4).

The Amsterdam return is calculated as the price change after the arrival of the boat

that brings this information (pAk,t=1) and the Amsterdam price T days into the future (pAk+T ).

T varies between 2/3 days and 4 weeks.

Robust, bootstrapped (1000 reps) standard errors in parentheses.

*, **, *** indicates statistical significance at the 10, 5 and 1% level

Table 22: Permanent price changes? 3%Ann

Amsterdam return over period T after episode k (pAk+T − pAk,t=1)

2/3 days 4/5 days 1 week 2 weeks 3 weeks 4 weeks

London return (RLk−1) 0.081 0.155 0.129 0.255 0.317 0.497

(0.052) (0.061)∗∗ (0.083) (0.094)∗∗∗ (0.117)∗∗∗ (0.131)∗∗∗

Constant 0.010 0.045 0.073 0.144 0.241 0.307

(0.019) (0.025)∗ (0.029)∗∗ (0.039)∗∗∗ (0.050)∗∗∗ (0.058)∗∗∗

N 863 862 857 848 838 834

Adj. R2 0.01 0.02 0.01 0.02 0.02 0.04

Estimates of regressions predicting future Amsterdam returns based on London returns.

The London return is defined as the London pre-departure return (RLk−1, see figure 4).

The Amsterdam return is calculated as the price change after the arrival of the boat

that brings this information (pAk,t=1) and the Amsterdam price T days into the future (pAk+T ).

T varies between 2/3 days and 4 weeks.

Robust, bootstrapped (1000 reps) standard errors in parentheses.

*, **, *** indicates statistical significance at the 10, 5 and 1% level
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Appendix C - theoretical model feedback effects

In section 3.4 I analyze the impact of price discovery in Amsterdam on price changes in London. The starting

point for the analysis is a simple statistical model. In this appendix this is extended to a full theoretical

model in which the London insider takes the impact of price discovery in Amsterdam into account when

deciding how to trade. Under a number of (realistic) conditions, the predictions from the statistical and

theoretical model are equivalent.

Predictions 1 and 2 of the statistical model are general and hold in any setup in which price discovery in

Amsterdam and London is not perfectly correlated. Prediction 3 may be more ambiguous, especially part

3b. This states that the weight that the London market puts on price changes in Amsterdam should increase

in the precision of that signal. It is not straightforward that this prediction holds in a full theoretical model.

The reasoning is as follows. The moment the price signal from Amsterdam becomes more informative,

the incentives for the London insider change. Because news from Amsterdam will now reveal a large part of

the insider’s signal, the London insider will trade more aggressively before price changes in Amsterdam are

communicated to the Amsterdam market. This makes London prices more informative and as a result the

London market will put less weight on the Amsterdam signal. In other words, there are two counteracting

effects. Keeping all else equal, the London market will put more weight on the Amsterdam signal if it

becomes more informative. However, all else is not equal and the London signal will also become more

informative. This decreases the weight on the Amsterdam signal. It is ex ante unclear which of the two

effects dominate.

The theoretical model shows that under reasonable parameter values the first effect dominates and

prediction 3b of the simple statistical model continues to hold. The intuition is as follows. Suppose that

the profits for the London insider after the arrival of news from Amsterdam are relatively small to begin

with. In that case the additional updating of the London market based on the Amsterdam signal will only

marginally affect the insider’s overall profits. As a result, the optimal trading strategy of the London insider

before the arrival of news from Amsterdam will not significantly change. Neither will the informativeness

of London price changes before the arrival of news.

How reasonable is the assumption that profits after the arrival of news from Amsterdam are relatively

small? In section 3.4 I show that it took around 11 days for a London private signal to "bounce off" from

Amsterdam. I also provide evidence that after two weeks the private information was fully incorporated into

London prices. This suggests that, after the arrival of a boat from Amsterdam, the London insider only had

limited time to trade on the (remainder of) a given private signal. In relative terms, the insider profits that

could be made during these final 3 days were probably small.

Setup model

A single asset with payoff v0 +ε, where ε ∼ N(0,Σ0), is traded in two markets: Amsterdam (A) and London

(L). In both markets there are two periods of trade, t = 1, 2. Markets are imperfectly integrated. In both

markets there is a single informed agent.

