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This Online Appendix describes additional empirical and theoretical results on foreign bond returns in U.S. dollars.

• Section A presents robustness checks on the main time-series results reported in the paper:

– subsection A.1 reports time-series predictability results using inflation and sovereign credit as additional controls;

– subsection A.2 proposes a different decomposition of the dollar bond returns into its exchange rate component (−∆st+1)
and the local currency bond return difference, r(10),∗ − r(10) (instead of excess returns);

– subsection A.3 reports time-series predictability results with GBP as base currency;

– subsection A.4 reports additional individual country time-series predictability results obtained on different time-
windows (10/1983–12/2007, 1/1975–12/2007, 10/1983–12/2015) and investment horizons (three months).

• Section B presents additional robustness checks for the cross-sectional portfolio results reported in the paper.

– subsection B.1 reports portfolio statistics for different time-windows (10/1983–12/2007, 1/1975–12/2007, 10/1983—
12/2015);

– subsection B.2 focuses on currency portfolios sorted on the deviation of interest rates from their 10-year rolling means
and reports statistics for different sample periods, different holding periods and different sets of currencies;

– subsection B.3 focuses on currency portfolios sorted on interest rate levels and reports statistics for different sample
periods, different holding periods and different sets of currencies;

– subsection B.4 focuses on currency portfolios sorted on yield curve slopes and reports statistics for different sample
periods, different holding periods and different sets of currencies.

• Section C reports additional results obtained with zero-coupon bonds for our benchmark sample of G10 countries and a
larger sample of developed countries.

• Section D reports additional theoretical results on dynamic term structure models, starting with the simple Vasicek (1977)
model, before turning to their k-factor extensions and the model studied in Lustig, Roussanov, and Verdelhan (2014).

• Section E presents the details of pricing kernel decomposition for three classes of structural models: models with external
habit formation, models with long run risks, and models with rare disasters.

• Section F reports additional proofs of preference-free results.

• Section G presents two additional preference-free implications of our findings: a lower bound on the cross-country correlations
of the permanent SDF components and a new benchmark for holding bond returns.

• Section H compares finite to infinite maturity bond returns in the benchmark Joslin, Singleton, and Zhu (2011) term structure
model.
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A Robustness Checks on Time-Series Results

A.1 Time-Series Predictability with Additional Controls

Table A1 presents additional time-series predictability results when using inflation and sovereign credit rating as additional controls.
In particular, we include as regressors the difference (foreign minus domestic) in realized inflation between t and t+ 1 as well as the
difference (foreign minus domestic) in the sovereign credit rating at t. These results should be compared to Table 1 in the paper.
The slope coefficients are quite similar.

A.2 Time Series Regressions: Exchange Rate Changes and Local Bond Returns (Instead
of Excess Returns)

Table A2 proposes a different decomposition of the dollar bond returns into its exchange rate component (−∆st+1) and the local
currency bond return difference, r(10),∗ − r(10). When we regress the local currency log return differential (instead of the excess
returns) on the interest rate differential, there is no evidence of predictability (Panel A). This decomposition does not suffer from
any mechanical link between the right- and left-hand side variables. But its drawback is that it does not show the currency excess
return predictability in the middle columns. Instead, it reports the usual U.I.P slope coefficient in a regression of exchange rate
changes on the interest rate differential (Panel A). There is of course a simple mapping between those coefficients and those of
Table 1 in the paper. A zero slope coefficient in a regression of exchange rate changes on interest rate differences is equivalent to a
slope coefficient of one in a regression of currency excess returns on interest rate differences. Table A2 shows that the slope of the
yield curve predicts significantly the bond return differential (in local currencies). The predictability results on dollar bond returns
are the same as in Table 1 in the paper.

A.3 Time Series Predictability with GBP as Base Currency

Table A3 presents the results obtained when using the GBP as the base currency. We start by considering the interest rate as a
predictor. U.I.P. deviations are weaker when the base currency is the GBP. The panel regression coefficient is 1.60 (instead of 1.98).
On the other hand, there is less predictability of the local currency bond excess return differential when using the interest rate
spread as the predictor. The panel regression coefficient is −0.60 (instead of −1.34). The net effect is a slope coefficient of 1.00,
which is significant only at the 10% level. However, when we use the slope of the yield curve as a predictor, the slope coefficient is
−2.10 (−2.02 with USD as base currency) for the currency excess return, but 2.53 (3.96 with USD as base currency) for the local
currency bond excess return differential. The net effect is a slope coefficient of 0.43, which is not statistically significantly different
from zero. To summarize, the slope and interest evidence is qualitatively similar. The slope evidence is entirely in line with our
hypothesis. The interest rate evidence suggests there is some predictability left in the dollar bond excess returns.

However, there is no economically significant predictability. In particular, to assess the economic significance of these results,
Table A4 presents the results obtained when an investor exploits interest rate and slope predictability by going long U.K. bonds and
shorts foreign bonds when the interest rate difference (slope difference) is positive (negative), and reverses the position otherwise.
The equally-weighted return on the interest rate strategy in the top panel is only 1.41% per annum, not significant at conventional
significance levels. The Sharpe ratio is only 0.22. Similarly, the equally-weighted return on the slope strategy reported in the
bottom panel is 0.45% per annum and the annualized Sharpe ratio is 0.07. Thus, there is no evidence of economically significant
time variation in GBP bond excess returns, consistent with our hypothesis, in line with (but quantitatively different than) our
conclusions for USD bond returns.

A.4 Individual Country Time-Series Predictability Results

Table A5 and A6 report the time-series regression results when we end the sample in 2007: Table A5 considers the shorter 10/1983-
12/2007 sample period, whereas Table A6 considers the 1/1975-12/2007 sample period. The first column looks at dollar return
differential predictability. The panel slope coefficient for the interest rate regressions is 1.05 in the short sample, compared to 0.65
in the full sample, and we find marginal evidence in favor of interest rate predictability of the dollar return differential, driven
mainly by Japan. The R2s in these regressions are extremely low. However, the evidence for yield curve slope predictability is
weaker in this shorter sample; the panel slope coefficient of 0.58 is no longer statistically different from zero. When we look at the
1/1975-12/2007 sample, the panel slope coefficient for the interest rate regression is 0.86 and not statistically significant, while the
panel slope coefficient for the slope regression is 1.54, marginally statistically significant. As happens for our benchmark sample
period, the latter coefficient for this sample period also has the opposite sign from what the standard slope carry trade would
imply. Finally, Table A7 reports the predictability regression results for the sample period 10/1983-12/2105. We find that the slope
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Table A1: Dollar Bond Return Differential Predictability – Controlling for Inflation and Credit Ratings

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.02 [0.03] 0.62 [0.97] 1.72 -0.04 [0.02] 1.72 [0.61] 1.37 0.02 [0.03] -1.10 [0.62] 2.29 0.33 492

Canada 0.02 [0.02] -1.13 [0.73] -0.28 -0.01 [0.02] 1.36 [0.59] 0.16 0.03 [0.01] -2.49 [0.46] 3.54 0.01 492

Germany 0.01 [0.02] 1.81 [1.14] 0.30 0.03 [0.02] 2.75 [1.02] 1.92 -0.01 [0.01] -0.94 [0.54] 0.38 0.54 492

Japan 0.10 [0.03] 2.96 [0.84] 1.50 0.10 [0.03] 3.37 [0.66] 3.65 0.00 [0.02] -0.41 [0.54] 0.23 0.70 492

New Zealand -0.10 [0.05] 1.53 [0.82] 2.36 -0.11 [0.03] 2.53 [0.53] 3.95 0.01 [0.04] -1.00 [0.65] 2.99 0.31 492

Norway -0.01 [0.02] 0.74 [0.61] 0.35 -0.01 [0.02] 1.78 [0.56] 3.22 0.00 [0.02] -1.04 [0.42] 0.64 0.21 492

Sweden -0.01 [0.02] -0.63 [0.90] -0.21 -0.02 [0.02] 0.94 [0.92] 0.09 0.01 [0.01] -1.56 [0.52] 1.64 0.23 492

Switzerland 0.02 [0.03] 1.69 [0.79] 0.79 0.07 [0.03] 2.85 [0.81] 2.78 -0.05 [0.01] -1.16 [0.46] 2.93 0.31 492

United Kingdom -0.02 [0.03] 0.87 [1.22] -0.30 -0.05 [0.03] 2.83 [1.00] 2.09 0.03 [0.02] -1.96 [0.65] 1.39 0.21 492

Panel – – 0.81 [0.46] 0.24 – – 2.07 [0.44] 1.98 – – -1.26 [0.31] 1.45 0.00 4428

Joint zero (p-value) 0.07 0.00 0.00 0.00 0.00 0.00 0.09

Panel B: Yield Curve Slopes

Australia 0.03 [0.03] 3.00 [1.55] 2.62 -0.02 [0.02] -1.53 [1.12] 0.54 0.05 [0.02] 4.52 [0.95] 7.85 0.02 492

Canada 0.05 [0.02] 4.80 [1.10] 2.24 -0.00 [0.02] -0.99 [0.80] -0.39 0.05 [0.01] 5.80 [0.70] 10.70 0.00 492

Germany 0.00 [0.02] 0.24 [1.74] -0.46 0.00 [0.02] -3.47 [1.39] 1.36 0.00 [0.01] 3.71 [0.95] 4.15 0.10 492

Japan 0.02 [0.03] -0.91 [1.35] -0.27 0.01 [0.02] -4.72 [1.08] 3.23 0.01 [0.02] 3.81 [0.87] 3.65 0.03 492

New Zealand -0.01 [0.06] 2.14 [1.96] 2.34 -0.08 [0.04] -1.96 [1.16] 1.54 0.07 [0.04] 4.10 [1.19] 7.47 0.07 492

Norway 0.01 [0.02] 0.45 [1.02] 0.11 0.00 [0.02] -2.20 [0.93] 2.45 0.01 [0.01] 2.65 [0.60] 3.05 0.05 492

Sweden 0.01 [0.02] 3.10 [1.20] 1.81 -0.01 [0.02] -0.25 [1.13] -0.38 0.02 [0.01] 3.35 [0.74] 5.00 0.04 492

Switzerland -0.01 [0.02] 0.51 [1.19] -0.17 -0.02 [0.02] -3.97 [1.29] 2.03 0.01 [0.01] 4.48 [0.83] 9.47 0.01 492

United Kingdom 0.02 [0.03] 1.62 [1.53] -0.07 -0.02 [0.02] -3.18 [1.40] 1.81 0.04 [0.02] 4.80 [0.84] 7.67 0.02 492

Panel – – 1.81 [0.81] 0.54 – – -2.10 [0.71] 0.99 – – 3.91 [0.50] 6.07 0.00 4428

Joint zero (p-value) 0.29 0.00 0.67 0.00 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). In each regression, we also include the realized inflation differential
(foreign minus domestic) between t and t+ 1, as well as the credit rating differential (foreign minus domestic) at t as regressors. The column
“Slope Diff.” presents the p-value of the test for equality between the slope coefficient in the bond dollar return difference regression and the
slope coefficient in the currency excess return regression for each country. The last line in each panel presents the p-value of the joint test that
all individual-country regression coefficients in the respective column are zero. We use returns on 10-year coupon bonds. The holding period
is one month and returns are sampled monthly. The log returns and the yield curve slope differentials are annualized. The sample period is
1/1975–12/2015. The balanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the
U.K. In individual country regressions, standard errors are obtained with a Newey-West approximation of the spectral density matrix, with
the lag truncation parameter (kernel bandwidth) equal to 6. Panel regressions include country fixed effects, and standard errors are obtained
using the Driscoll and Kraay (1998) methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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Table A2: Dollar Bond Return Differential Predictability: Exchange Rate Changes and Local Bond Return
Differentials

Bond dollar return difference Exchange rate change Bond local currency return diff. Slope Diff. Obs.

r(10),$ − r(10) −∆st+1 r(10),∗ − r(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia 0.01 [0.03] -0.15 [0.97] -0.20 -0.02 [0.02] 0.29 [0.62] -0.16 0.03 [0.02] -0.44 [0.60] -0.04 0.70 492

Canada 0.02 [0.02] -1.10 [0.69] 0.11 -0.01 [0.01] 0.22 [0.53] -0.18 0.03 [0.01] -1.32 [0.46] 1.08 0.13 492

Germany 0.01 [0.02] 1.52 [1.21] 0.37 0.02 [0.02] 1.49 [0.99] 0.49 -0.01 [0.01] 0.03 [0.60] -0.20 0.99 492

Japan 0.06 [0.03] 2.37 [0.84] 1.13 0.07 [0.02] 2.11 [0.67] 1.53 -0.01 [0.02] 0.26 [0.52] -0.16 0.81 492

New Zealand -0.03 [0.04] 0.69 [0.87] -0.03 -0.07 [0.03] 1.23 [0.49] 0.84 0.04 [0.03] -0.54 [0.66] 0.02 0.59 492

Norway -0.02 [0.02] 0.72 [0.62] 0.08 -0.02 [0.02] 0.74 [0.57] 0.25 0.01 [0.01] -0.02 [0.41] -0.20 0.98 492

Sweden 0.00 [0.02] -0.64 [0.91] -0.02 -0.02 [0.02] -0.11 [0.91] -0.20 0.01 [0.01] -0.53 [0.49] 0.07 0.68 492

Switzerland 0.02 [0.02] 1.16 [0.82] 0.33 0.05 [0.02] 1.45 [0.78] 0.73 -0.03 [0.01] -0.29 [0.43] -0.11 0.80 492

United Kingdom -0.02 [0.03] 1.02 [1.18] 0.04 -0.05 [0.02] 1.69 [0.95] 0.86 0.03 [0.02] -0.67 [0.66] 0.06 0.66 492

Panel – – 0.65 [0.49] -0.05 – – 0.98 [0.44] 0.45 – – -0.34 [0.30] 0.17 0.26 4428

Joint zero (p-value) 0.44 0.04 0.00 0.00 0.00 0.19 0.95

Panel B: Yield Curve Slopes

Australia 0.06 [0.02] 3.84 [1.56] 1.54 -0.01 [0.02] 0.43 [1.14] -0.17 0.06 [0.02] 3.42 [0.95] 3.77 0.08 492

Canada 0.04 [0.02] 4.04 [0.98] 2.25 -0.00 [0.01] 0.49 [0.66] -0.14 0.04 [0.01] 3.55 [0.66] 5.12 0.00 492

Germany 0.00 [0.02] 0.50 [1.77] -0.18 0.00 [0.02] -1.89 [1.37] 0.32 -0.00 [0.01] 2.39 [1.01] 1.74 0.29 492

Japan 0.00 [0.02] -0.32 [1.38] -0.19 0.01 [0.02] -2.94 [1.07] 1.37 -0.01 [0.01] 2.61 [0.82] 1.72 0.13 492

New Zealand 0.08 [0.04] 2.94 [2.04] 1.26 -0.03 [0.03] -0.39 [1.09] -0.15 0.10 [0.03] 3.33 [1.25] 3.95 0.15 492

Norway -0.00 [0.02] 0.59 [1.03] -0.12 -0.02 [0.02] -0.66 [0.91] -0.04 0.01 [0.01] 1.25 [0.59] 0.61 0.36 492

Sweden 0.02 [0.02] 3.12 [1.23] 2.12 -0.01 [0.02] 1.05 [1.13] 0.15 0.02 [0.01] 2.07 [0.73] 2.07 0.21 492

Switzerland 0.00 [0.02] 0.97 [1.17] -0.06 0.01 [0.02] -2.43 [1.28] 0.81 -0.01 [0.01] 3.40 [0.82] 4.92 0.05 492

United Kingdom 0.02 [0.03] 1.59 [1.53] 0.17 -0.03 [0.02] -2.38 [1.34] 1.12 0.05 [0.01] 3.96 [0.86] 5.53 0.05 492

Panel – – 1.94 [0.84] 0.42 – – -0.82 [0.72] 0.13 – – 2.75 [0.52] 3.10 0.00 4428

Joint zero (p-value) 0.07 0.00 0.75 0.03 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (r
(10),$
t+1 −r(10)

t+1 , left panel) or the exchange rate change (−∆st+1,

middle panel) or the bond local currency return difference (r
(10),∗
t+1 − r(10)

t+1 , right panel) on the difference between the foreign nominal interest

rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S. nominal

yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality between
the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression for each
country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the respective
column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly. The log
returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of Australia,
Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard errors are
obtained with a Newey-West approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth) equal to 6.
Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology, with the
lag truncation parameter (kernel bandwidth) equal to 6.

48



Table A3: Dollar Bond Return Differential Predictability – GBP as base currency

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.01 [0.02] 1.64 [0.97] 0.41 -0.01 [0.02] 1.89 [0.69] 0.98 -0.00 [0.01] -0.24 [0.61] -0.15 0.84 492

Canada 0.02 [0.02] 2.33 [1.17] 0.73 0.02 [0.02] 3.54 [0.95] 2.82 -0.00 [0.01] -1.20 [0.90] 0.54 0.43 492

Germany 0.03 [0.03] 0.96 [0.89] 0.17 0.02 [0.02] 1.16 [0.63] 0.68 0.00 [0.01] -0.20 [0.44] -0.15 0.85 492

Japan 0.08 [0.05] 1.76 [1.01] 0.52 0.08 [0.05] 2.11 [0.90] 1.28 -0.00 [0.01] -0.34 [0.37] -0.10 0.80 492

New Zealand 0.00 [0.03] -0.33 [0.83] -0.17 -0.01 [0.02] 1.15 [0.52] 0.58 0.01 [0.02] -1.48 [0.58] 1.65 0.13 492

Norway -0.00 [0.02] 1.12 [0.67] 0.70 -0.00 [0.01] 1.08 [0.45] 0.99 -0.00 [0.01] 0.04 [0.46] -0.20 0.96 492

Sweden -0.02 [0.02] 0.14 [1.05] -0.20 -0.01 [0.01] 0.93 [0.77] 0.30 -0.01 [0.01] -0.79 [0.52] 0.55 0.54 492

Switzerland 0.06 [0.03] 1.58 [0.78] 1.22 0.06 [0.03] 1.68 [0.58] 1.87 -0.00 [0.01] -0.09 [0.33] -0.17 0.92 492

United States 0.02 [0.03] 1.02 [1.18] 0.04 0.05 [0.02] 2.69 [0.95] 2.44 -0.03 [0.02] -1.67 [0.66] 1.39 0.27 492

Panel – – 1.00 [0.54] 0.15 – – 1.60 [0.37] 1.16 – – -0.60 [0.31] 0.34 0.05 4428

Joint zero (p-value) 0.41 0.03 0.06 0.00 0.82 0.03 0.86

Panel B: Yield Curve Slopes

Australia 0.00 [0.02] 0.20 [1.51] -0.20 -0.00 [0.02] -2.48 [1.01] 0.72 0.01 [0.01] 2.68 [1.02] 2.71 0.14 492

Canada -0.00 [0.02] 0.50 [1.47] -0.17 -0.00 [0.02] -2.85 [1.37] 1.53 0.00 [0.01] 3.35 [0.79] 4.91 0.10 492

Germany 0.01 [0.02] -1.48 [1.24] 0.18 0.01 [0.02] -2.45 [0.94] 1.48 0.00 [0.01] 0.96 [0.62] 0.37 0.54 492

Japan 0.02 [0.03] -2.24 [1.47] 0.39 0.01 [0.02] -3.53 [1.19] 1.93 0.00 [0.01] 1.29 [0.62] 0.57 0.50 492

New Zealand 0.05 [0.03] 3.46 [1.09] 2.75 0.01 [0.02] -0.67 [0.59] -0.02 0.05 [0.01] 4.13 [0.75] 9.88 0.00 492

Norway -0.01 [0.02] -0.71 [0.99] -0.03 -0.00 [0.01] -1.54 [0.66] 0.96 -0.00 [0.01] 0.82 [0.63] 0.49 0.49 492

Sweden -0.02 [0.02] 0.93 [1.38] 0.03 -0.01 [0.01] -1.25 [1.01] 0.42 -0.01 [0.01] 2.18 [0.65] 3.69 0.20 492

Switzerland 0.00 [0.02] -2.73 [1.19] 1.04 0.00 [0.02] -3.92 [0.91] 3.13 -0.00 [0.01] 1.19 [0.55] 1.24 0.43 492

United States -0.02 [0.03] 1.59 [1.53] 0.17 0.02 [0.02] -3.17 [1.37] 2.11 -0.04 [0.01] 4.75 [0.83] 7.95 0.02 492

Panel – – 0.43 [0.82] -0.15 – – -2.10 [0.56] 1.06 – – 2.53 [0.44] 3.67 0.00 4428

Joint zero (p-value) 0.67 0.01 0.98 0.00 0.03 0.00 0.00

Notes: The table reports regression results of the bond British pound return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess

return (rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign

nominal interest rate and the U.K. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and

the U.K. nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for
equality between the slope coefficient in the bond pound return difference regression and the slope coefficient in the currency excess return
regression for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in
the respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2015. The balanced panel consists of
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.S. In individual country regressions, standard
errors are obtained with a Newey-West approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth)
equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology,
with the lag truncation parameter (kernel bandwidth) equal to 6.
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Table A4: Dynamic Long-Short Foreign and U.S. Bond Portfolios – GBP as Base Currency

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 3.81 [2.31] 14.91 0.26 [0.16] 3.70 [1.91] 12.36 0.30 [0.16] 0.11 [1.19] 7.54 0.01 [0.16]

Canada 2.03 [1.89] 12.44 0.16 [0.16] 2.96 [1.62] 10.44 0.28 [0.16] -0.94 [1.07] 7.17 -0.13 [0.16]

Germany 0.12 [1.76] 11.28 0.01 [0.15] 1.50 [1.36] 8.91 0.17 [0.15] -1.38 [0.93] 5.99 -0.23 [0.15]

Japan 0.19 [2.22] 14.65 0.01 [0.16] 1.18 [1.89] 12.19 0.10 [0.16] -0.99 [1.16] 7.40 -0.13 [0.17]

New Zealand 0.14 [2.40] 15.66 0.01 [0.15] 3.02 [1.82] 12.07 0.25 [0.16] -2.88 [1.56] 10.10 -0.29 [0.15]

Norway 3.48 [1.65] 10.52 0.33 [0.15] 2.80 [1.38] 8.80 0.32 [0.16] 0.68 [0.93] 6.09 0.11 [0.15]

Sweden 1.30 [1.80] 11.41 0.11 [0.16] 2.52 [1.49] 9.33 0.27 [0.16] -1.22 [0.99] 6.51 -0.19 [0.16]

Switzerland 0.73 [1.81] 11.66 0.06 [0.16] 0.72 [1.57] 10.24 0.07 [0.16] 0.01 [0.73] 4.73 0.00 [0.16]

United States 0.89 [2.00] 12.76 0.07 [0.15] 3.09 [1.59] 10.26 0.30 [0.16] -2.20 [1.25] 8.21 -0.27 [0.15]

Equally-weighted 1.41 [0.98] 6.33 0.22 [0.16] 2.39 [0.80] 5.11 0.47 [0.17] -0.98 [0.52] 3.41 -0.29 [0.16]

Panel B: Yield Curve Slopes

Australia 0.41 [2.34] 14.95 0.03 [0.16] 3.48 [1.94] 12.37 0.28 [0.17] -3.07 [1.20] 7.48 -0.41 [0.15]

Canada -2.42 [1.95] 12.44 -0.19 [0.16] 1.56 [1.70] 10.47 0.15 [0.16] -3.98 [1.10] 7.08 -0.56 [0.15]

Germany 1.38 [1.72] 11.27 0.12 [0.16] 2.88 [1.37] 8.88 0.32 [0.16] -1.50 [0.95] 5.99 -0.25 [0.15]

Japan 3.04 [2.39] 14.62 0.21 [0.16] 3.57 [1.96] 12.15 0.29 [0.16] -0.53 [1.17] 7.40 -0.07 [0.16]

New Zealand -2.96 [2.34] 15.64 -0.19 [0.15] 2.43 [1.85] 12.08 0.20 [0.16] -5.39 [1.60] 10.02 -0.54 [0.13]

Norway 0.89 [1.67] 10.57 0.08 [0.16] 2.72 [1.43] 8.80 0.31 [0.16] -1.83 [0.94] 6.07 -0.30 [0.15]

Sweden 1.53 [1.80] 11.41 0.13 [0.15] 3.66 [1.48] 9.30 0.39 [0.16] -2.13 [1.00] 6.49 -0.33 [0.16]

Switzerland 4.88 [1.79] 11.58 0.42 [0.15] 6.38 [1.57] 10.08 0.63 [0.15] -1.50 [0.70] 4.71 -0.32 [0.16]

United States -2.73 [1.95] 12.73 -0.21 [0.16] 2.06 [1.61] 10.29 0.20 [0.16] -4.79 [1.30] 8.12 -0.59 [0.16]

Equally-weighted 0.45 [1.05] 6.59 0.07 [0.16] 3.19 [0.92] 5.65 0.57 [0.16] -2.75 [0.55] 3.45 -0.80 [0.15]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the British bond when the foreign short-term interest rate is higher than the U.K. interest rate (or the foreign yield curve slope is lower than
the U.K. yield curve slope), and go long the British bond and short the foreign country bond when the U.K. interest rate is higher than the
country’s interest rate (or the U.K. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are
reported in Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and
Sharpe ratio (denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government
bond indices in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices
in U.K. pounds (rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the
equally-weighted average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year
yield and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping
10,000 samples of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 1/1975–12/2015.
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coefficient in the interest rate predictability panel regression is 0.81 and non-significant, whereas the slope coefficient in the yield
curve slope predictability panel regression is 1.26 and also not statistically significant.

Table A5: Dollar Bond Return Differential Predictability (10/1983 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.00 [0.04] 0.71 [1.16] -0.17 -0.02 [0.03] 1.71 [0.71] 1.48 0.02 [0.02] -1.00 [0.67] 0.85 0.46 291

Canada 0.03 [0.02] -0.89 [0.74] -0.04 0.01 [0.02] 1.05 [0.55] 0.50 0.02 [0.01] -1.93 [0.48] 3.16 0.04 291

Germany 0.01 [0.03] 1.06 [1.42] -0.05 0.03 [0.02] 2.07 [1.26] 1.08 -0.02 [0.01] -1.01 [0.84] 0.45 0.60 291

Japan 0.09 [0.04] 3.58 [1.16] 1.64 0.12 [0.04] 4.27 [1.10] 4.15 -0.03 [0.02] -0.69 [0.59] -0.14 0.66 291

New Zealand -0.05 [0.05] 1.32 [0.85] 0.47 -0.06 [0.03] 2.27 [0.54] 4.70 0.01 [0.03] -0.96 [0.65] 0.68 0.34 291

Norway -0.01 [0.03] 1.15 [0.84] 0.41 -0.00 [0.02] 1.50 [0.77] 1.49 -0.01 [0.02] -0.34 [0.54] -0.20 0.76 291

Sweden 0.02 [0.03] -0.06 [0.99] -0.34 0.00 [0.03] 1.20 [1.10] 0.79 0.02 [0.02] -1.26 [0.52] 2.04 0.40 291

Switzerland 0.02 [0.03] 2.06 [1.16] 0.92 0.06 [0.04] 2.88 [1.23] 2.48 -0.04 [0.02] -0.82 [0.70] 0.29 0.63 291

United Kingdom -0.02 [0.03] 1.07 [1.37] -0.08 -0.03 [0.03] 2.69 [1.23] 1.96 0.01 [0.02] -1.61 [0.65] 1.48 0.38 291

Panel – – 1.05 [0.61] 0.14 – – 2.03 [0.56] 2.14 – – -0.98 [0.36] 0.73 0.01 2619

Joint zero (p-value) 0.29 0.02 0.02 0.00 0.05 0.00 0.52

Panel B: Yield Curve Slopes

Australia 0.04 [0.03] 1.61 [1.91] -0.03 0.00 [0.02] -2.11 [1.30] 0.63 0.04 [0.02] 3.72 [0.99] 5.44 0.11 291

Canada 0.04 [0.02] 2.95 [1.08] 1.54 0.02 [0.01] -0.95 [0.73] 0.04 0.02 [0.01] 3.90 [0.66] 7.49 0.00 291

Germany 0.00 [0.02] -0.07 [1.97] -0.35 0.01 [0.02] -3.22 [1.77] 1.19 -0.01 [0.01] 3.16 [1.23] 3.07 0.23 291

Japan -0.01 [0.03] -2.42 [1.71] 0.09 -0.02 [0.02] -6.05 [1.56] 3.96 0.01 [0.02] 3.63 [0.96] 2.28 0.12 291

New Zealand 0.04 [0.05] 0.84 [2.66] -0.22 -0.01 [0.04] -2.55 [1.54] 2.07 0.06 [0.03] 3.39 [1.52] 4.56 0.27 291

Norway 0.01 [0.03] -0.47 [1.35] -0.30 0.01 [0.02] -1.86 [1.37] 0.67 -0.00 [0.02] 1.39 [0.85] 0.49 0.47 291

Sweden 0.04 [0.03] 1.70 [1.30] 0.54 0.02 [0.02] -1.09 [1.55] 0.09 0.02 [0.02] 2.79 [0.81] 5.11 0.17 291

Switzerland -0.02 [0.02] -0.41 [1.35] -0.32 -0.02 [0.02] -3.45 [1.58] 1.83 -0.00 [0.01] 3.04 [0.78] 4.36 0.14 291

United Kingdom 0.01 [0.03] 0.33 [1.70] -0.33 -0.02 [0.03] -3.41 [1.62] 1.49 0.03 [0.02] 3.74 [0.98] 4.50 0.11 291

Panel – – 0.58 [1.01] -0.22 – – -2.49 [0.91] 1.30 – – 3.08 [0.59] 3.76 0.00 2619

Joint zero (p-value) 0.29 0.20 0.87 0.00 0.03 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 10/1983–12/2007. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey-West approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth)
equal to 5. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology,
with the lag truncation parameter (kernel bandwidth) equal to 5.

