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Appendix A - mathematical proofs

Proof. of proposition 1.

(i) We conjecture equations (1) to (8) and verify whether this is a unique linear equilibrium.

(ii) Solve for the informed agent’s optimization problem by backward induction.

(ii.a) Start in t = 2

max
x2

x2 (v0 + ε− E [p2|ε])

The informed agent conjectures that p2 is given by (4). The first order condition results in (2)

with β2 = 1
2λ2
. The second order condition yields

λ2 > 0 (28)

(ii.b) Move to t = 1.

max
x1

x1 (v0 + ε− E [p1|ε]) + πE [x2 (v0 + ε− p2) |ε]

Again, the agent conjectures that p1 is given by (3). Plugging in for (2), (3) and (4) and solving

for the expectations, this maximization problem can be rewritten as

max
x1

x1(ε− λ1x1) +
π

4λ2

[
(ε− λ1x1)2 + λ2

1σ
2
u1

]
(29)

The first order condition of this problem yields (1), with β1 given by (5). The second order

condition implies
πλ2

1

2λ2

< 2λ1

From second order condition (28) we know that λ2 > 0 . This implies that λ1 > 0 and

4λ2 > πλ1 (30)

(iii) Solve for the inference problems of the market maker.

(iii.a) Start in t = 1.

The only signal (apart from v0) the market maker observes is y1 = x1 + u1. He conjectures

that x1 = β1ε. Because ε and u1 are independent and normally distributed,

v0 + E [ε|y1] = v0 + λ1y1

with λ1 given by (7). The competitive risk neutral market maker sets prices equal to the expected

value of v0 + ε; this yields (3).

(iii.b) Move to t = 2.
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In the second period the market maker has two signals available, y1 = x1 +u1 and y2 = x2 +u2.

Again, he guesses that x1 = β1ε and x2 = β2 (v0 + ε− p1). Under the conjecture that y1 and y2

are independent (the proof of this follows under iii.c), we can simply write

v0 + E [ε|y1, y2] = p1 + E [v0 + ε− p1|y2] (31)

= p1 + λ2y2

with λ2 = β2var[ε|y1]

β22var[ε|y1]+σ2u2
. Using the properties of linear projection, it can be shown that

var [ε|y1] = (1− λ1β1)σ2
ε (32)

Combining this with β2 = 1
2λ2

we arrive at (8) and (6).

(iii.c) As a final step of the proof, we need to show that y1 and y2 are indeed independent.

Note that

cov (y1, y2) = β2

[
β1 (1− λ1β1)σ2

ε − λ1σ
2
u1

]
(33)

Using (7) to rewrite (1− λ1β1) as
σ2u1

β21σ
2
ε+σ2u1

and plugging in for (7), it is straightforward to show

that cov (y1, y2) = 0.

Proof. of corollary 2.

(a) cov(p1 − v0, ε) = λ1β1σ
2
ε

λ1 > 0 is a direct result of the informed agent’s second order conditions (28) and (30); β1 > 0

follows from expression (7) for λ1 and the fact that λ1 > 0.

(b) cov(p2 − p1, ε) = λ2β2(1− λ1β1)σ2
ε

λ2 > 0 follows from the informed agent’s second order condition (28); β2 > 0 follows from

λ2 > 0 and β2 = 1
2λ2
. Finally, we need to proof that (1−λ1β1) > 0. From (5) we can express λ1β1

as

λ1β1 =
λ2 − 1

2
πλ1

2λ2 − 1
2
πλ1

(34)

which indicates that λ1β1 ≤ 1
2
.

(c) cov(p2 − p1, p1 − v0) = 0 follows directly from expressions (3) and (4) for p1 and p2 and

expression (33).

Proof. of corollary 3.

The relevant covariance is given by

cov(p1 − v0, ε) = λ1β1σ
2
ε

It is suffi cient to show that
δ
√
λ1β1

δπ
< 0

3



Start with expression (34) for λ1β1. We first multiply denominator and numerator by
√
β1/λ1.

Plugging in expression (8) for λ2 , and noting from (7) that (1− λ1β1) =
σ2u1

β21σ
2
ε+σ2u1

, we can rewrite

(34) as

z2 =
κ− πz
2κ− πz (35)

with

z =
√
λ1β1 =

√
β2

1σ
2
ε

β2
1σ

2
ε + σ2

u1

(36)

and

κ =
√
σ2
u1
/σ2

u2
(37)

Equation (35) can be rewritten as

πz3 − 2κz2 − πz + κ = 0

Using implicit differentiation, we arrive at the following derivative

δ
√
λ1β1

δπ
=
δz

δπ
=

z(1− z2)

π(3z2 − 1)− 4κz

From expression (36) it is easy to see that 0 < z < 1 , so that the numerator has to be positive.

Next, we multiply each side of the second order condition (30) with
√
β1/λ1 and, again noting

that (1− λ1β1) =
σ2u1

β21σ
2
ε+σ2u1

, it follows that

2κ > πz

Using this result, it is straightforward to show that

π

[
(3z2 − 1)− 4κz

π

]
< π(z2 − 1)

Again, from expression (36) we know that 0 < z < 1, so that δz/δπ < 0.

Proof. of prediction 1.

(a): ρA|L/ρA > 0

ρA > 0 follows directly from equation (15).

From equation (16), ρA|L can be rewritten as

ρA|L = ΩL
[
ρAvar

(
θA
)
− ρLcov(θA, θL)

]
(38)

with

ΩL =
var

(
θL
)

var
(
θL
)
var

(
θA
)
− cov

(
θA, θL

)2 (39)

ΩL > 0 follows from the assumption that cov
(
θA, θL

)
< var

(
θi
)
for i = A,L.
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Using (15) and rearranging, this means that ρA|L > 0 is equivalent to

σ2
ε

(
1− cov(θA, θL)

var
(
θL
) ) > 0

Because cov
(
θA, θL

)
< var

(
θL
)
, this condition is always met.

(b): (ρL − ρL|A)/ρL > 0

This follows directly from (15), (16) and the fact that ρA|L > 0.

Proof. of prediction 2 follows from standard results on omitted variable bias and the fact that

(ρL − ρL|A) > 0 and cov
(
pAt+a − pLt∗ , pLt∗+l − pLt∗

)
> 0.

Proof. of prediction 3.

(a) δ
(
ρA|L/ρA

)
/δσ2

ζ < 0

It is suffi cient to show that δ
(
ρA|L/ρA

)
/δvar(θA) < 0, keeping var(θL) and cov(θA, θL) con-

stant. Using (15), equation (38) can be rewritten as

ρA|L

ρA
= ΩLvar

(
θA
) [

1− cov(θA, θL)

var
(
θL
) ]

where ΩL is defined by (39). Taking derivatives,

δ
(
ρA|L/ρA

)
δvar(θA)

=

[
1− cov(θA, θL)

var
(
θL
) ] [ΩL +

δΩL

δvar
(
θA
)var (θA)]

= ΩL

[
1− cov(θA, θL)

var
(
θL
) ] [1− var(θA)ΩL

]
= −ΩL

[
1− cov(θA, θL)

var
(
θL
) ] cov

(
θA, θL

)2

var
(
θL
)
var

(
θA
)
− cov

(
θA, θL

)2

where the first step uses the fact that δΩL/δvar
(
θA
)

= −
(
ΩL
)2
. Since cov

(
θA, θL

)
< var

(
θi
)
, it

follows directly that δ
(
ρA|L/ρA

)
/δvar(θA) < 0.

