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A Supplemental Tables

Tables S-1, S-2, S-3, and S-4 provide some additional Monte Carlo results.

Tables S-5 to S-7 provide a list of variables used in the empirical application.



Supplemental Appendix A.2

Table S-1: Known Break Date, Homogeneous R2, π0 = 0.5, i.i.d. errors

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 100 0.88 (0.88 0.12 0.00) (0.98 0.02 0.00) 1.00 1.04 0.90 1.42

3 3 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.56

3 3 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.55

Panel B. Type-1 Change

3 3 0.2 100 100 0.03 (0.94 0.06 0.00) (0.97 0.03 0.00) 1.00 1.06 0.94 1.37

3 3 0.2 150 150 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 0.99 1.26

3 3 0.2 200 200 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.08 1.00 1.14

3 3 0.5 100 100 0.96 (0.96 0.04 0.00) (0.97 0.03 0.00) 1.00 1.31 1.67 1.17

3 3 0.5 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.34 2.44 1.01

3 3 0.5 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.25 3.14 1.00

3 3 1.0 100 100 0.71 (0.71 0.29 0.00) (1.00 0.00 0.00) 1.00 0.98 1.45 1.00

3 3 1.0 150 150 0.99 (0.99 0.01 0.00) (1.00 0.00 0.00) 1.00 0.97 1.34 1.00

3 3 1.0 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.33 1.00

Panel C. Type-2 Change

1 2 100 100 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.99 1.16 1.00

1 2 150 150 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.15 1.00

1 2 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.15 1.00

3 4 100 100 0.36 (0.71 0.29 0.00) (0.53 0.47 0.00) 1.00 1.17 1.43 0.79

3 4 150 150 0.96 (0.99 0.01 0.00) (0.98 0.03 0.00) 1.00 1.26 1.26 0.98

3 4 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.13 1.25 1.00

Notes: Parameters α = β = 0, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 1.
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Table S-2: Known Break Date, Homogeneous R2, π0 = 0.8, ζ = 1

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.80

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.73

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.72

Panel B. Type-1 Change

3 3 0.2 100 200 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 2.08

3 3 0.2 150 300 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.57

3 3 0.2 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 1.30

3 3 0.5 100 200 0.50 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.80 1.26 0.90

3 3 0.5 150 300 0.90 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 3.61 2.25 0.91

3 3 0.5 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 4.49 3.41 0.99

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 2.84 1.01

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 2.03 1.00

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.98 1.38 1.00

Panel C. Type-2 Change

1 2 100 200 0.97 (1.00 0.00 0.00) (0.97 0.03 0.00) 1.00 1.27 1.61 0.95

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.10 1.19 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 1.14 1.00

3 4 100 200 0.00 (1.00 0.00 0.00) (0.00 1.00 0.00) 1.00 1.05 2.22 0.75

3 4 150 300 0.07 (1.00 0.00 0.00) (0.07 0.93 0.00) 1.00 1.04 1.63 0.55

3 4 200 400 0.40 (1.00 0.00 0.00) (0.40 0.60 0.00) 1.00 1.22 1.29 0.57

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 1.
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Table S-3: Known Break Date, Homogeneous R2, Change in Factor Dynamics

DGP Configuration r̂a − ra r̂b − rb MSE

ρa ρb ηa ηb N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. π0 − 0.5.

0 0 1 2 100 100 0.95 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.13 0.86 1.01

0 0 1 2 150 150 0.99 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.06 0.85 1.00

0 0 1 2 200 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.85 1.00

0 0.8 1 1 100 100 0.53 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.18 0.90 1.16

0 0.8 1 1 150 150 0.62 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.22 0.88 1.12

0 0.8 1 1 200 200 0.72 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.23 0.86 1.09

0 0.8 1 0.6 100 100 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.99 1.64

0 0.8 1 0.6 150 150 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 1.63

0 0.8 1 0.6 200 200 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 0.99 1.61

Panel B. π0 = 0.8

0 0 1 2 100 200 0.90 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.54 0.63 1.06

0 0 1 2 150 300 0.98 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.35 0.61 1.01

0 0 1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.17 0.61 1.00

0 0.8 1 1 100 200 0.38 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.49 0.78 1.53

0 0.8 1 1 150 300 0.49 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.70 0.72 1.39

0 0.8 1 1 200 400 0.58 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.79 0.68 1.30

0 0.8 1 0.6 100 200 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.04 0.99 2.79

0 0.8 1 0.6 150 300 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 1.00 2.74

0 0.8 1 0.6 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 2.72

Notes: Parameters: ψi = λi, ra = rb = 1, α = β = 0, ζ = 1. In the last three rows of each panel, the change
from (ρa, ηa) to (ρb, ηb) does not result in a change in the factor variance, and such a change cannot be
identified.
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Table S-4: Unknown Break Date, Heterogeneous R2, π0 = 0.8

DGP Configuration r̂a − ra r̂b − rb MSE

ra rb w N T M̂ 0 −1 1 0 −1 1 PMS PLS Full Sub

Panel A. No Change

3 3 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.01 3.91

3 3 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.49

3 3 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.00 1.00 3.10

Panel B. Type-1 Change

3 3 0.2 100 200 0.02 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.03 0.97 3.29

3 3 0.2 150 300 0.01 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.02 0.99 3.15

3 3 0.2 200 400 0.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.01 1.00 2.54

3 3 0.5 100 200 0.70 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.24 0.79 1.11

3 3 0.5 150 300 0.93 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.93 1.13 1.36

3 3 0.5 200 400 0.99 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 2.35 1.50 1.39

3 3 1.0 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.19 2.63 1.40

3 3 1.0 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.14 4.13 1.18

3 3 1.0 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 1.09 4.71 1.03

Panel C. Type-2 Change

1 2 100 200 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.94 2.78 1.01

1 2 150 300 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.96 1.57 1.00

1 2 200 400 1.00 (1.00 0.00 0.00) (1.00 0.00 0.00) 1.00 0.97 1.18 1.00

3 4 100 200 0.21 (1.00 0.00 0.00) (0.21 0.79 0.00) 1.00 0.98 2.88 1.31

3 4 150 300 0.71 (1.00 0.00 0.00) (0.71 0.29 0.00) 1.00 1.05 3.47 1.04

3 4 200 400 0.97 (1.00 0.00 0.00) (0.97 0.03 0.00) 1.00 1.03 3.45 1.00

Notes: Parameters α = β = 0.2, ρa = ρb = 0.5, ηa = ηb = 1, ζ = 4. The conjecture break date πc is correctly
specified.
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Table S-5: List of Variables - Part 1

Name Category TC Long Description

Cons: Dur NIPA 5 Real Personal Consumption Expenditures: Durable Goods

Cons: Svc NIPA 5 Real Personal Consumption Expenditures: Services

Cons: NonDur NIPA 5 Real Personal Consumption Expenditures: Nondurable Goods

Real InvtCh NIPA 1 Component for Change in Private Inventories, deflated by JCXFE

Real WageG NIPA 5 Component for Government GDP: Wage and Salary Disbursements by Industry, Government,

NIPA Tables 2.7A and 2.7B, deflated by JCXFE

IP: DurGds materials IP 5 Industrial Production: Durable Materials

IP: NondurGds materials IP 5 Industrial Production: Nondurable Materials

IP: DurConsGoods IP 5 Industrial Production: Durable Consumer Goods

IP: Auto IP 5 IP: Automotive products

IP: NonDurConsGoods IP 5 Industrial Production: Nondurable Consumer Goods

IP: BusEquip IP 5 Industrial Production: Business Equipment

IP: EnergyProds IP 5 IP: Consumer Energy Products

CapU Tot IP 1 Capacity Utilization: Total Industry

CapU Man IP 1 Capacity Utilization: Manufacturing (FRED past 1972)

Emp: DurGoods Emp 5 All Employees: Durable Goods Manufacturing

Emp: Const Emp 5 All Employees: Construction

Emp: Edu&Health Emp 5 All Employees: Education & Health Services

Emp: Finance Emp 5 All Employees: Financial Activities

Emp: Infor Emp 5 All Employees: Information Services

Emp: Bus Serv Emp 5 All Employees: Professional & Business Services

Emp: Leisure Emp 5 All Employees: Leisure & Hospitality

Emp: OtherSvcs Emp 5 All Employees: Other Services

Emp: Mining/NatRes Emp 5 All Employees: Natural Resources & Mining

Emp: Trade&Trans Emp 5 All Employees: Trade, Transportation & Utilities

Emp: Retail Emp 5 All Employees: Retail Trade

Emp: Wholesal Emp 5 All Employees: Wholesale Trade

Emp: Gov(Fed) Emp 5 All Employees: Government: Federal

Emp: Gov (State) Emp 5 All Employees: Government: State Government

Emp: Gov (Local) Emp 5 All Employees: Government: Local Government

URate: Age16-19 Emp 2 Unemployment Rate - 16-19 yrs

URate: Age > 20 Men Emp 2 Unemployment Rate - 20 yrs. & over, Men

URate: Age > 20 Women Emp 2 Unemployment Rate - 20 yrs. & over, Women

U: Dur < 5wks Emp 5 Number Unemployed for Less than 5 Weeks

U: Dur 5-14wks Emp 5 Number Unemployed for 5-14 Weeks

U: Dur > 15-26wks Emp 5 Civilians Unemployed for 15-26 Weeks

U: Dur > 27wks Emp 5 Number Unemployed for 27 Weeks & over

U: Job Losers Emp 5 Unemployment Level - Job Losers

U: LF Reentry Emp 5 Unemployment Level - Reentrants to Labor Force

U: Job Leavers Emp 5 Unemployment Level - Job Leavers

U: New Entrants Emp 5 Unemployment Level - New Entrants

Notes: TC is transformation code; see Stock and Watson (2012).
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Table S-6: List of Variables - Part 2

Name Category TC Long Description

Emp: SlackWk Emp 5 Employment Level - Part-Time for Economic Reasons, All Industries

AWH Man Emp 1 Average Weekly Hours: Manufacturing

AWH Privat Emp 2 Average Weekly Hours: Total Private Industrie

AWH Overtime Emp 2 Average Weekly Hours: Overtime: Manufacturing

HPermits HSS 5 New Private Housing Units Authorized by Building Permit

Hstarts: MW HSS 5 Housing Starts in Midwest Census Region

Hstarts: NE HSS 5 Housing Starts in Northeast Census Region

Hstarts: S HSS 5 Housing Starts in South Census Region

Hstarts: W HSS 5 Housing Starts in West Census Region

Constr. Contracts HSS 4 Construction contracts (mil. sq. ft.) (Copyright, McGraw-Hill)

Ret. Sale Ord 5 Sales of retail stores (mil. Chain 2000 $)

Orders (DurMfg) Ord 5 Mfrs’ new orders durable goods industries (bil. chain 2000 $)

Orders (ConsumerGoods/Mat.) Ord 5 Mfrs’ new orders, consumer goods and materials (mil. 1982 $)

UnfOrders (DurGds) Ord 5 Mfrs’ unfilled orders durable goods indus. (bil. chain 2000 $)

Orders (NonDefCap) Ord 5 Mfrs’ new orders, nondefense capital goods (mil. 1982 $)

VendPerf Ord 1 Index of supplier deliveries – vendor performance (pct.)