Tables A8, A9 and A10 explore whether there is economically significant evidence of return predictability. Note that, as regards
the first two of those tables, leaving out the recent financial crisis would have to influence average returns if one believes that carry
trade returns compensate investors for taking on non-diversifiable risk (see Lustig and Verdelhan, 2007, for an early version of this
perspective). In the shorter 10/1983-12/2007 sample (Table A8), the equally-weighted dollar return on the dynamic strategy that
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Table A6: Dollar Bond Return Differential Predictability (1/1975 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia 0.01 [0.03] -0.14 [1.01] -0.25 -0.02 [0.02] 1.42 [0.57] 1.07 0.03 [0.02] -1.56 [0.63] 1.81 0.18 396

Canada 0.03 [0.02] -1.09 [0.68] 0.16 -0.00 [0.01] 1.24 [0.50] 0.96 0.03 [0.01] -2.32 [0.47] 3.86 0.01 396

Germany 0.02 [0.02] 1.80 [1.29] 0.62 0.04 [0.02] 2.89 [1.04] 2.77 -0.01 [0.01] -1.08 [0.64] 0.60 0.51 396

Japan 0.11 [0.03] 3.45 [0.93] 2.21 0.12 [0.03] 4.07 [0.72] 5.55 -0.01 [0.02] -0.62 [0.59] -0.05 0.60 396

New Zealand -0.05 [0.05] 1.00 [0.86] 0.15 -0.09 [0.03] 2.55 [0.46] 5.78 0.04 [0.03] -1.54 [0.68] 1.60 0.11 396

Norway -0.01 [0.02] 0.95 [0.60] 0.37 -0.01 [0.02] 1.92 [0.56] 3.80 0.01 [0.02] -0.97 [0.42] 0.94 0.23 396

Sweden 0.00 [0.02] -0.47 [0.93] -0.14 -0.02 [0.02] 1.10 [0.92] 0.65 0.02 [0.01] -1.57 [0.50] 2.15 0.23 396

Switzerland 0.03 [0.03] 1.28 [0.88] 0.42 0.07 [0.03] 2.84 [0.88] 3.48 -0.05 [0.02] -1.55 [0.47] 2.34 0.21 396

United Kingdom -0.01 [0.03] 1.15 [1.27] 0.07 -0.06 [0.03] 3.09 [1.03] 3.38 0.04 [0.02] -1.95 [0.71] 1.79 0.23 396

Panel – – 0.86 [0.51] 0.06 – – 2.26 [0.46] 2.96 – – -1.40 [0.33] 1.53 0.00 3564

Joint zero (p-value) 0.05 0.00 0.00 0.00 0.00 0.00 0.03

Panel B: Yield Curve Slopes

Australia 0.05 [0.02] 3.87 [1.67] 1.67 -0.00 [0.02] -1.56 [1.01] 0.36 0.05 [0.02] 5.43 [1.00] 9.37 0.01 396

Canada 0.04 [0.01] 3.44 [0.96] 2.17 0.00 [0.01] -1.29 [0.61] 0.51 0.04 [0.01] 4.72 [0.66] 9.61 0.00 396

Germany 0.01 [0.02] 0.11 [1.90] -0.25 0.01 [0.02] -3.68 [1.47] 2.04 -0.00 [0.01] 3.80 [1.06] 4.62 0.11 396

Japan 0.01 [0.03] -0.87 [1.54] -0.18 0.01 [0.02] -5.04 [1.18] 3.95 0.01 [0.02] 4.17 [0.95] 4.06 0.03 396

New Zealand 0.07 [0.05] 2.54 [2.13] 0.92 -0.04 [0.03] -2.29 [1.18] 1.94 0.11 [0.03] 4.83 [1.28] 7.94 0.05 396

Norway 0.00 [0.02] -0.23 [0.91] -0.24 0.00 [0.02] -2.76 [0.84] 3.44 0.00 [0.02] 2.53 [0.63] 3.31 0.04 396

Sweden 0.01 [0.02] 2.62 [1.25] 1.70 0.00 [0.02] -0.67 [1.14] -0.07 0.01 [0.01] 3.29 [0.73] 5.61 0.05 396

Switzerland -0.01 [0.02] 0.88 [1.23] -0.12 -0.02 [0.02] -3.89 [1.32] 2.73 0.01 [0.01] 4.77 [0.85] 10.15 0.01 396

United Kingdom 0.03 [0.03] 1.37 [1.57] 0.07 -0.02 [0.03] -3.54 [1.41] 3.05 0.05 [0.02] 4.90 [0.87] 8.75 0.02 396

Panel – – 1.54 [0.86] 0.21 – – -2.58 [0.72] 1.77 – – 4.12 [0.54] 6.65 0.00 3564

Joint zero (p-value) 0.10 0.00 0.97 0.00 0.00 0.00 0.00

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 1/1975–12/2007. The balanced panel consists of
Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey-West approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth)
equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology,
with the lag truncation parameter (kernel bandwidth) equal to 6.
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Table A7: Dollar Bond Return Differential Predictability (10/1983 - 12/2015 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Short-Term Interest Rates

Australia -0.01 [0.03] 0.63 [1.10] -0.15 -0.02 [0.03] 1.54 [0.74] 0.67 0.02 [0.02] -0.91 [0.64] 0.63 0.49 387

Canada 0.02 [0.02] -1.03 [0.76] 0.01 -0.00 [0.02] 0.98 [0.58] 0.10 0.02 [0.01] -2.01 [0.48] 2.99 0.04 387

Germany 0.00 [0.02] 0.87 [1.34] -0.09 0.01 [0.02] 1.74 [1.18] 0.53 -0.01 [0.01] -0.87 [0.72] 0.29 0.62 387

Japan 0.03 [0.03] 2.13 [1.01] 0.62 0.06 [0.03] 2.80 [0.94] 2.01 -0.02 [0.02] -0.68 [0.51] -0.03 0.62 387

New Zealand -0.03 [0.04] 0.99 [0.86] 0.13 -0.04 [0.03] 1.98 [0.54] 2.34 0.02 [0.03] -0.99 [0.66] 0.79 0.33 387

Norway -0.02 [0.03] 0.97 [0.84] 0.13 -0.02 [0.02] 1.41 [0.77] 0.86 -0.01 [0.02] -0.44 [0.51] -0.06 0.70 387

Sweden 0.01 [0.02] -0.19 [0.95] -0.24 -0.00 [0.02] 1.01 [1.05] 0.32 0.01 [0.01] -1.20 [0.49] 1.76 0.40 387

Switzerland 0.01 [0.03] 1.89 [1.06] 0.67 0.04 [0.03] 2.46 [1.05] 1.47 -0.03 [0.01] -0.58 [0.63] 0.04 0.70 387

United Kingdom -0.02 [0.03] 0.82 [1.26] -0.11 -0.03 [0.02] 2.29 [1.12] 1.36 0.01 [0.01] -1.47 [0.56] 1.32 0.38 387

Panel – – 0.81 [0.58] -0.00 – – 1.76 [0.52] 1.16 – – -0.94 [0.33] 0.65 0.00 3483

Joint zero (p-value) 0.87 0.15 0.24 0.00 0.04 0.00 0.53

Panel B: Yield Curve Slopes

Australia 0.05 [0.03] 2.08 [1.80] 0.20 0.01 [0.02] -1.23 [1.49] -0.04 0.04 [0.02] 3.31 [0.95] 4.11 0.16 387

Canada 0.03 [0.02] 3.88 [1.16] 1.90 0.01 [0.01] -0.09 [0.82] -0.26 0.03 [0.01] 3.97 [0.64] 6.96 0.01 387

Germany -0.00 [0.02] 0.46 [1.80] -0.24 -0.00 [0.02] -2.48 [1.55] 0.47 0.00 [0.01] 2.93 [1.00] 2.57 0.22 387

Japan -0.02 [0.03] -1.62 [1.56] -0.04 -0.03 [0.02] -5.07 [1.36] 2.92 0.01 [0.01] 3.45 [0.88] 2.33 0.10 387

New Zealand 0.05 [0.05] 1.53 [2.57] 0.12 0.00 [0.03] -1.75 [1.56] 0.57 0.05 [0.02] 3.28 [1.43] 4.40 0.28 387

Norway 0.01 [0.03] 0.91 [1.53] -0.14 0.01 [0.02] -0.85 [1.46] -0.11 0.00 [0.02] 1.76 [0.80] 0.88 0.41 387

Sweden 0.04 [0.02] 2.51 [1.28] 1.19 0.01 [0.02] -0.28 [1.50] -0.24 0.02 [0.01] 2.79 [0.75] 4.66 0.16 387

Switzerland -0.01 [0.02] -0.10 [1.27] -0.26 -0.02 [0.02] -3.07 [1.42] 1.06 0.01 [0.01] 2.97 [0.71] 3.61 0.12 387

United Kingdom 0.00 [0.03] 0.61 [1.64] -0.22 -0.02 [0.02] -2.82 [1.56] 0.93 0.02 [0.02] 3.44 [0.83] 3.90 0.13 387

Panel – – 1.26 [1.01] -0.00 – – -1.77 [0.92] 0.41 – – 3.03 [0.54] 3.46 0.00 3483

Joint zero (p-value) 0.26 0.03 0.87 0.00 0.00 0.00 0.01

Notes: The table reports regression results of the bond dollar return difference (rx
(10),$
t+1 − rx(10)

t+1 , left panel) or the currency excess return

(rxFXt+1, middle panel) or the bond local currency return difference (rx
(10),∗
t+1 − rx(10)

t+1 , right panel) on the difference between the foreign nominal

interest rate and the U.S. nominal interest rate (rf,∗t − rft , Panel A) or difference between the foreign nominal yield curve slope and the U.S.

nominal yield curve slope ([y
(10,∗)
t − y(1,∗)

t ] − [y
(10)
t − y(1)]

t , Panel B). The column “Slope Diff.” presents the p-value of the test for equality
between the slope coefficient in the bond dollar return difference regression and the slope coefficient in the currency excess return regression
for each country. The last line in each panel presents the p-value of the joint test that all individual-country regression coefficients in the
respective column are zero. We use returns on 10-year coupon bonds. The holding period is one month and returns are sampled monthly.
The log returns and the yield curve slope differentials are annualized. The sample period is 10/1983–12/2015. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. In individual country regressions, standard
errors are obtained with a Newey-West approximation of the spectral density matrix, with the lag truncation parameter (kernel bandwidth)
equal to 6. Panel regressions include country fixed effects, and standard errors are obtained using the Driscoll and Kraay (1998) methodology,
with the lag truncation parameter (kernel bandwidth) equal to 6.
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exploits interest rate predictability is 2.57% per annum, with a standard error of 1.17%. Not surprisingly, this increase in the dollar
return is due to a higher currency excess return of 3.89% per annum in the sample that leaves out the crisis; the currency excess
return only 2.59% in the full sample. That difference largely explains why this strategy produces statistically significant returns in
the shorter sample. On the other hand, the equally-weighted dollar return on the dynamic strategy that exploits slope predictability
is 1.53% per annum, with a standard error of 1.58%. In the longer 1/1975-12/2007 sample (Table A9), the equally-weighted dollar
return on the dynamic strategy that exploits interest rate predictability is 1.38% per annum, with a standard error of 1.02%. Thus,
in this longer sample, the dollar return differential is no longer significant. The equally-weighted dollar return on the dynamic
strategy that exploits slope predictability is −0.65% per annum, also not significant, as its standard error is 1.30%. To summarize,
the main difference seems to be an increase in carry trade returns if we exclude the financial crisis. Finally, in the 10/1983-12/2015
sample period (Table A10), neither the interest rate nor the yield curve slope equally-weighted strategy yields statistically significant
dollar bond returns: the former has an average annualized return of 1.42% with a standard error of 1.16% and the latter has an
average annualized return of 0.51% with a standard error of 1.47%. Overall, our main findings continue to hold.

Finally, we check the robustness of our time-series predictability results by considering a horizon of three months. Tables A11
and A12 report the output of three-month return predictability regressions for bond and currency excess returns over our benchmark
sample period (1/1975–12/2015), for both coupon bonds (balanced sample) and zero-coupon bonds (unbalanced sample). As we
can see, while we find no statistical evidence or USD bond return predictability using slopes, there is some evidence for interest
rate predictability, both using coupon bonds and zero-coupon bonds. However, as seen in Tables A13 and A14 that evaluate the
economic significant of interest rate and slope predictability, neither interest rate- nor slope-based portfolio strategies can achieve
statistically significant USD bond returns, in line with our hypothesis.
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Table A8: Dynamic Long-Short Foreign and U.S. Bond Portfolios (10/1983 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 3.95 [2.86] 14.25 0.28 [0.21] 5.41 [2.18] 10.62 0.51 [0.22] -1.46 [1.52] 7.75 -0.19 [0.20]

Canada 0.76 [1.64] 8.18 0.09 [0.21] 2.13 [1.16] 5.83 0.36 [0.21] -1.37 [1.08] 5.28 -0.26 [0.20]

Germany 2.16 [2.41] 12.18 0.18 [0.21] 3.20 [2.13] 10.87 0.29 [0.21] -1.04 [1.42] 7.17 -0.15 [0.21]

Japan 2.02 [2.82] 14.49 0.14 [0.20] 1.88 [2.23] 11.51 0.16 [0.20] 0.14 [1.73] 8.86 0.02 [0.20]

New Zealand 2.72 [3.46] 17.23 0.16 [0.21] 6.45 [2.43] 11.98 0.54 [0.23] -3.73 [2.24] 11.22 -0.33 [0.19]

Norway 3.70 [2.48] 12.36 0.30 [0.22] 5.11 [2.06] 10.29 0.50 [0.22] -1.41 [1.78] 8.52 -0.17 [0.20]

Sweden 4.22 [2.30] 11.61 0.36 [0.21] 5.68 [2.11] 10.57 0.54 [0.23] -1.46 [1.59] 7.69 -0.19 [0.20]

Switzerland 2.20 [2.44] 12.42 0.18 [0.20] 1.00 [2.28] 11.62 0.09 [0.20] 1.20 [1.41] 6.99 0.17 [0.20]

United Kingdom 1.43 [2.50] 12.12 0.12 [0.21] 4.19 [2.08] 10.33 0.41 [0.21] -2.76 [1.45] 6.99 -0.39 [0.21]

Equally-weighted 2.57 [1.17] 5.63 0.46 [0.22] 3.89 [0.95] 4.69 0.83 [0.24] -1.32 [0.73] 3.56 -0.37 [0.21]

Panel B: Yield Curve Slopes

Australia 2.00 [2.95] 14.29 0.14 [0.21] 4.92 [2.22] 10.64 0.46 [0.21] -2.92 [1.56] 7.71 -0.38 [0.20]

Canada -1.16 [1.72] 8.18 -0.14 [0.21] 2.35 [1.18] 5.82 0.40 [0.21] -3.51 [1.08] 5.20 -0.68 [0.21]

Germany 3.46 [2.28] 12.15 0.28 [0.21] 6.64 [2.07] 10.74 0.62 [0.21] -3.18 [1.41] 7.11 -0.45 [0.20]

Japan 2.93 [2.83] 14.48 0.20 [0.21] 6.65 [2.17] 11.36 0.59 [0.22] -3.72 [1.81] 8.80 -0.42 [0.21]

New Zealand 2.53 [3.63] 17.23 0.15 [0.21] 6.22 [2.51] 11.99 0.52 [0.23] -3.69 [2.30] 11.22 -0.33 [0.19]

Norway 1.06 [2.58] 12.40 0.09 [0.20] 3.19 [2.07] 10.35 0.31 [0.21] -2.14 [1.75] 8.51 -0.25 [0.20]

Sweden 0.77 [2.42] 11.67 0.07 [0.20] 4.44 [2.13] 10.62 0.42 [0.21] -3.67 [1.52] 7.63 -0.48 [0.20]

Switzerland 2.42 [2.61] 12.42 0.19 [0.20] 5.11 [2.29] 11.53 0.44 [0.21] -2.69 [1.47] 6.95 -0.39 [0.20]

United Kingdom -0.20 [2.45] 12.13 -0.02 [0.20] 2.63 [2.10] 10.37 0.25 [0.21] -2.82 [1.42] 6.99 -0.40 [0.20]

Equally-weighted 1.53 [1.58] 7.54 0.20 [0.20] 4.68 [1.23] 6.11 0.77 [0.22] -3.15 [1.06] 5.18 -0.61 [0.21]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 10/1983–12/2007.
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Table A9: Dynamic Long-Short Foreign and U.S. Bond Portfolios (1/1975 - 12/2007 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 1.39 [2.61] 14.44 0.10 [0.18] 4.06 [1.83] 10.24 0.40 [0.18] -2.67 [1.54] 9.03 -0.30 [0.17]

Canada 0.02 [1.48] 8.48 0.00 [0.17] 1.61 [1.00] 5.65 0.29 [0.17] -1.60 [1.00] 5.75 -0.28 [0.18]

Germany 2.12 [2.21] 12.82 0.17 [0.17] 3.99 [1.86] 10.95 0.36 [0.17] -1.87 [1.37] 7.76 -0.24 [0.18]

Japan 1.48 [2.68] 15.13 0.10 [0.17] 2.20 [2.06] 11.60 0.19 [0.18] -0.72 [1.69] 9.47 -0.08 [0.17]

New Zealand 0.46 [3.04] 17.20 0.03 [0.18] 4.30 [1.99] 11.29 0.38 [0.19] -3.84 [2.13] 12.35 -0.31 [0.17]

Norway 2.31 [2.24] 12.68 0.18 [0.18] 4.97 [1.73] 9.97 0.50 [0.18] -2.66 [1.66] 9.38 -0.28 [0.17]

Sweden 1.10 [2.27] 12.84 0.09 [0.18] 4.19 [1.82] 10.59 0.40 [0.19] -3.10 [1.66] 9.28 -0.33 [0.17]

Switzerland 1.34 [2.21] 12.94 0.10 [0.17] 1.62 [2.05] 12.14 0.13 [0.17] -0.28 [1.39] 7.98 -0.03 [0.17]

United Kingdom 2.19 [2.28] 13.00 0.17 [0.18] 4.57 [1.80] 10.40 0.44 [0.18] -2.38 [1.55] 8.77 -0.27 [0.18]

Equally-weighted 1.38 [1.02] 5.65 0.24 [0.18] 3.50 [0.81] 4.55 0.77 [0.19] -2.12 [0.64] 3.66 -0.58 [0.18]

Panel B: Yield Curve Slopes

Australia -2.52 [2.53] 14.43 -0.17 [0.17] 3.24 [1.81] 10.27 0.32 [0.19] -5.77 [1.59] 8.91 -0.65 [0.16]

Canada -1.99 [1.51] 8.46 -0.23 [0.17] 2.07 [1.00] 5.64 0.37 [0.17] -4.06 [0.95] 5.65 -0.72 [0.18]

Germany 2.80 [2.19] 12.80 0.22 [0.18] 6.94 [1.88] 10.83 0.64 [0.18] -4.14 [1.32] 7.69 -0.54 [0.17]

Japan -0.13 [2.79] 15.14 -0.01 [0.17] 5.95 [2.09] 11.49 0.52 [0.18] -6.07 [1.63] 9.31 -0.65 [0.19]

New Zealand -0.52 [3.08] 17.20 -0.03 [0.17] 3.85 [2.02] 11.30 0.34 [0.19] -4.37 [2.22] 12.34 -0.35 [0.17]

Norway 0.76 [2.14] 12.69 0.06 [0.17] 4.56 [1.72] 9.99 0.46 [0.18] -3.80 [1.60] 9.34 -0.41 [0.17]

Sweden -2.98 [2.23] 12.82 -0.23 [0.17] 2.60 [1.84] 10.63 0.24 [0.18] -5.58 [1.62] 9.18 -0.61 [0.17]

Switzerland 0.23 [2.17] 12.94 0.02 [0.17] 5.54 [2.08] 12.04 0.46 [0.18] -5.30 [1.32] 7.83 -0.68 [0.17]

United Kingdom -1.50 [2.29] 13.00 -0.12 [0.17] 3.68 [1.81] 10.42 0.35 [0.17] -5.18 [1.52] 8.66 -0.60 [0.17]

Equally-weighted -0.65 [1.30] 7.28 -0.09 [0.18] 4.27 [1.04] 5.79 0.74 [0.18] -4.92 [0.89] 5.12 -0.96 [0.18]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 1/1975–12/2007.
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Table A10: Dynamic Long-Short Foreign and U.S. Bond Portfolios (10/1983 - 12/2015 Sample Period)

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Short-Term Interest Rates

Australia 3.17 [2.52] 14.09 0.23 [0.18] 4.42 [2.11] 11.95 0.37 [0.19] -1.25 [1.30] 7.26 -0.17 [0.17]

Canada -0.03 [1.60] 9.07 -0.00 [0.18] 1.04 [1.25] 7.40 0.14 [0.18] -1.07 [0.88] 5.06 -0.21 [0.17]

Germany 2.24 [2.06] 11.86 0.19 [0.18] 3.23 [1.92] 11.12 0.29 [0.18] -0.99 [1.21] 6.69 -0.15 [0.17]

Japan 1.19 [2.40] 13.57 0.09 [0.17] 1.11 [1.94] 11.16 0.10 [0.17] 0.07 [1.49] 8.42 0.01 [0.17]

New Zealand 2.40 [3.02] 16.85 0.14 [0.18] 5.33 [2.20] 12.98 0.41 [0.19] -2.93 [1.89] 10.27 -0.29 [0.17]

Norway 1.29 [2.29] 12.87 0.10 [0.18] 2.79 [1.88] 10.99 0.25 [0.18] -1.49 [1.48] 8.21 -0.18 [0.18]

Sweden 1.54 [2.16] 11.97 0.13 [0.18] 2.91 [1.94] 11.29 0.26 [0.18] -1.37 [1.30] 7.22 -0.19 [0.17]

Switzerland 1.00 [2.16] 12.43 0.08 [0.17] 0.54 [2.09] 11.86 0.05 [0.18] 0.46 [1.20] 6.74 0.07 [0.18]

United Kingdom -0.03 [2.21] 12.02 -0.00 [0.18] 2.40 [1.76] 10.17 0.24 [0.18] -2.44 [1.23] 6.63 -0.37 [0.17]

Equally-weighted 1.42 [1.16] 6.53 0.22 [0.18] 2.64 [1.01] 5.88 0.45 [0.19] -1.22 [0.66] 3.68 -0.33 [0.17]

Panel B: Yield Curve Slopes

Australia 1.70 [2.45] 14.11 0.12 [0.18] 4.05 [2.12] 11.96 0.34 [0.18] -2.35 [1.27] 7.24 -0.33 [0.18]

Canada -1.47 [1.59] 9.06 -0.16 [0.18] 1.21 [1.34] 7.40 0.16 [0.18] -2.68 [0.89] 5.01 -0.53 [0.18]

Germany 2.25 [2.13] 11.86 0.19 [0.17] 4.47 [1.98] 11.09 0.40 [0.18] -2.22 [1.20] 6.66 -0.33 [0.17]

Japan 1.43 [2.43] 13.57 0.11 [0.17] 4.77 [1.97] 11.08 0.43 [0.18] -3.34 [1.48] 8.37 -0.40 [0.18]

New Zealand 2.20 [3.05] 16.85 0.13 [0.18] 5.17 [2.39] 12.99 0.40 [0.19] -2.97 [1.81] 10.27 -0.29 [0.18]

Norway -0.69 [2.25] 12.88 -0.05 [0.18] 1.35 [2.01] 11.01 0.12 [0.18] -2.04 [1.45] 8.20 -0.25 [0.18]

Sweden -0.98 [2.11] 11.97 -0.08 [0.17] 2.37 [2.03] 11.30 0.21 [0.18] -3.34 [1.31] 7.17 -0.47 [0.18]

Switzerland 2.18 [2.30] 12.42 0.18 [0.18] 4.28 [2.23] 11.80 0.36 [0.18] -2.10 [1.23] 6.72 -0.31 [0.18]

United Kingdom -2.07 [2.13] 12.00 -0.17 [0.18] 0.83 [1.80] 10.19 0.08 [0.17] -2.91 [1.17] 6.61 -0.44 [0.18]

Equally-weighted 0.51 [1.47] 8.15 0.06 [0.18] 3.17 [1.30] 7.10 0.45 [0.19] -2.66 [0.92] 5.05 -0.53 [0.19]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate (or the foreign yield curve slope is lower than the
U.S. yield curve slope), and go long the U.S. bond and short the foreign country bond when the U.S. interest rate is higher than the country’s
interest rate (or the U.S. yield curve slope is lower than the foreign yield curve slope). Results based on interest rate levels are reported in
Panel A and results based on interest rate slopes are reported in Panel B. The table reports the mean, standard deviation and Sharpe ratio
(denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond indices
in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S. dollars
(rx(10),$ − rx(10), left panel). The holding period is one month. The table also presents summary return statistics for the equally-weighted
average of the individual country strategies. The slope of the yield curve is measured by the difference between the 10-year yield and the
one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples
of non-overlapping returns. The log returns are annualized. The data are monthly and the sample is 10/1983–12/2015.
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Table A11: Dollar Bond Return Differential Predictability, Interest Rates, Three-month Horizon

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Coupon Bonds

Australia -0.02 [0.03] 0.94 [0.81] 0.56 -0.03 [0.02] 1.37 [0.52] 2.23 0.00 [0.02] -0.43 [0.57] 0.29 0.65 490

Canada 0.01 [0.02] -0.37 [0.56] -0.08 -0.01 [0.01] 1.21 [0.47] 1.91 0.02 [0.01] -1.57 [0.34] 7.31 0.03 490

Germany 0.01 [0.02] 1.34 [1.08] 1.19 0.01 [0.02] 1.77 [0.88] 2.57 -0.00 [0.01] -0.43 [0.53] 0.21 0.76 490

Japan 0.06 [0.02] 2.48 [0.78] 4.09 0.06 [0.02] 2.71 [0.61] 7.06 -0.00 [0.01] -0.22 [0.52] -0.11 0.82 490

New Zealand -0.06 [0.04] 1.26 [0.75] 1.22 -0.06 [0.03] 1.94 [0.46] 6.94 0.00 [0.03] -0.68 [0.58] 0.71 0.44 490

Norway -0.02 [0.02] 1.02 [0.57] 1.36 -0.02 [0.02] 1.51 [0.54] 4.69 -0.00 [0.01] -0.49 [0.37] 0.64 0.53 490

Sweden -0.01 [0.02] -0.46 [0.92] 0.04 -0.01 [0.02] 0.33 [0.98] -0.04 0.00 [0.01] -0.78 [0.45] 1.47 0.56 490