Figure 21 illustrates the details of the model. (1) We start in London at the beginning of tL = 1. Nature

decides on the value of ε. This information is privately observed by a London insider who immediately trans-
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mits this information to his Amsterdam agent. He trades on his private information during the remainder

of period tL = 1. (2) The Amsterdam agent receives the private information at the beginning of period

tA = 1. During periods tA = 1, 2 he trades on the private signal. Right after period tA = 1, information

about Amsterdam prices is sent to the London market. (3) This either arrives in London right after the

conclusion of period tL = 1 (probability 1−π) or it delayed and arrives in London after a subsequent period
tL = 2 (probability 1− π). The arrival of news from London is a public event and is both observed by the

London market maker and the London insider. (4) The London insider trades on the remainder of his private

information during period tL = 2. I write tL = 2∗ if the Amsterdam signal is received before the start of

this second period. The optimal trading strategy of the informed agent is different in tL = 2 and tL = 2∗.

(5) After period tL = 2/tL = 2∗, the true value of ε is publicly revealed in London. This information is

immediately transmitted to Amsterdam where it arrives after period tA = 2.

[FIGURE 21 ABOUT HERE]

Insiders submit trading orders xit
(
xA1 , x

A
2 , x

L
1 , x

L
2 , x

L
2∗
)
, where i denotes {A,L}. In addition to informed

trading, there is a continuum of uniformed noise or liquidity traders who exogenously submit trading orders.

Aggregate orders uit
(
uA1 , u

A
2 , u

L
1 , u

L
2

)
are iid, uncorrelated and uit ∼ N(0, σ2

uit
). Uninformed trades in London

in t = 2/t = 2∗ are the same regardless of whether information arrived from Amsterdam or not. Informed

and uninformed trades are submitted to a risk neutral competitive market maker who sets prices equal to

the expected value of the asset, pit = v0 + E
[
ε|Iit
]
. See tables 23 and 24.

Table 23: Setup model - Amsterdam

t = 1 t = 2

E
[
v|IAt

]
begin v0 pA1

end pA1 = v0 + E
[
εt|xA1 + uA1

]
pA2 = pA1 + E

[
v0 + εt − pA1 |xA2 + uA2

]
Table 24: Setup model - London

prob. π prob. (1− π)

t = 1 t = 2 t = 2∗

E
[
v|ILt

]
begin v0 pL1 pL1∗ = αApA1 + αLpL1

end pL1 = v0+ pL2 = pL1 + pL2∗ = pL1∗+

E
[
εt|xL1 + uL1

]
E
[
v0 + εt − pL1 |xL2 + uL2

]
E
[
v0 + εt − pL1∗|xL2∗ + uL2

]
The most interesting updating rule for the market maker is the case where the London market receives

information from Amsterdam after period tL = 1. Before period tL = 2 begins, the market maker observes

two different prices, pL1 and p
A
1 . The market maker weighs both signals with α

A and αL. The main focus of

this appendix is on the properties of αA.

Equilibrium

I analyze the situation where both the London insider and his Amsterdam agent maximize profits for the

two markets individually. This means that the Amsterdam agent does not take the impact of his trades on
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informed profits in London into account. This is a simplifying assumption. The results of this approximation

should be close to a full fledged version of the model as long as the profits in London in period t = 2/t = 2∗

are relatively small. As discussed above, this it is reasonable to assume that this was the case.

The equilibrium is constructed as follows. I first assume that a linear equilibrium exists in which the

insider trades are linear in the information. More specifically

xi1 = βi1ε (19)

xA2 = βA2
(
v0 + ε− pA1

)
(20)

xL2 = βL2
(
v0 + ε− pL1

)
(21)

xL2∗ = βL2∗
(
v0 + ε− pL1∗

)
(22)

Given these linear policies, the market makers’optimal updating rules can be written as

pi1 = v0 + λi1(xi1 + ui1) (23)

pA2 = pA1 + λA2 (xA2 + uA2 ) (24)

pL2 = pL1 + λL2 (xL2 + uL2 ) (25)

pL1∗ = αApA1 + αLpL1 (26)

pL2∗ = pL1∗ + λL2∗(x
L
2∗ + uL2 ) (27)

where

λi1 =
βi1Σ0(

βi1
)2

Σ0 + σ2
ui1

λi2 =
1

2

√√√√ Σi
1

σ2
ui2

, λL2∗ =
1

2

√√√√ΣL
1∗

σ2
uL2

αA =
ΣL

1∗
ΣA

1

, αL =
ΣL

1∗
ΣL

1

(28)

Σi
1 and ΣL

1∗ indicate the uncertainty of the market maker’s estimate of ε after observing the aggregate order

flows:

Σi
1 = var

[
pi1|Ii1

]
= (1− βi1λi1)Σ0

ΣL
1∗ = var

[
pL1∗|IA1 , IL1

]
=

Σ0ΣA
1 ΣL

1

Σ0

(
ΣA

1 + ΣL
1

)
− 2ΣA

1 ΣL
1

(29)