(b) δ
(
ρA|L/ρA

)
/δσ2

φ > 0

The proof of this part of the prediction is very similar to part (a) and is left to the reader.

Proof. of Lemma 4.

Start with the expression for Γ in equation (22).

(i) First note that the fractions of the different types of matches add up to 1

(1− µ)2 + 2µ(1− µ) + µ2 = 1

(ii) Second, from (21) we can express nγn for n ∈ {2, 3, 4} as

nγn =
nσ2

ε

σ2
η + (n− 1)σ2

ε
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Since, by assumption σ2
η > σ2

ε, it must be the case that nγn < 1 for any integer n > 0. In addition,

as long as ηi conveys any information about ε, nγn > 0.

Proof. of Lemma 5 follows directly from Lemma 4.

Proof. of Lemma 6.

Start with the expression for Γ in equation (22). Taking the derivative with respect to µ yields

δΓ

δµ
=

(1− µ) (3γ3 − 2γ2)

+µ (4γ4 − 3γ3)

It is straightforward to show that

nγn − (n− 1)γn−1 =
σ2
η − σ2

ε

σ2
ε

γnγn−1 > 0 for any integer n > 0

Proof. of Proposition 7.

We solve the model by backward induction.

(i) Start in t = 2 when no boat arrives. At that point the single market maker in t = 1 will

have already provided liquidity to the market, effectively reducing the liquidity shock to U + x1.

In t = 2 (when no boat arrives) there are N + 1 liquidity providers. Because of risk neutrality,

the objective function of the market maker who was already present in t = 1 is identical to the

N new liquidity providers. Since the market makers are risk neutral and compete on quantities,

their optimization problem is given by

max
x2,i

x2,i(v0 − pA,nb2 ) for i = 1, ..., N + 1

where pA,nb2 is determined by the aggregate demand function of the long term investors

pA,nb2 = v0 + ϕA

[
(1− δ)U + x1 +

N+1∑
i=1

xnb2,i

]
(40)

Imposing symmetry, the liquidity providers’first order condition implies that

xnb2,i = xnb2 = − 1

N + 2
[(1− δ)U + x1] (41)

Plugging this into (40), we arrive at

pA,nb2 = v0 +
ϕA

N + 2
[(1− δ)U + x1] (42)

We can derive similar expressions for period t = 2 when a boat does arrive:

xb2,i = xb2 = − 1

N +M + 2
[(1− δ)U + x1] (43)

pA,b2 = v0 +
ϕA

N +M + 2
[(1− δ)U + x1] (44)
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(ii) Move back to t = 1. The single market maker’s maximization problem is given by

max
x1

x1(v0 − pA1 ) + E1

[
x2,i(v0 − pA2 )

]
where the only source of uncertainty is whether a boat will arrive before or after t = 2 (with

corresponding probabilities 1− π and π). The expected profits for the single market maker from
t = 2 are determined by prices pA,nb2 and pA,b2 and quantities xnb2 and xb2, given by (42), (44),

(41), and (43). Plugging those into the expression for expected profits, we arrive at the following

maximization problem

max
x1

x1(v0 − pA1 ) + ϕAΨ [(1− δ)U + x1]2

where Ψ is defined by (27) and price pA1 is again determined by the aggregate demand function of

the long term investors:

pA1 = v0 + ϕA [(1− δ)U + x1] (45)

The first order condition of this problem implies that

x1 = −(1− δ) 1− 2Ψ

2(1−Ψ)
U (46)

After plugging (46) into (42), (44) and (45) we arrive at equilibrium prices (24), (25), and (26).

Proof. of corollary 8.

(a) cov(pA1 − pA0 , pL1 − pL0 ) > 0

Starting from (23) and (24), it is straightforward to show that

pA1 − pA0 = −ϕA(1− δ) 1− 2Ψ

2(1−Ψ)
U (47)

We can derive the price change in London over the same period by substituting δU for (1 − δ)U
and ϕL for ϕA, and setting π = 1 and N = L:

pL1 − pL0 = −ϕLδ (L+ 2)2 − 2

2
[
(L+ 2)2 − 1

]U (48)

So that

cov(pA1 − pA0 , pL1 − pL0 ) = ϕAϕLδ(1− δ) 1− 2Ψ

2(1−Ψ)

(L+ 2)2 − 2

2
[
(L+ 2)2 − 1

]Σ2 (49)

It is suffi cient to show that
1− 2Ψ

2(1−Ψ)
> 0

which follows directly from the fact that 0 < Ψ < 1/4.

(b) cov(pA,nb2 − pA1 , pL1 − pL0 ) > 0

Starting from (24) and (25), it is straightforward to show that

pA,nb2 − pA1 = −ϕA(1− δ) N + 1

2(1−Ψ) (N + 2)
U (50)
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Using (48), we get that

cov(pA,nb2 − pA1 , pL1 − pL0 ) = ϕAϕLδ(1− δ) N + 1

2(1−Ψ) (N + 2)

(L+ 2)2 − 2

2
[
(L+ 2)2 − 1

]Σ2

It is suffi cient to show that
N + 1

2(1−Ψ) (N + 2)
> 0

which, again, follows directly from the fact that 0 < Ψ < 1/4.

(c) cov(pA,nb2 − pA1 , pA1 − pA0 ) > 0

This follows directly from (47), (50) and 0 < Ψ < 1/4.

Proof. of corollary 9.

The covariance between pA1 − pA0 and pL1 − pL0 from (49) can be rewritten as

cov(pA1 − pA0 , pL1 − pL0 ) =
1− 2Ψ

2(1−Ψ)
χΣ2

with

χ = ϕAϕLδ(1− δ) (L+ 1)(L+ 2)

2
[
(L+ 2)2 − 1

] > 0

It is straightforward to show that

δcov(pA1 − pA0 , pL2 − pL1 )

δπ
= − χΣ2

2(1−Ψ)2

δΨ

δπ

and, from (27),
δΨ

δπ
> 0

Proof. of corollary 10.

(a) cov(pL0 − v0, p
A
1 − pA0 ) < 0

The price change in London in t = 0 is simply given by

pL0 − v0 = ϕLδU (51)

Using (47), we arrive at

cov(pL0 − v0, p
A
1 − pA0 ) = −ϕLϕAδ(1− δ) 1− 2Ψ

2(1−Ψ)
Σ

Since 0 < Ψ < 1/4, this expression is negative.