Switzerland 0.02 [0.02] 1.36 [0.77] 2.05 0.04 [0.02] 1.99 [0.69] 4.82 -0.02 [0.01] -0.63 [0.41] 1.09 0.54 490

United Kingdom -0.04 [0.03] 1.78 [1.11] 1.71 -0.03 [0.02] 2.06 [0.92] 3.86 -0.00 [0.01] -0.29 [0.61] -0.07 0.84 490

Panel – – 1.06 [0.46] 0.91 – – 1.63 [0.43] 3.64 – – -0.57 [0.28] 0.90 0.04 4410

Joint zero (p-value) 0.12 0.00 0.01 0.00 0.39 0.00 0.66

Panel B: Zero-Coupon Bonds

Australia -0.04 [0.03] 2.17 [1.28] 2.88 -0.01 [0.03] 1.45 [0.83] 1.55 -0.03 [0.02] 0.72 [0.91] 0.54 0.64 344

Canada 0.00 [0.02] 0.49 [0.77] -0.12 -0.00 [0.02] 1.47 [0.53] 2.15 0.01 [0.01] -0.98 [0.56] 1.56 0.29 357

Germany 0.01 [0.02] 1.53 [0.93] 1.36 0.01 [0.02] 1.72 [0.81] 2.42 0.00 [0.01] -0.19 [0.59] -0.16 0.88 490

Japan 0.02 [0.03] 1.88 [1.02] 1.61 0.06 [0.03] 2.66 [0.94] 4.73 -0.03 [0.02] -0.78 [0.57] 0.48 0.57 369

New Zealand -0.02 [0.06] 1.31 [2.02] 0.18 0.03 [0.06] 0.28 [2.03] -0.30 -0.05 [0.03] 1.03 [1.20] 0.49 0.72 309

Norway -0.04 [0.03] 1.90 [1.68] 1.22 0.00 [0.03] 0.43 [1.78] -0.36 -0.05 [0.02] 1.47 [1.03] 2.05 0.55 213

Sweden -0.01 [0.02] 1.95 [1.28] 1.82 -0.01 [0.02] 1.52 [1.18] 1.33 0.00 [0.01] 0.43 [0.92] -0.13 0.81 274

Switzerland -0.00 [0.02] 1.91 [0.97] 2.42 0.02 [0.02] 2.51 [1.08] 4.59 -0.03 [0.01] -0.60 [0.74] 0.29 0.68 333

United Kingdom -0.05 [0.03] 2.28 [1.32] 2.36 -0.03 [0.02] 1.84 [1.04] 3.18 -0.03 [0.02] 0.45 [0.80] -0.04 0.79 441

Panel – – 1.81 [0.63] 1.83 – – 1.72 [0.64] 2.31 – – 0.08 [0.35] 0.05 0.81 3130

Joint zero (p-value) 0.53 0.02 0.58 0.00 0.02 0.38 0.98

Notes: The table reports regression results obtained when regressing the bond dollar return difference, defined as the difference between the log
return on foreign bonds (expressed in U.S. dollars) and the log return of U.S. bonds in U.S. dollars, or the currency excess return, defined as the
difference between the log return on foreign Treasury bills (expressed in U.S. dollars) and the log return of U.S. Treasury bills in U.S. dollars, or
the bond local currency return difference, defined as the difference between the log return on foreign bonds (expressed in local currency terms)
and the log return of U.S. bonds in U.S. dollars, on the corresponding interest rate differential, defined as the difference between the foreign
nominal interest rate and the U.S. nominal interest rate. Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds. The
holding period is three months and returns are sampled monthly. The log returns and the interest rate differentials are annualized. The sample
period is 1/1975–12/2015. In individual country regressions, standard errors are obtained with a Newey-West approximation of the spectral
density matrix, with the lag truncation parameter (kernel bandwidth) equal to 6. Panel regressions include country fixed effects, and standard
errors are obtained using the Driscoll and Kraay (1998) methodology, with the lag truncation parameter (kernel bandwidth) equal to 6.
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Table A12: Dollar Bond Return Differential Predictability, Yield Curve Slopes, Three-Month Horizon

Bond dollar return difference Currency excess return Bond local currency return diff. Slope Diff. Obs.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) α s.e. β s.e. R2(%) p-value

Panel A: Coupon Bonds

Australia 0.01 [0.02] 0.71 [1.28] -0.03 -0.00 [0.02] -1.52 [0.96] 1.01 0.02 [0.01] 2.24 [0.77] 5.18 0.16 490

Canada 0.02 [0.01] 2.18 [0.76] 2.34 -0.00 [0.01] -0.99 [0.57] 0.62 0.02 [0.01] 3.17 [0.44] 17.47 0.00 490

Germany -0.00 [0.02] 0.15 [1.53] -0.20 -0.00 [0.02] -2.06 [1.14] 1.55 0.00 [0.01] 2.21 [0.85] 4.99 0.25 490

Japan -0.00 [0.02] -1.25 [1.21] 0.31 -0.01 [0.02] -3.82 [0.95] 6.57 0.01 [0.01] 2.56 [0.75] 5.75 0.10 490

New Zealand 0.05 [0.04] 2.10 [2.06] 1.69 -0.00 [0.03] -1.11 [1.13] 0.91 0.06 [0.02] 3.21 [1.16] 9.72 0.17 490

Norway -0.01 [0.02] -0.48 [0.91] -0.05 -0.01 [0.02] -1.80 [0.86] 2.96 -0.00 [0.01] 1.32 [0.52] 2.60 0.29 490

Sweden 0.01 [0.02] 2.73 [1.22] 4.64 0.01 [0.02] 0.73 [1.25] 0.25 0.01 [0.01] 2.01 [0.66] 5.85 0.25 490

Switzerland -0.01 [0.02] 0.04 [0.99] -0.20 -0.02 [0.02] -2.76 [1.00] 3.49 0.01 [0.01] 2.80 [0.50] 9.66 0.05 490

United Kingdom 0.01 [0.02] 0.44 [1.45] -0.13 -0.01 [0.02] -2.27 [1.26] 2.91 0.02 [0.01] 2.70 [0.64] 7.40 0.16 490

Panel – – 0.85 [0.78] 0.17 – – -1.55 [0.67] 1.55 – – 2.41 [0.41] 6.90 0.00 4410

Joint zero (p-value) 0.78 0.07 0.98 0.00 0.00 0.00 0.00

Panel B: Zero-Coupon Bonds

Australia 0.02 [0.03] -0.28 [2.08] -0.27 0.01 [0.03] -1.49 [1.80] 0.37 0.01 [0.02] 1.21 [1.33] 0.52 0.66 344

Canada 0.02 [0.02] 1.43 [1.05] 0.43 0.00 [0.01] -1.39 [0.67] 0.86 0.02 [0.01] 2.82 [0.68] 7.74 0.02 357

Germany 0.01 [0.02] 0.58 [0.98] -0.06 -0.01 [0.02] -1.55 [0.86] 1.16 0.01 [0.01] 2.12 [0.74] 3.77 0.10 490

Japan -0.03 [0.03] -1.77 [1.33] 0.60 -0.04 [0.02] -5.01 [1.22] 9.02 0.01 [0.02] 3.24 [0.85] 6.53 0.07 369

New Zealand 0.04 [0.04] 1.82 [2.35] 0.34 0.05 [0.04] 0.83 [2.47] -0.16 -0.00 [0.02] 0.98 [1.09] 0.19 0.77 309

Norway -0.02 [0.03] -0.57 [1.83] -0.37 0.01 [0.03] 0.29 [1.99] -0.44 -0.03 [0.02] -0.86 [1.22] 0.09 0.75 213

Sweden 0.01 [0.02] 1.20 [2.03] 0.03 -0.00 [0.02] -0.51 [2.06] -0.28 0.02 [0.02] 1.71 [1.21] 1.49 0.56 274

Switzerland -0.03 [0.02] -0.49 [1.03] -0.18 -0.03 [0.02] -2.59 [1.26] 3.31 0.00 [0.01] 2.10 [0.84] 4.82 0.20 333

United Kingdom 0.00 [0.03] 0.12 [1.64] -0.22 -0.01 [0.02] -1.64 [1.42] 1.39 0.02 [0.02] 1.76 [0.95] 1.51 0.42 441

Panel – – 0.10 [0.80] -0.01 – – -1.75 [0.91] 1.33 – – 1.85 [0.48] 2.48 0.00 3130

Joint zero (p-value) 0.65 0.81 0.56 0.00 0.29 0.00 0.12

Notes: The table reports regression results obtained when regressing the bond dollar return difference, defined as the difference between the log
return on foreign bonds (expressed in U.S. dollars) and the log return of U.S. bonds in U.S. dollars, or the currency excess return, defined as the
difference between the log return on foreign Treasury bills (expressed in U.S. dollars) and the log return of U.S. Treasury bills in U.S. dollars, or
the bond local currency return difference, defined as the difference between the log return on foreign bonds (expressed in local currency terms)
and the log return of U.S. bonds in U.S. dollars, on the corresponding yield curve slope differential, defined as the difference between the foreign
nominal yield curve slope and the U.S. nominal yield curve slope. Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds.
The holding period is three months and returns are sampled monthly. The log returns and the yield curve slope differentials are annualized.
The sample period is 1/1975–12/2015. In individual country regressions, standard errors are obtained with a Newey-West approximation of the
spectral density matrix, with the lag truncation parameter (kernel bandwidth) equal to 6. Panel regressions include country fixed effects, and
standard errors are obtained using the Driscoll and Kraay (1998) methodology, with the lag truncation parameter (kernel bandwidth) equal to
6.
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Table A13: Dynamic Long-Short Interest Rate Foreign and U.S. Bond Portfolios, Three-Month Holding Period

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Coupon Bonds

Australia 2.63 [2.02] 14.36 0.18 [0.16] 3.31 [1.68] 11.68 0.28 [0.17] -0.69 [1.19] 8.21 -0.08 [0.15]

Canada 0.14 [1.29] 8.38 0.02 [0.15] 1.07 [1.04] 6.67 0.16 [0.16] -0.93 [0.68] 4.61 -0.20 [0.15]

Germany 2.50 [1.95] 12.22 0.20 [0.16] 3.25 [1.85] 11.35 0.29 [0.16] -0.75 [1.15] 7.15 -0.10 [0.16]

Japan 0.55 [2.18] 14.51 0.04 [0.16] 1.14 [1.92] 12.14 0.09 [0.16] -0.59 [1.39] 8.70 -0.07 [0.15]

New Zealand -0.02 [2.90] 18.42 -0.00 [0.15] 3.31 [1.91] 12.62 0.26 [0.16] -3.33 [1.87] 12.28 -0.27 [0.15]

Norway 2.21 [2.15] 13.55 0.16 [0.16] 3.43 [1.75] 11.24 0.31 [0.16] -1.23 [1.49] 8.85 -0.14 [0.15]

Sweden 1.35 [2.09] 13.53 0.10 [0.16] 2.64 [1.84] 11.69 0.23 [0.16] -1.29 [1.47] 8.89 -0.15 [0.15]

Switzerland -0.09 [2.01] 12.79 -0.01 [0.15] 0.60 [2.03] 12.49 0.05 [0.16] -0.69 [1.23] 7.75 -0.09 [0.16]

United Kingdom 1.56 [1.97] 13.81 0.11 [0.15] 2.58 [1.69] 10.97 0.23 [0.15] -1.02 [1.27] 8.41 -0.12 [0.16]

Equally-weighted 1.20 [1.01] 6.63 0.18 [0.16] 2.37 [0.90] 5.94 0.40 [0.17] -1.17 [0.58] 3.54 -0.33 [0.15]

Panel B: Zero-Coupon Bonds

Australia 4.51 [2.50] 13.50 0.33 [0.19] 5.13 [2.14] 11.78 0.44 [0.20] -0.62 [1.58] 8.80 -0.07 [0.19]

Canada 0.17 [1.77] 9.70 0.02 [0.19] 1.31 [1.35] 7.43 0.18 [0.19] -1.15 [0.96] 5.67 -0.20 [0.18]

Germany 2.86 [2.10] 13.05 0.22 [0.16] 3.40 [1.82] 11.27 0.30 [0.16] -0.54 [1.44] 9.15 -0.06 [0.16]

Japan 0.07 [2.49] 13.98 0.00 [0.18] -0.31 [2.26] 12.12 -0.03 [0.18] 0.38 [1.70] 9.22 0.04 [0.18]

New Zealand 2.24 [2.70] 12.92 0.17 [0.20] 4.08 [2.20] 11.73 0.35 [0.21] -1.84 [1.61] 8.01 -0.23 [0.20]

Norway -0.17 [3.36] 13.48 -0.01 [0.24] 0.68 [2.79] 11.88 0.06 [0.24] -0.85 [1.96] 8.60 -0.10 [0.24]

Sweden 3.86 [2.65] 12.70 0.30 [0.21] 4.47 [2.25] 11.17 0.40 [0.22] -0.60 [1.68] 8.46 -0.07 [0.21]

Switzerland 1.67 [2.33] 11.66 0.14 [0.19] 1.70 [2.24] 11.36 0.15 [0.19] -0.03 [1.56] 7.85 -0.00 [0.19]

United Kingdom 2.04 [2.43] 15.57 0.13 [0.17] 2.75 [1.76] 10.88 0.25 [0.17] -0.71 [1.86] 11.32 -0.06 [0.17]

Equally-weighted 1.56 [1.14] 6.68 0.23 [0.19] 2.28 [1.17] 6.58 0.35 [0.22] -0.72 [0.67] 3.76 -0.19 [0.18]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and
short the U.S. bond when the foreign short-term interest rate is higher than the U.S. interest rate, and go long the U.S. bond and short the
foreign country bond when the U.S. interest rate is higher than the country’s interest rate. The table reports the mean, standard deviation
and Sharpe ratio (denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government
bond indices in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in
U.S. dollars (rx(10),$ − rx(10), left panel). Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds. The holding period
is three months. The table also presents summary return statistics for the equally-weighted average of the individual country strategies. The
standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000 samples of non-overlapping returns. The
log returns are annualized. The data are monthly and the sample is 1/1975–12/2015 (or largest subset available), with the exception of the
equally-weighted portfolio of zero-coupon bonds, which refers to the sample period 4/1985–12/2015.
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Table A14: Dynamic Long-Short Yield Curve Slope Foreign and U.S. Bond Portfolios, Three-Month Holding
Period

Bond dollar return difference Currency excess return Bond local currency return diff.

rx(10),$ − rx(10) rxFX rx(10),∗ − rx(10)

Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e. Mean s.e. Std. SR s.e.

Panel A: Coupon Bonds

Australia 0.71 [2.08] 14.42 0.05 [0.16] 2.58 [1.77] 11.73 0.22 [0.16] -1.87 [1.19] 8.16 -0.23 [0.15]

Canada -0.93 [1.29] 8.37 -0.11 [0.16] 1.48 [1.05] 6.65 0.22 [0.16] -2.41 [0.66] 4.47 -0.54 [0.15]

Germany 1.08 [1.96] 12.28 0.09 [0.16] 3.36 [1.89] 11.35 0.30 [0.16] -2.27 [1.07] 7.07 -0.32 [0.15]

Japan 0.65 [2.17] 14.51 0.04 [0.16] 4.22 [1.90] 11.97 0.35 [0.16] -3.57 [1.31] 8.52 -0.42 [0.16]

New Zealand -0.23 [2.84] 18.42 -0.01 [0.15] 3.11 [1.93] 12.63 0.25 [0.16] -3.34 [1.83] 12.27 -0.27 [0.15]

Norway 0.40 [2.12] 13.59 0.03 [0.16] 2.54 [1.78] 11.30 0.23 [0.16] -2.14 [1.41] 8.80 -0.24 [0.16]

Sweden -2.32 [2.03] 13.49 -0.17 [0.15] 0.53 [1.85] 11.76 0.05 [0.16] -2.86 [1.50] 8.79 -0.33 [0.14]

Switzerland 1.70 [1.95] 12.76 0.13 [0.16] 4.66 [1.96] 12.27 0.38 [0.16] -2.96 [1.21] 7.62 -0.39 [0.15]

United Kingdom -1.55 [2.07] 13.81 -0.11 [0.15] 1.48 [1.74] 11.02 0.13 [0.15] -3.03 [1.35] 8.29 -0.36 [0.16]

Equally-weighted -0.05 [1.26] 8.04 -0.01 [0.15] 2.66 [1.13] 7.10 0.38 [0.16] -2.72 [0.79] 4.71 -0.58 [0.14]

Panel B: Zero-Coupon Bonds

Australia 3.81 [2.53] 13.55 -0.28 [0.19] 5.16 [2.10] 11.77 -0.44 [0.20] -1.34 [1.58] 8.78 0.15 [0.19]

Canada -0.57 [1.76] 9.70 0.06 [0.18] 1.69 [1.33] 7.41 -0.23 [0.20] -2.26 [0.94] 5.59 0.40 [0.18]

Germany 1.08 [2.11] 13.12 -0.08 [0.16] 3.81 [1.83] 11.23 -0.34 [0.16] -2.73 [1.42] 9.05 0.30 [0.16]

Japan 2.00 [2.52] 13.94 -0.14 [0.18] 4.89 [2.25] 11.87 -0.41 [0.19] -2.89 [1.67] 9.11 0.32 [0.18]

New Zealand 0.66 [2.69] 12.96 -0.05 [0.20] 3.18 [2.23] 11.80 -0.27 [0.20] -2.52 [1.59] 7.97 0.32 [0.21]

Norway -0.86 [3.36] 13.47 0.06 [0.24] -0.16 [2.80] 11.88 0.01 [0.24] -0.70 [1.92] 8.60 0.08 [0.25]

Sweden 0.82 [2.70] 12.84 -0.06 [0.21] 2.25 [2.29] 11.33 -0.20 [0.21] -1.42 [1.70] 8.43 0.17 [0.21]

Switzerland 1.78 [2.33] 11.65 -0.15 [0.20] 4.28 [2.20] 11.19 -0.38 [0.20] -2.50 [1.55] 7.75 0.32 [0.19]

United Kingdom -0.52 [2.45] 15.60 0.03 [0.16] 2.17 [1.76] 10.91 -0.20 [0.17] -2.69 [1.85] 11.25 0.24 [0.17]

Equally-weighted 1.60 [1.40] 8.35 -0.19 [0.18] 4.40 [1.38] 7.84 -0.56 [0.21] -2.80 [0.95] 5.62 0.50 [0.19]

Notes: For each country, the table presents summary return statistics of investment strategies that go long the foreign country bond and short
the U.S. bond when the foreign yield curve slope is lower than the U.S. yield curve slope, and go long the U.S. bond and short the foreign
country bond when the U.S. yield curve slope is lower than the foreign yield curve slope. The table reports the mean, standard deviation and
Sharpe ratio (denoted SR) for the currency excess return (rxFX , middle panel), for the foreign bond excess return on 10-year government bond
indices in foreign currency (rx(10),∗ − rx(10), right panel) and for the foreign bond excess return on 10-year government bond indices in U.S.
dollars (rx(10),$−rx(10), left panel). Panel A uses 10-year coupon bonds, whereas Panel B uses zero-coupon bonds. The holding period is three
months. The table also presents summary return statistics for the equally-weighted average of the individual country strategies. The slope of
the yield curve is measured by the difference between the 10-year yield and the one-month interest rate. The standard errors (denoted s.e.
and reported between brackets) were generated by bootstrapping 10,000 samples of non-overlapping returns. The log returns are annualized.
The data are monthly and the sample is 1/1975–12/2015 (or largest subset available), with the exception of the equally-weighted portfolio of
zero-coupon bonds, which refers to the sample period 4/1985–12/2015.
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B Robustness Checks on Cross-sectional Portfolio Results

This section consider further robustness checks for the cross-sectional results by extending the sample of countries, by sorting on
the level of interest rates, and by sorting on the slope of the yield curve.

B.1 Portfolio Cross-Sectional Evidence: Different Sample Periods

We start by considering different sample periods. Table A15 reports the results for the pre-crisis 10/1983-12/2007 sample, Table
A16 for the pre-crisis 1/1975-12/2007 sample and Table A17 for the 10/1983-12/2015 sample. In all three tables, we focus on the
benchmark set of G-10 countries and we consider currency portfolios sorted either on deviations of the short-term interest rate from
its 10-year rolling mean or on the level of the yield curve slope. The results are consistent across sample periods and also consistent
with the findings reported in the benchmark sample: the long-short portfolios do not produce statistically significant dollar bond
returns.
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Table A15: Cross-sectional Predictability: Bond Portfolios (10/1983 - 12/2007 Sample Period)

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 2.23 2.39 3.79 1.56 4.01 2.70 1.70 2.30

s.e. [0.17] [0.18] [0.21] [0.23] [0.22] [0.19] [0.16] [0.22]

Std 0.84 0.89 1.07 1.13 1.08 0.93 0.81 1.12

Rating Mean 1.59 1.36 1.51 -0.09 1.58 1.47 1.40 0.18

s.e. [0.03] [0.02] [0.03] [0.06] [0.02] [0.03] [0.03] [0.04]

Rating (adj. for outlook) Mean 1.64 1.40 1.69 0.05 1.73 1.53 1.46 0.27

s.e. [0.04] [0.02] [0.03] [0.07] [0.03] [0.03] [0.03] [0.05]

y
(10),∗
t − r∗,ft Mean 1.20 0.70 -0.55 -1.74 -0.99 0.67 1.68 -2.67

Panel B: Currency Excess Returns

−∆st+1 Mean 0.46 2.18 1.73 1.26 1.30 2.02 1.06 0.25

rf,∗t − rft Mean 0.42 0.73 2.84 2.42 3.94 0.81 -0.75 4.69

rxFXt+1 Mean 0.88 2.92 4.57 3.69 5.24 2.83 0.30 4.94

s.e. [1.55] [1.82] [1.87] [1.51] [1.86] [1.68] [1.66] [1.64]

SR 0.12 0.33 0.50 0.50 0.56 0.34 0.04 0.61

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.32 2.72 0.12 -3.19 -0.57 2.32 4.42 -4.98

s.e. [0.85] [0.86] [0.98] [1.03] [0.99] [0.81] [0.92] [1.02]

SR 0.78 0.64 0.03 -0.62 -0.12 0.58 0.96 -1.01

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 4.20 5.64 4.69 0.49 4.67 5.15 4.72 -0.05

s.e. [1.89] [2.08] [2.09] [1.78] [2.04] [1.96] [2.01] [1.93]

SR 0.45 0.55 0.45 0.06 0.45 0.54 0.47 -0.01

rx
(10),$
t+1 − rx(10)

t+1 Mean 0.32 1.77 0.82 0.49 0.79 1.27 0.84 -0.05

s.e. [2.02] [2.08] [2.29] [1.78] [2.20] [2.07] [1.99] [1.93]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
10/1983–12/2007.
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Table A16: Cross-sectional Predictability: Bond Portfolios (1/1975 - 12/2007 Sample Period)

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 3.15 3.94 5.79 2.65 5.79 3.95 3.15 2.64

s.e. [0.18] [0.21] [0.25] [0.23] [0.25] [0.20] [0.21] [0.21]

Std 1.05 1.25 1.44 1.31 1.39 1.14 1.23 1.27

Rating Mean 1.44 1.26 1.37 -0.06 1.43 1.35 1.30 0.13

s.e. [0.03] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.03]

Rating (adj. for outlook) Mean 1.48 1.41 1.77 0.29 1.79 1.49 1.38 0.41

s.e. [0.03] [0.02] [0.03] [0.05] [0.02] [0.02] [0.02] [0.04]

y
(10),∗
t − r∗,ft Mean 1.50 0.86 -0.68 -2.18 -1.09 0.78 1.99 -3.08

Panel B: Currency Excess Returns

−∆st+1 Mean 0.17 0.74 -0.12 -0.29 -0.41 0.83 0.37 -0.78

rf,∗t − rft Mean -0.53 0.37 2.96 3.49 3.65 0.39 -1.24 4.89

rxFXt+1 Mean -0.37 1.11 2.84 3.21 3.24 1.21 -0.87 4.11

s.e. [1.43] [1.51] [1.51] [1.31] [1.55] [1.47] [1.52] [1.48]

SR -0.04 0.13 0.33 0.43 0.37 0.15 -0.10 0.52

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.62 2.18 -1.09 -4.71 -1.77 1.99 4.49 -6.25

s.e. [0.75] [0.74] [0.86] [0.92] [0.81] [0.73] [0.75] [0.85]

SR 0.84 0.51 -0.22 -0.89 -0.38 0.47 0.97 -1.23

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 3.25 3.29 1.75 -1.50 1.47 3.20 3.61 -2.14

s.e. [1.75] [1.77] [1.79] [1.55] [1.80] [1.71] [1.85] [1.71]

SR 0.32 0.32 0.17 -0.17 0.15 0.33 0.34 -0.23

rx
(10),$
t+1 − rx(10)

t+1 Mean 0.84 0.88 -0.66 -1.50 -0.94 0.79 1.20 -2.14

s.e. [1.82] [1.80] [1.97] [1.55] [2.02] [1.81] [1.90] [1.71]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
1/1975–12/2007.
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Table A17: Cross-sectional Predictability: Bond Portfolios (10/1983 - 12/2015 Sample Period)

Sorted by Short-Term Interest Rates Sorted by Yield Curve Slopes

Portfolio 1 2 3 3− 1 1 2 3 1− 3

Panel A: Portfolio Characteristics

Inflation rate Mean 2.15 2.16 3.04 0.89 3.30 2.33 1.71 1.59

s.e. [0.15] [0.16] [0.19] [0.20] [0.18] [0.16] [0.15] [0.20]

Std 0.86 0.90 1.11 1.11 1.07 0.97 0.86 1.12

Rating Mean 1.57 1.32 1.63 0.06 1.68 1.48 1.36 0.32

s.e. [0.03] [0.02] [0.02] [0.04] [0.02] [0.02] [0.02] [0.04]

Rating (adj. for outlook) Mean 1.62 1.36 1.79 0.17 1.81 1.53 1.43 0.38

s.e. [0.03] [0.02] [0.03] [0.05] [0.02] [0.02] [0.02] [0.04]

y
(10),∗
t − r∗,ft Mean 1.30 0.81 -0.28 -1.58 -0.66 0.79 1.71 -2.37

Panel B: Currency Excess Returns

−∆st+1 Mean -0.38 1.02 0.66 1.04 0.19 1.15 -0.05 0.24

rf,∗t − rft Mean 0.65 0.87 2.47 1.82 3.49 0.91 -0.41 3.90

rxFXt+1 Mean 0.26 1.89 3.13 2.86 3.68 2.06 -0.46 4.14

s.e. [1.48] [1.70] [1.64] [1.27] [1.78] [1.54] [1.54] [1.34]

SR 0.03 0.20 0.34 0.40 0.37 0.24 -0.05 0.55

Panel C: Local Currency Bond Excess Returns

rx
(10),∗
t+1 Mean 3.28 3.13 0.90 -2.38 0.10 2.62 4.59 -4.49

s.e. [0.78] [0.80] [0.82] [0.83] [0.84] [0.72] [0.82] [0.82]

SR 0.75 0.69 0.20 -0.51 0.02 0.63 0.99 -0.99

Panel D: Dollar Bond Excess Returns

rx
(10),$
t+1 Mean 3.55 5.02 4.03 0.48 3.79 4.68 4.13 -0.34

s.e. [1.69] [1.83] [1.81] [1.46] [1.88] [1.68] [1.76] [1.50]

SR 0.37 0.49 0.39 0.06 0.36 0.48 0.41 -0.04

rx
(10),$
t+1 − rx(10)

t+1 Mean -0.43 1.04 0.05 0.48 -0.19 0.70 0.15 -0.34

s.e. [1.82] [1.87] [1.94] [1.46] [2.05] [1.78] [1.83] [1.50]

Notes: The countries are sorted by the level of their short term interest rates in deviation from the 10-year mean into three portfolios (left
section) or the slope of their yield curves (right section). The slope of the yield curve is measured by the difference between the 10-year yield
and the one-month interest rate. The standard errors (denoted s.e. and reported between brackets) were generated by bootstrapping 10,000
samples of non-overlapping returns. The table reports the average inflation rate, the standard deviation of the inflation rate, the average credit
rating, the average credit rating adjusted for outlook, the average slope of the yield curve (y(10),∗ − r∗,f ), the average change in exchange
rates (∆s), the average interest rate difference (rf,∗ − rf ), the average currency excess return (rxFX), the average foreign bond excess return
on 10-year government bond indices in foreign currency (rx(10),∗) and in U.S. dollars (rx(10),$), as well as the difference between the average
foreign bond excess return in U.S. dollars and the average U.S. bond excess return (rx(10),$ − rx(10)). For the excess returns, the table also
reports their Sharpe ratios (denoted SR). The holding period is one month. The log returns are annualized. The balanced panel consists
of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. The data are monthly and the sample is
10/1983–12/2015.
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B.2 Sorting by Interest Rate Deviations

This section reports results for currency portfolios sorted on the deviation of the short-term interest rate from its 10-year rolling
mean. We first consider the benchmark G-10 sample, but then we consider a more extended sample of developed and emerging
market countries.