MT Invent Ord 5 Manufacturing and trade inventories (bil. Chain 2005 $)

PCED-MotorVec Pri 6 Motor vehicles and parts

PCED-DurHousehold Pri 6 Furnishings and durable household equipment

PCED-Recreation Pri 6 Recreational goods and vehicles

PCED-OthDurGds Pri 6 Other durable goods

PCED-Food-Bev Pri 6 Food and beverages purchased for off-premises consumption

PCED-Clothing Pri 6 Clothing and footwear

PCED-Gas-Enrgy Pri 6 Gasoline and other energy goods

PCED-OthNDurGds Pri 6 Other nondurable goods

PCED-Housing-Utilities Pri 6 Housing and utilities

PCED-HealthCare Pri 6 Health care

PCED-TransSvg Pri 6 Transportation services

PCED-RecServices Pri 6 Recreation services

PCED-FoodServ-Acc. Pri 6 Food services and accommodations

PCED-FIRE Pri 6 Financial services and insurance

PCED-OtherServices Pri 6 Other services

PPI: FinConsGds Pri 6 Producer Price Index: Finished Consumer Goods

PPI: FinConsGds(Food) Pri 6 Producer Price Index: Finished Consumer Foods

PPI: IndCom Pri 6 Producer Price Index: Industrial Commodities

PPI: IntMat Pri 6 Producer Price Index: Intermediate Materials: Supplies & Components

NAPM ComPrice Pri 1 NAPM COMMODITY PRICES INDEX (PERCENT)

Real Price: NatGas Pri 5 PPI: Natural Gas, deflated by PCEPILFE

Real Price: Oil Pri 5 PPI: Crude Petroleum, deflated by PCEPILFE

Notes: TC is transformation code; see Stock and Watson (2012).
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Table S-7: List of Variables - Part 3

Name Category TC Long Description

FedFunds IntL 2 Effective Federal Funds Rate

TB-3Mth IntL 2 3-Month Treasury Bill: Secondary Market Rate

BAA-GS10 IntS 1 BAA-GS10 Spread

MRTG-GS10 IntS 1 Mortg-GS10 Spread

TB6m-TB3m IntS 1 tb6m-tb3m

GS1-TB3m IntS 1 GS1-Tb3m

GS10-TB3m IntS 1 GS10-Tb3m

CP-TB Spread IntS 1 CP-Tbill Spread: CP3FM-TB3MS

Ted-Spread IntS 1 MED3-TB3MS (Version of TED Spread)

Real C&I Loan Mon 5 Commercial and Industrial Loans at All Commercial BanksDefl by PCEPILFE

Real ConsLoans Mon 5 Consumer (Individual) Loans at All Commercial Banks

Outlier Code because of change in data in April 2010 see FRB H8 ReleasDefl by PCEPILFE

Real NonRevCredit Mon 5 Total Nonrevolving Credit Owned and Securitized, OutstandingDefl by PCEPILFE

Real LoansRealEst Mon 5 Real Estate Loans at All Commercial BanksDefl by PCEPILFE

Real RevolvCredit Mon 5 Total Revolving Credit OutstandingDefl by PCEPILFE

S&P500 StPr 5 S&P’S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)

DJIA StPr 5 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE

VXO StPr 1 VXO (Linked by N. Bloom) .. Average daily VIX from 2009

Ex rate: Major ExR 5 FRB Nominal Major Currencies Dollar Index (Linked to EXRUS in 1973:1)

Ex rate: Switz ExR 5 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER USD)

Ex rate: Japan ExR 5 FOREIGN EXCHANGE RATE: JAPAN (YEN PER USD)

Ex rate: UK ExR 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)

EX rate: Canada ExR 5 FOREIGN EXCHANGE RATE: CANADA (CAD PER USD)

Cons. Expectations Others 1 Consumer expectations NSA (Copyright, University of Michigan)

Notes: TC is transformation code; see Stock and Watson (2012).
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B Some Auxiliary Results

We first present a lemma on the transformation matrices Ra and Rb defined in (2.8) and

(2.10) of the main text. This lemma is used in the proof of Theorem 1. Let F̃ r
a ∈ RT0×ra

and F̃ r
b ∈ R(T−T0)×rb denote the first ra and rb columns of F̃a and F̃b, respectively. The

ra × ra diagonal matrix Ṽa consists of the first ra largest eigenvalues of (T0N)−1XaX
′
a in a

decreasing order, and the rb×rb diagonal matrix Ṽb consists of the first rb largest eigenvalues

of (T1N)−1XbX
′
b in a decreasing order. Under Assumptions A-D, Theorem 1 of Bai and Ng

(2002) shows that

T−1
0 ||F̃ r

a − FaHa||2 = Op(C
−2
NT0

) and T−1
1 ||F̃ r

b − FbHb||2 = Op(C
−2
NT1

), (B.1)

where

Ha = Σa
F ′
aF̃

r
a

T0

Ṽ −1
a and Hb = Σb

F ′
bF̃

r
b

T1

Ṽ −1
b . (B.2)

Lemma 3 Suppose that Assumptions A-D hold. Then,

Ha −Ra = Op(C
−1
NT ) and Hb −Rb = Op(C

−1
NT ).

Proof of Lemma 3. Note that Ra is invertible w.p.a.1. Hence, we can write

FaΛ
0′ = FaRaR

−1
a Λ0′ = FR

a ΛR′, where FR
a = FaRa and ΛR′ = R−1

a Λ0′. (B.3)

The transformed factors satisfy

FR′
a F

R
a

T0

= V −1/2
a Υ′

aΣ
1/2
a

F ′
aFa
T0

Σ1/2
a ΥaV

−1/2
a

= V −1/2
a

(
Υ′
aΣ

1/2
a ΣFΣ1/2

a Υa

)
V −1/2
a +Op(T

−1/2
0 )

= V −1/2
a (Va)V

−1/2
a +Op(T

−1/2
0 ) = Ira +Op(T

−1/2
0 ), (B.4)

where the first equality follows from FR
a = FaRa and Ra = Σ

1/2
a ΥaV

−1/2
a , the second equality

follows from F ′
aFa/T0 − ΣF = Op(T

−1/2
0 ) in Assumption A, and the third equality follows

from (2.7). The transformed loadings satisfy

ΛR′ΛR

N
= V 1/2

a Υ−1
a Σ−1/2

a

Λ0′Λ0

N
Σ−1/2
a Υ′−1

a V 1/2
a = V 1/2

a Υ−1
a Υ′−1

a V 1/2
a = Va, (B.5)

where the first equality follows from ΛR′ = R−1
a Λ0′ and Ra = Σ

1/2
a ΥaV

−1/2
a , the second

equality follows from Σa = Λ0′Λ0/N by definition, the third equality holds because Υ′
aΥa =

Ira .
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Let La be a ra × ra matrix defined as

La =
ΛR′ΛR

N

FR′
a F̃

r
a

T0

Ṽ −1
a , (B.6)

which is a transformation matrix analogous to Ha but with Fa and Λ0 replaced by FR
a and

ΛR, respectively. Stock and Watson (2002) and Bai and Ng (2002) show that La is invertible

w.p.a.1 and F̃ r
a is a consistent estimator of FR

a La. The transformation matrix Ha and the

new transformation matrix La satisfy

Ha = Ra
R−1
a Λ0′Λ0R′−1

a

N

R′
aF

′
aF̃

r
a

T0

Ṽ −1
a

= Ra
ΛR′ΛR

N

FR′
a F̃

r
a

T0

Ṽ −1
a = RaLa, (B.7)

where the first equality follows from the definition of Ha in (B.2), the second equality follows

from FR
a = FaRa and ΛR′ = R−1

a Λ0′, the third equality follows from the definition of La in

(B.6).

Equation (2) of Bai and Ng (2013) shows that La = Ira if the underlying factor matrix

FR
a satisfies FR′

a F
R
a /T0 = Ir, and the underlying loading matrix ΛR satisfies that ΛR′ΛR is

a diagonal matrix with distinct elements. By (B.4) and (B.5), we know that these condi-

tions are satisfied asymptotically by the transformation above. Following the arguments for

equation (2) of Bai and Ng (2013), we obtain

La = Ira +Op(C
−1
NT0

), (B.8)

with two modifications to the proof in Bai and Ng (2013): (i) T−1
0 (F̃ r

a − FR
a La)

′FR
a =

Op(C
−2
NT0

) in Bai and Ng (2013) is changed to T−1
0 (F̃ r

a−FR
a La)

′FR
a = Op(C

−1
NT0

), which follows

from FR
a La = FaHa, (B.1), and the Cauchy-Schwarz inequality, and (ii) FR′

a F
R
a /T0 = Ira is

changed to FR′
a F

R
a /T0 = Ira +Op(T

−1/2
0 ) and the Op(T

−1/2
0 ) term is absorbed in Op(C

−1
NT0

) in

(B.8). The reason for the first change is that Assumptions A-D in this paper are comparable

to Assumptions A – D of Bai and Ng (2002), which are weaker than similar assumptions in

Bai and Ng (2013). The Assumptions in Bai and Ng (2013) are needed to obtain asymptotic

distributions of the estimated factors and loadings, which is not the purpose here. After

making these two modifications above, the rest of the arguments for equation (2) of Bai and

Ng (2013) follow directly to yield the result in (B.8).

Combining the results in (B.7) and (B.8), we obtain Ha−Ra = Op(C
−1
NT ) because T0/T →

π0 ∈ (0, 1). Similar arguments give Hb −Rb = Op(C
−1
NT ). �
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C Proof of Results in Section 4

Recall that we have defined

ΛR = Λ0(R−1
a )′ ∈ RN×ra , ΨR = Ψ0(R−1

b )′ ∈ RN×rb and ΓR =
(
ΨR

1 − ΛR, ΨR
2

)
(C.1)

in (2.9), (2.11), and (2.12), respectively. For the ease of notation, we also define

Λ∗ =
(
ΛR, 0N×(k−ra)

)
, Ψ∗ =

(
ΨR, 0N×(k−rb)

)
and Γ∗ = Ψ∗ − Λ∗. (C.2)

If N−1||ΨR
` −ΛR

` ||2 → 0 as N →∞ for some `, we replace the definition of ΓR` and Γ∗` above

with 0. The augmented matrices Λ∗ and Ψ∗ are transformed from Λ+ and Ψ+ = Λ+ + Γ+

defined in (3.1). Generally speaking, for the rest of the proof, the superscript 0 represents

the true factor loadings, the superscript R represents transformed factor loadings, and the

superscript asterisk represents augmented transformed factor loadings.