(b) cov(pL0 − v0, p
A,nb
2 − pA1 ) < 0

We now use (50) to arrive at

cov(pL0 − v0, p
A,nb
2 − pA1 ) = −ϕLϕAδ(1− δ) N + 1

2(1−Ψ) (N + 2)
Σ

which, again, is negative since 0 < Ψ < 1/4.
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Appendix B - Construction dataset

Conversion of future prices into spots

While London security prices are for spot transactions, prices in Amsterdam refer to future con-

tracts. This raises two issues. First, because of the cost-to-carry component in future prices, it

is impossible to directly compare the price levels of spots and futures in the two markets. Sec-

ond, Amsterdam prices always refer to the future contract ending on the nearest expiration date:

February 15, May 15, August 15, or November 15. As a result, around an expiration date the

maturity associated with a reported future price discretely jumps from 1 or 2 days to 3 months.

This results in occasional spurious increases in future prices.

To solve these issues, I convert Amsterdam future prices into spots using the cost-to-carry rate.

Unfortunately, information on short term interest rates (an important element of the cost-to-carry)

is scarce. The only available information is based on bills of exchange; unsecured international

short term loans (Flandreau et al. 2009). It is possible that counterparty risk differed between

contracts. I therefore infer the cost-to-carry rate in an indirect way.

Start with the following expression for log future prices in Amsterdam

fAt = pAt + rp(τ)τ (52)

where pAt is the (unobserved) log spot price, rp(τ) is the cost-to-carry rate during sample period

p ∈ {Sep. 1771 - Dec. 1777, Sep. 1783 - Mar 1787} and τ is the maturity of the futures contract in
years (τ = days until expiration/365). The cost-to-carry rate rp(τ) has a specific term structure

that, for simplicity, is assumed to be time invariant within each sample period.21 Note that this

expression differs from the text-book definition as it excludes the dividend yield: in 18th century

Amsterdam dividends accrued to the buyer rather than the seller.

We can approximate r(τ) using spot prices in London as they were observed in Amsterdam.

Consider the price in Amsterdam right after the arrival of a boat from London

fAk,t=1 = pAk,t=1 + rp(τ)τ (53)

The Amsterdam price captures all information reflected in the London spot price pLk−1 transmitted

by that boat (details on timing and notation are in Figure 3). In other words

pAk,t=1 = αp0 + pLk−1 + uk,t=1 (54)

where αp0 captures any structural price difference between Amsterdam and London during subpe-

riod p, and ut is an iid error picking up transitory price differences arising from liquidity shocks

or the (noisy) revelation of private information. Combining equations (53) and (54), we arrive at

fAk,t=1 − pLk−1 = αp0 + rp(τ)τ + uk,t=1 (55)

21Unreported results indicate that a time varying term structure leads to very similar results.
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I estimate this equation by approximating the yield curve with a third order polynomial:

r̂p(τ) = αp1 + αp2τ + αp3τ
2 + αp4τ

3 (56)

Estimates are in Table B.1 and differentiate between two different sample periods (1771-1777

and 1783-1787) and the three individual securities. The results indicate that α0 is close to zero

and tightly estimated. For example, between 1771 and 1777 the EIC price in Amsterdam was on

average 0.3% higher than in London. The 95% interval lies between 0.15 and 0.44%. This indicates

that structural price differences between the two markets were small. Average annualized cost-to-

carry rates (for a period of 3 months) are in the ballpark of 2% (1771-1777) or 7% (1783-1787).

The only exception are the 3% Annuities for which the cost-to-carry appears to be slightly negative

between 1771 and 1777. The term structure is upward sloping. As a final step I use the estimated

r̂p(τ) to convert Amsterdam future prices into spots, i.e.:

p̂Ak,t=1 = fAk,t=1 − r̂p(τ)τ

The choice of specific conversion procedure does not affect the empirical results presented in

the paper. As a case in point, Table B.2 replicates the results from Table 1 using non-adjusted

future returns. As discussed before, the raw return series features spurious price increases on days

that the maturity of the reported future contract changed. The regressions in Table B.2 include

dummies to adjust for this. Panel (A) reports results for Amsterdam news returns, RA
k,t=1. The

regressions account for possible changes in the maturity of the futures contract during current

period k, t = 1 and lagged period k − 1. Panel (B) looks at Amsterdam no-news returns, RA
k,t=2.

These regressions account for possible changes in the maturity during current period k, t = 2 and

lagged period k, t = 2.

Results are very similar to those in Table 1 in the main text. The key coeffi cients on the

London post-departure return RL
k only differ marginally. As before, Amsterdam returns exhibit

negative (rather than positive) autocorrelation, while there is some continuation of London news

returns into no-news periods.22

Data cleaning procedures

Apart from the conversion of future into spot prices, the paper uses the raw data provided by the

historical newspapers. There are two exceptions. First, whenever there was a clear typo in the

newspaper the information was adjusted. For example, if a price changed from 138.5 to 188.25

22The dummies capturing maturity changes have coeffi cients that are (approximately) consistent with the cost-

to-carry estimates from Table B.1. For example, for the EIC the average news return after a change in maturity

from 1 or 2 days to 3 months is 0.7% between 1771 and 1777 and 2.7% between 1783 and 1787. This roughly

translates into annualized cost-to-carry rates of 3.0 and 11.4% respectively. These are very close to the 2.5 and

8.2% reported in Table B.1.
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and back to 138, I replace the 188.25 with 138.25. Similarly, whenever I find a date that clearly

has the wrong year or month, I change this to the correct date. Second, for the EIC, I omit

returns in Amsterdam and London associated with a speech English prime-minister Fox gave in

Parliament on November 18, 1783, announcing that the EIC’s finances were in a deplorable state

and that no government bailout would be forthcoming. The impact on the EIC price in London and

Amsterdam was dramatic, with an instanteneous price fall of 14%. This is 18 standard deviations

from the mean of the EIC return distribution and a clear outlier in the regressions. See Koudijs

(2015) for more details.

Additional References
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Rates between Two Revolutions, 1688—1789’, In: Atack, J., Neal, L. (eds). The Origin and Development

of Financial Markets and Institutions from the Seventeenth to Twenty-First Century. Cambridge UP,

pp. 161—208.
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Table B.1: Cost-to-carry estimates
Sep. 1771 - Dec. 1777 Sep. 1783 - Mar 1787

(1) (2) (3) (4) (5) (6)

EIC BoE 3% Ann. EIC BoE 3% Ann.