We can now turn to the optimal behavior of the two insiders and check whether their optimal policies

are indeed as described by equations (19) to (22). The Amsterdam agent maximizes

max
xA1 ,x

A
2

E
[
xA1
(
v0 + ε− pA1

)
+ xA2

(
v0 + ε− pA2

)
|ε
]

and the London agent maximizes

max
xL1 ,x

L
2 ,x

L
2∗

E
[
xL1
(
v0 + ε− pA1

)
+ πxL2

(
v0 + ε− pL2

)
+ (1− π)xL2∗

(
v0 + ε− pL2∗

)
|ε
]
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Plugging in for prices from equations (23) to (27), it can indeed be shown that (19) to (22) hold with

βA1 =
1− λA1 βA2

2λA1 −
(
λA1
)2
βA2

βL1 =
−1 + πλL1 β

L
2 + (1− π)αLλL1

(
1− αAλA1 βA1

)
βL2∗

−2λL1 + π
(
λL1
)2
βL2 + (1− π) (αLλL1 )2βL2∗

βi2 =

√√√√σ2
ui2

Σi
1

, βL2∗ =

√√√√σ2
uL2

ΣL
1∗

Comparative statics

In what follows I revisit predictions 3a and 3b from the simple statistical model of section 3.4. Prediction 3

relates the weight that the London market maker puts on the Amsterdam price signal (αA) to the informa-

tiveness of pL1 and p
L
1 . The informativeness of these prices can be summarized by ΣL

1 and ΣA
1 . The smaller

Σi
1 the more informative prices are.

In the model Σi
1 is determined by the relative size of σ

2
ui1
with respect to σ2

ui2
. For example, if σ2

ui1
is

relatively large, then potential informed profits from period ti = 1 are relatively large as well. There is more

noise trading that the informed agent can benefit from. As a result, the informed agent trades aggressively

in this period ti = 1 and saves only a small fraction of his informational advantage for period ti = 2. As a

result prices after period ti = 1 become more informative.

Prediction 3a: αA should be decreasing in the informativeness of pL1 ,
δαA

δΣL1
> 0.

Proof. Follows from expressions (28) and (29).

If the London signal becomes more informative, the London market maker will put less weight on the

Amsterdam signal.39

Prediction 3b: αA should be increasing in the informativeness of pA1 :
δαA

δΣA1
< 0.

The proof of this prediction is split up in a number of steps. First of all, keeping ΣL
1 constant (Σ

L
1 ) it is

easy to show that

Lemma 5
δαA(ΣL

1 )

δΣA
1

< 0

Proof. Follows from expressions (28) and (29).

However, ΣL
1 is not constant and is affected by ΣA

1 . In fact it can be shown that

Lemma 6
δΣL

1

δΣA
1

> 0

39Note that in this (simplified) version of the model ΣA1 is effectively kept constant. The Amsterdam insider does not take

his impact on London profits into consideration. If he would do so, changes in ΣL1 would affect optimal informed trading in

Amsterdam in period tA = 1 and thus the informativeness of Amsterdam prices ΣA1 . This effect is likely to be small if insider

profits in London after the arrival of a boat are small.
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Proof. Numerical verification

The intuition for this result is that the London insider changes his trading behavior if pA1 becomes more

informative. If this is the case, then potential insider profits from the second period tL = 2∗ will fall. As a

result, the insider will save less of his informational advantage and trade more aggressively in period tL = 1.

This leads to a smaller ΣL
1 . For its part this will lead to a smaller α

A.

What is the net effect of these two lemma’s?

Proposition 7 As long as potential insider profits during period t = 2/t = 2∗ are relatively small (large π,

large σ2
uL1
, large σ2

uA1
) then

δαA

δΣA
1

< 0

Proof. Numerical results in figure 22

The intuition is as follows. Potential insider profits from period t = 2/t = 2∗ are relatively small as

long as σ2
uL1
is large. If that is the case, the additional updating of the London market maker based on pA1

will be relatively unimportant for the insider’s optimal trading strategy in period tL = 1. Lemma 5 will

dominate. If σ2
uA1
is large, the Amsterdam signal will be highly informative to begin with and this decreases

the potential insider profits from t = 2∗ even further. The lowers the level of σ2
uL1
for which δαA

δΣA1
< 0.

[FIGURE 22 ABOUT HERE]

Note that figure 22 is drawn for π = 0. This is a scenario in which it is certain that the Amsterdam

signal will arrive in London after tL = 1. This is the case where the Amsterdam price has the biggest impact

on the London insider’s trading strategy in period tL = 1. For larger values of π Amsterdam prices become

less important and the parameter space in figure 22 where δαA

δΣA1
< 0 is larger.
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Figure 21: Setup - feedback model
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Figure 22: Prediction 3b
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