Following the definition of Z in (5.11) and the definition of Γ∗,

Z = {` = 1, ..., k : Γ∗` 6= 0} and ZC = {` = 1, ..., k : Γ∗` = 0}. (C.3)

By the definition of Γ∗, {rb + 1, ..., k} ⊆ ZC and Z ⊆ {1, ..., rb}. We allow ` ∈ ZC for some

` ≤ rb in the proofs below.

Recall Λ̂ and Γ̂ are the PLS estimators. Write Ψ̂ = Λ̂ + Γ̂. Define

Z2
λ = N−1

∥∥∥Λ̂− Λ∗
∥∥∥2

, Z2
ψ = N−1

∥∥∥Ψ̂−Ψ∗
∥∥∥2

, Z2
γ = N−1

∥∥∥Γ̂− Γ∗
∥∥∥2

. (C.4)

Proof of Theorem 1. The criterion function for the shrinkage estimator can be written as

Q(Λ,Γ) = Ma(Λ, F̃a) +Mb(Ψ, F̃b) + P1(Λ) + P2(Γ), where

Ma(Λ, Fa) = (NT )−1 ‖Xa − FaΛ
′‖2

,

Mb(Ψ, Fb) = (NT )−1 ‖Xb − Fb(Λ + Γ)′‖2
,

P1(Λ) = αNT

k∑
`=1

ωλ` ||Λ`|| and P1(Γ) = βNT

k∑
`=1

ωγ` ||Γ`||, (C.5)

with Ψ = Λ + Γ. For notational simplicity, the dependence on N and T is suppressed.

Because the shrinkage estimators Λ̂ and Γ̂ minimize the criterion function Q(Λ,Γ), we have

Q(Λ̂, Γ̂) ≤ Q(Λ∗,Γ∗), i.e.,[
Ma(Λ̂, F̃a)−Ma(Λ

∗, F̃a)
]

+
[
Mb(Ψ̂, F̃b)−Mb(Ψ

∗, F̃b)
]

≤
[
P1(Λ

∗)− P1(Λ̂)
]

+
[
P2(Γ

∗)− P2(Γ̂)
]
, (C.6)
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where Ψ̂ = Λ̂ + Γ̂.

We start with the right-hand side of (C.6). Define

p1 = P1(Λ
∗)− P r

1 (Λ̂) and p2 =

{
P2(Γ

∗)− P r
2 (Γ̂) if Γ0 6= 0

0 if Γ0 = 0
, where

P r
1 (Λ̂) = αNT

ra∑
`=1

ωλ` ||Λ̂`|| ≤ αNT

k∑
`=1

ωλ` ||Λ̂`|| = P1(Λ̂),

P r
2 (Γ̂) = βNT

∑
`∈Z

ωγ` ||Γ̂`|| ≤ βNT

k∑
`=1

ωγ` ||Γ̂`|| = P2(Γ̂). (C.7)

If Γ0 = 0, we have Γ∗ = 0 and P2(Γ
∗)− P r

2 (Γ̂) ≤ 0 because P2(Γ
∗) = 0 and P r

2 (Γ) ≥ 0. The

penalty terms on the right-hand side of (C.6) satisfy

P1(Λ
∗)− P1(Λ̂) ≤ p1 and P2(Γ

∗)− P2(Γ̂) ≤ p2 (C.8)

following the inequalities in (C.7).

We have Λ∗
` = 0 for ` = ra + 1, . . . , k and Γ∗` = 0 for ` ∈ ZC , which implies that

P1(Λ
∗) = αNT

ra∑
`=1

ωλ` ||Λ∗
` || and P2(Γ

∗) = βNT
∑
`∈Z

ωγ` ||Γ
∗
` ||. (C.9)

Following (C.7), (C.9), the triangle inequality, and the Cauchy-Schwarz inequality, we have

p1 ≤ αNT

ra∑
`=1

ωλ`

∥∥∥Λ̂` − Λ∗
`

∥∥∥ ≤ bΛZλ, where bΛ = N1/2αNT

[
ra∑
`=1

(ωλ` )
2

]1/2

(C.10)

and Zλ is defined in (C.4). By the same arguments,

p2 ≤ bΓZγ, where bΓ =

{
N1/2βNT

[∑
`∈Z(ωγ` )

2
]1/2

if Γ0 6= 0

0 if Γ0 = 0
(C.11)

and Zγ is in (C.4). Combining (C.6) and (C.8)-(C.11), we obtain[
Ma(Λ̂, F̃a)−Ma(Λ

∗, F̃a)
]

+
[
Mb(Ψ̂, F̃b)−Mb(Ψ

∗, F̃b)
]
≤ bΛZλ + bΓZγ. (C.12)

Next, we consider the left-hand side of (C.12). To this end, we first show some useful

equalities. Write F̃a = (F̃ r
a , F̃

⊥
a ) ∈ RT0×k, where F̃a is partitioned into a T0 × ra submatrix

F̃ r
a and a T0 × (k − ra) submatrix F̃⊥

a . Replacing F̃ r
a with FR

a = FaRa, we define

F ∗
a = (FR

a , F̃⊥
a ) = (FaRa, F̃

⊥
a ) ∈ RT0×k. (C.13)
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Some equivalent relationships are useful in the calculation below

F ∗
aΛ∗′ = FR

a ΛR′ = FaΛ
0′ and F̃aΛ

∗′ = F̃ r
aΛ

R′, (C.14)

because Λ∗ = (ΛR,0N×(k−ra)). It follows that

FaΛ
0′ − F̃aΛ̂

′ = F ∗
aΛ∗′ − F̃aΛ̂

′

= (F ∗
a − F̃a)Λ

∗′ − F̃a(Λ̂− Λ∗)′

= (FaRa − F̃ r
a )Λ

R′ − F̃a(Λ̂− Λ∗)′, (C.15)

where the first equality follows from (C.14), the second equality follows from adding and

subtracting F̃aΛ
∗′, and the third equality follows from (C.14). The difference between the

true common component FaΛ
0′ and the estimated common component F̃aΛ̂

′ are decomposed

into two pieces by the calculation in (C.15), where the first piece focuses on the factor

estimation error and the second piece focuses on the factor loading estimation error.

The first term on the left-hand side of (C.12) satisfies

Ma(Λ̂, F̃a) = (NT )−1
∥∥∥Xa − F̃aΛ̂

′
∥∥∥2

= (NT )−1
∥∥∥ea + (FaΛ

0′ − F̃aΛ̂
′)
∥∥∥2

= (NT )−1
∥∥∥(ea + (FaRa − F̃ r

a )Λ
R′
)
− F̃a(Λ̂− Λ∗)′

∥∥∥2

= M1 +M2 +M3 +M4, (C.16)

where the first equality follows from the definition of Ma(Λ, Fa) in (C.5), the second equality

follows from Xa = ea + FaΛ
0′, the third equality holds by the decomposition in (C.15), and

M1, M2, M3 and M4 are defined as follows. The first term M1 is

M1 = (NT )−1
∥∥∥ea + (FaRa − F̃ r

a )Λ
R′
∥∥∥2

= (NT )−1
∥∥∥Xa − F̃aΛ

∗′
∥∥∥2

= Ma(Λ
∗, F̃a), (C.17)

following Xa = ea + FR′
a ΛR′, F̃ r

aΛ
R′ = F̃aΛ

∗′ in (C.14) and the definition of Ma(Λ, F ) in

(C.5). The second term M2 is

M2 = (NT )−1
∥∥∥F̃a(Λ̂− Λ∗)′

∥∥∥2

= (NT )−1tr
(
(Λ̂− Λ∗)F̃ ′

aF̃a(Λ̂− Λ∗)′
)

=
T0

T
N−1

∥∥∥Λ̂− Λ∗
∥∥∥2

=
T0

T
Z2
λ, (C.18)
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following F̃ ′
aF̃a/T0 = Ira and the definition of Zλ. The third term M3 is

M3 = −2(NT )−1tr
(
e′aF̃a(Λ̂− Λ∗)′

)
. (C.19)

By the Cauchy-Schwarz inequality,

(NT )−1
∣∣∣tr(e′aF̃a(Λ̂− Λ∗)′

)∣∣∣ ≤ (NT )−1
∣∣∣tr(e′aF̃aF̃ ′

aea

)∣∣∣1/2 ∥∥∥Λ̂− Λ∗
∥∥∥

= N−1/2T−1
∣∣T0tr

(
PF̃a

eae
′
a

)∣∣1/2 Zλ
≤ N−1/2T−1

∣∣NT 2
0 kρ1((NT0)

−1eae
′
a)
∣∣1/2 Zλ

=
C3,nZλ

2
. (C.20)

The first equality holds because PF̃a
= T0

−1F̃aF̃
′
a, tr(AB) = tr(BA) for two matrices, and

because of the definition of Zλ. The second inequality follows from von Neumann’s trace

inequality and the fact that the eigenvalues of PF̃a
consist of k ones and T − k zeros. By

Assumption C(vi) and simple calculations,

C3,n = 2N−1/2T−1
∣∣NT 2

0 kρ1((NT0)
−1eae

′
a)
∣∣1/2

= 2N−1/2T−1
∣∣NT 2

0Op(C
−2
NT )
∣∣1/2

=
T0

T
Op(C

−1
NT ) = Op(C

−1
NT ), (C.21)

which together with (C.19) and (C.20) implies

|M3| ≤ C3,nZλ, where C3,n = Op(C
−1
NT ). (C.22)

The fourth term M4 is

M4 = −2(NT )−1tr
(
ΛR(FaRa − F̃ r

a )
′F̃a(Λ̂− Λ∗)′

)
. (C.23)

To investigate M4, we note that

(FaRa − F̃ r
a )
′F̃a

T0

=
(FaHa − F̃ r

a )
′F̃a

T0

+
(Fa(Ra −Ha))