B.2.1 Benchmark G-10 Sample

Figure A1 plots the composition of the three currency portfolios sorted on interest rate deviations, ranked from low (Portfolio 1)
to high (Portfolio 3), for the long 1/1951–12/2015 sample period.
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Figure A1: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 9 currencies
sorted by the deviation of their short-term interest rates from the corresponding 10-year rolling mean. The portfolios are rebalanced monthly.
Data are monthly, from 1/1951 to 12/2015.

Figure A2 corresponds to the top right panel of Figure 1 in the main text. It presents the cumulative one-month log excess
returns on investments in foreign Treasury bills and foreign 10-year bonds. Over the entire 1/1951 – 12/2015 sample period, the
average currency log excess return of the carry trade strategy (long Portfolio 3, short Portfolio 1) is 2.52% per year, whereas the
local currency bond log excess return is −3.81% per year. Thus, the interest rate carry trade implemented using 10-year bonds
yields an average annualized dollar return of −1.29%, which is not statistically significant (bootstrap standard error of 0.94%).
The average inflation rate of Portfolio 1 is 3.56% and its average credit rating is 1.44 (1.51 when adjusted for outlook), while the
average inflation rate of Portfolio 3 is 4.72% and its average credit rating is 1.46 (1.81 when adjusted for outlook). Therefore,
countries with high local currency bond term premia have low inflation and high credit ratings on average, whereas countries with
low term premia have high average inflation rates and low average credit ratings, which suggests that the offsetting effect of the
local currency bond excess returns is not due to compensation for inflation or credit risk. As seen in Table 3, our findings are very
similar when we consider only the post-Bretton Woods period (1/1975 – 12/2015). Finally, we turn to the 7/1989 – 12/2015 period.
The one-month average currency excess return of the carry trade strategy is 2.33%, largely offset by the local currency bond excess
return of −1.33%. As a result, the average dollar bond excess return is 1.00%, which is not statistically significant, as its bootstrap
standard error is 1.47%. Portfolio 1 has an average inflation rate of 1.91% and an average credit rating of 1.67 (1.72 when adjusted
for outlook), whereas Portfolio 3 has an average inflation rate of 2.05% and an average credit rating of 1.67 (1.73 when adjusted
for outlook).

We find very similar results when we increase the holding period k from 1 to 3 or 12 months: there is no evidence of statistically
significant differences in dollar bond premia across the currency portfolios. In particular, for the entire 1/1951 – 12/2015 period, the
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Figure A2: The Carry Trade and Term Premia – The figure presents the cumulative one-month log excess returns on
investments in foreign Treasury bills and foreign 10-year bonds. The benchmark panel of countries includes Australia, Canada,
Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. Countries are sorted every month into three portfolios
by the level of the deviation of their one-month interest rate from its 10-year rolling mean. The returns correspond to a strategy
going long in the Portfolio 3 and short in Portfolio 1. The sample period is 1/1951–12/2015.
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annualized dollar excess return of the carry trade strategy implemented using 10-year bonds is a non-significant −0.68% (bootstrap
standard error of 1.12%) for the 3-month holding period, as the average currency risk premium of 2.04% is offset by the average
local currency bond premium of −2.72%. For the 12-month horizon, the average currency risk premium is 1.52%, which is almost
fully offset by the average local currency bond premium of −1.68%, yielding an average dollar bond premium of −0.15% (bootstrap
standard error of 1.08%). The corresponding average dollar bond premium for the post-Bretton Woods sample (1/1975 – 12/2015) is
−0.88% for the 3-month holding period (average currency risk premium of 1.81%, average local currency bond premium of −2.68%)
and −0.57% for the 12-month holding period (average currency risk premium of 1.28%, average local currency bond premium of
−1.85%), neither of which is statistically significant (the bootstrap standard error is 1.39% and 1.55%, respectively). Finally, we
consider the 7/1989 – 12/2015 period. The average dollar bond premium is 0.68% for the 3-month horizon (average currency risk
premium of 1.39%, average local currency bond premium of −0.71%) and 0.86% for the 12-month horizon (average currency risk
premium of 1.37%, average local currency bond premium of −0.51%). Neither of those average dollar bond premia is statistically
significant, as their bootstrap standard error is 1.58% and 1.62%, respectively.

B.2.2 Developed Countries

Very similar patterns of risk premia emerge using larger sets of countries. In the sample of 20 developed countries (Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, New Zealand,
Norway, Portugal, Spain, Sweden, Switzerland, and the U.K.), we sort currencies in four portfolios, the composition of which is
plotted in Figure A3.
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Figure A3: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 20 currencies
sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

We start with 1-month holding period returns. Over the long sample period (1/1951 – 12/2015), the average currency log excess
return of the carry trade is 1.32% per year, whereas the local currency bond log excess return is −4.77% per year. Therefore, the
10-year bond carry trade strategy yields a marginally significant average annualized return of −3.45% (bootstrap standard error of
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1.97%). The average inflation rate of Portfolio 1 is 4.04% and its average credit rating is 2.68 (2.58 when adjusted for outlook); in
comparison, the average inflation rate of Portfolio 4 is 5.05% and its average credit rating is 2.24 (2.41 when adjusted for outlook).
We find similar results when we focus on the post-Bretton Woods sample: the average currency log excess return is 1.38% per
year, offset by a local currency bond log excess return of −2.85%, so the 10-year bond carry trade strategy yields a statistically not
significant annualized dollar excess return of −1.47% (bootstrap standard error of 1.15%). The average inflation rate of Portfolio 1
is 3.72% and its average credit rating is 2.71 (2.64 adjusted for outlook), whereas the average inflation rate of Portfolio 4 is 5.11%
and its average credit rating is 2.31 (2.49 adjusted for outlook).

We now turn to longer holding periods. For the 1/1951 – 12/2015 sample, the annualized dollar excess return of the carry trade
strategy implemented using 10-year bonds is a non-significant −1.15% (bootstrap standard error of 2.02%) for the 3-month holding
period and a non-significant 0.45% (bootstrap standard error of 2.17%) for the 12-month holding period. The corresponding dollar
excess returns for the post-Bretton Woods period are −0.11% for the 3-month holding period and 0.26% for the 12-month holding
period, neither of which is statistically significant, as the bootstrap standard error is 3.21% and 1.61%, respectively.

B.2.3 Developed and Emerging Countries

Finally, we consider the sample of developed and emerging countries (Australia, Austria, Belgium, Canada, Denmark, Finland,
France, Germany, Greece, India, Ireland, Italy, Japan, Mexico, Malaysia, the Netherlands, New Zealand, Norway, Pakistan, the
Philippines, Poland, Portugal, South Africa, Singapore, Spain, Sweden, Switzerland, Taiwan, Thailand, and the United Kingdom),
and sort currencies into five portfolios.

In particular, at the one-month horizon the average currency log excess return of the carry trade is 2.40% per year over the
long sample period (1/1951 – 12/2015), which is more than offset by the local currency bond log excess return of −7.05% per year.
As a result, the carry trade implemented using 10-year bonds yields a statistically significant average annualized return of 4.65%
(the bootstrap standard error is 2.01%). The average inflation rate of Portfolio 1 is 4.59% and its average credit rating is 5.51 (4.96
when adjusted for outlook), whereas the average inflation rate of Portfolio 5 is 5.66% and its average credit rating is 4.70 (4.89
when adjusted for outlook). When we consider the post-Bretton Woods period (1/1975 – 12/2015), we get very similar results: the
average currency log excess return is 3.04% per year, which is offset by a local currency bond log excess return of −6.36%, so the
10-year bond carry trade strategy yields a statistically significant annualized dollar return of −3.33% (bootstrap standard error of
1.29%). The average inflation rate of Portfolio 1 is 4.47% and its average credit rating is 5.45 (5.06 adjusted for outlook), whereas
the average inflation rate of Portfolio 5 is 6.43% and its average credit rating is 4.78 (4.84 adjusted for outlook).

When we increase the holding period to 3 or 12 months, similar results emerge. For the long sample (1/1951 – 12/2015), the
annualized dollar excess return of the carry trade strategy implemented using 10-year bonds is a non-significant −2.11% (bootstrap
standard error of 2.07%) for the 3-month horizon and a non-significant −0.63% (bootstrap standard error of 2.18%) for the 12-month
horizon. The corresponding dollar excess returns for the post-Bretton Woods period are −1.63% for the 3-month holding period
and −0.70% for the 12-month holding period, both of which are marginally significant (bootstrap standard error of 1.47% and
1.62%, respectively).

B.3 Sorting by Interest Rate Levels

We now turn to currency portfolios sorted on interest rate levels (not in deviation from the 10-year rolling mean). We first consider
the benchmark G-10 sample, but then we consider a more extended sample of developed and emerging market countries.

B.3.1 Benchmark Sample

Figure A4 plots the composition of the three interest rate-sorted currency portfolios, ranked from low (Portfolio 1) to high (Portfolio
3) interest rate currencies, for the long 1/1951–12/2015 sample period. Typically, Switzerland and Japan (after 1970) are funding
currencies in Portfolio 1, while Australia and New Zealand are the carry trade investment currencies in Portfolio 3. The other
currencies switch between portfolios quite often.

Over the entire 1/1951 – 12/2015 period, the average currency log excess return of the carry trade is 3.23% per year, whereas
the local currency bond log excess return is −2.55% per year. As a result, the interest rate carry trade implemented using 10-year
bonds yields an average annualized return of 0.68%, which is not statistically significant, as its bootstrap standard error is 1.07%.
The average inflation rate of Portfolio 1 is 2.81% and its average credit rating is 1.33 (1.39 when adjusted for outlook), whereas the
average inflation rate of Portfolio 3 is 5.15% and its average credit rating is 1.57 (1.92 when adjusted for outlook). Our findings
are very similar when we consider only the post-Bretton Woods period (1/1975 – 12/2015): the average currency log excess return
is 3.50% per year, largely offset by a local currency bond log excess return of −2.51%, so the 10-year bond carry trade strategy
yields a statistically not significant annualized dollar return of 0.99% (bootstrap standard error of 1.57%). The average inflation
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Figure A4: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 9 currencies
sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

rate of Portfolio 1 is 2.00% and its average credit rating is 1.36 (1.41 when adjusted for outlook), whereas the average inflation rate
of Portfolio 3 is 5.32% and its average credit rating is 1.60 (1.93 when adjusted for outlook).

We find very similar results when we increase the holding period: there is no evidence of statistically significant differences in
dollar bond risk premia across the currency portfolios. In particular, for the entire 1/1951 – 12/2015 period, the annualized dollar
excess return of the carry trade strategy implemented using 10-year bonds is a non-significant 1.03% (bootstrap standard error of
1.12%) for the 3-month holding period and a non-significant 1.23% (bootstrap standard error of 1.20%) for the 12-month holding
period. The corresponding dollar excess returns for the post-Bretton Woods period are 1.15% for the 3-month holding period and
1.18% for the 12-month holding period, neither of which is statistically significant (bootstrap standard error of 1.65% and 1.69%,
respectively).

B.3.2 Developed Countries

With coupon bonds, we consider two additional sets of countries: first, a larger sample of 20 developed countries (Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, the Netherlands, New Zealand,
Norway, Portugal, Spain, Sweden, Switzerland, and the U.K.), and second, a large sample of 30 developed and emerging countries
(the same as above, plus India, Mexico, Malaysia, the Netherlands, Pakistan, the Philippines, Poland, South Africa, Singapore,
Taiwan, and Thailand). We also construct an extended version of the zero-coupon dataset which, in addition to the countries of the
benchmark sample, includes the following countries: Austria, Belgium, the Czech Republic, Denmark, Finland, France, Hungary,
Indonesia, Ireland, Italy, Malaysia, Mexico, the Netherlands, Poland, Portugal, Singapore, South Africa, and Spain. The data for
the aforementioned extra countries are sourced from Bloomberg. The starting dates for the additional countries are as follows:
12/1994 for Austria, Belgium, Denmark, Finland, France, Ireland, Italy, the Netherlands, Portugal, Singapore, and Spain, 12/2000
for the Czech Republic, 3/2001 for Hungary, 5/2003 for Indonesia, 9/2001 for Malaysia, 8/2003 for Mexico, 12/2000 for Poland,
and 1/1995 for South Africa.

We now turn to the sample of 20 developed countries. Figure A5 plots the composition of the four interest rate-sorted currency
portfolios. As we can see, Switzerland and Japan (after 1970) are funding currencies in Portfolio 1, while Australia and New Zealand
are carry trade investment currencies in Portfolio 4.

We start with 1-month holding period returns. Over the long sample period (1/1951 – 12/2015), the average currency log
excess return of the carry trade is 2.73% per year, whereas the local currency bond log excess return is −2.15% per year. Therefore,
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Figure A5: Composition of Interest Rate-Sorted Portfolios — The figure presents the composition of portfolios of 20 currencies
sorted by their short-term interest rates. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

the interest rate carry trade implemented using 10-year bonds yields a non-statistically significant average dollar annualized return
of 0.58% (the bootstrap standard error is 0.90%). The average inflation rate of Portfolio 1 is 3.04% and its average credit rating is
1.50 (1.54 when adjusted for outlook); the average inflation rate of Portfolio 4 is 5.73% and its average credit rating is 2.93 (3.02
when adjusted for outlook). We get very similar results when we focus on the post-Bretton Woods sample: the average currency
log excess return is 2.81% per year, offset by a local currency bond log excess return of −1.37%, so the 10-year bond carry trade
strategy yields a statistically not significant annualized return of 1.44% (bootstrap standard error of 1.33%). The average inflation
rate of Portfolio 1 is 2.30% and its average credit rating is 1.55 (1.61 adjusted for outlook), whereas the average inflation rate of
Portfolio 4 is 6.07% and its average credit rating is 2.97 (3.03 adjusted for outlook).

When we increase the holding period, we get very similar results. For the 1/1951 – 12/2015 sample, the annualized dollar
excess return of the carry trade strategy implemented using 10-year bonds is a non-significant 1.15% (bootstrap standard error of
0.94%) for the 3-month holding period and a non-significant 1.48% (bootstrap standard error of 0.99%) for the 12-month holding
period. The corresponding dollar excess returns for the post-Bretton Woods period are 1.92% for the 3-month holding period and
1.90% for the 12-month holding period, neither of which is statistically significant, as the bootstrap standard errors are 1.37% and
1.50%, respectively.

B.3.3 Developed and Emerging Countries

Finally, we consider the sample of developed and emerging countries and sort currencies into five portfolios.
We start by focusing on one-month returns. Over the long sample period (1/1951 – 12/2015), the average currency log excess

return of the carry trade is 4.92% per year, largely offset by the local currency bond log excess return of −4.18% per year. As a
result, the interest rate carry trade implemented using 10-year bonds yields a non-statistically significant average annualized return
of 0.74% (the bootstrap standard error is 0.90%). The average inflation rate of Portfolio 1 is 3.17% and its average credit rating
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is 2.91 (2.75 when adjusted for outlook), whereas the average inflation rate of Portfolio 5 is 6.82% and its average credit rating
is 6.59 (6.07 when adjusted for outlook). When we focus on the post-Bretton Woods sample, our findings are very similar: the
average currency log excess return is 5.73% per year, which is offset by a local currency bond log excess return of −3.80%, so the
10-year bond carry trade strategy yields a statistically non-significant annualized return of 1.92% (the bootstrap standard error
is 1.33%). The average inflation rate of Portfolio 1 is 2.49% and its average credit rating is 2.95 (2.90 adjusted for outlook); the
average inflation rate of Portfolio 5 is 7.78% and its average credit rating is 6.60 (6.03 adjusted for outlook).

We now consider longer holding periods. For the long sample (1/1951 – 12/2015), the annualized dollar excess return of the
carry trade strategy implemented using 10-year bonds is a non-significant 1.33% (bootstrap standard error of 1.01%) for the 3-month
horizon and a marginally significant 1.94% (bootstrap standard error of 1.10%) for the 12-month horizon. The corresponding dollar
excess returns for the post-Bretton Woods period are 2.56% for the 3-month holding period and 2.80% for the 12-month holding
period, both of which are marginally significant (bootstrap standard error of 1.50% and 1.69%, respectively).

B.4 Sorting by Yield Curve Slopes

This section presents additional evidence on slope-sorted currency portfolios. We first consider the benchmark G-10 sample, but
then we consider a more extended sample of developed and emerging market countries.

B.4.1 Benchmark Sample

Figure A6 presents the composition over time of the slope-sorted currency portfolios for the long sample period of 1/1951–12/2015.
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Figure A6: Composition of Slope-Sorted Portfolios — The figure presents the composition of portfolios of the currencies in the
benchmark sample sorted by the slope of their yield curves. The portfolios are rebalanced monthly. The slope of the yield curve is measured
by the spread between the 10-year bond yield and the one-month interest rate. Data are monthly, from 1/1951 to 12/2015.

Figure A7 corresponds to the lower left panel of Figure 1 in the main text. It presents the cumulative one-month log excess
returns on investments in foreign Treasury bills and foreign 10-year bonds, starting in 1951. The returns correspond to an investment
strategy going long in Portfolio 1 (flat yield curves, mostly high short-term interest rates) and short in Portfolio 3 (steep yield curves,
mostly low short-term interest rates). Over the entire 1/1951 – 12/2015 period, the average currency log excess return of the slope
carry trade is 3.01% per year, whereas the local currency bond log excess return is −5.46% per year. Therefore, the slope carry
trade implemented using 10-year bonds results in an average return of −2.45% per year, which is statistically significant (bootstrap
standard error of 0.98%). It is worth noting that neither inflation risk nor credit risk seem to be able to explain this offsetting
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effect: the average inflation rate of Portfolio 1, which has a low average term premium, is 4.71% and its average credit rating is
1.52 (1.84 when adjusted for outlook), whereas the average inflation rate of Portfolio 3, which has a high average term premium,
is 3.51% and its average credit rating is 1.28 (1.37 when adjusted for outlook). As seen in Table 3, we get similar results when we
focus only on the post-Bretton Woods period (1/1975 – 12/2015). Finally, we consider the 7/1989 – 12/2015 sample period. The
one-month average currency excess return of the slope carry trade strategy is 4.41%, largely offset by the local currency bond excess
return of −3.40%. As a result, the average dollar bond excess return is 1.02%, which is not statistically significant, as its bootstrap
standard error is 1.32%. Portfolio 1 has an average inflation rate of 2.31% and an average credit rating of 1.71 (1.75 when adjusted
for outlook), whereas Portfolio 3 has an average inflation rate of 1.51% and an average credit rating of 1.43 (1.49 when adjusted
for outlook).
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Figure A7: The Carry Trade and Term Premia: Conditional on the Slope of the Yield Curve – The figure presents
the cumulative one-month log returns on investments in foreign Treasury bills and foreign 10-year bonds. The benchmark panel of
countries includes Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. Countries are
sorted every month by the slope of their yield curves into three portfolios. The slope of the yield curve is measured by the spread
between the 10-year bond yield and the one-month interest rate. The returns correspond to an investment strategy going long in
Portfolio 1 and short in the Portfolio 3. The sample period is 1/1951–12/2015.

We now consider longer holding periods. Overall, we find no evidence of statistically significant differences in dollar bond risk
premia across the currency portfolios. For the full 1/1951 – 12/2015 period, the annualized dollar excess return of the slope carry
trade strategy implemented using 10-year bonds is a non-significant −1.58% (bootstrap standard error of 0.99%) for the 3-month
holding period, as the average currency risk premium of 2.53% is more than offset by the average local currency term premium of
−4.12%. For the 12-month holding period, the average currency risk premium is 1.98%, which is offset by the average local currency
term premium of −3.15%, yielding an average non-significant dollar term premium of −1.17% (bootstrap standard error of 1.00%).
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The corresponding dollar excess returns for the post-Bretton Woods period (1/1975 – 12/2015) are −0.88% for the 3-month holding
period (average currency risk premium of 2.95%, average local currency term premium of −3.83%) and −0.50% for the 12-month
holding period (average currency risk premium of 2.19%, average local currency term premium of −2.68%), neither which are is
significant, as the bootstrap standard error is 1.43% and 1.46%, respectively. Finally, we turn to the 7/1989 – 12/2015 period. The
average dollar bond premium is 0.98% for the 3-month horizon (average currency risk premium of 3.14%, average local currency
bond premium of −2.16%) and 1.35% for the 12-month horizon (average currency risk premium of 2.75%, average local currency
bond premium of −1.39%). Both of those dollar bond premia are non-significant, as their bootstrap standard error is 1.52% and
1.71%, respectively.

B.4.2 Developed Countries

In the sample of developed countries, the flat-slope currencies (Portfolio 1) are typically those of Australia, New Zealand, Denmark
and the U.K., while the steep-slope currencies (Portfolio 4) are typically those of Germany, the Netherlands, and Japan. The
portfolio compositions are plotted in Figure A8.
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Figure A8: Composition of Slope-Sorted Portfolios — The figure presents the composition of portfolios of 20 currencies sorted
by their yield curve slopes. The portfolios are rebalanced monthly. Data are monthly, from 1/1951 to 12/2015.

At the one-month horizon, the 2.50% spread in currency excess returns obtained in the full sample period (1/1951 – 12/2015)
is more than offset by the −6.73% spread in local term premia. This produces a statistically significant average dollar excess return
of −4.22% (bootstrap standard error of 1.02%) on a position that is long in the high yielding, low slope currencies (Portfolio 1)
and short in the low yielding, high slope currencies (Portfolio 4). The average inflation rate of Portfolio 1 is 5.13% and its average
credit rating is 2.20 (2.34 when adjusted for outlook), whereas the average inflation rate of Portfolio 4 is 3.97% and its average
credit rating is 2.88 (2.97 when adjusted for outlook). Those results are essentially unchanged in the post-Bretton Woods period:
the average currency excess return is 3.04%, more than offset by the average local currency bond excess return of −7.60%, so the
slope carry trade yields an average excess return of −4.56%, which is statistically significant (bootstrap standard error of 1.48%).
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The average inflation rate of Portfolio 1 is 5.36% and its average credit rating is 2.21 (2.34 when adjusted for outlook), whereas the
average inflation rate of Portfolio 4 is 3.49% and its average credit rating is 3.04 (3.16 when adjusted for outlook).

We now turn to longer holding periods. In the 3-month horizon, investing in Portfolio 1 and shorting Portfolio 4 during the
long sample period (1/1951 – 12/2015) yields an average currency excess return of 2.03% and an average local currency bond excess
return of −5.13%, resulting in a statistically significant dollar bond excess return of −3.10% (bootstrap standard error of 1.11%).
In the same period, the 12-month average currency excess return is 1.86% and the average local currency bond excess return is
−3.53%, so the average dollar bond excess return is a non-significant −1.67% (bootstrap standard error of 1.42%). Similar results
emerge when we focus on the post-Bretton Woods period. In the 3-month horizon, the average currency excess return is 2.31%
and the average local currency bond excess return is −5.32%, yielding an average dollar bond excess return of −3.00%, which is
marginally statistically significant (bootstrap standard error of 1.63%). In the 12-month horizon, the average currency excess return
is 1.90% and the average local currency bond excess return is −3.42%, so the average dollar bond excess return is a non-significant
−1.52% (bootstrap standard error of 2.22%).

B.4.3 Developed and Emerging Countries

In the entire sample of countries, the difference in currency risk premia at the one-month horizon is 3.44% per year, which is more
than offset by a −9.84% difference in local currency term premia. As a result, investors earn a statistically significant −6.41% per
annum (the bootstrap standard error is 1.06%) on a long-short bond position. As before, this involves going long the bonds of
flat-yield-curve currencies (Portfolio 1), typically high interest rate currencies, and shorting the bonds of the steep-slope currencies
(Portfolio 5), typically the low interest rate ones. The average inflation rate of Portfolio 1 is 5.77% and its average credit rating
is 4.77 (4.74 when adjusted for outlook), whereas the average inflation rate of Portfolio 5 is 4.54% and its average credit rating is
5.62 (5.33 when adjusted for outlook). When we focus on the post-Bretton Woods period (1/1975 – 12/2015), we get very similar
results: the average currency log excess return is 4.59% per year, which is more than offset by a local currency bond log excess
return difference of −11.53%, so the 10-year bond carry trade strategy yields a statistically significant annualized return of −6.94%
(bootstrap standard error of 1.51%). The average inflation rate of Portfolio 1 is 6.16% and its average credit rating is 4.79 (4.69
adjusted for outlook), whereas the average inflation rate of Portfolio 5 is 4.43% and its average credit rating is 5.73 (5.55 adjusted
for outlook).

When we increase the holding period to 3 or 12 months, similar results emerge. For the long sample (1/1951 – 12/2015), the
average annualized dollar excess return of the slope carry trade strategy (long Portfolio 1, short Portfolio 5) implemented using
10-year bonds is a statistically significant −5.32% (bootstrap standard error of 1.17%) for the 3-month horizon: the average currency
excess return is 2.76%, more than offset by the average local currency bond excess return of −8.08%. For the 12-month horizon, the
average currency excess return is 2.47% and the local currency bond excess return is −5.48%, so the average dollar excess return
for the slope carry trade is −3.01% (statistically significant, as the bootstrap standard error is 1.29%). Finally, for the post-Bretton
Woods period, the average 3-month currency excess return is 3.55% and the average local currency bond excess return is −9.22%,
so the dollar excess return of the slope carry trade is −5.66% (statistically significant, as the bootstrap standard error is 1.73%).
For the same period, the average 12-month currency excess return is 3.06% and the average local currency bond excess return is
−5.83%, resulting in an average dollar excess return of −2.78% (not significant, given a bootstrap standard error of 1.97%).
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C Foreign Bond Returns Across Maturities

This section reports additional results obtained with zero-coupon bonds. We start with the bond risk premia in our benchmark
sample of G10 countries and then turn to a larger set of developed countries. We then show that holding period returns on zero-
coupon bonds, once converted to a common currency (the U.S. dollar, in particular), become increasingly similar as bond maturities
approach infinity.

C.1 Benchmark Countries

Figure A9 reports results for all maturities. The figure shows the local currency bond log excess returns in the top panels, the
currency log excess returns in the middle panels, and the dollar bond log excess returns in the bottom panels. The top panels
show that countries with the steepest local yield curves (Portfolio 3, center) exhibit local bond excess returns that are higher, and
increase faster with maturity, than the flat yield curve countries (Portfolio 1, left). Thus, ignoring the effect of exchange rates,
investors should invest in the short-term and long-term bonds of steep yield curve currencies.

Including the effect of currency fluctuations, by focusing on dollar returns, radically alters the results. The bottom panels of
Figure A9 show that the dollar excess returns of Portfolio 1 are on average higher than those of Portfolio 3 at the short end of the
yield curve, consistent with the carry trade results of Ang and Chen (2010). Yet, an investor who would attempt to replicate the
short-maturity carry trade strategy at the long end of the maturity curve would incur losses on average: the long-maturity excess
returns of flat yield curve currencies are lower than those of steep yield curve currencies, as currency risk premia more than offset
term premia. This result is apparent in the lower panel on the right, which is the same as Figure 2 in the main text.

Figure A10 shows the results when sorting by the level of interest rates. The term structure is flat but not statistically
significantly different from zero at longer horizons. The term structure is flat but not statistically significantly different from zero
at longer horizons: the carry premium is 3.71% per annum (with a standard error of 1.80%), while the local currency 15-year bond
premium is only -0.21% per annum (with a standard error of 1.76%), so the long-maturity dollar bond premium is 3.50% (with a
standard error of 2.32%). Interest rates (in levels) do not predict bond excess returns in the cross-section in the second half of our
sample (see top panels in Figure 1).