αp1: time until maturity τ -0.046 -0.058 -0.041 -0.028 0.052 0.103

(0.048) (0.027)** (0.026) (0.103) (0.067) (0.098)

αp2: τ ∗ τ 1.108 1.247 0.718 1.542 -0.131 -1.251

(0.886) (0.507)** (0.505) (1.705) (1.274) (1.690)

αp3: τ ∗ τ 2 -8.382 -8.225 -5.211 -8.764 0.781 9.804

(5.862) (3.476)** (3.412) (10.537) (8.554) (10.781)

αp4: τ ∗ τ 3 20.327 17.554 11.559 17.422 -0.463 -21.674

(12.507) (7.614)** (7.356) (21.512) (18.251) (22.604)

Constant (αp0) 0.003 0.002 0.000 0.004 0.003 0.003

(0.001)*** (0.000)*** (0.000) (0.002)** (0.001)** (0.002)*

N 576 579 578 287 283 285

Adj R2 0.013 0.019 0.036 0.363 0.274 0.333

r̂p(τ): implied annualized interest rates at different maturities τ

1.5 months 0.12 0.36 -1.01 6.18 4.69 5.75

3 months 2.47 1.40 -0.66 8.20 6.08 6.43

This Table presents cost-to-carry estimates from regressing price differences between Amsterdam

future and London spot prices in logs (fAk,t=1 − pLk−1) on the time until maturity in Amsterdam in

years (τ = days until expiration/365, where τ lies between 1 day and 3 months). The estimated

annualized cost-to-carry over a given period τ is given by r̂p(τ) = αp1 + αp2τ + αp3τ
2 + αp4τ

3

where the coeffi cients are allowed to differ across sample periods: p ∈ {Sep. 1771 - Dec. 1777,
Sep. 1783 - Mar 1787}. The constant αp0 captures any structural price level differences between
Amsterdam and London. For example, between 1771 and 1777 Amsterdam EIC prices were on

average 0.3% higher than in London. ***, **, * denote statistical significance at the 1, 5, and

10% level. Robust, bootstrapped standard errors are reported in parentheses.
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Table B.2: Co-movement - non-adjusted returns
Panel (A): Dep. variable: Amsterdam post-arrival news returns, RA

k,t=1

EIC BoE 3% Annuities

(1) (2) (3) (4) (5) (6)

London post-departure 0.288 0.300 0.185 0.229 0.220 0.245

returns, RL
k (0.060)*** (0.048)*** (0.078)** (0.055)*** (0.104)** (0.073)***

London pre-departure 0.400 0.487 0.600

returns, RL
k−1 (0.049)*** (0.063)*** (0.066)***

Lagged London pre- -0.023 0.055 0.082

departure returns, RL
k−2 (0.044) (0.055) (0.055)

Lagged Amsterdam -0.156 -0.317 -0.384

returns, RA
k−1 (0.080)* (0.057)*** (0.064)***

Change maturityk,t=1 0.731 0.733 0.588 0.562 0.222 0.062

(0.239)*** (0.236)*** (0.150)*** (0.158)*** (0.166) (0.140)

Change maturityk,t=1 2.005 2.207 1.707 1.642 1.884 2.117

∗post− 1782 (0.265)*** (0.250)*** (0.163)*** (0.171)*** (0.185)*** (0.152)***

Change maturityk−1 -0.169 -0.205 -0.135

(0.250) (0.103)* (0.111)

Change maturityk−1 0.746 1.174 1.041

∗post− 1782 (0.398)* (0.265)*** (0.278)***

post− 1782 -0.086 -0.208 0.005 -0.043 0.026 -0.094

(0.091) (0.078)*** (0.067) (0.056) (0.083) (0.056)*

Constant 0.057 0.061 0.013 0.012 0.030 0.020

(0.039) (0.030)** (0.019) (0.016) (0.019) (0.018)

Obs. 585 570 558 544 663 646

Adj. R2 0.143 0.361 0.099 0.400 0.064 0.427
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Table B.2 continued

Panel (B): Dep. variable: Amsterdam post-arrival no-news returns, RA
k,t=2

EIC BoE 3% Annuities

(1) (2) (3) (4) (5) (6)

London post-departure 0.209 0.228 0.288 0.272 0.305 0.295

returns, RL
k (0.056)*** (0.052)*** (0.073)*** (0.063)*** (0.088)*** (0.081)***

London pre-departure 0.129 0.055 0.171

returns, RL
k−1 (0.052)** (0.063) (0.071)**

Lagged Amsterdam -0.110 -0.177 -0.149

returns, RA
k,t=1 (0.067)* (0.069)** (0.067)**

Change maturityk,t=2 0.159 0.126 0.303 0.306 -0.231 -0.230

(0.132) (0.122) (0.182)* (0.180)* (0.090)** (0.073)***

Change maturityk,t=2 1.707 2.287 1.739 2.477 2.536 2.818

∗post− 1782 (0.726)** (0.318)*** (0.839)** (0.250)*** (0.677)*** (0.578)***

Change maturityk,t=1 -0.151 -0.063 -0.124

(0.211) (0.123) (0.178)

Change maturityk,t=1 0.484 0.553 0.680

∗post− 1782 (0.271)* (0.193)*** (0.308)**

post− 1782 0.238 0.177 -0.019 -0.046 0.053 0.027

(0.085)*** (0.085)** (0.063) (0.070) (0.074) (0.076)

Constant -0.095 -0.081 -0.010 0.003 -0.030 -0.015

(0.035)*** (0.036)** (0.023) (0.023) (0.025) (0.024)

Obs. 310 306 282 277 374 368

Adj. R2 0.228 0.286 0.274 0.366 0.254 0.313

Estimates of co-movement between London post-departure and Amsterdam post-arrival returns.

Figure 3 gives the exact definitions of returns. London post-departure returns are calculated over

the three days after a boat departure. Amsterdam returns are non-adjusted future returns. The var-

iable Change maturity is a dummy that turns on when the maturity of the reported future’s contract

changes from 1 or 2 days to 3 months. This captures a spurious positive return of 1/4 of the cost-

to-carry rate. The interaction between Change maturity and the post-1782 dummy picks up any dif-

ferences in the cost-to-carry rate between the two sample periods (1771-1777 and 1783-1787).

***,**, and * denote statistical significance at the 1, 5, and 10% level. Robust, bootstrapped stan-

dard errors are reported in parentheses.
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Appendix C: Smugglers

Another alternative source of information could have been smuggling. Before 1784, there was

rampant smuggling from Holland to England; especially in tea (up to 1784 England charged high

tariffs on tea imports, Cole 1958). It is unclear whether Dutch smugglers were able to bring back

information that was more current than the offi cial news. To avoid being caught, they usually

off-loaded their goods on remote beaches (Platt 2011). Local roads were in bad condition and

news to these places travelled only slowly (Lewins 1865). Smugglers themselves seem to have

relied on offi cial packet boats to transmit information across the North Sea (Platt 2011, p. 30).

Even if smugglers did bring in relevant information, it is not clear that this information reached

Amsterdam before the offi cial mail. Dutch smugglers were predominantly based in Flushing (Mui

and Mui 1968) and getting a piece of news from Flushing to Amsterdam took more than 2 days

(Le Jeune 1851, p. 247-252).