′ F̃a
T0

= Op(C
−1
NT ) (C.24)

by the Cauchy-Schwarz inequality, (B.1), and Lemma 3. Applying the Cauchy-Schwarz

inequality, we have

(NT )−1
∣∣∣tr(ΛR(FaRa − F̃ r

a )
′F̃a(Λ̂− Λ∗)′

)∣∣∣
≤ (NT )−1

∥∥ΛR
∥∥∥∥∥(FaRa − F̃ r

a )
′F̃a

∥∥∥∥∥∥Λ̂− Λ∗
∥∥∥

=
T0

T

(
N−1

∥∥ΛR
∥∥2
)1/2

∥∥∥∥∥(FaRa − F̃ r
a )
′F̃a

T0

∥∥∥∥∥
(
N−1

∥∥∥Λ̂− Λ∗
∥∥∥2
)1/2

=
C4,nZλ

2
. (C.25)
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Using ΛR′ = R−1
a Λ′, R−1

a = Op(1), ||N−1Λ′Λ− ΣΛ|| → 0 and (C.24), we deduce that

C4,n =
2T0

T

(
N−1

∥∥ΛR
∥∥2
)1/2

∥∥∥∥∥(FaRa − F̃ r
a )
′F̃a

T0

∥∥∥∥∥ =
T0

T
Op(C

−1
NT ) = Op(C

−1
NT ), (C.26)

which together with (C.23) and (C.25) yields

|M4| ≤ C4,nZλ, where C4,n = Op(C
−1
NT ). (C.27)

Putting the four terms in (C.17), (C.18), (C.22), and (C.27) into (C.16), we obtain

Ma(Λ̂, F̃a)−Ma(Λ
∗, F̃a) ≥

T0

T
Z2
λ − Ca,nZλ, where Ca,n = C3,n + C4,n = Op(C

−1
NT ). (C.28)

Replacing the first subsample with the second subsample and the factor loadings Λ with Ψ,

we also have

Mb(Ψ̂, F̃b)−Mb(Ψ
∗, F̃b) ≥

T1

T
Z2
ψ − Cb,nZψ, where Cb,n = Op(C

−1
NT ). (C.29)

Plugging (C.28) and (C.29) into the left-hand side of (C.12), we obtain

T0

T
Z2
λ − Ca,nZλ +

T1

T
Z2
ψ − Cb,nZψ ≤ bΛZλ + bΓZγ ≤ (bΛ + bΓ)Zλ + bΓZψ, (C.30)

following the triangle inequality. Rearranging (C.30) gives

π0

(
Zλ −

Ca,n + bΛ + bΓ
2π0

)2

+ π1

(
Zψ −

Cb,n + bΓ
2π1

)2

≤ π0

(
Ca,n + bΛ + bΓ

2π0

)2

+ π1

(
Cb,n + bΓ

2π1

)2

, (C.31)

where π0 = T0/T ∈ (0, 1) and π1 = 1 − π0. It follows from (C.31), Ca,n = Op(C
−1
NT ),

Cb,n = Op(C
−1
NT ), and the triangle inequality that

Zλ = Op(bΛ + bΓ + C−1
NT ),

Zψ = Op(bΛ + bΓ + C−1
NT ),

Zγ = Op(bΛ + bΓ + C−1
NT ). (C.32)

Assumptions P1 and P2 imply that

ωλ` = Op(1) for ` = 1, . . . , ra, ω
γ
` = Op(1) for ` ∈ Z. (C.33)
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Assumption T(i) implies that bΛ = Op(C
−1
NT ) and bΓ = Op(C

−1
NT ), following (C.33). It follows

from (C.32) that

Zλ = Op(C
−1
NT ) and Zγ = Op(C

−1
NT ). (C.34)

Theorems 1(a) and 1(c) follow from the definitions of Zλ and Zγ in (C.4) and the results in

(C.34).

Next, we show the superefficiency results in Theorems 1(b), 1(d), and 1(e). To this end,

first define

La = {` : (ωλ` )
−1 = Op(C

−2d
NT )} and Lb = {` : (ωγ` )

−1 = Op(C
−2d
NT )}. (C.35)

Under Assumptions P1 and P2,

{ra + 1, . . . , k} ⊆ La, {rb + 1, . . . , k} ⊆ Lb, and if Γ0 = 0, {1, . . . , k} = Lb. (C.36)

Define the residual matrices

ea(Λ̂) = Xa − F̃aΛ̂
′ ∈ RT0×N and eb(Λ̂ + Γ̂) = Xb − F̃b(Λ̂ + Γ̂)′ ∈ RT1×N . (C.37)

Let eat (Λ̂) for t = 1, . . . , T0 be the rows of ea(Λ̂) and ebt(Λ̂ + Γ̂) for t = T0 + 1, . . . , T be the

rows of eb(Λ̂ + Γ̂). Let F̃` = (F̃ ′
a,`, F̃

′
b,`)

′ ∈ RT×1, where F̃a,` and F̃b,` are the `-th columns of

F̃a and F̃b, respectively, and let F̃t,` denote the t-th row of F̃`. By Lemma 4.2 of Bühlmann

and van de Geer (2011), a sufficient condition for Λ̂` = 0 is

2 (NT )−1

∥∥∥∥∥
T0∑
t=1

eat (Λ̂)F̃t,` +
T∑

t=T0+1

ebt(Λ̂ + Γ̂)F̃t,`

∥∥∥∥∥ < αNTω
λ
` , (C.38)

where the left-hand side is associated with the partial derivative of Ma(Λ, F̃a) +Mb(Ψ, F̃b),

with respect to Λ` evaluated at the PLS estimators, and the right-hand side is the marginal

penalty once Λ̂` deviates from 0. Intuitively, the optimal solution is Λ̂` = 0 when the marginal

penalty on the right-hand side of (C.38) is larger than the marginal gain on the left-hand

side of (C.38). The inequality in (C.38) can be equivalently written as∥∥∥ea(Λ̂)′F̃a,` + eb(Λ̂ + Γ̂)′F̃b,`

∥∥∥ < NT

2
αNTω

λ
` , (C.39)

which holds provided that∥∥∥ea(Λ̂)′F̃a,`

∥∥∥+
∥∥∥eb(Λ̂ + Γ̂)′F̃b,`

∥∥∥ < NT

2
αNTω

λ
` . (C.40)
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Next, we study the two terms on the left-hand side of (C.40). The first term satisfies∥∥∥ea(Λ̂)′F̃a,`

∥∥∥ =
∥∥∥(ea + FaΛ

0′ − F̃aΛ̂
′)′F̃a,`

∥∥∥
=
∥∥∥e′aF̃a,` + (FaRa − F̃ r

a )Λ
R′F̃a,` − F̃a(Λ̂− Λ∗)′F̃a,`

∥∥∥
≤
∥∥∥e′aF̃a,`∥∥∥+

∥∥∥FaRa − F̃ r
a

∥∥∥∥∥ΛR
∥∥∥∥∥F̃a,`∥∥∥+

∥∥∥F̃a∥∥∥∥∥∥Λ̂− Λ∗
∥∥∥∥∥∥F̃a,`∥∥∥ (C.41)

where the second equality follows from (C.15) and the inequality follows from the Cauchy-

Schwarz inequality and the triangle inequality. The terms in the last line of (C.41) are:

(i)

||e′aF̃a,`|| = (NT )1/2

√
F̃ ′
a,`

eae′a
NT

F̃a,`

≤ (NT )1/2T
1/2
0

√
ρ1 ((NT )−1eae′a)

√
F̃ ′
a,`F̃a,`

T0

= (NT )1/2T
1/2
0 Op(C

−1
NT ) = Op(N

1/2TC−1
NT ), (C.42)

where the second equality is by T−1
0 F̃ ′

a,`F̃a,` = 1 and Assumption C(vi); (ii) ||FaRa − F̃ r
a || =

Op(T
1/2C−1

NT ) by (B.1); (iii)
∥∥ΛR

∥∥ = Op(N
1/2) because Ra = Op(1) and ||Λ′Λ/N −ΣΛ|| → 0;

(iv) ||F̃a,`|| = O(T 1/2) and ||F̃a|| = O(T 1/2) because T−1
0 F̃ ′

aF̃a = Ira ; (v) ||Λ̂ − Λ∗|| =

Op(N
1/2C−1

NT ) by the definition of Zλ and (C.34). Putting them together with (C.41), we

have ∥∥∥ea(Λ̂)′F̃a,`

∥∥∥ = Op(N
1/2TC−1

NT ). (C.43)

By the same arguments, we have∥∥∥eb(Λ̂ + Γ̂)′F̃b,`

∥∥∥ = Op(N
1/2TC−1

NT ). (C.44)

Equations (C.43) and (C.44) imply that for the inequality in (C.40) to hold, it suffices

to have

N−1/2C−1
NT = op(αNTω

λ
` ), (C.45)

which is satisfied for all ` ∈ La under Assumption T(ii).

To prove Theorems 1(d) and 1(e), note that a sufficient condition for Γ̂` = 0 is

2 (NT )−1

∥∥∥∥∥
T∑

t=T0+1

ebt(Λ̂ + Γ̂)F̃t,`

∥∥∥∥∥ < βNTω
γ
` . (C.46)
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Following (C.44), the inequality in (C.46) holds provided that

N−1/2C−1
NT = op(βNTω

γ
` ), (C.47)

which is satisfied for all ` ∈ Lb under Assumption T(ii). Therefore, Theorems 1(b), 1(d),

and 1(e) follow from (C.36).

Some remarks on the proof of Theorem 1 and its relationship to the proofs of Corollaries

1 and 2 below are in order. First, in the proof of Theorem 1, we give general definition

of Z, La and Lb without imposing Assumptions P1 and P2 so that the the proof can be

recycled when these assumptions are relaxed. Specifically, Theorem 1 can be proved as above

without Assumptions P1 and P2 as long as (C.33) and (C.36) can be verified for a given

preliminary estimator, as we shall do in the proofs below. Second, Assumptions P1 and P2

are slightly stronger than needed to prove Theorem 1, however, we present them as is for

the simplicity of the presentation to convey the idea. These assumptions can be relaxed as

follows: Assumption P1(ii) assumes that Pr(N−1||Γ̃`||2 ≥ C) → 1 for ` = 1, . . . , rb, while we

only need this to hold for ` ∈ Z rather than for all ` = 1, . . . , rb in order to verify (C.33).