C.2 Developed Countries

When we tuning to the entire sample of developed countries, the results are very similar to those attained in our benchmark sample.
An investor who buys the short-term bonds of flat-yield curve currencies and shorts the short-term bonds of steep-yield-curve
currencies realizes a statistically significant dollar excess return of 4.20% per year on average (bootstrap standard error of 1.50%).
However, at the long end of the maturity structure, this strategy generates negative and insignificant excess returns: the average
annualized dollar excess return of an investor who pursues this strategy using 15-year bonds is −2.30% (bootstrap standard error
of 2.49%). Our findings are presented graphically in Figure A11, which shows the local currency bond log excess returns in the
top panels, the currency log excess returns in the middle panels, and the dollar bond log excess returns in the bottom panels as a
function of maturity.
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Figure A9: Dollar Bond Risk Premia Across Maturities— The figure shows the log excess returns on foreign bonds in local
currency in the top panel, the currency excess return in the middle panel, and the log excess returns on foreign bonds in U.S. dollars in the
bottom panel as a function of the bond maturities. The left panel focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the
middle panel reports Portfolio 3 (steep yield curve currencies) excess returns. The middle panels also report the Portfolio 1 excess returns in
dashed lines for comparison. The right panel reports the difference. Data are monthly, from the zero-coupon dataset, and the sample window is
4/1985–12/2015. The unbalanced panel consists of Australia, Canada, Japan, Germany, Norway, New Zealand, Sweden, Switzerland, and the
U.K. The countries are sorted by the slope of their yield curves into three portfolios. The slope of the yield curve is measured by the difference
between the 10-year yield and the 3-month interest rate at date t. The holding period is one quarter. The returns are annualized. The shaded
areas correspond to one standard deviation above and below each point estimate. Standard deviations are obtained by bootstrapping 10,000
samples of non-overlapping returns.
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Sorting on Yield Curve Slope Levels
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Figure A10: Long-Minus-Short Foreign Bond Risk Premia in U.S. Dollars— The figure shows the dollar log excess returns
as a function of the bond maturities. Dollar excess returns correspond to the holding period returns expressed in U.S. dollars of investment
strategies that go long and short foreign bonds of different countries. The unbalanced panel of countries consists of Australia, Canada, Japan,
Germany, Norway, New Zealand, Sweden, Switzerland, and the U.K. At each date t, the countries are sorted by the slope of their yield curves
into three portfolios. The first portfolio contains countries with flat yield curves while the last portfolio contains countries with steep yield
curves. The slope of the yield curve is measured by the difference between the 10-year yield and the 3-month interest rate at date t. The level of
interest rates is measured by the difference between the 10-year yield and the 3-month interest rate at date t.The holding period is one quarter.
The returns are annualized. The dark (light) shaded area corresponds to the 90% (95%) confidence interval. Standard deviations are obtained
by bootstrapping 10,000 samples of non-overlapping returns. Zero-coupon data are monthly, and the sample window is 4/1985–12/2015.
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Figure A11: Dollar Bond Risk Premia Across Maturities: Extended Sample — The figure shows the local currency log
excess returns in the top panel, and the dollar log excess returns in the bottom panel as a function of the bond maturities. The left panel
focuses on Portfolio 1 (flat yield curve currencies) excess returns, while the middle panel reports Portfolio 5 (steep yield curve currencies) excess
returns. The middle panels also report the Portfolio 1 excess returns in dashed lines for comparison. The right panel reports the difference.
Data are monthly, from the zero-coupon dataset, and the sample window is 5/1987–12/2015. The unbalanced sample includes Australia,
Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Hungary, Indonesia, Ireland, Italy, Japan, Malaysia,
Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Singapore, South Africa, Spain, Sweden, Switzerland, and the U.K. The
countries are sorted by the slope of their yield curves into five portfolios. The slope of the yield curve is measured by the difference between
the 10-year yield and the 3-month interest rate at date t. The holding period is one quarter. The returns are annualized. The shaded areas
correspond to one standard deviation above and below each point estimate. Standard deviations are obtained by bootstrapping 10,000 samples
of non-overlapping returns.
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D Dynamic Term Structure Models

This section of the Appendix presents the details of pricing kernel decomposition for four classes of dynamic term structure models.
Condition 1 is a diagnostic tool that can be applied to richer models. We apply it to several reduced-form term structure models,
from the simple one-factor Vasicek (1977) and Cox, Ingersoll, and Ross (1985) models to their multi-factor versions. In order to
save space, we summarize the restrictions implied by Condition 1 in Table A18.

D.1 Vasicek (1977)

In the Vasicek model, the log SDF evolves as:

−mt+1 = y1,t +
1

2
λ2σ2 + λεt+1,

where y1,t denotes the short-term interest rate. It is affine in a single factor:

xt+1 = ρxt + εt+1, εt+1 ∼ N
(
0, σ2)

y1,t = δ + xt.

In this model, xt is the level factor and εt+1 are shocks to the level of the term structure. The Jensen term is there to
ensure that Et (Mt+1) = exp (−y1,t). Bond prices are exponentially affine. For any maturity n, bond prices are equal to

P
(n)
t = exp (−Bn0 −Bn1 xt). The price of the one-period risk-free note (n = 1) is naturally:

P
(1)
t = exp (−y1,t) = exp

(
−B1

0 −B1
1xt
)
,

with B1
0 = δ,B1

1 = 1, where the coefficients satisfy the following recursions:

Bn0 = δ +Bn−1
0 − 1

2
σ2(Bn−1

1 )2 − λBn−1
1 σ2,

Bn1 = 1 +Bn−1
1 ρ.

We first implement the Alvarez and Jermann (2005) approach. The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

Pnt
= lim
n→∞

βt+neB
n
0 +Bn1 xt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
n→∞

Pnt
βn

<∞.

The limit of Bn0 − Bn−1
0 is finite: limn→∞B

n
0 − Bn−1

0 = δ − 1
2
σ2(B∞1 )2 − λB∞1 σ2, where B∞1 is 1/(1 − ρ). As a result, Bn0

grows at a linear rate in the limit. We choose the constant β to offset the growth in Bn0 as n becomes very large. Setting

β = e−δ+
1
2
σ2(B∞1 )2+λB∞1 σ2

guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied. The temporary pricing
component of the pricing kernel is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞
1 (xt+1−xt) = βe

1
1−ρ (ρ−1)xt+

1
1−ρ εt+1 = βe

−xt+ 1
1−ρ εt+1 .

The martingale component of the pricing kernel is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e
xt− 1

1−ρ εt+1−δ−xt− 1
2
λ2σ2−λεt+1 = β−1e

−δ− 1
2
λ2σ2−( 1

1−ρ+λ)εt+1 .

In the case of λ = −B∞1 = − 1
1−ρ , the martingale component of the pricing kernel is constant and all the shocks that affect the

pricing kernel are transitory.
The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = −1

2
σ2(B∞1 )2 − λB∞1 σ2.

The first term is a Jensen term. The risk premium is constant and positive if λ is negative. The SDF is homoskedastic. The
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expected log currency excess return is therefore constant:

Et[−∆st+1] + y∗t − yt =
1

2
V art(mt+1)− 1

2
V art(m

∗
t+1) =

1

2
λσ2 − 1

2
λ∗σ∗2.

When λ = −B∞1 = − 1
1−ρ , the martingale component of the pricing kernel is constant and all the shocks that affect the pricing

kernel are transitory. By using the expression for the bond risk premium in Equation (??), it is straightforward to verify that the
expected log excess return of an infinite maturity bond is in this case:

Et[rx
(∞)
t+1 ] =

1

2
σ2λ2.

We start by examining the case in which each country has its own factor. We assume the foreign pricing kernel has the same
structure, but it is driven by a different factor with different shocks:

− logM∗t+1 = y∗1,t +
1

2
λ∗2σ∗2 + λ∗ε∗t+1,

x∗t+1 = ρx∗t + ε∗t+1, ε∗t+1 ∼ N
(
0, σ∗2

)
y1,t = δ∗ + x∗t .

Equation (??) shows that the expected log currency excess return is constant: Et[rx
FX
t+1] = 1

2
V art(mt+1) − 1

2
V art(m

∗
t+1) =

1
2
λ2σ2 − 1

2
λ2∗σ∗2. In a Vasicek model with country-specific factors, the long bond uncovered return parity holds only if the model

parameters satisfy the following restriction: λ = − 1
1−ρ . Under these conditions, there is no martingale component in the pricing

kernel and the foreign term premium on the long bond expressed in home currency is simply Et[rx
(∗,∞)
t+1 ] = 1

2
λ2σ2. This expression

equals the domestic term premium. The nominal exchange rate is stationary. 9

D.2 Multi-Factor Vasicek Models

Under some conditions, the previous results can be extended to a more k-factor model. The standard k−factor essentially affine
model in discrete time generalizes the Vasicek (1977) model to multiple risk factors. The log SDF is given by:

− logMt+1 = y1,t +
1

2
Λ′tΣΛt + Λ′tεt+1

To keep the model affine, the law of motion of the risk-free rate and of the market price of risk are:

y1,t = δ0 + δ′1xt,

Λt = Λ0 + Λ1xt,

where the state vector (xt ∈ Rk) is:
xt+1 = Γxt + εt+1, εt+1 ∼ N (0,Σ) .

xt is a k × 1 vector, and so are εt+1, δ1, Λt, and Λ0, while Γ, Λ1, and Σ are k × k matrices.10

We assume that the market price of risk is constant (Λ1 = 0), so that we can define orthogonal temporary shocks. We decompose
the shocks into two groups: the first h < k shocks affect both the temporary and the permanent pricing kernel components and
the last k− h shocks are temporary.11 The parameters of the temporary shocks satisfy B∞′1k−h = (Ik−h − Γk−h)−1δ′1k−h = −Λ′0k−h.
This ensures that these shocks do not affect the permanent component of the pricing kernel.

9 Alternatively, we can assume that the single state variable xt is global. In this case, the countries trivially have the same
pricing kernels.

10Note that if k = 1 and Λ1 = 0, we are back to the Vasicek (1977) model with one factor and a constant market price of risk.
The Vasicek (1977) model presented in the first section is a special case where Λ0 = λ, δ′0 = δ, δ′0 = 1 and Γ = ρ.

11A block-diagonal matrix whose blocks are invertible is invertible, and its inverse is a block diagonal matrix (with the inverse of
each block on the diagonal). Therefore, if Γ is block-diagonal and (I − Γ) is invertible, we can decompose the shocks as described
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Now we assume that xt is a global state variable:

− logM∗t+1 = y∗1,t +
1

2
Λ∗′t ΣΛ∗t + Λ∗′t εt+1,

y1,t = δ∗0 + δ∗′1 xt,

Λ∗t = Λ∗0,

xt+1 = Γxt + εt+1, εt+1 ∼ N (0,Σ) .

In a multi-factor Vasicek model with global factors and constant risk prices, long bond uncovered return parity obtains only if
countries share the same Λh and δ1h, which govern exposure to the permanent, global shocks.
This condition eliminates any differences in permanent risk exposure across countries.12 The nominal exchange rate has no perma-

nent component

(
SP
t

SP
t+1

= 1

)
. From equation (??) , the expected log currency excess return is equal to:

Et[rx
FX
t+1] =

1

2
V art(mt+1)− 1

2
V art(m

∗
t+1) =

1

2
Λ′0ΣΛ0 −

1

2
Λ∗′0 ΣΛ∗0.

Non-zero currency risk premia will be only due to variation in the exposure to transitory shocks (Λ∗0k−h).

D.3 Cox, Ingersoll, and Ross (1985) Model

The Cox, Ingersoll, and Ross (1985) model (denoted CIR) is defined by the following two equations:

− logMt+1 = α+ χzt +
√
γztut+1, (14)

zt+1 = (1− φ)θ + φzt − σ
√
ztut+1,

where M denotes the stochastic discount factor. In this model, log bond prices are affine in the state variable z: p
(n)
t = −Bn0 −Bn1 zt.

The price of a one period-bond is: P (1) = Et(Mt+1) = e−α−(χ− 1
2
γ)zt . Bond prices are defined recursively by the Euler equation:

P
(n)
t = Et(Mt+1P

(n−1)
t+1 ). Thus the bond price coefficients evolve according to the following second-order difference equations:

Bn0 = α+Bn−1
0 +Bn−1

1 (1− φ)θ, (15)

Bn1 = χ− 1

2
γ +Bn−1

1 φ− 1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 .

We first implement the Alvarez and Jermann (2005) approach. The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

P
(n)
t

= lim
n→∞

βt+neB
n
0 +Bn1 zt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005):

0 < lim
n→∞

P
(n)
t

βn
<∞.

The limit of Bn0 −Bn−1
0 is finite: limn→∞B

n
0 −Bn−1

0 = α+B∞1 (1−φ)θ, where B∞1 is defined implicitly in a second-order equation
above. As a result, Bn0 grows at a linear rate in the limit. We choose the constant β to offset the growth in Bn0 as n becomes very
large. Setting β = e−α−B

∞
1 (1−φ)θ guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied. The temporary pricing

component of the pricing kernel is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞
1 (zt+1−zt) = βeB

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1].

As a result, the martingale component of the pricing kernel is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1]. (16)

12The terms δ′1 and δ∗′1h do not appear in the single-factor Vasicek (1977) model of the first section because that single-factor
model assumes δ1 = δ∗1h = 1.
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The expected log excess return is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Bn−1

1

)2
σ2 + σ

√
γBn−1

1 ]zt.

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(B∞1 )2 σ2 + σ

√
γB∞1 ]zt,

= [B∞1 (1− φ)− χ+
1

2
γ]zt.

The − 1
2

(B∞1 )2 σ2 is a Jensen term. The term premium is driven by σ
√
γB∞1 zt, where B∞1 is defined implicitly in the second order

equation B∞1 = χ− 1
2
γ +B∞1 φ− 1

2
(B∞1 )2 σ2 + σ

√
γB∞1 .

Consider the special case of B∞1 (1 − φ) = χ. In this case, the expected term premium is simply Et[rx
(∞)
t+1 ] = 1

2
γzt, which is equal

to one-half of the variance of the log stochastic discount factor.
Suppose that the foreign pricing kernel is specified as in Equation (14) with the same parameters. However, the foreign country
has its own factor z∗. As a result, the difference between the domestic and foreign log term premia is equal to the log currency risk
premium, which is given by Et[rx

FX
t+1] = 1

2
γ(zt − z∗t ). In other words, the expected foreign log holding period return on a foreign

long bond converted into U.S. dollars is equal to the U.S. term premium: Et[rx
(∞),∗
t+1 ] + Et[rx

FX
t+1] = 1

2
γzt.

This special case corresponds to the absence of permanent shocks to the pricing kernel: when B∞1 (1 − φ) = χ, the permanent
component of the stochastic discount factor is constant. To see this result, let us go back to the implicit definition of B∞1 in
Equation (16):

0 =
1

2
(B∞1 )2 σ2 + (1− φ− σ√γ)B∞1 − χ+

1

2
γ,

0 =
1

2
(B∞1 )2 σ2 − σ√γB∞1 +

1

2
γ,

0 = (σB∞1 −
√
γ)2 .

In this special case, B∞1 =
√
γ/σ. Using this result in Equation (16), the permanent component of the pricing kernel reduces to:

MP
t+1

MP
t

=
Mt+1

Mt

(
MT
t+1

MT
t

)−1

= β−1e−α−χzt−
√
γztut+1e−B

∞
1 [(φ−1)(zt−θ)−σ

√
ztut+1] = β−1e−α−χθ,

which is a constant.13

Long-Run U.I.P

Result 2. In the two-country CIR model, the transitory component of the exchange rate is given by:

sTt = s0 + (B∞1 (zt − z0)−B∞,∗1 (z∗t − z∗0)) .

When the pricing kernel is not subject to permanent shocks, B∞1 =
√
γ

σ
= χ

1−φ , the exchange rate is stationary and hence st = sTt :

st = s0 +

(
χ

1− φ (zt − z0)− χ∗

1− φ∗ (z∗t − z∗0)

)
.

The expected rate of depreciation is

lim
k→∞

Et[∆st→t+k] =
χ

1− φzt −
χ∗

1− φ∗ z
∗
t = − lim

k→∞
k
(
y

(k)
t − y

(k),∗
t

)
.

Long-run U.I.P. holds for all transitory shocks the pricing kernel: the long-run response of the exchange rate to transitory
innovations equals the response of the long rate today, and hence this response can be read off the yield curve.

13 Alternatively, we assume that all the shocks are global and that zt is a global state variable (and thus σ = σ∗, φ = φ∗, θ = θ∗).
Condition 1 requires that: √

γ +B∞1 σ =
√
γ∗ +B∞∗1 σ

Note that B∞1 depends on χ and γ, as well as on the global parameters φ and σ. The two countries have perfectly correlated pricing
kernels.
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Our analysis sheds light on the recent empirical findings of Engel (2016), Valchev (2016), and Dahlquist and Penasse (2016).
Engel (2016) finds that an increase in the short-term interest rate initially cause exchange rates to appreciate, but they subsequently
depreciate on average. Because the risk premia on long bonds are equalized, shocks to the quantity or price of risk (e.g., an increase
in risk aversion) cannot have long-run effects; long-run U.I.P. holds for these shocks. As a result, our preference-free condition
constrains the long-run response of exchange rates to transitory shocks to be equal to the instantaneous response of long-term
interest rates. For example, countries which have experienced an adverse transitory shock, with higher than average long-term
interest rates, always have stronger currencies (the level of the exchange rate is temporarily high), because their exchange rates are
expected to revert back to the mean and depreciate in the long run by the long run interest rate difference (see Dornbusch, 1976;
Frankel, 1979, for early contributions on the relation between the level of the exchange rate and interest rates). Thus, an increase
in a country’s short and long interest rates which causes an appreciation in the short run has to be more than offset by future
depreciations.

To develop some intuition, consider a symmetric version of the two-country CIR model in which the 2 countries share all of
the parameters. The restrictions B∞1 =

√
γ

σ
= χ

1−φ have a natural interpretation as restrictions on the long-run loadings of the

exchange rate on the risk factors:
∑∞
i=1 Et[∆st+i] =

∑∞
i=1 Et[mt+i −m∗t+i] =

∑∞
i=1 φ

i−1χ(z∗t − zt). As can easily be verified, these
two restrictions imply that the long-run loading of the exchange rate on the factors equals the loading of long-term interest rates:

lim
k→∞

Et[∆st→t+k] =
χ

(1− φ)
(z∗t − zt) = lim

k→∞
k
(
y

(k),∗
t − y(k)

t

)
.

Hence, in the context of this model, our restrictions enforce long-run U.I.P. An increase in risk abroad causes the long rates to go
up abroad and the foreign exchange rate to depreciate in the long run, but given these long-run restrictions, the initial expected
exchange rate impact has to have the same sign (χ > 0), thus violating the empirical evidence, as we explain below.

Our preference-free conditions constrains the sum of slope regression coefficients in a regression of future exchange rate changes
∆st+i on the current interest rate spread rf,$,∗t − rf,$t to be equal to the response of long-term interest rates. Engel (2016), Valchev
(2016), and Dahlquist and Penasse (2016) study these slope coefficients and find that they switch signs with the horizon i: an
increase in the short-term interest rate initially cause exchange rates to appreciate, but they subsequently depreciate on average.

Result 3. In the symmetric two-country CIR model without permanent shocks B∞1 =
√
γ

σ
= χ

1−φ , the slope coefficients in a

regression of ∆st+i on the rf,$,∗t − rf,$t , given by φi−1χ

χ− 1
2
γ

decline geometrically as i increases, and their infinite sum equals
B∞1
χ− 1

2
γ

.

When (χ − 1
2
γ) < 0, the model can match the short-run forward premium puzzle: when the foreign short rate increases, the

currency subsequently appreciates, but it continues to appreciate as long rates decline abroad. As a result, this model cannot match
the sign switch in these regression coefficients. A richer version of the factor model with multiple country-specific risk factors can
generate richer dynamics.Consider the same model with two country-specific risk factors. The long-run impulse responses of the
exchange rate to short-term interest rate shocks is driven by:

∞∑
i=1

Et[∆st+i] =

∞∑
i=1

Et[mt+i −m∗t+i] =

∞∑
i=1

[
φi−1

1 χ1(z1,∗
t − z

1
t ) + φi−1

2 χ2(z2,∗
t − z

2
t )
]
.

The slope coefficients in a regression of future exchange rate changes on the current interest rate spread rf,$,∗t − rf,$t are given by

Et∆st+i =
φi−1

1 χ1(χ1 − 1
2
γ1) + φi−1

2 χ2(χ2 − 1
2
γ2)

(χ1 − 1
2
γ1)2 + (χ2 − 1

2
γ2)2

(
rf,$,∗t − rf,$t

)
.

These coefficients can switch signs as we increase the maturity i if the risk factors have sufficiently heterogeneous persistence
(φ1, φ2), and provided that (χ1 − 1

2
γ1) and (χ2 − 1

2
γ2) have opposite signs.

D.4 Gaussian Dynamic Term Structure Models

The k−factor heteroskedastic Gaussian Dynamic Term Structure Model (DTSM) generalizes the CIR model. When market prices
of risk are constant, the log SDF is given by:

−mt+1 = y1,t +
1

2
Λ′V (xt)Λ + Λ′V (xt)

1/2εt+1,

xt+1 = Γxt + V (xt)
1/2εt+1, εt+1 ∼ N (0, I) ,

y1,t = δ0 + δ′1xt,
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where V (x) is a diagonal matrix with entries Vii(xt) = αi + β′ixt. To be clear, xt is a k × 1 vector, and so are εt+1, Λ, δ1, and βi.
But Γ and V are k× k matrices. A restricted version of the model would impose that βi is a scalar and Vii(xt) = αi + βixit— this
is equivalent to assuming that the price of shock i only depends on the state variable i.
The price of a one period-bond is:

P
(1)
t = Et(Mt+1) = e−δ0−δ

′
1xt .

For any maturity n, bond prices are exponentially affine, P
(n)
t = exp (−Bn0 −Bn′1 xt). Note that Bn0 is a scalar, while Bn1 is a k × 1

vector. The one period-bond corresponds to B1
0 = δ0, B′1 = δ′1, and the bond price coefficients satisfy the following difference

equation:

Bn0 = δ0 +Bn−1
0 − 1

2
Bn−1′

1 V (0)Bn−1
1 − Λ′V (0)Bn−1

1 ,

Bn′1 = δ′1 +Bn−1′
1 Γ− 1

2
Bn−1′

1 VxB
n−1
1 − Λ′VxB

n−1
1 ,

where Vx denotes all the diagonal slope coefficients βi of the V matrix.
The CIR model studied in the previous pages is a special case of this model. It imposes that k = 1, σ = −

√
β, and Λ = − 1

σ

√
γ.

Note that the CIR model has no constant term in the square root component of the log SDF, but that does not imply V (0) = 0
here as the CIR model assumes that the state variable has a non-zero mean (while it is zero here).
From there, we can define the Alvarez and Jermann (2005) pricing kernel components as for the Vasicek model. The limit of
Bn0 −Bn−1

0 is finite: limn→∞B
n
0 −Bn−1

0 = δ0− 1
2
B∞′1 V (0)B∞1 −Λ′0V (0)B∞1 , where B∞′1 is the solution to the second-order equation

above. As a result, Bn0 grows at a linear rate in the limit. We choose the constant β to offset the growth in Bn0 as n becomes very

large. Setting β = e−δ0+ 1
2
B∞′1 V (0)B∞1 +Λ′V (0)B∞1 guarantees that Assumption 1 in Alvarez and Jermann (2005) is satisfied. The

temporary pricing component of the pricing kernel is thus equal to:

ΛT
t+1

ΛT
t

= βeB
∞′
1 (xt+1−xt) = βeB

∞′
1 (Γ−1)xt+B

∞′
1 V (xt)

1/2εt+1 .

The martingale component of the pricing kernel is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−B
∞
1 (Γ−1)xt−B∞′1 V (xt)

1/2εt+1−y1,t− 1
2

Λ′V (xt)Λt−Λ′V (xt)
1/2εt+1

= β−1e−B
∞
1 (Γ−1)xt−δ0−δ′1xt−

1
2

Λ′V (xt)Λ−(Λ′+B∞′1 )V (xt)
1/2εt+1 .

For the martingale component to be constant, we need that Λ′ = −B∞′1 and B∞1 (Γ− 1) + δ′1 + 1
2
Λ′VxΛ = 0. Note that the second

condition is automatically satisfied if the first one holds: this result comes from the implicit value of B∞′1 implied by the law of
motion of B1. As a result, the martingale component is constant as soon as Λ = −B∞1 .
The expected log holding period excess return is:

Et[rx
(n)
t+1] = −δ0 +

(
−Bn−1′

1 Γ +Bn′1 − δ′1
)
xt.

The term premium on an infinite-maturity bond is therefore:

Et[rx
(∞)
t+1 ] = −δ0 +

(
(1− Γ)B∞′1 − δ′1

)
xt.

The expected log currency excess return is equal to:

Et[−∆st+1] + y∗t − yt =
1

2
V art(mt+1)− 1

2
V art(m

∗
t+1) =

1

2
Λ′V (xt)Λ−

1

2
Λ∗′V (x∗t )Λ

∗.

We assume that all the shocks are global and that xt is a global state variable (Γ = Γ∗ and V = V ∗, no country-specific parameters
in the V matrix— cross-country differences will appear in the vectors Λ). Let us decompose the shocks into two groups: the first
h < k shocks affect both the temporary and the permanent pricing kernel components and the last k − h shocks are temporary.
Temporary shocks are such that Λk−h = −B∞1,k−h (i.e., they do not affect the value of the permanent component of the pricing
kernel).
The risk premia on the domestic and foreign infinite-maturity bonds (once expressed in the same currency) will be the same provided
that the entropy of the domestic and foreign permanent components is the same:

(Λ′h +B∞′1h )V (0)(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )V (0)(Λ∗h +B∞∗1h ),

(Λ′h +B∞′1h )Vx(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )Vx(Λ∗h +B∞∗1h ).
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To compare these conditions to the results obtained in the one-factor CIR model, recall that σCIR = −
√
β, and Λ = − 1

σCIR

√
γCIR.

Differences in Λh in the k-factor model are equivalent to differences in γ in the CIR model: in both cases, they correspond to
different loadings of the log SDF on the “permanent” shocks. As in the CIT model, differences in term premia can also come form
differences in the sensitivity of infinite-maturity bond prices to the global “permanent” state variable (B∞′1h ), which can be traced
back to differences in the sensitivity of the risk-free rate to the “permanent” state variable (i.e., different δ1 parameters).
Let us start with the special case of no permanent innovations: h = 0, the martingale component is constant. Two conditions
need to be satisfied for the martingale component to be constant: Λ′ = −B∞′1 and B∞1 (Γ − 1) + δ′1 + 1

2
Λ′VxΛ = 0. The second

condition imposes that the cumulative impact on the pricing kernel of an innovation today given by
(
δ′1 + 1

2
Λ′VxΛ

)
(1−Γ)−1 equals

the instantaneous impact of the innovation on the long bond price. The second condition is automatically satisfied if the first one
holds, as can be verified from the implicit value of B∞′1 implied by the law of motion of B1. As a result, the martingale component
is constant as soon as Λ = −B∞1 .
As implied by Equation (??), the term premium on an infinite-maturity zero coupon bond is:

Et[rx
(∞)
t+1 ] = −δ0 +

(
(1− Γ)B∞′1 − δ′1

)
xt. (17)

In the absence of permanent shocks, when Λ = −B∞1 , this log bond risk premium equals half of the stochastic discount factor
variance Et[rx

(∞)
t+1 ] = 1

2
Λ′V (xt)Λ; it attains the upper bound on log risk premia. Consistent with the result in Equation (??), the

expected log currency excess return is equal to:

Et
[
rxFXt+1

]
=

1

2
Λ′V (xt)Λ−

1

2
Λ∗′V (xt)Λ

∗. (18)

Differences in the market prices of risk Λ imply non-zero currency risk premia. Adding the previous two expressions in Equations
(17) and (18), we obtain the foreign bond risk premium in dollars. The foreign bond risk premium in dollars equals the domestic

bond premium in the absence of permanent shocks: Et
[
rx

(∞),∗
t+1

]
+ Et

[
rxFXt+1

]
= 1

2
Λ′V (xt)Λ.