There is a simple way to test the impact of this potential channel. In 1784 the English decided

to reduce tariffs on tea. This news became public in May 1784 (Mui and Mui 1961, p. 520). This

significantly reduced smuggling between Holland and England (Cole 1958). If smuggling was an

important information channel one would therefore expect that the co-movement of security prices

in Amsterdam and London would fall after May 1784. I run the following regression

RA
k,t=2 = α0 + α1R

L
k + α2R

L
k × post− tariffs+ α3post− tariffs+Xk,t=2 + uk,t=2

where the post-tariff dummy has a value of 1 starting in May 1784 and Xk,t=2 includes past

returns in Amsterdam and London. Coeffi cient α2 picks up the effect of the absence of smuggling.

If smuggling was important before 1784, we would expect that α2 < 0. Table C.1 indicates that

is not the case. If anything, co-movement was stronger after the reduction of tea duties.

Additional References

Cole, W.A., ‘Trends in Eighteenth-Century Smuggling’, in: The Economic History Review, 10-3 (1958)

Mui, H-C and L.H. Mui, ‘William Pitt and the Enforcement of the Commutation Act’, in: The English

Historical Review (1961)

Mui, H-C and L.H. Mui, ‘Smuggling and the British Tea Trade before 1784’, in: The American

Historical Review, 74-1 (1968)

Platt, R., Smuggling in the British Isles: A History, London: History Press Limited (2011)
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Table C.1: Co-movement - smugglers
Dep. variable: Amsterdam post-arrival no-news returns, RA

k,t=2

EIC BoE 3% Ann.

(1) (2) (3)

London post-departure returns, RL
k 0.204 0.277 0.268

(0.057)*** (0.072)*** (0.099)***

∗post− tariffs 0.198 0.066 0.051

(0.162) (0.170) (0.189)

post− tariffs 0.207 0.103 0.160

(0.084)** (0.072) (0.072)**

London pre-departure returns, RL
k−1 0.136 0.087 0.184

(0.053)** (0.069)*** (0.077)***

Lagged Amsterdam returns, RA
k,t=1 -0.136 -0.209 -0.188

(0.066)** (0.076)*** (0.072)***

Constant -0.061 0.001 -0.015

(0.034)* (0.025) (0.026)

Obs. 306 277 368

Adj. R2 0.163 0.132 0.126

Estimates of co-movement between London post-departure and Amsterdam

no-news returns. The table checks whether co-movement falls after the reduc-

tion in British tea duties in May 1784. This is captured by the interaction be-

tween RL
k and the post-tariff dummy. ***,**, and * denote statistical significance

at the 1, 5, and 10% level. Robust, bootstrapped standard errors are reported

in parentheses.
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Appendix D - additional figures and tables

Figure D.1: Impulse response functions AMS-LND, EIC
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Figure D.2: Kaplan-Meier estimates - arrival next boat (simple model)

Figure D.3: Kaplan-Meier estimates - arrival next boat (extended duration model)
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Table D.1: Co-movement EIC - different definitions A
Dep. variable: Amsterdam post-arrival news Amsterdam post-arrival no-news

returns, RA
k,t=1 (EIC) returns, RA

k,t=2 (EIC)

(1) (2) (3) (4) (5) (6)

London post-departure 0.341 0.257 0.217 0.206 0.217 0.167

returns, RL
k (0.068)*** (0.043)*** (0.040)*** (0.074)*** (0.048)*** (0.036)***

London pre-departure 0.391 0.397 0.388 0.137 0.155 0.142

returns, RL
k−1 (0.043)*** (0.044)*** (0.043)*** (0.058)*** (0.052)*** (0.055)**

Lagged London pre- -0.027 -0.018 -0.027

departure returns, RL
k−2 (0.046) (0.041) (0.043)

Lagged Amsterdam -0.118 -0.128 -0.116 -0.122 -0.085 -0.079

returns, RA
k−1 or R

A
k,t=1 (0.087) (0.069)* (0.068)* (0.081) (0.064) (0.064)

Constant 0.046 0.051 0.056 -0.033 0.010 0.020

(0.030) (0.027) (0.028) (0.034) (0.031) (0.030)

Obs. 505 624 632 263 354 360

Adj. R2 0.331 0.313 0.300 0.084 0.118 0.112

The table replicates the baseline estimates for EIC stock from Table 1, using different definitions

for post-departure returns in London. They are calculated over different periods: cols 1 and 4: 2

days, cols 2 and 5: 4 days, columns 1 and 6: 5 days. ***,**, and * denote statistical significance

at the 1, 5, and 10% level. Robust bootstrapped standard errors are reported in parentheses.
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Table D.2: Co-movement EIC - different definitions B
Dep. variable: Amsterdam post-arrival news Amsterdam post-arrival no-news

returns, RA
k,t=1 (EIC) returns, RA

k,t=2 (EIC)

(1) (2) (3) (4) (5) (6)

London post-departure 0.290 0.210 0.180 0.301 0.215 0.167

returns, RL
k (0.064)*** (0.049)*** (0.045)*** (0.085)*** (0.058)*** (0.042)***

London pre-departure 0.393 0.403 0.393 0.112 0.133 0.129

returns, RL
k−1 (0.052)*** (0.044)*** (0.046)*** (0.060)* (0.055)** (0.054)**

Lagged London pre- -0.026 -0.019 -0.027

departure returns, RL
k−2 (0.048) (0.043) (0.042)

Lagged Amsterdam -0.132 -0.096 -0.091 -0.088 -0.042 -0.055

returns, RA
k−1 or R

A
k,t=1 (0.083) (0.065) (0.065) (0.070) (0.064) (0.061)

Constant 0.041 0.049 0.055 -0.016 0.017 0.029

(0.033) (0.029)* (0.027)** (0.037) (0.033) (0.031)

Obs. 504 611 623 249 341 353

Adj. R2 0.264 0.259 0.255 0.129 0.098 0.097

The table replicates the baseline estimates for EIC stock from Table 1, using different definitions

for post-departure returns in London. They are calculated over different periods after a boat de-

parture. In all cases the first day of a period is omitted. Cols 1 and 4: 3 days, cols 2 and 5: 4

days, cols 3 and 6: 5 days. ***,**, and * denote statistical significance at the 1, 5, and 10% level.

Robust bootstrapped standard errors are reported in parentheses.
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Table D.3: Co-movement - Amsterdam as source of information; different expectations next boat
Dep. variable: London post-arrival news returns, RL

k,t=1

EIC BoE 3% Annuities

(1) (2) (3) (4) (5) (6)

Amsterdam post-departure 0.061 0.059 0.095 0.088 0.075 0.069

returns, RA
k (0.074) (0.089) (0.083) (0.094) (0.065) (0.079)

∗E[A|simple] < 3.5 days 0.014 -0.037 -0.064

(0.110) (0.097) (0.073)

∗E[A|extended] < 3.5 days 0.014 -0.018 -0.038

(0.107) (0.106) (0.089)

E[A|simple] < 3.5 days 0.044 0.027 0.074

(0.078) (0.043) (0.038)*

E[A|extended] < 3.5 days 0.003 -0.001 0.053

(0.076) (0.043) (0.038)

Amsterdam pre-departure 0.046 0.047 0.134 0.132 0.108 0.109

returns, RA
k−1 (0.044) (0.044) (0.056)** (0.055)** (0.037)*** (0.037)***

Lagged Amsterdam pre- -0.001 -0.000 0.044 0.042 0.058 0.056

departure returns, RA
k−2 (0.048) (0.048) (0.050) (0.052) (0.042) (0.042)

Lagged London -0.089 -0.089 -0.055 -0.053 -0.105 -0.102

returns, RL
k−1 (0.090) (0.089) (0.085) (0.087) (0.059)* (0.057)*

Constant 0.033 0.047 0.007 0.018 -0.020 -0.021

(0.047) (0.058) (0.027) (0.031) (0.025) (0.029)

Obs. 593 593 589 589 824 824

Adj. R2 0.00 0.00 0.02 0.02 0.03 0.03

Estimates of co-movement between Amsterdam post-departure and London post-arrival news returns.

E[A] stands for the expected number of days until the next boat arrival. E[A|simple] is calculated by
adding the median sailing time to the departure date of the next boat. For E[A|extended] the median

sailing time is replaced by a conditionally expected sailing time which is estimated in a duration model,

using a Gamma distribution, including a no-go zone dummy and month dummies (see main text).

***, **, and * denote statistical significance at the 1, 5, and 10% level. Robust, bootstrapped standard

errors are reported in parentheses.
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Table D.4: Co-movement - alternative definitions for favorable winds
Dep. variable: Amsterdam post-arrival no-news returns, RA

k,t=2

EIC BoE 3% Annuities

(1) (2) (3) (4) (5) (6)

London post-departure 0.343 0.351 0.366 0.289 0.241 0.220

returns, RL
k (0.0.78)*** (0.111)*** (0.144)** (0.101)*** (0.117)** (0.131)*

∗favorable (B) -0.140 -0.099 0.123

(0.109) (0.164) (0.175)

∗favorable (C) -0.124 0.010 0.145

(0.133) (0.126) (0.178)

favorable (B) -0.076 -0.010 -0.033

(0.067) (0.049) (0.084)

favorable (C) -0.233 -0.133 -0.084

(0.091)** (0.059)** (0.076)

London pre-departure 0.151 0.154 0.107 0.105 0.202 0.194

returns, RL
k−1 (0.057)*** (0.059)*** (0.072) (0.073) (0.080)** (0.079)**

Lagged Amsterdam -0.141 -0.133 -0.209 -0.204 -0.204 -0.194

returns, RA
k,t=1 (0.073)* (0.067)** (0.077)*** (0.077)*** (0.073)*** (0.074)***

Constant 0.028 0.174 0.027 0.132 -0.007 0.089

(0.057) (0.084) (0.041) (0.052) (0.049) (0.070)

Obs. 306 306 277 277 368 368

Adj. R2 0.143 0.153 0.124 0.134 0.114 0.116

Obs. with non-favorable 99 46 91 44 115 52

Estimates of co-movement between London post-departure and Amsterdam post-arrival no-news

returns. Co-movement is made conditional on having favorable winds or not (“favorable”). The

baseline coeffi cients measure co-movement during periods with non-favorable winds. The inter-

action term captures any additional co-movement during periods with favorable winds. The table

uses definitions B and C for favorable winds (see main text for details). The table lists the number

of observations with non-favorable wind conditions. The baseline coeffi cients are based on this

(limited) number of observations. See Figure 3 for exact definitions of returns. London post-

departure returns are calculated over three days after a boat departure. ***,**, and * denote sta-

tistical significance at the 1, 5, and 10% level. Robust, bootstrapped standard errors are reported

in parentheses.
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Table D.5: Co-movement - zero returns in Amsterdam
Dep. variable: Amsterdam post-arrival no-news returns, RA

k,t=2

EIC BoE 3% Ann.

(1) (2) (3)

London post-departure returns, RL
k 0.245 0.299 0.332

(0.061)*** (0.073)*** (0.112)***

∗I(RA
k,t=1 = 0) 0.123 0.020 -0.085

(0.216) (0.173) (0.165)

I(RA
k,t=1 = 0) -0.067 0.010 -0.057

(0.093) (0.048) (0.050)

London pre-departure returns, RL
k−1 0.146 0.099 0.200

(0.054)*** (0.071) (0.079)**

Lagged Amsterdam returns, RA
k,t=1 -0.141 -0.212 -0.194

(0.070)** (0.076)*** (0.075)***

Constant -0.017 0.018 0.035

(0.033) (0.028) (0.033)

Obs. 306 277 368

Adj. R2 0.133 0.121 0.114

Obs. with RA
k,t=1 = 0 45 67 106

This table presents co-movement estimates for Amsterdam no-news returns that are

conditional on whether the preceding Amsterdam news return was zero or not: I(RA
k,t=1

= 0). The interaction term measures whether there is less co-movement if RA
t=1 = 0.

London post-departure returns are calculated over three day periods. The table re-

ports the the number of observations associated with zero returns in Amsterdam. ***,

**, and * denote statistical significance at the 1, 5, and 10% level. Robust, bootstrap-

ped standard errors are reported in parentheses.
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Table D.6: Likelihood of zero returns - expectations next boat
Dep. variable: Amsterdam post-arrival news returns zero or not, RA

k,t=1 = 0

EIC BoE 3% Annuities

(1) (2) (3) (4) (5) (6)

Logit Probit Logit Probit Logit Probit

E[A|extended] < 3.5 days -0.009 -0.009 0.025 0.025 0.015 0.041

(0.028) (0.028) (0.035) (0.035) (0.039) (0.109)

Obs. 591 591 591 591 591 591

Logit or probit estimates predicting whether an Amsterdam news return is zero

depending on whether the next boat is expected to arrive within 3.5 days or not.

Marginal effects: the estimates give the change in probability from moving from

E[A|extended] > 3.5 days to E[A|extended] < 3.5 days. ***,**, and * denote sta-

tistical significance at the 1, 5, and 10% level. Robust, bootstrapped standard

errors are reported in parentheses.
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Table D.7: Co-movement - expectation next boat and weather conditions
Dep. variable: Amsterdam post-arrival news returns, RA

k,t=1

EIC BoE 3% Ann.

(1) (2) (3)

London post-departure returns, RL
k 0.286 0.261 0.317

(0.135)** (0.139)* (0.190)*

∗E[A|extended] < 3.5 days 0.225 0.299 0.178

(0.099)** (0.101)*** (0.135)

∗Rain during at least 1 daily obs. 0.014 -0.058 -0.195

(0.140) (0.149) (0.159)

∗Total daily rainfall 0.001 -0.003 0.033

(0.020) (0.037) (0.038)

∗Max. wind speed during the day -0.027 -0.030 -0.037

(0.035) (0.036) (0.066)

E[A|extended] < 3.5 days -0.007 -0.041 -0.110

(0.057) (0.034) (0.037)***

London pre-departure returns, RL
k−1 0.397 0.493 0.607

(0.043)*** (0.064)*** (0.064)***

Lagged London pre-departure returns, RL
k−2 -0.029 0.061 0.081

(0.043) (0.051) (0.055)

Lagged Amsterdam returns, RA
k,t=1 -0.156 -0.320 -0.390

(0.071)** (0.056)*** (0.064)***

Constant 0.063 0.105 0.055

(0.087) (0.045) (0.051)

Obs. 570 544 646

Adj. R2 0.33 0.36 0.42

Estimates of co-movement between Amsterdam post-departure and London post-arrival news

returns. E[A|extended] stands for the expected number of days until the next boat. This is cal-

culated using the sailing schedule and a duration model with a flexible Gamma distribution that

includes a number of weather variables and month dummies (see main text for details). The re-

gression includes interaction terms between London post-departure returns and three weather

variables: whether there was rain during some point in the day, total daily rainfall (in mm, mean:

1.28; sd: 3.03 and the maximum wind speed (in Beaufort; mean: 2.85; st. dev.: 1.23). To pre-

serve space, the level-coeffi cients on the weather variables are omitted. ***,**, and * denote

statistical significance at the 1, 5, and 10% level. Robust, bootstrapped standard errors are

reported in parentheses.
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Appendix E - theoretical model feedback effects

In section 3.4 I analyze the impact of price discovery in Amsterdam on price changes in London

in a simple reduced form model. This appendix presents a full-fledged theoretical model in which

the London insider takes the impact of price discovery in Amsterdam into account when deciding

how to trade. Under a number of reasonable assumptions, the predictions from both models are

equivalent.

Predictions 1 and 2 of the reduced form model are general and hold for any setup in which price

discovery in Amsterdam and London is not perfectly correlated. Prediction 3 is more ambiguous,

especially part 3b. This states that the weight that the London market puts on price changes in

Amsterdam should increase in the precision of that signal. It is not immediately obvious that this

prediction holds in a full theoretical model.

The reasoning is as follows. The moment the price signal from Amsterdam becomes more

informative, the incentives for the London insider change. Because news from Amsterdam will

now reveal a large part of the insider’s signal, the London insider will trade more aggressively

before price changes in Amsterdam are communicated to the Amsterdam market. This makes

London prices more informative and, as a result, the London market will put less weight on the

Amsterdam signal. In other words, there are two counteracting effects. Keeping the London

insider’s trading rule constant, the London market will put more weight on the Amsterdam signal

if it becomes more informative. However, if that is the case the London insider has an incentive to

trade more aggressively and the London signal will also become more informative. This decreases

the weight on the Amsterdam signal. It is unclear, ex ante, which of the two effects dominate.

The theoretical model shows that under reasonable parameter values the first effect dominates

and prediction 3b of the simple reduced form model continues to hold. The intuition is as follows.

Suppose that the profits for the London insider after the arrival of news from Amsterdam are

relatively small to begin with. In that case, the additional updating of the London market based

on the Amsterdam signal will only marginally affect the insider’s overall profits. As a result, the

optimal trading strategy of the London insider before the arrival of news from Amsterdam will not

significantly change. Neither will the informativeness of London price changes before the arrival

of news.

How reasonable is the assumption that profits after the arrival of news from Amsterdam are

relatively small? Results in section 3.4 show that on average it took 10 days for a London private

signal to “bounce off”from Amsterdam. The evidence also suggests that, after 12 days, the private

information was fully incorporated into London prices. This suggests that, after the arrival of a

boat from Amsterdam, the London insider had limited time to trade on the (remainder of) a given

private signal. In relative terms, the insider profits that could be made during these final 3 days

were probably small.
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Setup model

A single asset with payoff v0 + ε, where ε ∼ N(0,Σ0), is traded in two markets: Amsterdam (A)

and London (L). In both markets there are two periods of trade, t = 1, 2. Markets are imperfectly

integrated. In both markets there is a single informed agent.

Figure D.4 illustrates the details of the model. (1) We start in London at the beginning of

tL = 1. Nature decides on the value of ε. This information is privately observed by a London

insider who immediately transmits this information to his Amsterdam agent. He trades on his

private information during the remainder of period tL = 1. (2) The Amsterdam agent receives

the private information at the beginning of period tA = 1. During periods tA = 1, 2 he trades

on the private signal. Right after period tA = 1, information about Amsterdam prices is sent to

the London market. (3) This either arrives in London right after the conclusion of period tL = 1

(probability 1−π) or it delayed and arrives in London after a subsequent period tL = 2 (probability

1−π). The arrival of news from Amsterdam is a public event and is both observed by the London
market maker and the London insider. (4) The London insider trades on the remainder of his

private information during period tL = 2. I write tL = 2∗ if the Amsterdam signal is received

before the start of this second period. The optimal trading strategy of the informed agent is

different in tL = 2 and tL = 2∗. (5) After period tL = 2/tL = 2∗, the true value of ε is publicly

revealed in London. This information is immediately transmitted to Amsterdam where it arrives

after period tA = 2.

[FIGURE D.4 ABOUT HERE]

Insiders submit trading orders xit, where i denotes {A,L}. In addition to informed trading,
there is a continuum of uniformed noise or liquidity traders who exogenously submit trading orders.

Aggregate orders uit are iid, uncorrelated and u
i
t ∼ N(0, σ2

uit
). Uninformed trades in London in

t = 2/t = 2∗ are the same regardless of whether information arrived from Amsterdam or not.

Informed and uninformed trades are submitted to a risk neutral competitive market maker who

sets prices equal to the expected value of the asset, pit = v0 + E [ε|I it ]. See tables D.8 and D.9.

Table D.8: Setup model - Amsterdam

tA = 1 tA = 2

E
[
v|IAt

]
begin v0 pA1

end pA1 = v0 + E
[
εt|xA1 + uA1

]
pA2 = pA1 + E

[
v0 + εt − pA1 |xA2 + uA2

]
The most interesting updating rule for the market maker is the case where the London market

receives information from Amsterdam right after period tL = 1. Before period tL = 2∗ begins, the

market maker observes two different prices, pL1 and p
A
1 . The market maker weighs both signals

with αA and αL. The main focus of this appendix is on the properties of αA.
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Table D.9: Setup model - London

prob. π prob. (1− π)

tL = 1 tL = 2 tL = 2∗

E
[
v|ILt

]
begin v0 pL1 pL1∗ = αApA1 + αLpL1

end pL1 = v0+ pL2 = pL1 + pL2∗ = pL1∗+

E
[
εt|xL1 + uL1

]
E
[
v0 + εt − pL1 |xL2 + uL2

]
E
[
v0 + εt − pL1∗|xL2∗ + uL2

]
Equilibrium

I analyze the situation where both the London insider and his Amsterdam agent maximize profits

for the two markets individually. This means that the Amsterdam agent does not take the impact

of his trades on informed profits in London into account. This is a simplifying assumption. The

results of this approximation should be close to a full fledged version of the model as long as

the profits in London in period t = 2/t = 2∗ are relatively small. As discussed before, this is a

reasonable assumption.

The equilibrium is constructed as follows. I first assume that a linear equilibrium exists in

which the insider trades are linear in the information. More specifically

xi1 = βi1ε (57)

xA2 = βA2
(
v0 + ε− pA1

)
(58)

xL2 = βL2
(
v0 + ε− pL1

)
(59)

xL2∗ = βL2∗
(
v0 + ε− pL1∗

)
(60)

Given these linear policies, the market makers’optimal updating rules can be written as

pi1 = v0 + λi1(xi1 + ui1) (61)

pA2 = pA1 + λA2 (xA2 + uA2 ) (62)

pL2 = pL1 + λL2 (xL2 + uL2 ) (63)

pL1∗ = αApA1 + αLpL1 (64)

pL2∗ = pL1∗ + λL2∗(x
L
2∗ + uL2 ) (65)

where

λi1 =
βi1Σ0(

βi1
)2

Σ0 + σ2
ui1

λi2 =
1

2

√
Σi

1

σ2
ui2

, λL2∗ =
1

2

√
ΣL

1∗
σ2
uL2

αA =
ΣL

1∗
ΣA

1

, αL =
ΣL

1∗
ΣL

1

(66)
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Σi
1 and ΣL

1∗ indicate the uncertainty of the market maker’s estimate of ε after observing the

aggregate order flows:

Σi
1 = var

[
pi1|I i1

]
= (1− βi1λi1)Σ0

ΣL
1∗ = var

[
pL1∗|IA1 , IL1

]
=

Σ0ΣA
1 ΣL

1

Σ0 (ΣA
1 + ΣL

1 )− 2ΣA
1 ΣL

1

(67)

We can now turn to the optimal behavior of the two insiders and check whether their optimal

policies are indeed as described by equations (57) to (60). The Amsterdam agent maximizes

max
xA1 ,x

A
2

E
[
xA1
(
v0 + ε− pA1

)
+ xA2

(
v0 + ε− pA2

)
|ε
]

and the London agent maximizes

max
xL1 ,x

L
2 ,x

L
2∗

E
[
xL1
(
v0 + ε− pA1

)
+ πxL2

(
v0 + ε− pL2

)
+ (1− π)xL2∗

(
v0 + ε− pL2∗

)
|ε
]

Plugging in for prices from equations (61) to (65), it can indeed be shown that (57) to (60) hold

with

βA1 =
1− λA1 βA2

2λA1 −
(
λA1
)2
βA2

βL1 =
−1 + πλL1 β

L
2 + (1− π)αLλL1

(
1− αAλA1 βA1

)
βL2∗

−2λL1 + π
(
λL1
)2
βL2 + (1− π) (αLλL1 )2βL2∗

βi2 =

√
σ2
ui2

Σi
1

, βL2∗ =

√
σ2
uL2

ΣL
1∗

Comparative statics

In what follows I revisit predictions 3a and 3b from the simple reduced form model of section 3.4.

Prediction 3 relates the weight that the London market maker puts on the Amsterdam price signal

(αA) to the informativeness of pL1 and p
L
1 . The informativeness of these prices can be summarized

by ΣL
1 and ΣA

1 . The smaller Σi
1 the more informative prices are.

In the model Σi
1 is determined by the relative size of σ

2
ui1
with respect to σ2

ui2
. For example, if

σ2
ui1
is relatively large, then potential informed profits from period ti = 1 are relatively large as well.

There is more noise trading that the informed agent can benefit from. As a result, the informed

agent trades aggressively in this period ti = 1 and saves only a small fraction of his informational

advantage for period ti = 2, making prices after period ti = 1 become more informative.

Prediction 3a: αA should be decreasing in the informativeness of pL1 , δα
A/δΣL

1 > 0.

Proof. Follows from expressions (66) and (67).
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If the London signal becomes more informative, the London market maker will put less weight

on the Amsterdam signal.23

Prediction 3b: αA should be increasing in the informativeness of pA1 : δα
A/δΣA

1 < 0.

The proof of this prediction is split up in a number of steps. First of all, keeping ΣL
1 constant

(ΣL
1 ) it is easy to show that

Lemma 11
δαA(ΣL

1 )

δΣA
1

< 0

Proof. Follows from expressions (66) and (67).

However, ΣL
1 is not constant and is affected by ΣA

1 . In fact it can be shown that

Lemma 12
δΣL

1

δΣA
1

> 0

Proof. Numerical verification

The intuition for this result is that the London insider changes his trading behavior if pA1
becomes more informative; potential insider profits from the second period tL = 2∗ fall. As a

result, the insider will save less of his informational advantage and trade more aggressively in

period tL = 1. This leads to a smaller ΣL
1 . For its part this will lead to a smaller α

A.

What is the net effect of these two lemmas?

Proposition 13 As long as potential insider profits during period t = 2/t = 2∗ are relatively

small (large π, large σ2
uL1
, and/or large σ2

uA1
) then

δαA

δΣA
1

< 0

Proof. Numerical results in figure D.5

Potential insider profits from period t = 2/t = 2∗ are relatively small as long as σ2
uL1
is large.

In this case, the additional updating of the London market maker based on pA1 will be relatively

unimportant for the insider’s optimal trading strategy in period tL = 1: Lemma 10 dominates.

If σ2
uA1
is large, the Amsterdam signal will be highly informative to begin with and this decreases

the potential insider profits from t = 2∗ even further. This reduces the level of σ2
uL1
for which

δαA/δΣA
1 < 0.

23Note that in this (simplified) version of the model, ΣA1 is effectively kept constant. The Amsterdam insider

does not take his impact on London profits into consideration. If he would do so, changes in ΣL1 would affect

optimal informed trading in Amsterdam in period tA = 1 and thus the informativeness of Amsterdam prices ΣA1 .

This effect is likely to be small if insider profits in London after the arrival of a boat are small.
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[FIGURE D.5 ABOUT HERE]

Figure D.5 is drawn for π = 0. This is a scenario in which it is certain that the Amsterdam

signal will arrive in London after tL = 1. This is the case where the Amsterdam price has the

biggest impact on the London insider’s trading strategy in period tL = 1. For larger values

of π Amsterdam prices become less important and the parameter space in Figure D.5 where

δαA/δΣA
1 < 0 is larger.
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Figure D.4: Setup - feedback model

Figure D.5: Prediction 3B
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