The set Z, associated with the nonzero columns of ΓR, could be a subset of {1, . . . , rb} to

identify a type-1 or type-2 change. For this reason, the proofs of Corollaries 1 and 2 do not

verify Assumptions P1 and P2 but rather show Theorem 1 directly. �

Proof of Lemma 1. Because ΛR = Λ0R−1′
a and ΨR = Ψ0R−1′

b with Ra = Σ
1/2
a ΥaV

−1/2
a and

Rb = Σ
1/2
b ΥbV

−1/2
b , we have

ΛR′ΛR

N
= V 1/2

a Υ′
aΣ

−1/2
a

Λ0′Λ0

N
Σ−1/2
a ΥaV

1/2
a = Va and

ΨR′ΨR

N
= Vb. (C.48)

By definition, Va is a diagonal matrix and its `-th diagonal element is the `-th largest

eigenvalue of Σ
1/2
a ΣFΣ

1/2
a , which is the same as the `-th largest eigenvalue of ΣaΣF . Following

Assumption B and the continuity of the eigenvalue (with respect to the matrix), it converges

to the `-th largest eigenvalue of ΣΛΣF , denoted by ρ`(ΣΛΣF ). Similarly, the `-th diagonal

element of Vb converges to the `-th largest eigenvalue of ΣΨΣF , denoted by ρ`(ΣΨΣF ).

Let a` be a selection vector that selects the `-th column of a matrix. Part (a) holds

because

N−1
∥∥ΛR

`

∥∥2
= a′`

(
N−1ΛR′ΛR

)
a` = a′`Vaa` = ρ`(ΣΛΣF ) + o(1). (C.49)
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To prove part (b), note that for ra < ` ≤ rb, the `-th column of ΓR is equivalent to the `-th

column of ΨR. Hence,

N−1||ΓR` ||2 = a′`
(
N−1ΨR′ΨR

)
a` = a′`Vba` = ρ`(ΣΨΣF ) + o(1). (C.50)

To show part (c), first note that if ra = rb, we have

N−1ΓR′ΓR = N−1(ΨR − ΛR)′(ΨR − ΛR) = e′Σ+
ΛΨe + o(1), (C.51)

where e = limN→∞
(
R−1
b , −R−1

a

)′
has full rank following Assumptions A and B and Σ+

ΛΨ

is defined in (2.6). By a Cholesky decomposition, write Σ+
ΛΨ = (Σ+

ΛΨ)1/2(Σ+
ΛΨ)1/2 with

rank((Σ+
ΛΨ)1/2) = rank(Σ+

ΛΨ) > ra. For a 2ra × 2ra matrix (Σ+
ΛΨ)1/2, the rank of the null

space of (Σ+
ΛΨ)1/2 is smaller than ra. It follows that (Σ+

ΛΨ)1/2e 6= 0 because rank(e) = ra,

and this immediately implies that part (c) holds with ΣΓ = e′Σ+
ΛΨe 6= 0.

To prove part (d), write

N−1||ΓR` ||2 = N−1
∥∥ΓRa`∥∥2

= N−1
∥∥ΨRa` − ΛRa`

∥∥2

≥
(
N−1/2

∥∥ΨRa`
∥∥−N−1/2

∥∥ΛRa`
∥∥)2

= [(ρ`(ΣΨΣF ))1/2 − (ρ`(ΣΛΣF ))1/2]2 + o(1), (C.52)

where the first two equalities follow from the definition of a` and ΓR, the inequality follows

from the triangle inequality, and the last equality holds by (C.48). �

Proof of Theorem 2. First, Theorem 1(a) for ` = ra and Lemma 1(a) imply that

Pr(||Λ̂`|| > 0) → 1 for ` = ra and thus Pr(r̂a ≥ ra) → 1. Theorem 1(b) implies that

Pr(r̂a ≤ ra) → 1. Thus, Pr(r̂a = ra) → 1.

Second, for a type-2 change where rb > ra, Theorem 1(c) for ` = rb and Lemma 1(b)

imply that Pr(||Γ̂`|| > 0) → 1 for ` = rb and thus Pr(r̂b ≥ rb) → 1. Theorem 1(e) implies

that Pr(r̂b ≤ rb) → 1. Hence, Pr(r̂b = rb) → 1 for a type-2 change, which, together with part

(a), also implies Pr(Ŝ = 1) → 1 for a type-2 change because by definition, Ŝ = 1 if r̂b > r̂a.

Third, for a type-1 change where rb = ra and S0 = 1, Theorem 1(c), Lemmas 1(c)

and 1(d), and Assumption ID imply that Pr(||Γ̂`|| > 0) → 1 for some ` ≤ ra and thus

Pr(Ŝ = 1) → 1. Note that by definition in (3.5), we have r̂b ≥ r̂a. Thus, part (a) and ra = rb

imply that Pr(r̂b ≥ rb) → 1. On the other hand, Theorem 1(e) implies that Pr(r̂b ≤ rb) → 1.

Hence, Pr(r̂b = rb) → 1 for a type-1 change.
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Finally, for the case where there is no change, i.e., ra = rb and S0 = 0, Theorems 1(d)

and 1(e) imply that Pr(Γ̂ = 0) → 1. Thus, Pr(Ŝ = 0) → 1 by (3.6) and Pr(r̂b = rb) → 1 by

(3.5) and part (a). �

Proof of Corollary 1. We first study the properties of the unrestricted least square

estimator Λ̃LS and Γ̃LS. Note that the unrestricted least squares estimator is a special case

of the PLS estimator when αNT = βNT = 0. Therefore, following (C.32),

N−1||Λ̃LS − Λ∗||2 = Op(C
−2
NT ) and N−1||Γ̃LS − Γ∗||2 = Op(C

−2
NT ), (C.53)

which combined with the definitions of Λ∗ and Γ∗ and Lemma 1 imply that

Pr(N−1||Λ̃LS,`||2 ≥ C) → 1 for ` = 1, . . . , ra, Pr(N−1||Γ̃LS,`||2 ≥ C) → 1 for ` ∈ Z (C.54)

and

N−1||Λ̃LS,`||2 = Op(C
−2
NT ) for ` > ra and N−1||Γ̃LS,`||2 = Op(C

−2
NT ) for ` ∈ ZC . (C.55)

Next, we show that (C.33) and (C.36) hold without imposing Assumptions P1 and P2,

so that the proof of Theorem 1 follows without these two assumptions. The definition of

weights in (3.4) and (C.54) imply that (C.33) holds for the case Λ̃ = Λ̃LS and Γ̃ = Γ̃LS.

The definition of La and Lb together with (C.55) imply that La = {ra + 1, . . . , k} and

Lb = ZC . By definition, {rb + 1, . . . , k} ⊆ ZC and, if Γ0 = 0, then {1, . . . , k} = ZC , which

implies that (C.36) holds for the case Λ̃ = Λ̃LS and Γ̃ = Γ̃LS. Therefore, Theorem 1 holds

without imposing Assumptions P1 and P2 for the one-step estimator Λ̃ = Λ̃LS and Γ̃ = Γ̃LS.

Applying Theorem 1, model selection consistency follows from the proof for Theorem 2. �

Proof of Corollary 2. We first study the preliminary estimators Λ̃(2), Ψ̃(2), and Γ̃(2), and

the weights ωλ` and ωγ` in the second step. Because Λ̃(2) = Λ̂
(1)
PMS, whose first r̂

(1)
a columns

are the same as those of Λ̃LS and whose last k− r̂
(1)
a columns are zeros, it follows from (3.4)

that

ωλ` = (N−1||Λ̃LS,`||2)−d for ` = 1, . . . , k, (C.56)

which is the same for the first- and second-step estimators. If there is a type-2 change,

r̂
(1)
b > r̂

(1)
a w.p.a.1 by Corollary 1, and

ωγ` = (N−1||Γ̃LS,`||2)−d for ` = 1, . . . , k, (C.57)
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which is the same for the first and second step estimations.

If there are no structural instabilities or there is a type-1 change, r̂
(1)
b = r̂

(1)
a = rb = ra

w.p.a.1 by Corollary 1. Let Ψ̃−
LS and Λ̃−

LS denote the first ra columns of Ψ̃LS and Λ̃LS,

respectively. Given r̂
(1)
b = r̂

(1)
a = ra = rb, we have Ψ

(1)
= Ψ̃−

LS, Λ
(1)

= Λ̃−
LS, and the

second-step preliminary estimator Γ̃(2) can be written as

Γ̃(2) =
(
Ψ̃−
LSQ− Λ̃−

LS, 0N×(k−ra)

)
, (C.58)

following from Γ̃(2) = Ψ̃(2) − Λ̃(2) and steps 1d, 1e, and 2a in the algorithm to construct the

two-step estimator.

Define

ΓQ =
(
ΨRQ− ΛR, 0N×(k−ra)

)
. (C.59)

Recall that ΨR and ΛR are the transformed factor loadings. In addition, ΓR and ΛR are the

first ra columns of Γ∗ and Λ∗, respectively, given ra = rb. By (C.58) and (C.59), w.p.a.1,

N−1||Γ̃(2) − ΓQ||2 = N−1
∥∥∥(Ψ̃−

LS −ΨR)Q− (Λ̃−
LS − ΛR)

∥∥∥2

= N−1
∥∥∥(Γ̃−LS − ΓR

)
Q+

(
Λ̃−
LS − ΛR

)
(Q− Ira)

∥∥∥2

= Op(C
−2
NT ), (C.60)

where the last equality follows from the triangle inequality and (C.53). To analyze Γ̃(2) for

the second-step estimation, we first discuss the centering term ΓQ when there is a type-1

change. Assumption R implies that

N−1||ΓQ` ||
2 ≥ C if ` ∈ Z (C.61)

because ΓQ` = ΨRQ` − ΛR
` and ||Q`|| = 1. Therefore, (C.60) and (C.61) imply that

ωγ` = Op(1) for ` ∈ Z when there is a type-1 change. (C.62)

If there is no structural change, by (C.53), N−1||Λ̃−
LS−ΛR||2 = Op(C

−2
NT ) and N−1||Ψ̃−

LS−
ΨR||2 = Op(C

−2
NT ). Because ΛR = ΨR in this case, we have N−1||Λ̃−

LS − Ψ̃−
LS||2 = Op(C

−2
NT ),

which further implies that

N−1
∥∥∥Ψ̃−

LSQ− Λ̃−
LS

∥∥∥2

≤ N−1
∥∥∥Ψ̃−

LS − Λ̃−
LS

∥∥∥2

= Op(C
−2
NT ), (C.63)
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where the inequality holds because the choice of Q solves the orthogonal procrustes prob-

lem by minimizing ||Ψ̃−
LSQ − Λ̃−

LS||2 among all orthogonal matrices (Schönemann (1966)).

Combining (C.58) and (C.63), we obtain

N−1||Γ̃(2)||2 = Op(C
−2
NT ) when Γ0 = 0, (C.64)

which together with (C.53) and Γ∗ = 0 implies that

(ωγ` )
−1 = Op(C

−2d
NT ) for ` = 1, . . . , k when there is no structural change. (C.65)

Next, we show that (C.33) and (C.36) hold without imposing Assumptions P1 and P2,

so that the proof of Theorem 1 follows without these two assumptions. To show (C.33), note

that ωλ` = Op(1) for ` = 1, . . . , ra is implied by (C.54) and (C.56), ωγ` = Op(1) for ` ∈ Z is

implied by (C.54) and (C.57) for a type-2 change, and ωγ` = Op(1) for ` ∈ Z is proved in

(C.62) for a type-1 change.