In general, there is a spread between dollar returns on domestic and foreign bonds. We describe a general condition for long-run
uncovered return parity in the presence of permanent shocks. In a GDTSM with global factors, the long bond uncovered return
parity condition holds only if the countries’ SDFs share the parameters Λh = Λ∗h and δ1h = δ∗1h, which govern exposure to the
permanent global shocks.
The log risk premia on the domestic and foreign infinite-maturity bonds (once expressed in the same currency) are identical provided
that the entropies of the domestic and foreign permanent components are the same:

(Λ′h +B∞′1h )V (0)(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )V (0)(Λ∗h +B∞∗1h ),

(Λ′h +B∞′1h )Vx(Λh +B∞1h) = (Λ∗′h +B∗∞′1h )Vx(Λ∗h +B∞∗1h ).

These conditions are satisfied if that these countries share Λh = Λ∗h and δ1h = δ∗1h which govern exposure to the global shocks. In
this case, the expected log currency excess return is driven entirely by differences between the exposures to transitory shocks: Λk−h
and Λ∗k−h. If there are only permanent shocks (h = k), then the currency risk premium is zero.14

D.5 An Example: A Reduced-Form Factor Model

This section provides details on the properties of bond and currency premia in the Lustig, Roussanov, and Verdelhan (2014) model.
We now turn to a flexible N -country, reduced-form model that can both replicate the deviations from U.I.P. and generate large
currency carry trade returns on currency portfolios. To replicate the portfolio evidence, as Lustig, Roussanov, and Verdelhan
(2011) show, no arbitrage models need to incorporate global shocks to the SDFs along with country heterogeneity in the exposure
to those shocks. Following Lustig, Roussanov, and Verdelhan (2014), we consider a world with N countries and currencies in a
setup inspired by classic term structure models.15 In the model, the risk prices associated with country-specific shocks depend only
on country-specific factors, but the risk prices of world shocks depend on world and country-specific factors. To describe these risk

14To compare these conditions to the results obtained in the CIR model, recall that we have constrained the parameters in the
CIR model such that: σCIR = −

√
β, and Λ = − 1

σCIR

√
γCIR. Differences in Λh in the k-factor model are equivalent to differences

in γ in the CIR model: in both cases, they correspond to different loadings of the log pricing kernel on the “permanent” shocks.
Differences in term premia can also come form differences in the sensitivity of the risk-free rate to the permanent state variable
(i.e., different δ1 parameters). These correspond to differences in χ in the CIR model.

15In the Online Appendix, we cover a wide range of term structure models, from the seminal Vasicek (1977) model to the classic
Cox, Ingersoll, and Ross (1985) model and to the most recent, multi-factor dynamic term structure models. To save space, we focus
here on their most recent international finance version, illustrated in Lustig, Roussanov, and Verdelhan (2014).
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prices, the authors introduce a common state variable zwt , shared by all countries, and a country-specific state variable zit. The
country-specific and world state variables follow autoregressive square-root processes:

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1.

Lustig, Roussanov, and Verdelhan (2014) assume that in each country i, the logarithm of the real SDF m̃i follows a three-factor
conditionally Gaussian process:

−m̃i
t+1 = α+ χzit +

√
γzitu

i
t+1 + τzwt +

√
δizwt u

w
t+1 +

√
κzitu

g
t+1,

where uit+1 is a country-specific SDF shock, while uwt+1 and ugt+1 are common to all countries’ SDFs. All three innovations are i.i.d.
Gaussian, with zero mean and unit variance. To be parsimonious, Lustig, Roussanov, and Verdelhan (2014) limit the heterogeneity
in the SDF parameters to the different loadings δi on the world shock uwt+1; all the other parameters are identical for all countries.
Therefore, the model is a restricted version of the multi-factor dynamic term structure models, and there exist closed form solutions
for bond yields and risk premia.

There are two types of common shocks. The first type, uwt+1, is priced proportionally to country exposure δi, and since δi

is a fixed characteristic of country i, differences in such exposure are permanent. The second type, ugt+1, is priced proportionally
to zit, so heterogeneity with respect to this innovation is transitory: all countries are equally exposed to this shock on average,
but conditional exposures vary over time and depend on country-specific economic conditions. Finally, the real risk-free rate is
r̃f,it = α+

(
χ− 1

2
(γ + κ)

)
zit +

(
τ − 1

2
δi
)
zwt .

Country i’s inflation process is given by πit+1 = π0 + ηwzwt + σπε
i
t+1, where the inflation innovations εit+1 are i.i.d. Gaussian.

It follows that the log nominal risk-free rate in country i is given by rf,it = π0 + α+
(
χ− 1

2
(γ + κ)

)
zit +

(
τ + ηw − 1

2
δi
)
zwt − 1

2
σ2
π.

The nominal bond prices in logs are affine in the state variable z and zw: p
(n),i
t = −Cn,$,i0 − Cn,$1 zt − Cn,$,i2 zwt , where the loadings

(Cn,$,i0 , Cn,$1 , Cn,$,i0 ) are defined in the Appendix. Equation (7) implies that the foreign currency risk premium is given by:

Et(rx
FX,i
t+1 ) = −1

2
(γ + κ)(zit − zt) +

1

2
(δ − δi)zwt .

Investors obtain high foreign currency risk premia when investing in currencies with relative small exposure to the two global shocks.
That is the source of short-term carry trade risk premia.

SDF Decomposition The log nominal bond prices are affine in the state variable z and zw: p
i,(n)
t = −Ci,n0 −Cn1 zt−C

i,n
2 zwt .

To calculate the parameter set (Ci,n0 , Ci,n1 , Ci,n2 ), we follow the usual recursive process. In particular, the price of a one-period
nominal bond is:

P i,(1) = Et(M
i
t+1) = Et

(
e−α−χzt−τz

w
t −
√
γzitu

i
t+1−
√
δizwt u

w
t+1−
√
κzitu

g
t+1−π0−ηwzwt −σπε

i
t+1

)
.

As a result, C1
0 = α+ π0 − 1

2
σ2
π, C1

1 = χ− 1
2
(γ + κ), and Ci,12 = τ − 1

2
δi + ηw.

The rest of the bond prices are calculated recursively using the Euler equation: P
i,(n)
t = Et(M

i,$
t+1P

i,(n−1)
t+1 ). This leads to the

following difference equations:

−Ci,n0 − Cn1 zt − Ci,n2 zwt = −α− χzt − τzwt − Cn−1
0 − Cn−1

1 [(1− φ)θ + φzt]− Ci,n−1
2 [(1− φw)θw + φwzwt ]

+
1

2
(γ + κ)zt +

1

2

(
Cn−1

1

)2
σ2zt − σ

√
γCn−1

1 zt

+
1

2
δizwt +

1

2

(
Ci,n−1

2

)2

(σw)2 zwt − σw
√
δiCi,n−1

2 zwt

− π0 − ηwzwt +
1

2
σ2
π

Solving the equations above, we recover the set of bond price parameters:

Ci,n0 = α+ π0 −
1

2
σ2
π + Cn−1

0 + Cn−1
1 (1− φ)θ + Ci,n−1

2 (1− φw)θw,

Cn1 = χ− 1

2
(γ + κ) + Cn−1

1 φ− 1

2

(
Cn−1

1

)2
σ2 + σ

√
γCn−1

1

Ci,n2 = τ − 1

2
δi + ηw + Ci,n−1

2 φw − 1

2

(
Ci,n−1

2

)2

(σw)2 + σw
√
δiCi,n−1

2 .
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The temporary pricing component of the pricing kernel is:

ΛT
t = lim

n→∞

βt+n

Pnt
= lim
n→∞

βt+neC
i,n
0 +Cn1 zt+C

i,n
2 zwt ,

where the constant β is chosen in order to satisfy Assumption 1 in Alvarez and Jermann (2005): 0 < limn→∞
Pnt
βn

< ∞. The
temporary pricing component of the SDF is thus equal to:

ΛT
t+1

ΛT
t

= βeC
∞
1 (zt+1−zt)+C

i,∞
2 (zwt+1−z

w
t ) = βe

C∞1

[
(φ−1)(zit−θ)−σ

√
zitu

i
t+1

]
+C

i,∞
2 [(φw−1)(zwt −θ

w)−σ
√
zwt u

w
t+1].

The martingale component of the SDF is then:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−α−χz
i
t−
√
γzitu

i
t+1−τz

w
t −
√
δizwt u

w
t+1−
√
κzitu

g
t+1

e
C∞1

[
(φ−1)(zit−θ)−σ

√
zitu

i
t+1

]
+C

i,∞
2 [(φw−1)(zwt −θ

w)−σ
√
zwt u

w
t+1].

As a result, we need χ = C∞1 (1−φ) to make sure that the country-specific factor does not contribute a martingale component. This
special case corresponds to the absence of permanent shocks to the SDF: when C∞1 (1−φ) = χ and κ = 0, the permanent component
of the stochastic discount factor is constant. To see this result, let us go back to the implicit definition of B∞1 in Equation (16):

0 = −1

2
(γ + κ)− 1

2
(C∞1 )2 σ2 + σ

√
γC∞1

0 = (σC∞1 −
√
γ)2 ,

where we have imposed κ = 0. In this special case, C∞1 =
√
γ/σ. Using this result in Equation (16), the permanent component of

the SDF reduces to:

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= β−1e−τz
w
t −
√
δizwt u

w
t+1eC

i,∞
2 [(φw−1)(zwt −θ

w)−σ
√
zwt u

w
t+1].

Bond Premia The expected log excess return on a zero coupon bond is thus given by:

Et[rx
(n)
t+1] = [−1

2

(
Cn−1

1

)2
σ2 + σ

√
γCn−1

1 ]zt + [−1

2

(
Ci,n−1

2

)2

σ2 + σ
√
δ
i
Ci,n−1

2 ]zwt .

The expected log excess return of an infinite maturity bond is then:

Et[rx
(∞)
t+1 ] = [−1

2
(C∞1 )2 σ2 + σ

√
γC∞1 ]zt + [−1

2

(
Ci,∞2

)2

σ2 + σ
√
δ
i
Ci,∞2 ]zwt .

The − 1
2

(C∞1 )2 σ2 is a Jensen term. The term premium is driven by σ
√
γC∞1 zt, where C∞1 is defined implicitly in the second

order equation B∞1 = χ − 1
2
(γ + κ) + C∞1 φ − 1

2
(C∞1 )2 σ2 + σ

√
γC∞1 . Consider the special case of C∞1 (1 − φ) = χ and κ = 0 and

Ci,∞2 (1 − φ) = τ . In this case, the expected term premium is simply Et[rx
(∞)
t+1 ] = 1

2
(γzt + δzwt ), which is equal to one-half of the

variance of the log stochastic discount factor.

Currency Premia The expected log excess return of the infinite maturity bond of country i is:

Et[rx
(∞),i
t+1 ] =

[
C∞1 (1− φ)− χ+

1

2
(γ + κ)

]
zit +

[
Ci,∞2 (1− φw)− τ +

1

2
δi − ηw

]
zwt .

The foreign currency risk premium is given by:

Et[rx
FX,i
t+1 ] = −1

2
(γ + κ)(zit − zt) +

1

2
(δ − δi)(zwt ).

Investors obtain high foreign currency risk premia when investing in currencies whose exposure to the global shocks is smaller. That
is the source of short-term carry trade risk premia. The foreign bond risk premium in dollars is simply given by the sum of the two
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expressions above:

Et[rx
(∞),i
t+1 ] + Et[rx

FX,i
t+1 ] =

[
1

2
(γ + κ)zt + (C∞1 (1− φ)− χ)zit

]
+

[
1

2
δ + Ci,∞2 (1− φw)− τ − ηw

]
zwt .

Simulation Results We simulate the Lustig, Roussanov, and Verdelhan (2014) model, obtaining a panel of T = 33, 600
monthly observations and N = 30 countries. The calibration parameters are reported in Table A19 and the simulation results in
Table A20. Each month, the 30 countries are ranked by their interest rates (Section I) or by the slope of the yield curves (Section II)
into six portfolios. Low interest rate currencies on average have higher exposure δ to the world factor. As a result, these currencies
appreciate in case of an adverse world shock. Long positions in these currencies earn negative excess returns rxfx of -4.09% on
average per annum. On the other hand, high interest rate currencies typically have high δ. Long positions in these currencies earn
positive excess returns (rxFX) of 2.35% on average per annum. At the short end, the carry trade strategy, which goes long in the
sixth portfolio and short in the first one, delivers an excess return of 6.45% and a Sharpe ratio of 0.54.

This spread is not offset by higher local currency bond risk premia in the low interest rate countries with higher δ. The log
excess return on the 30-year zero coupon bond is 0.67% in the first portfolio compared to 0.97 % in the last portfolio. At the 30-year
maturity, the high-minus-low carry trade strategy still delivers a profitable excess return of 6.75% and a Sharpe ratio of 0.50. This
large currency risk premium at the long end of the curve stands in stark contrast to the data. Similar results obtain when sorting
countries by the slopes of their yield curves. Countries with flat yield curves tend to be countries with high short-term interest
rates, while countries with steep yield curves tend to be countries with low short-term interest rates. As a result, the currency
carry trade is long the last portfolio in Section II and short the first portfolio. At the 30-year maturity, the carry trade strategy
still delivers a profitable excess return of 6.18% and a Sharpe ratio of 0.46.

Our theoretical results help explain the shortcomings of this simulation. In the Lustig, Roussanov, and Verdelhan (2014)
calibration, the conditions for long run bond parity are not satisfied. First, global shocks have permanent effects in all countries,
because Ci,∞2 (1−φw) < τ + ηw for all i = 1, . . . , 30. Second, the global shocks are not symmetric, because δ varies across countries.
The heterogeneity in δ’s across countries generates substantial dispersion in exposure to the permanent component. As a result,
our long-run uncovered bond parity condition is violated.

Finally, the Lustig, Roussanov, and Verdelhan (2014) model has country-specific and common shocks and carry trade risk
premia arise from asymmetric exposures to global shocks. If the entropy of the permanent SDF component cannot differ across
countries, then all countries’ pricing kernels need the same loadings on the permanent component of the global factors. In the
Lustig, Roussanov, and Verdelhan (2014) model, the permanent component of the SDF is given by:

log
ΛP
t+1

ΛP
t

= log β−1 − α− χzit −
√
γzitu

i
t+1 − τzwt −

√
δizwt u

w
t+1 −

√
κzitu

g
t+1

C∞,$1

[
(φ− 1)(zit − θ)− σ

√
zitu

i
t+1

]
+ C∞,$,i2

[
(φw − 1)(zwt − θw)− σ

√
zwt u

w
t+1

]
.

The U.S. term premium is simply Et[rx
(∞)
t+1 ] = 1

2
(γzt+ δzwt ), which is equal to one-half of the variance of the log stochastic discount

factor. The foreign long bond risk premium in dollars is then simply:

Et[rx
(∞),∗
t+1 ] + Et[rx

FX,∗
t+1 ] =

[
1

2
(γ + κ)zt + (C∞,$1 (1− φ)− χ)z∗t

]
+

[
1

2
δ + C∞,$,∗2 (1− φw)− τ − ηw

]
zwt ,

where C∞,$1 , C∞,$2 represent the loadings of the nominal long rates on the two factors. Condition 1 thus holds if C∞,$1 (1− φ) = χ,

κ = 0, and C∞,$,∗2 (1− φw) = τ + ηw. The first two restrictions rule out permanent effects of country-specific shocks, while the last
restriction rules out permanent effects of global shocks (uw). When these restrictions are satisfied, the pricing kernel is not subject
to permanent shocks, and the expected foreign log holding period return on a foreign long-term bond converted into U.S. dollars is
equal to the U.S. term premium: Et[rx

(∞),∗
t+1 ] +Et[rx

FX,∗
t+1 ] = 1

2
(γzt + δzwt ). The higher foreign currency risk premium for investing

in high δ countries is exactly offset by the lower bond risk premium. As all these models show, Proposition 1 and Condition 1 offer
a simple diagnostic to assess the term structure of currency carry trade risk premia in no-arbitrage models.

The restrictions C∞,$1 (1 − φ) = χ, κ = 0, and C∞,$,∗,2 (1 − φw) = τ + ηw have a natural interpretation as restrictions on the
long-run loadings of the exchange rate on the risk factors:

∑∞
i=1 Et[∆st+i] =

∑∞
i=1 Et[mt+i−m∗t+i] =

∑∞
i=1 φ

i−1χ(z∗t − zt). As can
easily be verified, these two restrictions imply that the long-run loading of the exchange rate on the factors equals the loading of
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Table A19: Parameter Estimates

Stochastic discount factor

α (%) χ τ γ κ δ

0.76 0.89 0.06 0.04 2.78 0.36

State variable dynamics

φ θ (%) σ (%) φw θw (%) σw (%)

0.91 0.77 0.68 0.99 2.09 0.28

Inflation dynamics Heterogeneity

ηw π0 (%) σπ (%) δh δl

0.25 −0.31 0.37 0.22 0.49

Implied SDF dynamics

E(Stdt(m̃)) Std(Stdt(m̃)) (%) E(Corr(m̃t+1, m̃
i
t+1)) Std(z) (%) Std(zw) (%)

0.59 4.21 0.98 0.50 1.32

Notes: This table reports the parameter values for the estimated version of the model. The model is defined by the following set of equations:

−m̃it+1 = α+ χzit +
√
γzitu

i
t+1 + τzwt +

√
δizwt u

w
t+1 +

√
κzitu

g
t+1,

zit+1 = (1− φ)θ + φzit − σ
√
zitu

i
t+1,

zwt+1 = (1− φw)θw + φwzwt − σw
√
zwt u

w
t+1,

πit+1 = π0 + ηwzwt + σπε
i
t+1.

All countries share the same parameter values except for δi, which is distributed uniformly on [δh, δl]. The home country exhibits the average
δ, which is equal to 0.36.
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Table A20: Simulated Excess Returns on Carry Strategies in the Lustig, Roussanov, and Verdelhan (2014)
Model

Low 2 3 4 5 High

Section I: Sorting by Interest Rate Levels

Panel A: Exchange Rates, Interest Rates, and Bond Returns

∆s 1.93 0.79 0.44 0.06 −0.16 −0.85

σ∆s 11.04 9.55 9.06 8.98 9.02 9.54

rf,∗ − rf −2.16 −1.21 −0.63 −0.10 0.43 1.50

rx(30),∗ 0.67 0.75 0.79 0.89 0.93 0.97

Panel B: Carry Returns with Short-Term Bills

rxFX −4.09 −2.00 −1.06 −0.16 0.59 2.35

Panel C: Carry Returns with Long-Term Bonds

rx(30),$ −3.42 −1.25 −0.27 0.72 1.52 3.33

Section II: Sorting by Interest Rate Slopes

Panel A: Exchange Rates, Interest Rate Slopes, and Bond Returns

∆s −2.06 −1.12 −0.49 −0.03 0.50 1.92

σ∆s 11.35 9.60 8.97 8.84 8.95 9.93

y10 − y1/4 −0.87 −0.42 −0.13 0.12 0.38 1.03

rx(30),∗ 0.87 0.87 0.86 0.87 0.86 0.84

Panel B: Carry Returns with Short-Term Bills

rxFX 3.23 1.78 0.83 0.08 −0.76 −2.92

Panel C: Carry Returns with Long-Term Bonds

rx(30),$ 4.09 2.65 1.69 0.94 0.11 −2.09

Notes: The table reports summary statistics on simulated data from the Lustig, Roussanov, and Verdelhan (2014) model. Data are obtained
from a simulated panel with T = 33, 600 monthly observations and N = 30 countries. In Section I, countries are sorted by interest rates into
six portfolios. In Section II, they are sorted by the slope of their yield curves (defined as the difference between the 10-year yield and the
three-month yield). In each section, Panel A reports the average change in exchange rate (∆s), the average interest rate difference (rf,∗ − rf )
(or the average slope, y10− y1/4), the average foreign bond excess returns for bonds of 30-year maturities in local currency (rx(30),∗). Panel B
reports the average log currency excess returns (rxFX). Panel C reports the average foreign bond excess returns for bonds of 30-year maturities
in home currency (rx(30),$). The moments are annualized.
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long-term interest rates:

lim
k→∞

Et[∆st→t+k] =
χ

(1− φ)
(z∗t − zt) = C∞,$1 (z∗t − zt) = lim

k→∞
k
(
y

(k),∗
t − y(k)

t

)
,

where we have used C∞,$2 = C∞,$,∗2 = τ + ηw. Hence, in the context of this model, our restrictions enforce long-run U.I.P.16 In this
special case, χ

(1−φ)
= C∞1 =

√
γ/σ > 0. An increase in risk abroad causes the long rates to go up abroad and the foreign exchange

rate to depreciate in the long run, but given these long-run restrictions, the initial expected exchange rate impact has to have the
same sign (χ > 0), thus violating the empirical evidence, as we explain below.

Our preference-free conditions constrains the sum of slope regression coefficients in a regression of future exchange rate changes
∆st+i on the current interest rate spread rf,$,∗t − rf,$t to be equal to the response of long-term interest rates. Engel (2016), Valchev
(2016), and Dahlquist and Penasse (2016) study these slope coefficients and find that they switch signs with the horizon i: an
increase in the short-term interest rate initially cause exchange rates to appreciate, but they subsequently depreciate on average.
In the factor model with a single country-specific factor, these slope coefficients in a regression of ∆st+i on the rf,$,∗t − rf,$t , given
by

Et∆st+i =
φi−1χ

χ− 1
2
γ

(
rf,$,∗t − rf,$t

)
,

decline geometrically as i increases, and their infinite sum equals
C∞1
χ− 1

2
γ

. When (χ− 1
2
γ) < 0, the model can match the short-run

forward premium puzzle: when the foreign short rate increases, the currency subsequently appreciates, but it continues to appreciate
as long rates decline abroad. As a result, this model cannot match the sign switch in these regression coefficients. A richer version
of the factor model with multiple country-specific risk factors can generate richer dynamics. Consider the same model with two
country-specific risk factors. The long-run impulse responses of the exchange rate to short-term interest rate shocks is driven by:

∞∑
i=1

Et[∆st+i] =

∞∑
i=1

Et[mt+i −m∗t+i] =

∞∑
i=1

[
φi−1

1 χ1(z1,∗
t − z

1
t ) + φi−1

2 χ2(z2,∗
t − z

2
t )
]
.

The slope coefficients in a regression of future exchange rate changes on the current interest rate spread rf,$,∗t − rf,$t are given by

Et∆st+i =
φi−1

1 χ1(χ1 − 1
2
γ1) + φi−1

2 χ2(χ2 − 1
2
γ2)

(χ1 − 1
2
γ1)2 + (χ2 − 1

2
γ2)2

(
rf,$,∗t − rf,$t

)
.

These coefficients can switch signs as we increase the maturity i if the risk factors have sufficiently heterogeneous persistence
(φ1, φ2), and provided that (χ1 − 1

2
γ1) and (χ2 − 1

2
γ2) have opposite signs.

16When all innovations have an impact on risk, as is the case in this model, Condition 1 rules out permanent shocks.
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E Structural Dynamic Asset Pricing Models

This section of the Appendix presents the details of pricing kernel decomposition for three classes of structural dynamic asset pricing
models equilibrium models: models with external habit formation, models with long run risks, and models with rare disasters. In a
nutshell, among the reduced-form term structure models we consider, Condition 1 implies novel parameter restrictions for all models
(and in some cases, it rules out all permanent shocks or the time-variation in the price of risk). In the habit model with common
shocks, the carry trade risk premia and Condition 1 imply that countries exhibit the same risk-aversion and the same volatility
of consumption growth shocks but differ in the persistences of their habit levels. The long-run risk models satisfy Condition 1
only with common shocks and for knife-edge parameter values. For the disaster risk models, common shocks are also necessary for
Condition 1 to hold and the downward term structure of carry trade risk premia implies heterogeneity in the rate of time preference,
the rate of depreciation, or the country-specific growth rate, but no heterogeneity in the coefficient of risk aversion, the common
and country-specific consumption drops in case of a disaster, and the probability of a disaster. In order to save space, we summarize
the implications of Condition 1 in Table A21.

Table A21: Long-Run Risk-Neutrality: Dynamic Asset Pricing Model Scorecard

Symmetric Model Asymmetric Model
with Country-specific Shocks with Common Shocks

External Habit Model X XOnly Heterogeneity in φ
No Heterogeneity in (γ, σ2)

Long Run Risks Model No Only Knife-edge cases

Disaster Model No XOnly Heterogeneity in (R, λ, gw)
No Heterogeneity in (γ,B, F, pt)

This table summarizes whether each class of models can satisfy Condition 1. The left section of the table focuses on models with
only country-specific shocks in which all countries have the same parameters. The right section focuses on models models with only
common shocks and heterogeneity in the parameters. In the external habit model (Campbell and Cochrane, 1999; Wachter, 2006;
Verdelhan, 2010; Stathopoulos, 2017), the parameters φ and B govern the dynamics of the surplus consumption ratio process. In
the long run risk model (Bansal and Yaron, 2004; Colacito and Croce, 2011; Bansal and Shaliastovich, 2013; Engel, 2016), Condition
1 is always violated except in knife-edge cases. In the disaster model (Farhi and Gabaix, 2016; Gabaix, 2012; Wachter, 2013) , the
parameters R, λ, and gw govern the rate of time preference, the rate of depreciation and the country-specific growth rate, while the
parameters γ, B, F , pt are the coefficient of risk aversion, the common consumption drop in case of a disaster, the country-specific
consumption drop in case of a disaster, and the probability of a disaster. The details are in section E of the Online Appendix.

E.1 External Habit Model

In the Campbell and Cochrane (1999) habit model used by Wachter (2006), Verdelhan (2010), and Stathopoulos (2017) to study
the properties of interest rates and exchange rates, the log pricing kernel has law of motion

log
Λt+1

Λt
= log δ − γg − γ(1− φ)(s̄u− st)− γ(1 + λ(st))εt+1,

with the aggregate consumption growth rate satisfying

∆ct+1 = g + εt+1,

with εt+1 ∼ N(0, σ2), and the log surplus consumption ratio evolving as follows:

st+1 = (1− φ)s̄u+ φst + λ(st)εt+1.
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Finally, the sensitivity function λ is

λ(st) =

{
1
S̄

√
1− 2(st − s̄u)− 1, if s < smax

0, if s ≥ smax
,

where S̄ = σ
√

γ
1−φ−B/γ is the steady-state value of the surplus consumption ratio and smax = s̄u+ 1

2
(1− S̄2) is the upper bound

of the log surplus consumption ratio. The parameter B is important, as its sign determines the cyclicality of the real interest rate.
The equilibrium log risk-free rate is

rft = −Et
(

log
Λt+1

Λt

)
− Lt

(
Λt+1

Λt

)
= − log δ + γg + γ(1− φ)(s̄u− sut)−

1

2
γ2σ2(1 + λ(sut))

2,

which can be also written as

rft = − log δ + γg − 1

2

γ2σ2

S̄u
2 +B(s̄u− sut).

The parameter B = γ(1 − φ) − γ2σ2

S̄2 . Therefore, if B = 0, the log risk-free rate is constant: the intertemporal smoothing effect is
exactly offset by the precautionary savings effect. If, on the other hand, B 6= 0, then the log risk-free rate is perfectly correlated with
the surplus consumption ratio s: it is negatively correlated with su (and hence countercyclical) if B > 0, and positively correlated
with s (and hence procyclical) if B < 0. This is because, if B > 0, the intertemporal smoothing effect dominates the precautionary
savings effect: when su is above its steady-state level, mean-reversion implies that marginal utility is expected to increase in the
future, incentivizing agents to save and decreasing interest rates. On the other hand, if B < 0, the precautionary savings motive
dominates, so agents save more when s is low and marginal utility is more volatile.
To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ of the form

φ(s) = ecs,

where c is a constant. Then, the (one-period) eigenfunction problem can be written as

Et [exp (log δ − γ [g + (φ− 1)(sut − s̄u) + (1 + λ(sut))εt+1] + csut+1)] = exp(β + csut)

which, after some algebra, yields

log δ − γg − γ(φ− 1)(sut − s̄u) + c(1− φ)s̄u+ cφsut +
σ2

2
((c− γ)(1 + λ(sut))− c)2 = β + csut.

Setting c = γ, the expression above becomes

log δ − γg − γ(φ− 1)(sut − s̄u) + γ(1− φ)s̄u+ γφsut +
γ2σ2

2
= β + γsut,

and, matching the constant terms, we get β = log δ − γg + γ2σ2

2
. Therefore, the transitory component of the pricing kernel is

ΛT
t = eβt−csut , so the transitory pricing kernel component is

ΛT
t+1

ΛT
t

= eβ−c(sut+1−sut) = elog δ−γg+ γ2σ2

2
−γ((1−φ)(s̄u−sut)+λ(sut)εt+1),

and the permanent pricing kernel component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= e−
γ2σ2

2
−γεt+1 .

In the Campbell and Cochrane (1999) model, the permanent pricing kernel component reflects innovations in consumption growth,
which permanently affect the level of consumption, whereas the transitory pricing kernel component is driven by innovations in
the surplus consumption ratio, which is a stationary variable. However, the two types of innovations are perfectly correlated by
assumption, so the two pricing kernel components exhibit positive comovement: a negative consumption growth innovation not only
permanently reduces the level of consumption, but also transitorily decreases the surplus consumption ratio of the agent, increasing
the local curvature of her utility function. As a result, a negative consumption growth shock implies a positive shock for both
pricing kernel components.
Finally, we consider the properties of the pricing kernel and its components. In each country, the conditional entropy of the pricing
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kernel is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=
γ2σ2

2
(1 + λ(sut))

2 =
γ2σ2

2

1

S̄2
(1− 2(sut − s̄u)),

the conditional entropy of the permanent pricing kernel component is

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=
γ2σ2

2
,

and the conditional entropy of the transitory pricing kernel component is

Lt

(
ΛT
t+1

ΛT
t

)
=

1

2
vart

(
log

ΛT
t+1

ΛT
t

)
=
γ2σ2

2
λ(sut)

2.

Notably, the permanent pricing kernel component has constant conditional entropy, whereas the conditional entropy of both the
pricing kernel and the transitory pricing kernel component are time varying, as they are functions of the log surplus consumption
ratio s. It follows that the conditional term premium, in local currency terms, is

Et
[
rx

(∞)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
=
γ2σ2

2

1

S̄2
(1− 2(sut − s̄u))− γ2σ2

2
=
γ2σ2

2

[
1

S̄u
2 (1− 2(sut − s̄u))− 1

]
.

The conditional SDF entropy is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=
γ2σ2

2
(1 + λ(sut))

2 =
γ2σ2

2

1

S̄2
(1− 2(sut − s̄u)).

The currency risk premium is given by Et[rx
FX
t+1] = γ2σ2

2S̄2 (su∗t − sut).
If B > 0, then the log risk-free rate is countercyclical: when s is above its steady-state level, mean-reversion implies that

marginal utility is expected to increase in the future, incentivizing agents to save and decreasing interest rates. Wachter (2006)
shows that this condition is necessary for an upward sloping real term structure of interest rates. However, as pointed out by
Verdelhan (2010), the model requires procyclical interest rates (B < 0) in order to generate the empirically observed relationship
between interest rate differentials and currency risk premia at the short end: as equation (7) implies, there must be more priced
risk in low interest rate countries than in high interest countries. Hence, this model cannot match currency risk premia and term
premia. The price of the long-term bond converges to limk→∞ P

(k)
t = exp (γ(sut − s̄u)). Finally, the permanent component of

exchange rate changes is given by log

(
SP
t+1

SP
t

)
= −γ (∆ct+1 −∆c∗t+1), so it is not affected by the surplus consumption ratio. The

conditional entropy of the permanent SDF component is constant (Borovička, Hansen, and Scheinkman, 2016):

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=
γ2σ2

2
,

whereas the conditional entropies of both the SDF and the transitory SDF component are time varying, as they are functions of
the log surplus consumption ratio su.

Result 4. To satisfy Condition 1 in the external habit model, the following restriction needs to hold γσ2 = γ∗σ∗,2.

In a symmetric habit model (i.e., a model in which all countries share the same parameters) with country-specific shocks,
long-run risk neutrality (Condition 1) is automatically satisfied: variation in the price of risk, governed by su, does not affect
marginal utility and exchange rates in the long run. We can generalize this model to N countries. In order for Condition 1 to
hold, countries can only differ in their surplus consumption ratio persistence parameters (φ), as differences in the other parameters
(γ, σ2) would imply differences in the conditional entropy of the permanent component of the pricing kernels, and thus differences
in long-maturity bond returns expressed in the same units. Thus, Condition 1 limits the source of heterogeneity to choices leading
to different real interest rate persistence across countries.

Finally, consider a symmetric version of the two-country external habit model in which the 2 countries share all of the parameters.
The long-run loading of the exchange rate on the surplus consumption ratio is given by:

∑∞
i=1 Et[∆st+i] =

∑∞
i=1 Et[log

Λt+i
Λt
−

log
Λ∗t+i
Λ∗t

] = −
∑∞
i=1 φ

i−1γ(1− φ)(su∗t − sut) = −γ(su∗t − sut). Thus, long-run U.I.P holds,

lim
k→∞

Et[∆st→t+k] = −γ(su∗t − sut) = lim
k→∞

k
(
y

(k),∗
t − y(k)

t

)
,

even though exchange rates are non-stationary in levels, because the innovations to risk premia, driven by the surplus consumption
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ratio, are transitory. A decrease in the foreign surplus consumption ratio causes foreign long-term rates to increase and the foreign
currency to depreciate in the long run.

Result 5. In the symmetric external habit model, the slope coefficients in regressions of ∆st+i on the interest rate spread rf,∗t − r
f
t ,

given by −φ
i−1γ(1−φ)

B
, decline geometrically in absolute value as i increases, and their infinite sum equals − γ

B
.

When B < 0, all these slope coefficients are positive: a decrease in the foreign short rate causes the foreign currency to
depreciate on average next period and all periods after that, in line with the increase in the foreign long rate. As pointed out by
Engel (2016), these slope coefficients cannot switch signs to match the empirical evidence.

E.2 Long-Run Risks Model

We now consider the long-run risks model, proposed by Bansal and Yaron (2004) and further explored by Colacito and Croce (2011),
Bansal and Shaliastovich (2013) and Engel (2016) in the context of exchange rates. In this class of models, the representative agent
has utility over consumption given by:

logUt = (1− 1

ψ
) log

(
(1− δ)C1− 1

ψ + δEt
[
U1−γ
t+1

] 1− 1
ψ

1−γ

)
,

where ψ represents the intertemporal elasticity of substitution in an environment without risk. Aggregate consumption growth
∆ct+1 has a persistent component xt, and both consumption growth shocks and shocks in xt exhibit conditional heteroskedasticity:

∆ct+1 = µ+ xt +
√
utε

c
t+1,

xt+1 = φxxt +
√
wtε

x
t+1,

ut+1 = (1− φu)θu + φuut + σuεut+1,

wt+1 = (1− φw)θw + φwwt + σwεwt+1.

All innovations are i.i.d. standard normal. The log SDF evolves as:

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utε

c
t+1 +B2

√
wtε

x
t+1 +B3ε

u
t+1 +B4ε

w
t+1,

where {A0, A1, A2, A3, B1, B2, B3, B4} are constants.17 For convenience, we assume that the agent has preferences for early resolution
of uncertainty (γ > 1

ψ
), so B2 < 0. It immediately follows that conditional SDF entropy and the equilibrium log risk-free rate are

given by:

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2) ,

rft = −A0 −
1

2

(
B3

2 +B4
2)+

1

ψ
xt −

1

2

(
γ − 1

ψ
+ γ

)
ut −

1

2

(
1

ψ
− γ
)(

1

ψ
− 1

)(
κ

1− κφx

)2

wt.

The necessary condition (7) highlights how this model can replicate the U.I.P. puzzle: for procyclical interest rates (with respect
to ut and wt), high interest rates correspond to low volatility SDFs.

The real bond prices in logs are affine in the state variables: p
i,(n)
t = −Ci,n0 − Cn1 xt − Ci,n2 ut − Ci,n3 wt. In the long-run risk

model, the conditional entropy of the permanent SDF component is given by:

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2ut + (B2 − C∞1 )2wt + (B3 − C∞2 σu)2 + (B4 − C∞3 σw)2) .
where C∞1 = 1

ψ(1−φx)
, C∞2 = −A2+ 1

2
B2

1

1−φu , and C∞3 = −A3+ 1
2

(B2−C∞1 )2

1−φw .

17More precisely, the constants are A1 = − 1
ψ

, A2 =
(

1
ψ
− γ
)
γ−1

2
, A3 =

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2

, B1 = −γ, B2 =
(

1
ψ
− γ
)

κ
1−κφx ,

B3 =
(

1
ψ
− γ
)

1−γ
2

κ
1−κφu σ

u, and B4 =
(

1
ψ
− γ
)

1−γ
2

(
κ

1−κφx

)2
κ

1−κφw σ
w, where κ ≡ δe

(1− 1
ψ )m̄

1−δ+δe(1− 1
ψ )m̄

and m̄ is the point around

which a log-linear approximation is taken (see Engel (2015) for details); if m̄ = 0, then κ = δ.
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Table A22: Pricing Kernel Loadings in the Long Run Risks Model

Loadings Parameters Loadings Parameters
Panel A: Homoskedastic Model

log
Λt+1

Λt
= A0 +A1xt +B1

√
θuεct+1 +B2

√
θwεxt+1.

A1 − 1
ψ

B1 −γ
B2

(
1
ψ
− γ
)

κ
1−κφx

Transitory Component log ΛT
t = βt− cxt

c1
A1

1−φx β A0 + 1
2
B1

2θu + 1
2

(B2 + c)2θw,

Panel B: Heteroskedastic Model

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utεct+1 +B2

√
wtεxt+1 +B3εut+1 +B4εwt+1.

A1 − 1
ψ

B1 −γ
A2

(
1
ψ
− γ
)
γ−1

2
B2

(
1
ψ
− γ
)

κ
1−κφx

A3

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2
B3

(
1
ψ
− γ
)

1−γ
2

κ
1−κφu σ

u

B4

(
1
ψ
− γ
)(

κ
1−κφx

)2
κ

1−κφw σ
w.

Transitory Component log ΛT
t = βt− c1xt − c2ut − c3wt

c1
A1

1−φx c2
A2+ 1

2
B2

1

1−φu

c3
A3+ 1

2
(B2+

A1
1−φx )2

1−φw β A0 + c2(1− φu)θu + c3(1− φw)θw + 1
2

(B3 + c2σu)2 + 1
2

(B4 + c3σw)2.

Notes: Pricing kernel loading parameters in the long run risks model. Parameter κ is defined as κ ≡ δe

(
1− 1

ψ

)
m̄

1−δ+δe
(
1− 1

ψ

)
m̄

, where m̄ is the point

around which a log-linear approximation is taken (see Engel (2016) for details); if m̄ = 0, then κ = δ.
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In this full version of the model, the log SDF follows the law of motion:

log
Λt+1

Λt
= A0 +A1xt +A2ut +A3wt +B1

√
utε

c
t+1 +B2

√
wtε

x
t+1 +B3ε

u
t+1 +B4ε

w
t+1,

where {A0, A1, A2, A3, B1, B2, B3, B4} are constants, the values of which are reported in Panel B of Table A22. As usual, we assume
that the agent has preferences for early resolution of uncertainty (γ > 1

ψ
), so B2 < 0.

The equilibrium log risk-free rate is

rft = −Et
(

log
Λt+1

Λt

)
− Lt

(
Λt+1

Λt

)
= −A0 −A1xt −A2ut −A3wt −

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2) ,

or

rft = −A0 −
1

2

(
B3

2 +B4
2)−A1xt −

(
A2 +

B1
2

2

)
ut −

(
A3 +

B2
2

2

)
wt,

or

rft = −A0 −
1

2

(
B3

2 +B4
2)+

1

ψ
xt −

1

2

(
γ − 1

ψ
+ γ

)
ut −

1

2

(
1

ψ
− γ
)(

1

ψ
− 1

)(
κ

1− κφx

)2

wt.

Thus, the risk-free rate is positively associated with x, the predictable component of consumption growth, due to the intertemporal
smoothing effect, and negatively associated with u, the conditional variance of the consumption growth shock, as the intertemporal
smoothing effect is dominated by the precautionary savings effect. Finally, the sign of the relationship between the risk-free rate
and w, the conditional variance of the consumption drift shock, depends on the value of the IES parameter: if ψ > 1, then the
relationship is negative, as the precautionary savings effect dominates, whereas if ψ < 1, then the relationship is positive, as the
intertemporal smoothing effect dominates.

To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ of the form

φ(x, u, w) = ec1x+c2u+c3w

where {c1, c2, c3} are constants. Then, the (one-period) eigenfunction problem can be written as

Et

[
exp(log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1)

]
= exp(β + c1xt + c2ut + c3wt)

which, exploiting the log-normality of the term inside the expectation, implies

Et

(
log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1

)
+

1

2
vart

(
log

Λt+1

Λt
+ c1xt+1 + c2ut+1 + c3wt+1

)
= β + c1xt + c2ut + c3wt.

After some algebra, matching terms yields

β = A0 + c2(1− φu)θu + c3(1− φw)θw +
1

2
(B3 + c2σ

u)2 +
1

2
(B4 + c3σ

w)2

c1 = A1 + c1φ
x

c2 = A2 + c2φ
u +

1

2
B2

1

c3 = A3 + c3φ
w +

1

2
(B2 + c1)2

so

c1 =
A1

1− φx = − 1

ψ

1

1− φx < 0,

c2 =
A2 + 1

2
B2

1

1− φu =
1

2

(
γ − 1

ψ
+ γ

)
1

1− φu > 0,

c3 =
A3 + 1

2
(B2 + c1)2

1− φw =

(
1
ψ
− γ
)
γ−1

2

(
κ

1−κφx

)2

+ 1
2

((
1
ψ
− γ
)

κ
1−κφx −

1
ψ

1
1−φx

)2

1− φw > 0,

where the sign for c2 and c3 is determined under the assumption that γ > 1
ψ

. The transitory component of the pricing kernel is

ΛT
t = eβt−c1xt−c2ut−c3wt ,
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so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ+c1(1−φx)xt−c2(1−φu)(θu−ut)−c3(1−φw)(θw−wt)−c1
√
wtε

x
t+1−c2σ

uεut+1−c3σ
wεwt+1 ,

and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= eA0+A1xt+A2ut+A3wt+B1
√
utε

c
t+1+B2

√
wtε

x
t+1+B3ε

u
t+1+B4ε

w
t+1 ×

e−β−c1(1−φx)xt+c2(1−φu)(θu−ut)+c3(1−φw)(θw−wt)+c1
√
wtε

x
t+1+c2σ

uεut+1+c3σ
wεwt+1 ,

or, after some algebra,

ΛP
t+1

ΛP
t

= e−(1/2)(B3+c2σ
u)2−(1/2)(B4+c3σw)2−(1/2)B2

1ut−(1/2)(B2+c1)2wt ×

eB1
√
utε

c
t+1+(B2+c1)

√
wtε

x
t+1+(B3+c2σ

u)εut+1+(B4+c3σ
w)εwt+1 .

In summary, both SDF components are exposed to the consumption drift innovation εx, the consumption growth variance innovation
εu, and the consumption drift variance innovation εw, but only the permanent SDF component is exposed to the consumption growth
innovation εc. As a result, overall SDF and the permanent SDF component have identical loadings on the consumption growth
shock. However, the dependence on the rest of the innnovations depends on the agent’s preferences regarding the resolutions of
uncertainty. If the agent prefers early resolution (γ > 1

ψ
), we have c1 < 0, c2 > 0 and c3 > 0.

We can start with exposure to consumption drift shocks. Since B2 < 0, c1 < 0 implies that the permanent SDF component
is more sensitive to consumption drift shocks than the total SDF, while the transitory SDF component has the opposite sign. For
example, a negative consumption drift shock (εx < 0) is associated with an increase of the agent’s overall SDF and its permanent
component and a decline of its transitory component. This is because the long-run effect of a consumption drift innovation in
the pricing kernel (captured by the permanent SDF component) is higher than its short-run effect (captured by the overall SDF).
Intuitively, a negative consumption drift shock lowers marginal utility in the long run both through an immediate decline in the
continuation utility (reflected in the overall SDF) and through the cumulative effect of a persistent reduction in x, which is equal
to − 1

ψ

∑∞
j=0(φx)j

√
θw = − 1

ψ
1

1−φx
√
θw = c1

√
θw.

As regards the two variance shocks, whether long-run marginal utility reacts more or less than short-run marginal utility
depends on the sign of B3 and B4. If γ > 1, i.e. the agent is more risk-averse than a log utility investor, then B3 > 0 and B4 > 0,
so short-run marginal utility increases upon realization of any positive variance shock. Thus, c2 > 0 and c3 > 0 imply that long-run
marginal utility reacts more than short-run marginal utility: when either εu > 0 or εw > 0, the permanent SDF component increases
more than total SDF, with the transitory SDF component declining. On the other hand, if γ < 1, then B3 < 0 and B4 < 0, in which
case short-run marginal utility declines upon realization of any positive variance shock. As a result, c2 > 0 and c3 > 0 imply that
long-run marginal utility reacts less than short-run marginal utility: when either εu > 0 or εw > 0, the permanent SDF component
declines less than total SDF, as the transitory SDF component also falls.

Conditional SDF entropy is

Lt

(
Λt+1

Λt

)
=

1

2
vart

(
log

Λt+1

Λt

)
=

1

2

(
B1

2ut +B2
2wt +B3

2 +B4
2) ,

whereas the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
=

1

2
vart

(
log

ΛP
t+1

ΛP
t

)
=

1

2

(
B1

2ut + (B2 + c1)2wt + (B3 + c2σ
u)2 + (B4 + c3σ

w)2) .
For conditional SDF entropy to be identical across countries, it is sufficient that the conditional variances u and w are identical

across countries, that B1 = B∗1 and B2 = B∗2 (i.e. that γ = γ∗ and
(

1
ψ
− γ
)

δ
1−δφx =

(
1
ψ∗ − γ

∗
)

δ∗

1−δ∗φx,∗ ), and that (B3 + c2σ
u)2 +

(B4 + c3σ
w)2 = (B∗3 + c∗2σ

u,∗)2 + (B∗4 + c∗3σ
w,∗)2. For the conditional entropy of the permanent SDF component to be identical

across countries, we need B2 + c1 = B∗2 + c∗1 instead of B2 = B∗2 . Therefore, we will have non-identical SDF entropy and identical
entropy of the permanent SDF component across countries if B2 + c1 = B∗2 + c∗1 and c1 − c∗1 = B∗2 − B2 6= 0. For example, those
conditions are satisfied if γ = γ∗, δ = δ∗ and ψ = ψ∗, but φx 6= φx,∗ such that (1− δφx)(1− δφx,∗) = δ2(1− γψ)(1− φx)(1− φx,∗).

Finally, the term premium, in local currency terms, is

Et
[
rx

(∞)
t+1

]
=

1

2

(
B2

2 − (B2 + c1)2)wt +
1

2

(
B3

2 − (B3 + c2σ
u)2)+

1

2

(
B4

2 − (B4 + c3σ
w)2) .
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Following the discussion above, if γ > 1
ψ

(in which case B2 < 0), then the conditional term premium is negatively associated with w,
the variance of the consumption growth drift. This is because negative consumption drift shocks increase long-run marginal utility
more than they increase short-run marginal utility, so long-term bonds hedge long-run risk, as their price increases upon realization
of negative consumption drift shocks. Therefore, the higher the conditional volatility of those shocks, the more attractive long-term
bonds are as a hedging asset, and the lower risk premium they earn.

Consider a symmetric Model with country-specific shocks. The quantity of risk is governed by ut, the volatility of consumption
growth, and wt, the volatility of expected consumption growth. Both of these forces feed into the quantity of permanent risk unless
B1 = B2−C∞1 = 0. Thus, in a symmetric LRR model (i.e., when countries share the same parameters) with country-specific shocks
and heteroskedasticity, Condition 1 holds only if the model parameters satisfy the following restriction: γ = 0 = 1

ψ
, implying that

the pricing kernel is constant and the investor is risk-neutral. In this case, the model counterfactually replicates the U.I.P. condition
in the short-run.

In the long-run, U.I.P. is violated for risk-related innovations because the long-run loadings of the level of the exchange rate on
(ut, wt) do not line up with the loadings of the long rates:

∞∑
i=1

Et[∆st+i] =
A1

1− φx
(xt − x∗t ) +

A2

1− φu
(ut − u∗t ) +

A3

1− φw
(wt − w∗t ) 6= C∞1 (x∗t − xt) + C∞2 (u∗t − ut) + C∞3 (w∗t − wt),

because C∞2 6= − A2
1−φu and C∞3 6= − A3

1−φw .
Next, consider an asymmetric model with common shocks. Thus, a natural extension to the model would feature common

volatility processes, such that ut = u∗t and wt = w∗t , relieving the strong parameter restriction above (see Colacito, Croce, Gavazzoni,
and Ready, 2017, for a multi-country LRR model with common shocks). Condition 1 again tells us where to introduce heterogeneity
in a future version of this model. For the conditional entropy of the permanent SDF component to be identical across countries,
we need the following parameter restriction: B1 = B∗1 and B2 − C∞1 = B∗2 − C∗,∞1 . In this case, we have different SDF entropy to
generate carry risk premia at the short end of the curve, but the same entropy of the permanent SDF component across countries
if B2 − C∞1 = B∗2 − C∗,∞1 and C∞1 − C∗,∞1 = B∗2 −B2 6= 0.

These restrictions have bite. Consider an example with only heterogeneity in the persistence of the shocks. Our conditions
are satisfied if γ = γ∗, δ = δ∗ and ψ = ψ∗, but φx 6= φx,∗ such that (1 − δφx)(1 − δφx,∗) = δ2(1 − γψ)(1 − φx)(1 − φx,∗). That
restriction cannot be satisfied when agents have a preference for early resolution of uncertainty (γψ > 1), as is invariably assumed
in LRR models. The constant component of the entropy above adds even more parameter restrictions.

E.3 Disasters Model

In the Farhi and Gabaix (2016) version of the Gabaix (2012) and Wachter (2013) rare disasters model with time-varying disaster
intensity, the SDF has the following law of motion:

Λt+1

Λt
=

Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt
,

where Λ∗ denotes the global component of marginal utility:

Λ∗t+1

Λ∗t
= e−R ×

{
1, if there is no disaster at t+ 1

B−γt+1, if there is a disaster at t+ 1,

ωt+1 denotes the country-specific productivity:

ωt+1

ωt
= egω ×

{
1, if there is no disaster at t+ 1

Ft+1, if there is a disaster at t+ 1,

xt is the (scaled by e−h∗) time-varying component of the resilience of the country (with persistence φH) and A > 0 depends on the
model parameters, one of which is the investment depreciation rate λ. After some algebra, we obtain the following expression for
conditional entropy:

Lt

(
Λt+1

Λt

)
= log(1 +Ht)− ptEDt

[
log(Bγt+1Ft+1)

]
+ Lt

(
1 +Axt+1

1 +Axt

)
,
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where pt is the conditional probability of a disaster occurring next period and EDt is the period t expectation conditional on a
disaster occurring next period. The equilibrium log risk-free rate is

rft = (R− gω − h∗) + log

(
1 +Axt

1 + (Ae−φH + 1)xt

)
.

Thus, the risk-free rate is decreasing in x and, thus, in the resilience of the country. Again, high interest rate countries correspond
to low volatility SDFs.

Finally, the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
= log(1 +Ht)− ptEDt

[
log(Bγt+1Ft+1)

]
+ Lt

(
c+ xt+1

c+ xt

)
.

In the Farhi and Gabaix (2016) rare disasters model, the SDF has law of motion

Λt+1

Λt
=

Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt
,

where
Λ∗t+1

Λ∗t
= e−R ×

{
1, if there no disaster at t+ 1

B−γt+1, if there is a disaster at t+ 1

is the global numeraire SDF,

ωt+1

ωt
= egω ×

{
1, if there is no disaster at t+ 1

Ft+1, if there is a disaster at t+ 1

is the productivity growth of the country, and x is defined as xt ≡ e−h∗Ĥt, where Ĥ is the time-varying component of the

resilience of the country, to be discussed below. Finally, A ≡ e−R−λ+gω+h∗

1−e−R−λ+gω+h∗−φH
, where λ is the investment depreciation rate, and

h∗ ≡ log(1 +H∗). Finally, we assume that R+ λ− gω − h∗ > 0, so A > 0.
Resilience is defined as

Ht = H∗ + Ĥt = ptE
D
t

[
Bγt+1Ft+1 − 1

]
,

where pt is the conditional probability of a disaster occurring next period and EDt is the period t expectation conditional on a
disaster occurring next period. The time-varying component of resilience has law of motion

Ĥt+1 =
1 +H∗
1 +Ht

e−φH Ĥt + εHt+1,

with the conditional expectation of εH being zero independently of the realization of a disaster. As a result, the conditional
expectation of x is

Et(xt+1) = e−φH
xt

1 + xt
.

The equilibrium log risk-free rate is

rft = − logEt

(
Λt+1

Λt

)
= (R− gω − h∗) + log

(
1 +Axt

1 + (Ae−φH + 1)xt

)
,

so it is decreasing in x.
To decompose the pricing kernel, we use the guess and verify method. In particular, guess an eigenfunction φ of the form

φ(x) =
c+ x

1 +Ax
,

where c is a constant.18 Then, the (one-period) eigenfunction problem can be written as

Et

[
Λ∗t+1

Λ∗t

ωt+1

ωt

1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

18It can be shown that conjecturing the more general eigenfunction φ(x) = c1+c2x
1+Ax

, where c1 and c2 are constants, leads to same
SDF decomposition as the one derived below.
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which yields

Et

[
Λ∗t+1

Λ∗t

ωt+1

ωt

]
Et

[
1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

so

e−R+gω+h∗(1 + xt)Et

[
1 +Axt+1

1 +Axt

c+ xt+1

1 +Axt+1

]
= eβ

c+ xt
1 +Axt

.

The expression above becomes:
e−R+gω+h∗(1 + xt)Et [c+ xt+1] = eβ(c+ xt),

so, plugging in the expression for the conditional expectation of x, we get

e−R+gω+h∗(1 + xt)

(
c+ e−φH

xt
1 + xt

)
= eβ(c+ xt),

which yields
β = −R+ gω + h∗

and
c = 1− e−φH .

The lower bound of x is e−φH − 1, so c+ xt > 0 for all t; thus, the conjectured eigenfunction is strictly positive, as required. The
transitory component of the pricing kernel is

ΛT
t = eβt

1 +Axt
c+ xt

so the transitory SDF component is

ΛT
t+1

ΛT
t

= eβ
1 +Axt+1

c+ xt+1

c+ xt
1 +Axt

= e−R+gω+h∗ 1 +Axt+1

1 +Axt

c+ xt
c+ xt+1

and the permanent SDF component is

ΛP
t+1

ΛP
t

=
Λt+1

Λt

(
ΛT
t+1

ΛT
t

)−1

= eR−gω−h∗
Λ∗t+1

Λ∗t

ωt+1

ωt

c+ xt+1

c+ xt
.

The transitory SDF component is only exposed to resilience shocks (εH), but not to disaster risk; the entirety of the disaster risk for
marginal utility is reflected in the permanent SDF component, as disasters permanently affect the future level of marginal utility.

We can now calculate the conditional entropy of the SDF and its components. It holds that

Lt

(
Λt+1

Λt

)
= logEt

(
Λt+1

Λt

)
− Et

(
log

Λt+1

Λt

)
,

so we can write

Lt

(
Λt+1

Λt

)
= Lt

(
Λ∗t+1

Λ∗t

ωt+1

ωt

)
+ Lt

(
1 +Axt+1

1 +Axt

)
.

After some algebra, we get

Lt

(
Λt+1

Λt

)
= log(1 +Ht)− ptEDt

[
log(Bγt+1Ft+1)

]
+ Lt

(
1 +Axt+1

1 +Axt

)
.

Similarly, the conditional entropy of the permanent SDF component is

Lt

(
ΛP
t+1

ΛP
t

)
= log(1 +Ht)− ptEDt

[
log(Bγt+1Ft+1)

]
+ Lt

(
c+ xt+1

c+ xt

)
.

Therefore, the conditional term premium, in local currency terms, is

Et
[
rx

(∞)
t+1

]
= Lt

(
Λt+1

Λt

)
− Lt

(
ΛP
t+1

ΛP
t

)
= Lt

(
1 +Axt+1

1 +Axt

)
− Lt

(
c+ xt+1

c+ xt

)
.

First, we consider a version of the model in which the parameters are the same in each country, but the shocks are country-
specific. The time-varying disaster risk directly, driven partly by some country-specific shocks, affects the total quantity of permanent
risk, thus violating the long-run risk neutrality Condition 1, unless the disaster intensity is constant (pt, xt, Ht are constant), and
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hence all risk premia are constant. Second, we consider a version of the disaster model with common shocks, but asymmetric
exposures. It is possible to introduce differences across countries that produce differences in carry trade portfolio returns at the
short but not at the long end of the curve, but the heterogeneity is clearly restricted by Condition 1 to the parameters R, λ or gw.

Table A21 in the main text summarizes the results for all three models. First, among the models we consider with only
country-specific shocks in which all countries have the same parameters, only the external habit model can satisfy Condition 1. In
the habit model, Condition 1 is trivially satisfied because the quantity of permanent risk is constant. In this external habit model,
the time-variation in the price of risk driven by the surplus-consumption ratio is purely transitory in nature. Country-specific
consumption growth shocks do enter the permanent component of the pricing kernel, but the quantity of permanent consumption
risk is constant. In the other models, the variation in the price of risk invariably has permanent effects and, hence, Condition 1
cannot be satisfied. Second, in models we consider with only common shocks and heterogeneity in the parameters, Condition 1
imposes tight parametric restrictions on the types of heterogeneity that can be allowed. For example, in the external habit and
disaster model, we cannot have heterogeneity in the coefficient of relative risk aversion: γσ2 needs to be constant across countries
in the habits model.
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F Theoretical Background and Proofs of Preference-Free Results

This section starts with a review of the Hansen and Scheinkman (2009) results and their link to the Alvarez and Jermann (2005)
decomposition used in the main text. Then, we report our theoretical results on bond and currency returns in two special cases:
the case of a Gaussian economy and the case of an economy with no permanent pricing kernel shocks. The section concludes with
the proofs of all the theoretical results in the main body of the paper. To make the paper self-contained, we reproduce here some
proofs of intermediary results already in the literature, notably in Alvarez and Jermann (2005).

F.1 Existence and Uniqueness of Multiplicative Decomposition of the pricing kernel

Consider a continuous-time, right continuous with left limits, strong Markov process X and the filtration F generated by the past
values of X, completed by the null sets. In the case of infinite-state spaces, X is restricted to be a semimartingale, so it can be
represented as the sum of a continuous process Xc and a pure jump process Xj . The pricing kernel process Λ is a strictly positive
process, adapted to F , for which it holds that the time t price of any payoff Πs realized at time s (s ≥ t) is given by

Pt(Πs) = E

[
Λs
Λt

Πs|Ft
]
.

The pricing kernel process also satisfies Λ0 = 1. Hansen and Scheinkman (2009) show that Λ is a multiplicative functional and
establish the connection between the multiplicative property of the pricing kernel process and the semigroup property of pricing
operators M.19 In particular, consider the family of operators M described by

Mtψ(x) = E [Λtψ(Xt)|X0 = x]

where ψ(Xt) is a random payoff at t that depends solely on the Markov state at t. The family of linear pricing operators M satisfies
M0 = I and Mt+uψ(x) = Mtψ(x)Muψ(x) and, thus, defines a semigroup, called pricing semigroup.

Further, Hansen and Scheinkman (2009) show that Λ can be decomposed as

Λt = eβt
φ(X0)

φ(Xt)
ΛP
t

where ΛP is a multiplicative functional and a local martingale, φ is a principal (i.e. strictly positive) eigenfunction of the extended
generator of M and β is the corresponding eigenvalue (typically negative).20 If, furthermore, ΛP is martingale, then the eigenpair
(β, φ) also solves the principal eigenvalue problem:21

Mtφ(x) = E [Λtφ(Xt)|X0 = x] = eβtφ(x).

Conversely, if the expression above holds for a strictly positive φ and Mtφ is well-defined for t ≥ 0, then ΛP is a martingale. Thus,
a strictly positive solution to the eigenvalue problem above implies a decomposition

Λt = eβt
φ(X0)

φ(Xt)
ΛP
t

where ΛP is guaranteed to be a martingale. The decomposition above implies that the one-period SDF is given by

Mt+1 =
Λt+1

Λt
= eβ

φ(Xt)

φ(Xt+1)

ΛP
t+1

ΛP
t

and satisfies
E [Mt+1φ(Xt+1)|Xt = x] = eβtφ(x).

Hansen and Scheinkman (2009) provide sufficient conditions for the existence of a solution to the principal eigenfunction
problem and, thus, for the existence of the aforementioned pricing kernel decomposition. Notably, multiple solutions may exist,

19A functional Λ is multiplicative if it satisfies Λ0 = 1 and Λt+u = ΛtΛu(θt), where θt is a shift operator that moves the time
subscript of the relevant Markov process forward by t periods. Products of multiplicative functionals are multiplicative functionals.
The multiplicative property of the pricing kernel arises from the requirement for consistency of pricing across different time horizons.

20The extended generator of a multiplicative functional Λ is formally defined in Hansen and Scheinkman (2009) and, intuitively,
assigns to a Borel function ψ a Borel function ξ such that Λtξ(Xt) is the expected time derivative of Λtψ(Xt).

21Since ΛP is a local martingale bounded from below, it is a supermartingale. For ΛP to be a martingale, additional conditions
need to hold, as discussed in Appendix C of Hansen and Scheinkman (2009).
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so the pricing kernel decomposition above is generally not unique. However, if the state space is finite and the Markov chain is
irreducible, then Perron-Frobenious theory implies that there is a unique principal eigenvector (up to scaling), and thus a unique
pricing kernel decomposition. Although multiple solutions typically exist, Hansen and Scheinkman (2009) show that the only (up to
scaling) principal eigenfunction of interest for long-run pricing is the one associated with the smallest eigenvalue, as the multiplicity
of solutions is eliminated by the requirement for stochastic stability of the Markov process X. In particular, only this solution
ensures that the process X remains stationary and Harris recurrent under the probability measure implied by the martingale ΛP.

Finally, Hansen and Scheinkman (2009) show that the aforementioned pricing kernel decomposition can be useful in approx-
imating the prices of long-maturity zero-coupon bonds. In particular, the time t price of a bond with maturity t + k is given
by

P
(k)
t = E

[
Λt+k
Λt
|Xt = x

]
= eβkEP

[
1

φ(Xt+k)
|Xt = x

]
φ(x) ≈ eβkEP

[
1

φ(Xt+k)

]
φ(x)

where EP is the expectation under the probability measure implied by the martingale ΛP and the right-hand-side approximation
becomes arbitrarily accurate as k →∞. Thus, in the limit of arbitrarily large maturity, the price of the zero-coupon bond depends
on the current state solely through φ(x) and not through the expectation of the transitory component. Notably, this implies that
the relevant φ is the one that ensures that X remains stationary under the probability measure implied by ΛP, i.e. the unique
principal eigenfunction that implies stochastic stability for X, and β is the corresponding eigenvalue.

Indeed, Alvarez and Jermann (2005) construct a pricing kernel decomposition by considering a constant β̂ that satisfies

0 < lim
k→∞

P
(k)
t

β̂k
<∞

and defining the transitory pricing kernel component as

ΛT
t = lim

k→∞

β̂t+k

P
(k)
t

<∞.

In contrast to Hansen and Scheinkman (2009), the decomposition of Alvarez and Jermann (2005) is constructive and not unique,
as their Assumptions 1 and 2 do not preclude the existence of alternative pricing kernel decompositions to a martingale and a
transitory component. Note that the Alvarez and Jermann (2005) decomposition implies that β̂ = eβ , where β is the smallest
eigenvalue associated with a principal eigenfunction in the Hansen and Scheinkman (2009) eigenfunction problem.

F.2 Long-Horizon U.I.P. in Gaussian Economy

The long-horizon U.I.P. condition states that the expected return over k periods on a foreign bond, once converted into domestic
currency, is equal to the expected return on a domestic bond over the same investment horizon.22 The per period log risk premium
on a long position in foreign currency over k periods consists of the yield spread minus the per period expected rate of depreciation
over those k periods:

Et[rx
FX
t→t+k] = y

(k),∗
t − y(k)

t −
1

k
Et[∆st→t+k]. (19)

The long-horizon U.I.P condition states that this risk premium is zero. As is well-known, this risk premium is the sum of a
term premium and future currency risk premia. To see that, start from the definition of the one-period currency risk premium:
Et [∆st→t+1] = rf,∗t − rft − Et

[
rxFXt+1

]
. Summing up over k periods leads to:

Et[∆st→t+k] = Et

[
k∑
j=1

(
rf,∗t+j−1 − r

f
t+j−1

)]
− Et

[
k∑
j=1

rxFXt+j

]
. (20)

From Equations (19) and (20), it follows that the log currency risk premium over k periods is given by:

Et[rx
FX
t→t+k] = (y

(k),∗
t − y(k)

t ) +
1

k

k∑
j=1

Et
(
rft+j−1 − r

f,∗
t+j−1

)
+

1

k

k∑
j=1

Et(rx
FX
t+j). (21)

The first two terms measure the deviations from the expectations hypothesis over the holding period k, whereas the last term
measures the deviations from short-run U.I.P. over the k periods. We can use a multi-horizon version of Equation (7) to show that

22Chinn and Meredith (2004) document some time-series evidence that supports a conditional version of UIP at longer holding
periods, while Boudoukh, Richardson, and Whitelaw (2016) show that past forward rate differences predict future changes in
exchange rates.
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the currency risk premium over k periods depends on conditional SDF entropy:

Et[rx
FX
t→t+k] =

1

k

[
Lt

(
Λt+k
Λt

)
− Lt

(
Λ∗t+k
Λ∗t

)]
. (22)

The expression above states that only differences in k-period conditional SDF entropy give rise to long-run deviations from U.I.P.
Therefore, the risk premium on a multi-period long position in foreign currency depends on how quickly SDF entropy builds up
domestically and abroad over the holding period.23 If the pricing kernel is conditionally Gaussian over horizon k, the k-horizon
foreign currency risk premium satisfies:

Et[rx
FX
t→t+k] =

1

2k

[
vart

(
log

Λt+k
Λt

)
− vart

(
log

Λ∗t+k
Λ∗t

)]
.

Let us assume that the variance of the one-period SDF is constant. The annualized variance of the increase in the log SDF can be
expressed as follows:

var (log Λt+k/Λt)

kvar (Λt+1/Λt)
= 1 + 2

k−1∑
j=1

(
1− j

k

)
ρj ,

where ρj denotes the j-th autocorrelation (Cochrane, 1988).24 In the special case where the domestic and foreign countries share
the same one-period volatility of the innovations, this expression for the long-run currency risk premium becomes:

E[rxFXt→t+k] = var (∆ log Λt+1)

[
k−1∑
j=1

(
1− j

k

)
(ρj − ρ∗j )

]
.

This is the Bartlett kernel estimate with window k of the spread in the spectral density of the log SDF at zero, which measures
the size of the permanent component of the SDF. More positive autocorrelation in the domestic than in the foreign pricing kernel
tends to create long-term yields that are lower at home than abroad, once expressed in the same currency. The difference in yields,
converted in the same units, is governed by a horse race between the speed of mean reversion in the pricing kernel at home and
abroad.

To develop some intuition for the long run, we consider the limit behavior of the foreign currency risk premium when k →∞. In
the long run, the currency risk premium over many periods converges to the difference in the size of the random walk components:

lim
k→∞

E[rxFXt→t+k] =
1

2
var (∆ log Λt+1) lim

k→∞

[
1 + 2

∞∑
j=1

ρj

]
− 1

2
var (∆ log Λt+1) lim

k→∞

[
1 + 2

∞∑
j=1

ρ∗j

]

=
1

2

[
S∆ log Λt+1 − S∆ log Λ∗t+1

]
,

where S denotes the spectral density. The last step follows from the definition of the spectral density (see Cochrane, 1988). If
the log of the exchange rate (logSt) is stationary, then the log of the foreign (log Λ∗t ) and domestic pricing kernels (log Λt) are
cointegrated with co-integrating vector (1,−1) and hence share the same stochastic trend component. This in turn implies that
they have the same spectral density evaluated at zero. As a result, exchange rate stationarity implies that the long-run currency
risk premium goes to zero.

23To develop some intuition, we consider a Gaussian example in the Appendix. In the special case where the domestic and foreign
countries share the same one-period volatility of the innovations, this expression for the long-run currency risk premium becomes:

E[rxFXt→t+k] = var (∆ log Λt+1)

[
k−1∑
j=1

(
1− j

k

)
(ρj − ρ∗j )

]
.

This is the Bartlett kernel estimate with window k of the spread in the spectral density of the log SDF at zero, which measures the
size of the permanent component of the SDF.

24Cochrane (1988) uses these per period variances of the log changes in GDP to measure the size of the random walk component
in GDP.
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F.3 Economy without Permanent Innovations

Consider the special case in which the pricing kernel is not subject to permanent innovations, i.e., limk→∞
Et+1[Λt+k]

Et[Λt+k]
= 1. For

example, the Markovian environment considered by Ross (2015) to derive his recovery theorem satisfies this condition. Building on
this work, Martin and Ross (2013) derive closed-form expressions for bond returns in a similar environment. Alvarez and Jermann
(2005) show that this case has clear implications for domestic returns: if the pricing kernel has no permanent innovations, then the
term premium on an infinite maturity bond is the largest risk premium in the economy.25

The absence of permanent innovations also has a strong implication for the term structure of the carry trade risk premia. When
the pricing kernels do not have permanent innovations, the foreign term premium in dollars equals the domestic term premium:

Et
[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] = Et

[
rx

(∞)
t+1

]
.

The proof here is straightforward. In general, the foreign currency risk premium is equal to the difference in entropy. In the absence
of permanent innovations, the term premium is equal to the entropy of the pricing kernel, so the result follows. More interestingly, a
much stronger result holds in this case. Not only are the risk premia identical, but the returns on the foreign bond position are the
same as those on the domestic bond position state-by-state, because the foreign bond position automatically hedges the currency
risk exposure. As already noted, if the domestic and foreign pricing kernels have no permanent innovations, then the one-period
returns on the longest maturity foreign bonds in domestic currency are identical to the domestic ones:

lim
k→∞

St
St+1

R
(k),∗
t+1

R
(k)
t+1

= 1.

In this class of economies, the returns on long-term bonds expressed in domestic currency are equalized:

lim
k→∞

rx
(k),∗
t+1 + (ft − st)−∆st+1 = rx

(k)
t+1.

In countries that experience higher marginal utility growth, the domestic currency appreciates but is exactly offset by the capital
loss on the bond. For example, in a representative agent economy, when the log of aggregate consumption drops more below trend
at home than abroad, the domestic currency appreciates, but the real interest rate increases, because the representative agent is
eager to smooth consumption. The foreign bond position automatically hedges the currency exposure.

Alvarez and Jermann (2005) propose the following example of an economy without permanent shocks: a representative agent
economy with power utility investors in which the log of aggregate consumption is a trend-stationary process with normal innovations.
In particular, consider the following pricing kernel (Alvarez and Jermann, 2005):

log Λt =

∞∑
i=0

αiεt−i + β log t,

with ε ∼ N(0, σ2), α0 = 1. If limk→∞ α
2
k = 0, then the pricing kernel has no permanent component. The foreign pricing kernel is

defined similarly.

In the model, the term premium equals one half of the SDF variance: Et
(
rx

(∞)
t+1

)
= σ2/2, the highest possible risk premium

in this economy, as the returns on the long bond are perfectly negatively correlated with the stochastic discount factor. When
marginal utility is temporarily high, the representative agent would like to borrow, driving up interest rates and lowering the price
of the long-term bond.

In this economy, the foreign term premium in dollars is identical to the domestic term premium:

Et
[
rx

(∞),∗
t+1

]
+ (ft − st)− Et[∆st+1] =

1

2
σ2 = Et

[
rx

(∞)
t+1

]
.

This result is straightforward to establish: recall that the currency risk premium is equal to the half of the difference between the
domestic and the foreign SDF variance. Currencies with a high local currency term premium (high σ2) also have an offsetting
negative currency risk premium, while those with a small term premium have a large currency risk premium. Hence, U.S. investors
receive the same dollar premium on foreign as on domestic bonds. There is no point in chasing high term premia around the world,
at least not in economies with only temporary innovations to the pricing kernel. Currencies with the highest local term premia also
have the lowest (i.e., most negative) currency risk premia.

25 If there are no permanent innovations to the pricing kernel, then the return on the bond with the longest maturity equals the
inverse of the SDF: limk→∞R

(k)
t+1 = Λt/Λt+1. High marginal utility growth translates into higher yields on long maturity bonds

and low long bond returns, and vice-versa.
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G Additional Implications

We end this Appendix with two additional implications of our main results that can further help build the next generation of
international finance models and guide future empirical work.

G.1 A Lower Bound on Cross-Country Correlations of the Permanent SDF Components

Brandt, Cochrane, and Santa-Clara (2006) show that the combination of relatively smooth exchange rates and much more volatile
SDFs implies that SDFs are very highly correlated across countries. A 10% volatility in exchange rate changes and a volatility
of marginal utility growth rates of 50% imply a correlation of at least 0.98. We do not interpret the correlation of SDFs or their
components in terms of cross-country risk-sharing, because doing so requires additional assumptions. The nature and magnitude
of international risk sharing is an important and open question in macroeconomics (see, for example, Cole and Obstfeld (1991);
Wincoop (1994); Lewis (2000); Gourinchas and Jeanne (2006); Lewis and Liu (2015); Coeurdacier, Rey, and Winant (2013); Didier,
Rigobon, and Schmukler (2013); as well as Colacito and Croce (2011) and Stathopoulos (2017) on the high international correlation
of state prices). A necessary but not sufficient condition to interpret the SDF correlation is for example that the domestic and
foreign agents consume the same baskets of goods and participate in complete financial markets. Even in this case, the interpretation
is subject to additional assumptions. In a multi-good world, variation in the relative prices of the goods drives a wedge between the
pricing kernels, even in the case of perfect risk sharing (Cole and Obstfeld (1991)). Likewise, when markets are segmented, as in
Alvarez, Atkeson, and Kehoe (2002) and Alvarez, Atkeson, and Kehoe (2009), the correlation of SDFs does not imply risk-sharing
of the non-participating agents. Using our framework, we can derive a specific bound on the covariance of the permanent SDF
component across different countries.

Proposition 4. If the permanent SDF component is unconditionally lognormal, the cross-country covariance of the SDF’ permanent
components is bounded below by:

cov

(
log

ΛP,∗
t+1

ΛP,∗
t

, log
ΛP
t+1

ΛP
t

)
≥ E

(
log

R∗t+1
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t+1

)
+ E

(
log

Rt+1

R
(∞)
t+1

)
− 1

2
var

(
log

SP
t+1

SP
t

)
, (23)

for any positive returns Rt+1 and R∗t+1. A conditional version of the expression holds for conditionally lognormal permanent pricing
kernel components.

Therefore, this result extends the insights of Brandt, Cochrane, and Santa-Clara (2006) to the permanent components of the
SDFs. Chabi-Yo and Colacito (2015) extend this lower bound to non-Gaussian pricing kernels and different horizons.

Since exchange rate changes and their transitory components are observable (due to the observability of the bonds’ holding

period returns), one can compute the variance of the permanent component of exchange rates, var

(
log

SP
t+1

SP
t

)
, which is the last

term in the expression above. In the data, the contribution of that term is on the order of 1% or less. Given the large size of the
equity premium compared to the term premium (a 7.5% difference according to Alvarez and Jermann, 2005), and the relatively
small variance of the permanent component of exchange rates, the lower bound in Proposition 4 implies a large correlation of
permanent SDF components across countries.

In Figure A12, we plot the implied correlation of the permanent SDF components against the volatility of the permanent SDF
component in the symmetric two-country case, for two different scenarios: the dotted line is for Std

(
logSP

t /S
P
t+1

)
= 10%, and the

plain line is for Std
(
logSP

t /S
P
t+1

)
= 16%. In both cases, the implied correlation of the permanent components of the domestic and

foreign SDFs is clearly above 0.90.
While Brandt, Cochrane, and Santa-Clara (2006) show that the SDFs are highly correlated across countries, we find that the

permanent components of the SDFs, which are the main sources of volatility for the SDFs, are highly correlated across countries.

G.2 A New Long-Term Bond Return Parity Condition

We end this paper with a potential new benchmark for exchange rates. While hundreds of papers have tested the U.I.P. condition,
which assumes risk-neutrality, we suggest a novel corner case, this time taking risk into account. When countries share permanent
innovations to their SDFs, a simple long bond return parity condition emerges. The proposition below provides the result.

Proposition 5. If the domestic and foreign pricing kernels have common permanent innovations, so ΛP
t+1/Λ

P
t = ΛP,∗

t+1/Λ
P,∗
t for all

states, then the one-period returns on the longest maturity foreign bonds in domestic currency terms are identical to the returns of
the corresponding domestic bonds:

R
(∞),∗
t+1

St
St+1

= R
(∞)
t+1 , for all states. (24)
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Figure A12: Cross-country Correlation of Permanent SDF Shocks — In this figure, we plot the implied correlation of
the domestic and foreign permanent components of the SDF against the standard deviation of the permanent component of the
SDF. The dotted line is for Std

(
logSP

t /S
P
t+1

)
= 10%. The straight line is for Std

(
logSP

t /S
P
t+1

)
= 16%. Following Alvarez and

Jermann (2005), we assume that the equity minus bond risk premia are 7.5% in the domestic and foreign economies.

While Proposition 1 is about expected returns, Proposition 5 focuses on realized returns. In this polar case, even if most of the
innovations to the pricing kernel are highly persistent, the shocks that drive exchange rates are not, because the persistent shocks
are the same across countries. In that case, the exchange rate is a stationary process. In the absence of arbitrage opportunities, the
currency exposure of a foreign long-term bond position to the stationary components of the pricing kernels is fully hedged by its
interest rate risk exposure and does not affect the return differential with domestic bonds, which then measures the wedge between
the non-stationary components of the domestic and foreign pricing kernels. When nominal exchange rates are stationary, this wedge
is zero and long bond return parity obtains: bonds denominated in different currencies earn the same dollar returns, date by date.
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H Finite vs. Infinite Maturity Bond Returns

Our empirical results pertain to 10- and 15-year bond returns while our theoretical results pertain to infinite-maturity bonds.
This discrepancy raises the question of the theoretical validity of our empirical analysis. To address this question, we use the
state-of-the-art Joslin, Singleton, and Zhu (2011) term structure model to study empirically the difference between the 10-year and
infinite-maturity bonds. In particular, we estimate a version of the Joslin, Singleton, and Zhu (2011) term structure model with
three factors, the three first principal components of the yield covariance matrix.26 This Gaussian dynamic term structure model is
estimated on zero-coupon rates over the period from April 1985 to December 2015, the same period used in our empirical work, for
each country in our benchmark sample. Each country-specific model is estimated independently, without using any exchange rate
data. The maturities considered are 6 months, and 1, 2, 3, 5, 7, and 10 years. Using the parameter estimates, we derive the implied
bond returns for different maturities. We report simulated data for Australia, Canada, Germany, Japan, Norway, Switzerland,
U.K., and U.S. and ignore the simulated data for New Zealand and Sweden as the parameter estimates imply that bond yields
turn sharply negative on long maturities for those two countries. We study both unconditional and conditional returns, forming
portfolios of countries sorted by the level or slope of their yield curves, as we did in the data. Table A23 reports the simulated
moments.

We first consider the unconditional holding period bond returns across countries. The average (annualized) log return on the
10-year bond is lower than the log return on the infinite-maturity bond for all countries except Australia, the U.K., and the U.S.,
but the differences are not statistically significant, except for Japan. The unconditional correlation between the two log returns
ranges from 0.88 to 0.96 across countries; for example, it is 0.89 for the U.S. Furthermore, the estimations imply very volatile log
SDFs that exhibit little correlation across countries. As a result, the implied exchange rate changes are much more volatile than in
the data. We then turn to conditional bond returns, obtained by sorting countries into two portfolios, either by the level of their
short-term interest rate or by the slope of their yield curve. The portfolio sorts recover the results highlighted in the previous section:
low (high) short-term interest rates correspond to high (low) average local bond returns. Likewise, low (high) slopes correspond to
low (high) average local bond returns. The infinite maturity bonds tend to offer larger conditional returns than the 10-year bonds,
but the differences are not significant. The correlation between the conditional returns of the 10-year and infinite maturity bond
portfolios ranges from 0.86 to 0.93 across portfolios.

A clear limit of this experiment is that term structure models are not built to match infinite-maturity bonds, as these are
unobservable. We thus learn from the term structure models by continuity. In theory, it is certainly possible to write a model
where the 10-year bond returns, once expressed in the same currency, offer similar average returns across countries (as we find in
the data), while the infinite maturity bonds do not. In that case, there would be a gap between our theory and the data. In such
a model, however, exchange rates would have unit root components driven by common shocks and the cross-sectional distribution
of exchange rates would fan out over time. For developing countries with strong trade links and similar inflation rates, this seems
hard to defend. Moreover, although we cannot rule out its existence, we do not know of such a model. In the state-of-the-art of
the term structure modeling, our inference about infinite-maturity bonds from 10-year bonds is reasonable.

26We thank the authors for making their code available on their web pages.

111



Table A23: Simulated Bond Returns

Panel A: Country Returns

US Australia Canada Germany Japan Norway Switzerland UK

y(10) (data) 5.58 6.97 5.81 4.97 2.77 4.26 3.17 6.10

y(10) 5.58 6.97 5.81 4.97 2.77 4.26 3.18 6.09

rx(10) 5.60 4.50 4.53 4.33 4.05 3.14 2.95 3.50
s.e. [1.43] [1.71] [1.45] [1.17] [1.13] [1.71] [1.12] [1.52]

rx(∞) −0.44 2.17 6.69 6.33 7.38 5.96 6.42 2.74
s.e. [10.87] [10.38] [8.47] [2.33] [2.46] [3.89] [3.23] [4.52]

Corr (rx(10), rx(∞)) 0.89 0.92 0.89 0.92 0.93 0.96 0.93 0.88

rx(∞) − rx(10) −6.04 −2.33 2.16 2.00 3.33 2.83 3.47 −0.76

s.e. [9.63] [8.77] [6.98] [1.34] [1.46] [2.30] [2.22] [3.33]

σm? 239.17 241.92 127.14 118.45 211.76 132.76 227.59 153.22

corr(m,m?) 1.00 0.01 0.33 0.20 0.03 0.05 0.14 0.03

σ∆s 310.81 202.65 244.63 314.14 190.44 271.17 279.99

Panel B: Portfolio Returns

Sorted by Level Sorted by Slope

Sorting variable (level/slope) 2.57 5.60 0.15 1.81

rx(10) 4.10 4.52 3.00 5.48

s.e. [1.05] [1.24] [1.13] [1.23]

rx(∞) 4.48 6.00 0.79 9.61
s.e. [4.17] [5.62] [4.33] [5.90]

Corr (rx(10), rx(∞)) 0.86 0.93 0.89 0.90

rx(∞) − rx(10) 0.38 1.48 −2.21 4.13

s.e. [3.28] [4.58] [3.40] [4.84]

Notes: Panel A reports moments on simulated data at the country level. For each country, the table first compares the 10-year yield in the
data and in the model, and then reports the annualized average simulated log excess return (in percentage terms) of bonds with maturities
of 10 years and infinity, as well as the correlation between the two bond returns. The table also reports the annualized volatility of the log
SDF, the correlation between the foreign log SDF and the U.S. log SDF, and the annualized volatility of the implied exchange rate changes.
Panel B reports conditional moments obtained by sorting countries by either the level of their short-term interest rates or the slope of their
yield curves into two portfolios. The table reports the average value of the sorting variable, and then the average returns on the 10-year
and infinite-maturity bonds, along with their correlation. The simulated data come from the benchmark 3-factor model (denoted RPC) in
Joslin, Singleton, and Zhu (2011) that sets the first 3 principal components of bond yields as the pricing factors. The model is estimated on
zero-coupon rates for Germany, Japan, Norway, Switzerland, U.K., and U.S. The sample estimation period is 4/1985–12/2015. The standard
errors (denoted s.e. and reported between brackets) were generated by block-bootstrapping 10,000 samples of 369 monthly observations.
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