To show (C.36), note that: (i) {ra + 1, . . . , k} ⊆ La holds by (C.55) and (C.56); (ii)

{rb + 1, . . . , k} ⊆ Lb holds by (C.55) and (C.57); and (iii) if Γ0 = 0, {1, . . . , k} = Lb follows

from (C.53) and (C.65).

Because (C.33) and (C.36) hold without imposing Assumptions P1 and P2, Theorem

1 holds without imposing Assumptions P1 and P2 for the two-step estimator. Applying

Theorem 1, model selection consistency follows from the proof for Theorem 2. �

D Proof of Results in Section 6

Proof of Lemma 2. For π ≤ π0, the result follows from the representation in (6.3) and

Assumptions A-D. Analogous arguments yield results for π > π0. �

Proof of Corollary 3. This corollary is implied by Lemma 2.

Proof of Theorem 3. In the proof below, we use opπ(·) and Opπ(·) to represent op(·) and

Op(·) that hold uniformly over π ∈ Π.

Define r+ = rank(Σ+
ΛΨ), Ta = bTπc, and Tb = T − Ta. First, consider the second

subsample Xb(π). When π < π0, following the model in (6.2), the variance of the factor

loadings is

Σ+
ab = N−1

(
Λ0, Ψ0

)′ (
Λ0, Ψ0

)
. (D.1)
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By Assumption B and the continuous mapping theorem, we know that Σ+
ab has rank r+

w.p.a.1, which implies that the rank of (Λ0, Ψ0) is r+ w.p.a.1. Thus, there is a (ra + rb) ×
(ra+ rb) orthogonal matrix S such that the first r+ columns of (Λ0, Ψ0)S have full rank and

the last (ra + rb − r+) columns are 0 w.p.a.1. As such, the model in (6.2) can be written as

an approximate factor model with r+ factors, and the factors and their loadings both have

full ranks asymptotically. With a transformation analogous to that in (2.10) to standardize

the factors and diagonalize the loadings, the DGP in (6.2) can be written as

Xb(π) = FR
b (π)ΨR(π)′ + eb(π), (D.2)

where FR
b (π) is Tb × r+, ΨR(π) is N × r+, and

T−1
b FR

b (π)′FR
b (π) = Ir+ +Opπ(T

−1/2),

N−1ΨR(π)′ΨR(π) = Λb(π), (D.3)

where Λb(π) is a r+×r+ diagonal matrix whose diagonal elements are the positive eigenvalues

of Σ+
F (π)Σ+

ab in a decreasing order. This is analogous to the transformation considered in

(B.3)-(B.5) in the proof of Lemma 3 except π < π0 rather than π = π0. When π ≥ π0, the

DGP in (6.2) can be written as in (D.2) and (D.3) but with r+ = rb and ΨR(π) = ΨR, where

ΨR = Ψ0(R−1
b )′.

Next, we consider the first subsample Xa(π). Following the transformation discussed

above, when π > π0, the DGP in (6.1) can be written as

Xa(π) = FR
a (π)ΛR(π)′ + ea(π), (D.4)

where FR
a (π) is Ta × r+, ΛR(π) is N × r+, and

T−1
a FR

a (π)′FR
a (π) = Ir+ +Opπ(T

−1/2),

N−1ΛR(π)′ΛR(π) = Λa(π), (D.5)

where Λa(π) is a r+×r+ diagonal matrix with positive eigenvalues. When π ≤ π0, the DGP in

(6.1) can be written as that in (D.4) and (D.5) but with r+ = ra and ΛR(π) = ΛR = Λ0(R−1
a )′.

For any π ∈ Π, Xa(π) contains at least the ra factors in Xa(π0) and Xb(π) contains at

least the rb factors in Xb(π0). Therefore,

N−1||ΛR
` (π)||2 ≥ C for ` = 1, . . . , ra, N

−1||ΨR
` (π)||2 ≥ C for ` = 1, . . . , rb. (D.6)
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Note that in the proof of Theorem 1 above, the magnitudes of the approximation er-

rors are developed under Assumptions A-D. After Assumptions A and C are replaced by

Assumptions A∗ and C∗, Assumptions A∗, B, C∗, and D are all uniform over π ∈ Π. As a

result, replacing π0 with π, asymptotic results as those in Theorem 1 hold uniformly over

π ∈ Π. We use such uniform convergence in the analysis below.

Below we analyze model selection based on the two-step procedure. Recall that r̂
(i)
a (π)

for i = 1 and 2 denotes the estimator of ra(π) by the first- and second-step PLS estimator.

Let ω
λ∗(i)
` (π) and ω

γ∗(i)
` (π) denote the weights in step i. Let Ψ̃−

LS(π) denote the first r̂
(1)
a

columns of Ψ̃LS(π). By construction, the adaptive weights in (6.12) satisfy

ω
λ∗(i)
` (π) =

(
N−1||Λ̃`,LS(π)||2

)−d
for i = 1 and 2,

ω
γ∗(1)
` (π) = max

{(
N−1||Γ̃`,LS(π)||2

)−d
,
(
N−1||Ψ̃`,LS(π)||2

)−d}
,

ω
γ∗(2)
` (π) = ω

γ∗(1)
` (π) if (i) r̂(1)

a < r̂
(1)
b or (ii) r̂(1)

a = r̂
(1)
b and ` > r̂(1)

a , (D.7)

ω
γ∗(2)
` (π) = max

{(
N−1||Ψ̃−

`,LS(π)w(π)− Λ̃`,LS(π)||2
)−d

,
(
N−1||Ψ̃`,LS(π)||2

)−d}
otherwise,

where the vector w(π) satisfies ‖w(π)‖ = 1 and is obtained by the orthogonal transformation

to minimize the difference between the first r̂
(1)
a columns of Λ̃LS(π) and Ψ̃LS(π).

In the proof below, if notations and results are not specified to be the first step or

the second step, they apply to both. We typically do not distinguish between them until

discussing the penalties.

Step 1. We show

Pr(min
π∈Π

r̂(i)
a (π) ≥ ra) → 1 for i = 1 and 2. (D.8)

To this end, it is sufficient to show N−1||Λ̂`(π)− ΛR
` (π)||2 = opπ(1) for ` = ra in both steps.

The proof strategy is different from that in Theorem 1 because here we do not require the

convergence of Λ̂`(π) to ΛR
` (π) for ` > ra. Let Xa:b denote a submatrix of X that contains

the columns from a to b. For any π ∈ Π, define

Λ†(π) =
(
ΛR

1:ra(π), Λ̂(π)ra+1:k

)
, Γ†(π) = Γ̂(π), and Ψ†(π) = Λ†(π) + Γ†(π). (D.9)

For notational simplicity, define Λr(π) = ΛR
1:ra(π). Note that the definition of Λ†(π) is

different from that of Λ∗ used in the proof of Theorem 1 even when π = π0, because the
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former involves the PLS estimator but the latter does not. Define

Z2
λ(π) = N−1

∥∥∥Λ̂(π)− Λ†(π)
∥∥∥2

, Z2
ψ(π) = N−1

∥∥∥Ψ̂(π)−Ψ†(π)
∥∥∥2

, Z2
γ(π) = N−1

∥∥∥Γ̂(π)− Γ†(π)
∥∥∥2

.

(D.10)

The criterion function for the shrinkage estimator can be written as

Q(Λ,Γ;π) = Ma(Λ, F̃a(π)) +Mb(Ψ, F̃b(π)) + P ∗
1 (Λ) + P ∗

2 (Γ), (D.11)

where Ψ = Λ + Γ,

Ma(Λ, Fa) = (NT )−1 ‖Xa(π)− FaΛ
′‖2

, and

Mb(Ψ, Fb) = (NT )−1 ‖Xb(π)− Fb(Λ + Γ)′‖2
. (D.12)

For notational simplicity, we do not write Ma(Λ, Fa) and Mb(Ψ, Fb) indexed by π, although

they are by definition. Define

φλ` = Eξ[αNT (ξ)ωλ∗` (ξ)] and φγ` = Eξ[βNT (ξ)ωγ∗` (ξ)], (D.13)

where ξ has a uniform distribution on Π and Eξ [·] is taken w.r.t. ξ. As such, P ∗
1 (Λ) =∑k

`=1 φ
λ
` ‖Λ`‖ and P ∗

2 (Γ) =
∑k

`=1 φ
γ
` ‖Γ`‖.

Because the shrinkage estimators Λ̂(π) and Γ̂(π) minimize the criterion functionQ(Λ,Γ; π),

we have Q(Λ̂(π), Γ̂(π)) ≤ Q(Λ†(π),Γ†(π)), i.e.,[
Ma(Λ̂(π), F̃a(π))−Ma(Λ

†(π), F̃a(π))
]

+
[
Mb(Ψ̂(π), F̃b(π))−Mb(Ψ

†(π), F̃b(π))
]

≤
[
P ∗

1 (Λ†(π))− P ∗
1 (Λ̂(π))

]
+
[
P ∗

2 (Γ†(π))− P ∗
2 (Γ̂(π))

]
, (D.14)

where Ψ̂(π) = Λ̂(π) + Γ̂(π). We start with the right-hand side of (D.14). Because the

last (k − ra) columns of Λ†(π) and Λ̂(π) are the same, by the triangle inequality and the

Cauchy-Schwarz inequality, we have

P ∗
1 (Λ†(π))−P ∗

1 (Λ̂(π)) =
ra∑
`=1

φλ`

(
|Λ†

`(π)| − |Λ̂`(π)|
)
≤ bΛZλ(π), where bΛ = N1/2

(
ra∑
`=1

(φλ` )
2

)1/2

.

(D.15)

Because Γ†(π) = Γ̂(π), the second term on the right-hand side of (D.14) is 0.

Next, we consider the left-hand side of (D.14). Write F̃a(π) = (F̃ r
a (π), F̃⊥

a (π)) ∈ RTa×k,

where F̃a(π) is partitioned into the Ta× ra and Ta× (k− ra) submatrices F̃ r
a (π) and F̃⊥

a (π).

Similarly, write Λ̂ (π) = (Λ̂r (π), Λ̂⊥ (π)), where Λ̂ (π) is partitioned into the N × ra and
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N×(k−ra) submatrices Λ̂r (π) and Λ̂⊥ (π). With this partition, we can write Λ†(π) = (Λr(π),

Λ̂⊥ (π)). Define ea(Λ(π), F (π)) = Xa(π) − F (π)Λ(π)′. For the calculation below, we first

show two expansions. The first is

ea(Λ̂ (π) , F̃a(π)) = Xa(π)− F̃a(π)Λ̂ (π)′

= Xa(π)− F̃ r
a (π)Λ̂r(π)′ − F̃⊥

a (π)Λ̂⊥(π)′

=
(
Xa(π)− F̃ r

a (π)Λr(π)′ − F̃⊥
a (π)Λ̂⊥(π)′

)
− F̃ r

a (π)
(
Λ̂r(π)− Λr(π)

)′
= ea(Λ

†(π), F̃a(π))− F̃ r
a (π)

(
Λ̂r(π)− Λr(π)

)′
, (D.16)

where the first and last equalities hold by definition, the second equality follows from the

partition of F̃a(π) and Λ̂ (π), and the third equality follows from subtracting and adding

F̃ r
a (π)Λr(π)′. Because ra(π) ≥ ra, we write FR

a (π) = (F r
a (π), F r+

a (π)), where FR
a (π) is

partitioned into the Ta× ra and Ta× (ra(π)− ra) submatrices F r
a (π) and F r+

a (π). Similarly,

write ΛR(π) = (Λr(π), Λr+(π)), where ΛR(π) is partitioned into the N×ra and N× (ra(π)−
ra) submatrices Λr(π) and Λr+(π). Following the partition, we can write

Xa(π) = ea(π) + F r
a (π)Λr(π)′ + F r+

a (π)Λr+(π)
′
. (D.17)

The second expansion is

ea(Λ
†(π), F̃a(π)) = Xa(π)− F̃ r

a (π)Λr(π)′ − F̃⊥
a (π)Λ̂⊥(π)′ (D.18)

= ea(π) +
(
F r
a (π)− F̃ r

a (π)
)

Λr(π)′ + F r+
a (π)Λr+(π)

′ − F̃⊥
a (π)Λ̂⊥(π)′,

where first equality holds by definition and the second equality follows from (D.17). With

the first expansion in (D.16), we have

Ma(Λ̂(π), F̃a(π)) = (NT )−1
∥∥∥ea(Λ̂ (π) , F̃a(π))

∥∥∥2

= (NT )−1
∥∥∥ea(Λ†(π), F̃a(π))

∥∥∥2

+ (NT )−1

∥∥∥∥F̃ r
a

(
Λ̂r(π)− Λr(π)

)′∥∥∥∥2

−2(NT )−1tr
[
ea(Λ

†(π), F̃a(π))′F̃ r
a (π)

(
Λ̂r(π)− Λr(π)

)]
= Ma(Λ

†(π), F̃a(π)) +K0 +K1 +K2 +K3 +K4, (D.19)

where

K0 = (NT )−1

∥∥∥∥F̃ r
a

(
Λ̂r(π)− Λr(π)

)′∥∥∥∥2

=
Ta
T

1

N
tr

[(
Λ̂r(π)− Λr(π)

) F̃ r′
a F̃

r
a

Ta

(
Λ̂r(π)− Λr(π)

)′]
=
Ta
T
Z2
λ(π) (D.20)



Supplemental Appendix A.27

by definition and the fact that T−1
a (F̃ r′

a F̃
r
a ) = Ira×ra . The terms K1 to K4 follow from the

second expansion in (D.18), and they are specified below. The first term is

K1 = −2(NT )−1tr
[
ea(π)′F̃ r

a (π)
(
Λ̂r(π)− Λr(π)

)]
=
Ta
T
Opπ(C

−1
NT )Zλ(π), (D.21)

following calculations analogous to those in (C.20) and (C.21). The second term is

K2 = −2(NT )−1tr
(
Λr(π)(F r

a (π)− F̃ r
a (π))′F̃ r

a (π)(Λ̂r(π)− Λr(π))′
)

=
Ta
T
Opπ(C

−1
NT )Zλ(π) (D.22)

following calculations analogous to those in (C.25) and (C.26). The third term is

K3 = −2(NT )−1tr
(
Λr+(π)F r+

a (π)′F̃ r
a (π)(Λ̂r(π)− Λr(π))′

)
= −2(NT )−1tr

(
Λr+(π)

(
F r+
a (π)− F̃ r+

a (π)
)′
F̃ r
a (π)(Λ̂r(π)− Λr(π))′

)
=
Ta
T
Opπ(C

−1
NT )Zλ(π), (D.23)

where F̃ r+
a (π) is a submatrix of F̃a(π) with columns associated with those in F r+

a (π), the

second equality holds because F̃ r+
a (π) and F̃ r

a (π) are orthogonal by construction, and the

third equality holds by arguments analogous to those in (C.25) and (C.26). The forth term

is

K4 = 2(NT )−1tr
[
Λ̂⊥(π)F̃⊥

a (π)′F̃ r
a (π)

(
Λ̂r(π)− Λr(π)

)]
= 0 (D.24)

because F̃⊥
a (π)′F̃ r

a (π) = 0 by construction. Combining (D.19)-(D.24), we obtain

Ma(Λ̂(π), F̃a(π))−Ma(Λ
†(π), F̃a(π)) =

Ta
T
Z2
λ(π) +Opπ(C

−1
NT )Zλ(π). (D.25)

Replacing the first subsample with the second subsample and applying similar arguments,

we also have

Mb(Ψ̂(π), F̃b(π))−Mb(Ψ
†(π), F̃b(π)) =

Tb
T
Z2
ψ(π) +Opπ(C

−1
NT )Zψ(π). (D.26)

Plugging (D.25) and (D.26) into the left-hand side of (D.14), we obtain

Ta
T
Z2
λ(π) +Opπ(C

−1
NT )Zλ(π) +

Tb
T
Z2
ψ(π) +Opπ(C

−1
NT )Zψ ≤ bΛZλ(π), (D.27)

which further implies that

Zλ(π) = Opπ(bΛ + C−1
NT ). (D.28)
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The unrestricted least square estimator for any π ∈ Π can be viewed as a PLS estimator

with 0 penalty. Therefore, N−1||Λ̃LS,`(π)−ΛR
` (π)||2 = Opπ(C

−2
NT ) for ` = 1, . . . , ra by (D.28),

which together with (D.6) implies that N−1||Λ̃LS,`(π)||2 ≥ C−1 w.p.a.1. for ` = 1, . . . , ra.

For i = 1 and 2, we have ω
λ∗(i)
` (π) = (N−1||Λ̃LS,`(π)||2)−d ≤ Cd w.p.a.1 for ` = 1, . . . , ra.

Following the specification in (6.11), αNT (π) = κ1(π)N−1/2C−d−1
NTa

, where κ1(π) ≤ κ1. Thus,

we have

N1/2φλ` = N1/2Eξ[αNT (ξ)ωλ∗` (ξ)] = Op(C
−1
NT ) (D.29)

for ` = 1, . . . , ra, which implies

bΛ = Op(C
−1
NT ) (D.30)

for both the first- and second-step PLS estimation. It follows from (D.28) that Zλ(π) =

Opπ(C
−1
NT ). This completes the proof of Pr(minπ∈Π r̂

(i)
a (π) ≥ ra) → 1 for i = 1, 2.

Step 2. We show for i = 1 and 2,

Pr(min
π∈Π

r̂
(i)
b (π) ≥ rb) → 1 if rb > ra. (D.31)

In this case, N−1||ΓR` (π)||2 ≥ C by Assumption R∗(ii) and N−1||ΨR
` (π)||2 ≥ C by (D.6) for

` = rb. To show (D.31), it is sufficient to prove N−1||Γ̂`(π)−ΓR` (π)||2 = opπ(1) for ` = rb for

both the first and second step estimators. To this end, we redefine Λ†(π) and Γ†(π) in (D.9)

as

Λ†(π) = Λ̂(π), Γ†(π) =
(
Γ̂(π)1:rb−1, ΓRrb(π), Γ̂(π)rb+1:k

)
and Ψ†(π) = Λ†(π) + Γ†(π) (D.32)

and keep the definitions of Zλ(π), Zψ(π), Zγ(π) in (D.10) unchanged. Now consider the

inequality in (D.14). Because Λ†(π) = Λ̂(π), the right-hand side of (D.14) becomes for

` = rb,

P ∗
2 (Γ†(π))− P ∗

2 (Γ̂(π)) = φγ`

(
|ΓR` (π)| − |Γ̂`(π)|

)
≤ bΓbZγ(π), where bΓb = N1/2φγ` . (D.33)

By arguments analogous to those used to show (D.25) and (D.26), the left-hand side of

(D.14) becomes

Mb(Ψ̂(π), F̃b(π))−Mb(Ψ
†(π), F̃b(π)) =

Tb
T
Z2
ψ(π) +Opπ(C

−1
NT )Zψ(π). (D.34)

Putting (D.33) and (D.34) together with (D.14), we get

Zψ(π) = Opπ(bΓb + C−1
NT ). (D.35)
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Note that we can show the consistency of Λ̂(π) and Ψ̂(π) column by column because F̃a(π)

and F̃b(π) both have orthogonal regressors by construction. Now following the arguments

used to show (D.29), we have bΓb = Op(C
−1
NT ) for the first-step estimator, which immediately

implies that Zψ(π) = Opπ(C
−1
NT ) and

N−1||Γ̂`(π)− ΓR` (π)||2 = Opπ(C
−2
NT ) for ` = rb. (D.36)

This proof (D.31) holds for i = 1 and also implies that r̂
(1)
b = minπ∈Π r̂

(1)
b (π) ≥ rb > ra

w.p.a.1. Thus, for the second-step estimator, ω
γ∗(2)
` (π) takes the form in (D.7) with rb > ra

w.p.a.1, which is the same as that for the first-step estimator. Hence, bΓb = Op(C
−1
NT ) for the

second-step estimator and it follows that (D.31) holds for i = 2 as well.

Step 3. We prove

Pr(r̂(1)
a = ra) → 1 (D.37)

by showing that the inequalities in (D.8) become equalities when π = π0. To this end, it is

sufficient to show Pr(Λ̂`(π0) = 0) → 1 for ` > ra in the first-step estimation. (We use generic

notation below without superscript (1) for notational simplicity.) By the proof of Theorem

1, to obtain Pr(Λ̂`(π0) = 0) → 1, it is sufficient to show∥∥∥ea(Λ̂(π0))
′F̃a,`(π0)

∥∥∥+
∥∥∥eb(Λ̂(π0) + Γ̂(π0))

′F̃b,`(π0)
∥∥∥ < NT

2
φλ` , (D.38)

which is similar to (C.40). Replacing Λ̂ and Γ̂ in the proof of Theorem 1 with Λ̂(π0) and

Γ̂(π0), respectively, we have

N−1/2||Λ̂(π0)−Λ∗|| = Op(bΛ+bΓ+C−1
NT ) and N−1/2||Γ̂(π0)−Γ∗|| = Op(bΛ+bΓ+C−1

NT ), (D.39)

where

bΛ = N1/2(
ra∑
`=1

(φλ` )
2)1/2 and bΓ = N1/2(

∑
`∈Z

(φγ` )
2)1/2. (D.40)

We have shown bΛ = Op(C
−1
NT ) in (D.30) for both the first- and second-step estimators. By

similar arguments under Assumption R∗(i) and (D.6), we also have bΓ = Op(C
−1
NT ) for the

first step estimator. Because bΛ = Op(C
−1
NT ) and bΓ = Op(C

−1
NT ),

N−1/2||Λ̂(1)(π0)− Λ∗|| = Op(C
−1
NT ) and N−1/2||Γ̂(1)(π0)− Γ∗|| = Op(C

−1
NT ). (D.41)

Following the arguments used to show (C.43) and (C.44), (D.38) holds provided that

N−1/2C−1
NT = op(φ

λ
` ), (D.42)
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where φλ` = Eξ[αNT (ξ)ω
λ∗(1)
` (ξ)]. Using αNT (π) = κ1(π)N−1/2C−d−1

NTa
, we have

φλ` = Eξ[αNT (ξ)ω
λ∗(1)
` (ξ)] ≥ κ1N

−1/2C−d−1
NT Eξ[ω

λ∗(1)
` (ξ)I{ξ≤π0}], (D.43)

where κ1 is the lower bound of κ1(π). For π ≤ π0,Xa(π) has ra factors. Thus, the unrestricted

least square estimator N−1||Λ̃LS,`(π)||2 = Opπ(C
−2
NT ) for ` > ra, by arguments analogous to

(C.55). Therefore,

sup
π≤π0

(
ω
λ∗(1)
` (π)

)−1

= sup
π≤π0

[N−1||Λ̃LS,`(π)||2]d = Op(C
−2d
NT ) for ` > ra. (D.44)

Thus, for ` > ra,

N−1/2C−1
NT (φλ` )

−1 ≤ κ−1
1 Cd

NT

(
Eξ[ω

λ∗(1)
` (ξ)I{ξ≤π0}]

)−1

≤ κ−1
1 Cd

NT

(
inf
π≤π0

[ω
λ∗(1)
` (π)]Eξ[I{ξ≤π0}]

)−1

=
Cd
NT supπ≤π0

(
ω
λ∗(1)
` (π)

)−1

κ1Eξ[I{ξ≤π0}]
= Op(C

−d
NT ), (D.45)

where the last equality is by (D.44) and κ1Eξ[I{ξ≤π0}] > C > 0 for some fixed constant C.

It follows that Pr(Λ̂
(1)
` (π0) = 0) → 1 for ` > ra, which implies that

Pr(r̂(1)
a (π0) ≤ ra) → 1. (D.46)

Combining (D.8) with the result above, we obtain Pr(minπ∈Π r̂
(1)
a (π) = r̂

(1)
a (π0) = ra) → 1.

This proves (D.37).

Step 4. We prove

Pr(r̂
(1)
b = rb) → 1 (D.47)

by showing that the inequalities in (D.31) become equalities when π = π0. To this end,

it is sufficient to show Pr(Γ̂
(1)
` (π0) = 0) → 1 for ` > rb. (We use generic notation below

without superscript (1) for notational simplicity.) By the proof of Theorem 1, to obtain

Pr(Γ̂`(π0) = 0) → 1, it is sufficient to show∥∥∥eb(Λ̂(π0) + Γ̂(π0))
′F̃b,`(π0)

∥∥∥ < NT

2
φγ` . (D.48)

To this end, it is sufficient to show N−1/2C−1
NT = op(φ

γ
` ). Using βNT (π) = κ2(π)N−1/2C−d−1

NTb
,

we have

φγ` = Eξ[βNT (ξ)ω
γ∗(1)
` (ξ)] ≥ κ2N

−1/2C−d−1
NT Eξ[ω

γ∗(1)
` (ξ)I{ξ≥π0}], (D.49)
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where κ2 is the lower bound of κ2(π). For π ≥ π0,Xb(π) has rb factors, thusN−1||Ψ̃LS,`(π)||2 =

Opπ(C
−2
NT ) for ` > rb by arguments analogous to (C.55). Therefore,

sup
π>π0

(
ω
γ∗(1)
` (π)

)−1

≤ sup
π>π0

[N−1||Ψ̃LS,`(π)||2]d = Op(C
−2d
NT ) for ` > rb. (D.50)

Thus, for ` > rb,

N−1/2C−1
NT (φγ` )

−1 ≤ κ−1
2 Cd

NT

(
Eξ[ω

γ∗(1)
` (ξ)I{ξ≥π0}]

)−1

≤ κ−1
2 Cd

NT

(
inf
π>π0

(
ω
γ∗(1)
` (π)

)
Eξ[I{ξ≥π0}]

)−1

=
Cd
NT supπ>π0

(
ω
γ∗(1)
` (π)

)−1

κ2Eξ[I{ξ≥π0}]
= Op(C

−d
NT ), (D.51)

following from (D.50) and κ2Eξ[I{ξ≥π0}] > C > 0 for some fixed constant C. It follows that

Pr(Γ̂
(1)
` (π0) = 0) → 1 for ` > rb, which implies

Pr(r̂
(1)
b (π0) ≤ rb) → 1. (D.52)

When rb > ra, (D.31) and (D.52) imply that

Pr(r̂
(1)
b = min

π∈Π
r̂
(1)
b (π) = rb) → 1. (D.53)

On the other hand, if rb = ra, we can use (D.52) to deduce that

Pr(min
π∈Π

r̂
(1)
b (π) ≤ ra) → 1, (D.54)

which together with the definition of r̂
(1)
b and (D.37) implies that

Pr(r̂
(1)
b = r̂(1)

a = rb) → 1. (D.55)

This completes the proof of Step 4.

Step 5. We show

Pr(r̂(2)
a = ra) → 1 and Pr(r̂

(2)
b = rb) → 1. (D.56)

Following Steps 3 and 4, we know that the event {r̂(1)
a = ra and r̂

(1)
b = rb} has probability

approaching 1. If rb > ra, ω
λ∗(i)
` and ω

γ∗(i)
` are the same for i = 1, 2 following (D.7). Hence,

all arguments in Steps 3 and 4 apply to the second-step estimator, which completes the proof

immediately.
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Next, we consider ra = rb. Conditioning on the event {r̂(1)
a = ra and r̂

(1)
b = rb}, the

proofs in Step 3 and Step 4 apply to the second-step estimator as well, and this gives the

desired results.

Step 6. We show that when there is a type-1 change,

Pr(Γ̂(2)(π0) 6= 0) → 1. (D.57)

To this end, it is sufficient to show N−1||Γ̂(2)
` (π0) − ΓR` (π0)||2 →p 0 for some ` ∈ Z. This

follows from (D.39) for the second-step estimator, which holds by the same arguments as in

Step 3 conditioning on the event {r̂(1)
a = ra and r̂

(1)
b = rb}. Following Steps 3 and 4, this

event occurs w.p.a.1.

The result in (D.57) and Step 5 together imply that Pr(Ŝ = 1) → 1 if S0 = 1.

Step 7. When there is no structural instability, i.e., Γ0 = 0, we show

Pr(sup
π∈Π

||Γ̂(2)(π)|| = 0) → 1. (D.58)

Replacing Λ̂ and Γ̂ in the proof of Theorem 1 with Λ̂(2)(π) and Γ̂(2)(π), we have uniform

consistency

N−1/2||Λ̂(2)(π)−Λ∗|| = Opπ(bΛ +C−1
NT ) and N−1/2||Γ̂(2)(π)− Γ∗|| = Opπ(bΛ +C−1

NT ), (D.59)

where bΛ = N1/2(
∑ra

`=1(φ
λ
` )

2)1/2. We have shown bΛ = Op(C
−1
NT ) in (D.30). Revoking the

proof of Theorem 1 with π0 replaced by π, a sufficient condition for (D.58) is

N−1/2C−1
NT = op(φ

γ
` ) for ` = 1, . . . , k, (D.60)

where the left-hand side follows from uniform convergence rate of the criterion function and

the right-hand side is based on the averaging penalty. Following Steps 3 and 4, we know

that the event {r̂(1)
a = ra and r̂

(2)
b = rb} has probability approaching 1. Using βNT (π) =

κ2(π)N−1/2C−d−1
NTb

, we have

φγ` = Eξ[βNT (ξ)ω
γ∗(2)
` (ξ)] ≥ κ2N

−1/2C−d−1
NT Eξ[ω

γ∗(2)
` (ξ)]. (D.61)

Using the formula of ω
γ∗(2)
` (π) in (D.7), for ` > ra,(

ω
γ∗(2)
` (π)

)−1

=
(
ω
γ∗(1)
` (π)

)−1

≤
(
N−1||Γ̃`,LS(π)||2

)d
= Opπ(C

−2d
NT ) (D.62)
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w.p.a.1, where the last equality holds by arguments analogous to (C.55). On the other hand,

for ` ≤ ra,(
ω
γ∗(2)
` (π)

)−1

≤
(
N−1||Ψ̃−

`,LS(π)w(π)− Λ̃`,LS(π)||2
)d

= Opπ(C
−2d
NT ) (D.63)

w.p.a.1, where the equality follows from arguments analogous to (C.63) under Assumption

R∗(i). Combining the results in (D.62) and (D.63), we deduce that

sup
π∈Π

(
ω
γ∗(2)
` (π)

)−1

= Op(C
−2d
NT ) for ` = 1, . . . , k. (D.64)

Thus, for ` = 1, . . . , k,

N−1/2C−1
NT (φγ` )

−1 ≤ κ−1
2 Cd

NT

(
Eξ[ω

γ∗(2)
` (ξ)]

)−1

≤ κ−1
2 Cd

NT

(
inf
π∈Π

(
ω
γ∗(2)
` (π)

))−1

= κ−1
2 Cd

NT sup
π∈Π

(
ω
γ∗(2)
` (π)

)−1

= Op(C
−d
NT ), (D.65)

following from (D.61) and (D.64). The condition in (D.60) follows from (D.65), and it is

sufficient for the desired result. Therefore, if S0 = 0, we have Pr(Ŝ0 = 0) → 1. This completes

the proof. �




