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Section A presents details on the structural model including the wage bargaining procedure

we employ, section B contains the results of two robustness exercises. In the first, we overfit

corr(t
u
i , w0

i |ι̂ ≥ 0.95), the correlation between unemployment durations and starting wages for

workers hired into top ranked firms. In the second, we split our analysis data by education (high

education, meaning some college education, and low education, meaning everyone else).

A Model

A.1 The worker’s valuation of a job

Consider an employed worker of type (j, h) who is employed with a type p firm at employment

contract (w, s). Denote by q = qj(h, w, p), the threshold type such that a meeting of an outside

firm with type less than q has no impact on the worker’s wage. Furthermore, adopt the short

hand Vj(h, q, p) as the value of employment to a type (j, h) worker who is employed with a type p

firm subject to an employment contract set through bargaining where the worker had the threat

point to accept outside employment with a type q firm. Furthermore, let Vj (h, p) = Vj (h, p, p)

and Γ̂ (p) = 1 − Γ (p) and δ̂j = δj + δ0λ. The value function, Ṽj(h, w, p, s), for the employed

worker is,

rṼj(h, p, w, s) = w − c (s) +
[
δj + Γ

(
Rj (h)

)
δ0λ

] [
V0

j (h)− Vj (h, q, p)
]
+

sλ

ˆ p̄

p

[
Vj(h, p, p′)− Vj(h, q, p)

]
dΓ(p′) +

sλ

ˆ p

q

[
Vj(h, p′ , p)− Vj(h, q, p)

]
dΓ(p′) +

δ0λ

ˆ p̄

Rj(h)

[
V(h, Rj (h) , p′)− Vj(h, q, p)

]
dΓ(p′).
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This can be rewritten as,

rṼj(h, p, w, s) = w − c (s) +
[
δj + Γ

(
Rj (h)

)
δ0λ

]
V0

j (h)−
[
δ̂j + sλΓ̂(q)

]
Vj(h, q, p)+

sλ

ˆ p̄

p

[
βV(h, p′) + (1 − β)V(h, p)

]
dΓ(p′)+

sλ

ˆ p

q

[
βV(h, p) + (1 − β)V(h, p′)

]
dΓ(p′)+

δ0λ

ˆ p̄

Rj(h)

[
βV(h, p′) + (1 − β)V0

j (h)
]
dΓ(p′).

Integration by parts yields,

(
r + δ̂j

)
Ṽj(h, p, w, s) = w − c (s) +

[
δj + Γ

(
Rj (h)

)
δ0λ

]
V0

j (h)− sλΓ̂(q)V(h, q, p) +

sλ(1 − β)Γ̂(p)V(h, p) + sλβΓ̂(p)V(h, p) + sλβ

ˆ p̄

p
Γ̂(p′)V ′

p(h, p′, p′)dp′ +

sλβ
(

Γ(p)− Γ(q)
)
V(h, p)− sλ(1 − β)Γ̂(p)V(h, p) +

sλ(1 − β)Γ̂(q)V(h, q) + sλ(1 − β)

ˆ p

q
Γ̂(p′)V ′(h, p′)dp′ +

δ0λ(1 − β)Γ̂
(

Rj (h)
)

V0
j (h) + δ0λβΓ̂

(
Rj (h)

)
V0

j (h) +

δ0λβ

ˆ p̄

Rj(h)
Γ̂(p′)V ′(h, p′)dp′.

By V(h, q, p) = βV(h, p) + (1 − β)V(h, q), one obtains.

(
r + δ̂j

)
Ṽj(h, p, w, s) = f (h, p) − c (s) + δ̂jV0(h) +

sλβ

ˆ p̄

p
V ′

j

(
h, p′

)
Γ̂(p′)dp′ +

sλ(1 − β)

ˆ p

q
V ′

j (h, p′)Γ̂(p′)dp′ +

δ0λβ

ˆ p̄

Rj(h)
V ′

j

(
h, p′

)
Γ̂(p′)dp′ . (A.1)

By the envelope theorem it follows that,

(r + δ̂j)V
′
j (h, p) = f ′p(h, p) − s(h, p)λβΓ̂(p)V ′

j (h, p)

m

V ′
j (h, p) =

f ′p(h, p)

r + δ̂j + βs(h, p)λΓ̂(p)
. (A.2)

2



Hence, equation (A.1) can be written as,

(
r + δ̂j

)
Ṽj(h, p, w, s) = w − c (s) + δ̂jV

0
j (h) +

sλβ

ˆ p̄

p

f ′p(h, p′)Γ̂(p′)dp′

r + δ̂j + βs(h, p′)λΓ̂(p′)
+

sλ(1 − β)

ˆ p

q

f ′p(h, p′)Γ̂(p′)dp′

r + δ̂j + βs(h, p′)λΓ̂(p′)
+

δ0λβ

ˆ p̄

Rj(h)

f ′p(h, p′)Γ̂(p′)dp′

r + δ̂j + βs(h, p′)λΓ̂(p′)
.

A.2 Wage bargaining

At the beginning of an employment relationship, the firm and the worker bargain over a constant

wage and worker’s search intensity that will remain in effect until the relationship terminates or

both parties agree to renegotiate. The bargaining game is an application of the alternating offers

game of Rubinstein (1982) and most resembles the exogenous break down version as presented

in Binmore et al. (1986). The following two subsections present the subgame perfect equilibrium

for the case of an unemployed worker and a worker who is renegotiating with an outside offer

in hand, respectively. The arguments are closely related to the bargaining games described in

Cahuc et al. (2006), although the bargaining is simplified to take place in artificial time with

zero disagreement values and the possibility of meeting another employer during bargaining is

eliminated.

The outcomes of the alternating offers games are identical to that of axiomatic Nash bargain-

ing where the threat point of the firm is always zero for the firm, and the worker’s threat point is

either unemployment or full surplus extraction from the least productive of the two firms com-

peting over the worker. This is the argument presented in Dey and Flinn (2005). All the following

arguments are for a given (j, h)-type of worker and so to save on notation, the functional depen-

dence on (j, h) is suppressed. Specifically, the bargaining outcome of an unemployed worker

maximizes the Nash product,

{
w0(p), s(p)

}
= arg max

w,s

(
Ṽ(p, w, s)− V0

)β
J̃(w, p, s)(1−β), (A.3)

which yields the worker valuation,

V(R, p) = βV(p) + (1 − β)V0. (A.4)

The inclusion of the reservation productivity argument implicitly states that the worker will only

accept to bargain with employer types greater than R.
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The outcome of a worker bargaining with two employer types, q and p such that p > q is

that the worker will negotiate an employment contract with the type p firm with a threat point

of full surplus extraction and efficient search intensity with the lower type firm, V (q) = V(q, q).

Hence, the employment contract that results from this bargaining setting is,

{
w(q, p), s(p)

}
= arg max

w,s

(
Ṽ(p, w, s)− V(q)

)β
J̃(w, p, s)(1−β). (A.5)

The bargaining outcome is,

V(q, p) = βV(p) + (1 − β)V(q). (A.6)

In both cases (A.3) and (A.5), the agreed upon search intensity s(p) is the one that maximizes

total match surplus. This is the jointly efficient search intensity level and does not depend on the

specific surplus split dictated by bargaining power and threat points.

A.2.1 Unemployed worker

Consider an alternating offers game where the worker makes an offer (we, se) to the firm. If the

firm accepts, employment starts and the worker receives payoff Ṽ(p, we, se) and the firm receives

J̃(p, we, se) = Ṽ(p, f (p), se)− Ṽ(p, we, se). If the firm rejects the offer, the bargaining breaks down

with exogenous probability ∆. If so, the firm receives a zero payoff and the worker goes back to

unemployment and receives V0. If bargaining does not break down, the bargaining moves to the

next round where the firm makes an offer (w f , s f ) with probability 1 − β and the worker gets to

make the offer (we, se) with probability β. If the firm makes the offer and the worker accepts, the

worker receives Ṽ(p, w f , s f ) and the firm receives J̃(p, w f , s f ) = Ṽ(p, f (p), s f )− Ṽ(p, w f , s f ). If

the worker rejects, the game moves on to the next round if no break down occurs. And again,

the worker will make the offer with probability β and the firm with probability 1 − β. The game

continues like this ad infinitum or until agreement is reached. Disagreement payoffs are zero

and the discount rate between rounds is zero.

Both the worker and the firm will offer the same search intensity, se = s f = s(p), where

s(p) = arg maxs Ṽ(p, f (p), s). Furthermore, consider the strategies where the worker accepts

any offer (w, s) such that Ṽ(p, w, s) ≥ Ṽ
(

p, w f , s(p)
)

and rejects any offer such that Ṽ(p, w, s) <

Ṽ
(

p, w f , s(p)
)
. Similarly, the firm accepts any offer (w, s) such that J̃(p, w, s) ≥ J̃

(
p, we, s(p)

)
and

rejects any offer such that J̃(p, w, s) < J̃
(

p, we, s(p)
)
.

By definition the firm’s payoff satisfies J̃(h, p, w, s) = Ṽ(p, f (p), s) − Ṽ(p, w, s). Hence, a firm

accepts any offer such that

Ṽ(p, w, s) ≤ Ṽ
(

p, we, s(p)
)
− Ṽ

(
p, f (p), s(p)

)
+ Ṽ

(
p, f (p), s

)
. (A.7)
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It is seen that the right hand side of the firm acceptance condition (A.7) is maximized for s = s(p)

and does not depend on w. Hence, any worker deviation s′e 6= se = s(p) that will be accepted

by the firm must result in a worker payoff Ṽ(p, w, s′e) < Ṽ(p, we, s(p)), for any w, which is not

profitable.

A similar argument can be made that the firm will not want to deviate from s f = s(p). The

worker will accept any offer such that,

J̃(p, w, s) ≤ Ṽ(p, f (p), s) − Ṽ
(

p, w f , s(p)
)
. (A.8)

It is seen that the right hand side of the worker acceptance decision (A.8) is maximized for

s = s(p) and that it does not depend on w. Hence, any firm deviation s′f 6= s f = s(p) that will be

accepted by the worker must result in a firm payoff J̃(p, w, s′f ) < J̃(p, w f , s f ), for any w, which is

not profitable.

It also follows directly from the above acceptance arguments that any strategy that prescribes

se 6= s(p) or s f 6= s(p) cannot be an equilibrium because a deviation to s(p) will be profitable.

Now consider potential deviations in the wage. The worker’s payoff Ṽ(p, w, se) is monotoni-

cally increasing in w. It follows directly from (A.7) that any worker wage offer deviation w′
e that

will be accepted by the firm is such that w′
e ≤ we. This is not profitable. Any other deviation will

not be accepted by the firm and is therefore also not profitable. A similar argument applies to

possible firm wage offer deviations.

Sub game perfection of the acceptance strategies requires that the worker is indifferent be-

tween accepting the firm’s offer (w f , s f ) and rejecting it. A similar indifference applies on the

firm side. This disciplines the acceptance levels by,

V̂(w f ) = (1 − ∆)
[
βV̂

(
we) + (1 − β)V̂(w f )

]
+ ∆V0 (A.9)

Ĵ(we) = (1 − ∆)
[
β Ĵ

(
we) + (1 − β) Ĵ(w f )

]
(A.10)

where V̂(w) = Ṽ(p, w, s(p)) and Ĵ(w) = Ṽ(p, w, s(p)). Equations (A.9) and (A.10) can be rewrit-

ten as,

β
[
V̂(w f )− V̂(we)

]
= ∆

[
V0(h)− βV̂

(
we)− (1 − β)V̂(w f )

]
(A.11)

(1 − β)
[

Ĵ(w f )− Ĵ(we)
]

= ∆
[
β Ĵ

(
we) + (1 − β) Ĵ(w f )

]
. (A.12)

Taking the limit as ∆ → 0, equations (A.9) and (A.10) imply that w f → we. Denote the common
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limit by w. Hence,

∂V̂(w)

∂w
= lim

∆→0

V̂(w f )− V̂(we)

w f − we

∂ Ĵ(w)

∂w
= lim

∆→0

Ĵ(w f )− Ĵ(we)

w f − we
.

Since changes in w only affect the match surplus split, it follows that ∂V̂(w)/∂w = −∂ Ĵ(w)/∂w.

Hence, taking the limit ∆ → 0 in equations (A.11) and (A.12) yields,

− β

1 − β
=

V0 − βV̂
(
w)− (1 − β)V̂(w)

β Ĵ
(
w) + (1 − β) Ĵ(w)

m

V̂(w) = βV̂
(

f (p)
)
+ (1 − β)V0. (A.13)

Hence, as the break down probability goes to zero, the outcome of the alternating offers game

limits to the outcome of the axiomatic Nash bargaining outcome in equation (A.4).

A.2.2 Employed worker

Cahuc et al. (2006) provide a strategic bargaining foundation for the axiomatic Nash bargaining

outcome in equation (A.6). The outcome is a subgame perfect equilibrium in a game based on

firms submitting bids for the worker subject to a worker’s option to use the bids as threat points

in a subsequent strategic bargaining game. In the game between two employers of types q and

p, respectively, where q ≤ p, the higher type firm wins by submitting a contract bid (w, s(h, p))

as stated in equation (A.6).

A.3 Proof of Lemma 3

In this we suppress layoff rate heterogeneity for notational simplicity. The match value satis-

fies V(h, q, p) = βV(h, p, p) + (1 − β)V(h, q, q). For notational convenience, define V(h, p) ≡
V(h, p, p). By equation (A.2) it is already established that Vp(h, p) > 0. Hence, to establish the

result in Lemma 3, it only remains to establish that V(h, p) is increasing in h. V(h, p) can be
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written as,

rV(h, p) = f (h, p) − c
(
s(h, p)

)
+

[
δ1 + δ0λΓ(R(h))

]
V0(h) + s(h, p)λ

ˆ p̄

p
V(h, p, p′)dΓ(p′)

+ δ0λ

ˆ p̄

R(h)
V(h, R(h), p′)dΓ(p′)− [

δ̂j + s(h, p)λΓ̂(p)
]
V(h, p)

= f (h, p) − c
(
s(h, p)

)
+

[
δ1 + δ0λ[1 − β + βΓ(R(h))]

]
V0(h)

+ δ0λβ

ˆ p̄

R(h)
V(h, p′)dΓ(p′) + s(h, p)λβ

ˆ p̄

p
V(h, p′)dΓ(p′)

−
[
δ̂j + βs(h, p)λΓ̂(p)

]
V(h, p).

By the assumption of jointly efficient search intensity, this can then be written as,

V(h, p) = max
s≥0,R∈[b, p̄]

{
f (h, p) − c(s) + δ1V0(h) + βsλ

´ p̄
p V(h, p′)dΓ(p′)

r + δ̂ + βsλΓ̂(p)

+ δ0λ
V0(h) + β

´ p̄
R

[
V(h, p′)− V0(h)

]
dΓ(p′)

r + δ̂ + βsλΓ̂(p)

}
, (A.14)

where

rV0(h) = max
s≥0,R∈[0,1]

{
f (h, 0) − c(s) + (µ + κs)λβ

ˆ p̄

R

[
V(h, p′)− V0(h)

]
dΓ(p′)

}
. (A.15)

It is straightforward to show that the fixed point of the mapping in equation (A.15) satisfies,

V0(h) = max
s≥0,R∈[0,1]

{
f (h, 0) − c(s) + (µ + κs)λβ

´ p̄
R V(h, p′)dΓ(p′)

r + (µ + κs)λβΓ̂(R)

}
. (A.16)

This then establishes a unique solution to equation (A.15). Furthermore, inspection of equation

(A.16) reveals that if V(h, p) is increasing in h,then V0(h) is strictly increasing in h. Equation

(A.14) is a contraction. Denote the mapping T : F → F , where F is the set of bounded,

continuous functions. For the purpose of showing that T maps the set of weakly increasing

functions into the set of strictly increasing functions, consider any h0 < h1 where both h0 and

h1 belong to the support of worker skill types. Now, take any function V(h, p) that is weakly

increasing in h for any p. Furthermore, let s(h, p) be the maximizer of the right hand side of

equation (A.14) for V(h, p) and any h in the support of Ψ(·). Finally, let V0(h) be defined by
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equation (A.16) for the value of employment given by V(h, p). It then follows that,

(TV)(h0, p) =
f (h0, p)− c

(
s(h0, p)

)
+ δ1V0(h0) + βs(h0, p)λ

´ p̄
p V(h0, p′)dΓ(p′)

r + δ̂ + βs(h0, p)λΓ̂(p)

+ δ0λ
V0(h0) + β

´ p̄

R(h0)

[
V(h0, p′)− V0(h0)

]
dΓ(p′)

r + δ̂ + βs(h0, p)λΓ̂(p)

<
f (h0, p)− c

(
s(h0, p)

)
+ δ1V0(h1) + βs(h0, p)λ

´ p̄
p V(h1, p′)dΓ(p′)

r + δ̂ + βs(h0, p)λΓ̂(p)

+ δ0λ
V0(h1) + β

´ p̄

R(h0)

[
V(h1, p′)− V0(h1)

]
dΓ(p′)

r + δ̂ + βs(h0, p)λΓ̂(p)

≤
f (h0, p)− c

(
s(h1, p)

)
+ δ1V0(h1) + βs(h1, p)λ

´ p̄
p V(h1, p′)dΓ(p′)

r + δ̂ + βs(h1, p)λΓ̂(p)

+ δ0λ
V0(h1) + β

´ p̄

R(h1)

[
V(h1, p′)− V0(h1)

]
dΓ(p′)

r + δ̂ + βs(h1, p)λΓ̂(p)

= (TV)(h1, p).

Hence, by the contraction mapping theorem, since T maps the set of function V(h, p) that are

increasing in h into the set of functions that are strictly increasing in h, it must be that the fixed

point of equation (A.14) is strictly increasing in h. This establishes Lemma 3.

A.4 The firm’s vacancy choice

Λj (h, p) is the likelihood of meeting an employed skill level h, layoff rate δj worker who is

currently employed with a productivity p firm. Λ0
j (h) is the likelihood that conditional on

meeting a worker, the meeting is with a skill level h, layoff rate δj worker who is either currently

unemployed or making a job-to-job reallocation, which in either case means that the worker’s

bargaining position is that of unemployment. By the assumption of proportionality in matching,

they are defined by,

Λj (h, p) =
ξ j

(
1 − uj

)
sj(h, p)gj(h, p)

∑j′∈{L,H} ξ j′
´ 1

0

{
uj′ [µ + κs0

j′ (h
′)]υj′(h′) +

(
1 − uj′

) ´ 1
0 [δ0 + sj′(h′, p′)]gj′(h′, p′)dp′

}
dh′

and

Λ0
j (h) =

ξ j

{
uj[µ + κs0

j (h)]υj(h) +
(
1 − uj

)
δ0

´ 1
0 gj(h, p)dp

}

∑j′∈{L,H} ξ j′
´ 1

0

{
uj′ [µ + κs0

j′ (h)]υj′ (h) +
(
1 − uj′

) ´ 1
0 [δ0 + sj′(h, p)]gj′ (h, p)dp

}
dh

.
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The first order condition for the firm’s vacancy intensity choice is given by,

c′v(v(p)) = η (1 − β) ∑
j∈{L,H}

ˆ 1

0

{[
Vj (h, p, p) − Vj

(
h, Rj (h) , Rj (h)

)]
Λ0

j (h) +

ˆ p

Rj(h)

[
Vj (h, p, p) − Vj

(
h, p′ , p′

)]
Λj

(
h, p′

)
dp′

}
dh.

A.5 Steady state G (h, q, p)

The steady state condition on G(h, q, p) is given by,

(1 − u)δG(h, q, p) + (1 − u)λ(θ)

ˆ h

h

ˆ q

R(h′)

{(
1 − Γ(p)

) ˆ q

q′
s
(
h′, p′

)
dG

(
h′ , q′, p′

)

+
(
1 − Γ(q)

) ˆ p

q
s
(
h′, p′

)
dG

(
h′, q′, p′

)}
=

ˆ h

h
I(R(h′) ≤ q)

[
Γ(p)− Γ(R(h′))

]
λ(θ)

[
u[δ0 + κs0(h

′)]υ(h′) +

(1 − u)δ0

ˆ p̄

R(h′)

ˆ p̄

q′
g(h′, q′, p′)dp′dq′

]
dh′. (A.17)

Evaluate at (h, p̄, p̄) and differentiate with respect to h to obtain,

(δ0λ(θ) + δ1)(1 − u)

ˆ p̄

R(h)

ˆ p̄

q′
g(h, q′ , p′)dp′dq′ = [1 − Γ(R(h))]λ(θ)

{
u[µ + κs0(h)]υ(h

′) +

(1 − u)δ0

ˆ p̄

R(h)

ˆ p̄

q′
g(h, q′ , p′)dp′dq′

}

m

(δ0λ(θ)Γ(R(h)) + δ1)(1 − u)

ˆ p̄

R(h)

ˆ p̄

q′
g(h, q′ , p′)dp′dq′ = u[1 − Γ(R(h))]λ(θ)[µ + κs0(h)]υ(h)

m

δ0(1 − u)

ˆ p̄

R(h)

ˆ p̄

q′
g(h, q′ , p′)dp′dq′ =

δ0λ(θ)[1 − Γ(R(h))]

δ0λ(θ)Γ(R(h)) + δ1
u[µ + κs0(h)]υ(h).(A.18)

Insert this into equation (A.17),

δ0λ(θ) + δ1

λ(θ)
G(h, q, p) +

ˆ h

h

ˆ q

R(h′)

[
[1 − Γ(p)]

ˆ q

q′
s(h′ , p′)dG(h′ , q′, p′)

+[1 − Γ(q)]

ˆ p

q
s(h′, p′)dG(h′, q′, p′)

]
=

u

1 − u

ˆ h

h
I(R(h′) ≤ p)[Γ(p)− Γ(R(h′))][µ + κs0(h

′)]υ(h′)
δ1 + δ0λ(θ)

δ0λ(θ)Γ(R(h)) + δ1
dh′. (A.19)
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Evaluate (A.19) at
(
h̄, p̄, p̄

)
to obtain,

δ0λ(θ) + δ1

λ(θ)
=

u

1 − u

ˆ h̄

h
[1 − Γ(R(h′))]

δ1 + δ0λ(θ)

δ0λ(θ)Γ(R(h)) + δ1
[µ + κs0(h

′)]υ(h′)dh′

m
u

1 − u
=

[
ˆ h̄

h

[1 − Γ(R(h′))] [µ + κs0(h′)]
δ0Γ(R(h′)) + δ1/λ (θ)

υ(h′)dh′
]−1

m

u =

[
ˆ h̄

h

(
1 +

[1 − Γ(R(h′))] [µ + κs0(h′)]
δ0Γ(R(h′)) + δ1/λ (θ)

)
dΥ(h′)

]−1

.

One then obtains,

ˆ h

h

ˆ q

R(h′)

[
ˆ q

q′
[δ/λ(θ) + [1 − Γ(p)]s(h′ , p′)]g

(
h′, q′, p′

)
dp′

+

ˆ p

q
[δ/λ(θ) + [1 − Γ(q)]s(h′ , p′)]g(h′ , q′, p′)dp′

]
dq′dh′ =

δ

λ(θ)

´ h
h I(R(h′) ≤ q)[Γ(p)− Γ(R(h′))] µ+κs0(h

′)
δ0Γ(R(h′))+δ1/λ(θ)dΥ(h′)

´ h̄
h

[1−Γ(R(h′))][µ+κs0(h′)]
δ0Γ(R(h′))+δ1/λ(θ)

dΥ(h′)
. (A.20)

A.6 Steady state equilibrium solution for Υ(h)

Consider the equilibrium condition,

Ψ(h) = uΥ (h) + (1 − u) G (h, p̄) .

Differentiate with respect to h to obtain,

ψ (h) = uυ (h) + (1 − u)

ˆ p̄

b
g
(
h, p′

)
dp′

=

[
1 +

[1 − Γ(R(h))][µ + κs0(h)]

δ0Γ(R(h)) + δ1/λ(θ)

]
uυ (h) ,

where the last equality follows from equation (A.18). By the steady state unemployment rate

expression it follows that,

ψ (h) =

[
1 + [1−Γ(R(h))][µ+κs0(h)]

δ0Γ(R(h))+δ1/λ(θ)

]
υ (h)

´ h̄
h

(
1 + [1−Γ(R(h′))][µ+κs0(h′)]

δ0Γ(R(h′))+δ1/λ(θ)

)
υ (h′) dh′

, (A.21)

which is an integral equation for Υ(h) as a function of Ψ(h). Define,

∆ (h) =
[1 − Γ(R(h))][µ + κs0(h)]

δ0Γ(R(h)) + δ1/λ(θ)
.
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Then restate equation (A.21),

υ (h) =

[
1 +

ˆ h̄

h
∆
(
h′
)

υ
(
h′
)

dh′
]

ψ (h)

1 + ∆ (h)
.

Use equation (A.21) to solve for 1 +
´ h̄

h ∆ (h′) υ (h′) dh′. First, some minor manipulation,

ψ (h) + ψ (h)

ˆ h̄

h
∆
(
h′
)

υ
(
h′
)

dh′ = [1 + ∆ (h)] υ (h)

m

υ (h)− ψ (h)

1 + ∆ (h)

ˆ h̄

h
∆
(
h′
)

υ
(
h′
)

dh′ =
ψ (h)

1 + ∆ (h)

m

∆ (h) υ (h)− ψ (h) ∆ (h)

1 + ∆ (h)

ˆ h̄

h
∆
(
h′
)

υ
(
h′
)

dh′ =
ψ (h) ∆ (h)

1 + ∆ (h)
.

Now, integrate from h to h̄ to obtain,

ˆ h̄

h
∆
(
h′
)

υ
(
h′
)

dh′
[

1 −
ˆ h̄

h

ψ (h′)∆ (h′)
1 + ∆ (h′)

dh′
]

=

ˆ h̄

h

ψ (h′)∆ (h′)
1 + ∆ (h′)

dh′

m

1 +

ˆ h̄

h
∆
(
h′
)

υ
(
h′
)

dh′ = 1 +

´ h̄
h

ψ(h′)∆(h′)
1+∆(h′) dh′

1 − ´ h̄
h

ψ(h′)∆(h′)
1+∆(h′) dh′

=
1

1 − ´ h̄
h

∆(h′)
1+∆(h′)ψ (h′) dh′

=
1

´ h̄
h

[
1 − ∆(h′)

1+∆(h′)

]
ψ (h′) dh′

=
1

´ h̄
h

1
1+∆(h′)ψ (h′) dh′

.

Hence, one obtains the solution,

υ (h) =
[1 + ∆ (h)]−1 ψ (h)

´ h̄
h [1 + ∆ (h′)]−1 ψ (h′) dh′

,

which can also be written as,

Υ (h) =

´ h
h

δ0Γ(R(h′))+δ1/λ(θ)
δ0Γ(R(h′))+δ1/λ(θ)+[1−Γ(R(h′))][µ+κs0(h′)]

dΨ (h′)
´ h̄

h
δ0Γ(R(h′))+δ1/λ(θ)

δ0Γ(R(h′))+δ1/λ(θ)+[1−Γ(R(h′))][µ+κs0(h′)]
dΨ (h′)

.

11



A.7 Firm labor force composition is independent of firm size

Consider a labor force that consists of k types. For the purpose of this argument, a type i worker

is characterized by a hire rate hi and a separation rate di. Firm entry and exit takes place through

the zero labor force size pool. Each worker i size process is independent. Hence, the distribution

of the number of type i workers employed by the firm will be Poisson distributed,

mi
n =

(
hi
di

)n
exp

(
− hi

di

)

n!
.

Denote by ~n = (n1, n2, . . . , nk) the composition of the firm’s labor force. The mass of size n firms

is formed based on the sum of the individual worker type distributions,

mn = ∑
{~n≥0|∑ ni=n }

k

∏
i=1

mi
ni

=

[
∑

k
i=1

hi
di

]n
exp

(
−∑

k
i=1

hi
di

)

n!
,

which is just a Poisson in the sum of the individual hiring and separation rate fraction. Consider

the expectation of the share of type i workers in the firm’s labor force conditional on the firm

having n workers,

E
[ni

n
|n
]
=

∑{~n≥0|∑ nj=n}
ni
n ∏

k
j=1 m

j
nj

mn

=
∑{~n≥0|∑ nj=n} n! ni

n

∏
k
j=1

(
ηj
δj

)nj

∏
k
j=1 nj!

∑{~n≥0|∑ nj=n} n!
∏

k
j=1

(
ηj
δj

)nj

∏
k
j=1 nj!

=

(
ηi

δi

) [
∑

k
i=1

hi
di

]n−1

[
∑

k
i=1

hi
di

]n

=

hi
di

∑
k
i=1

hi
di

where the second to last step applies the multinomial theorem. Hence, the share of type i workers

in the firm’s labor force is independent of the size of the firm’s labor force. Consequently, the

firm’s overall worker separation rate is not size dependent.

B Estimation
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B.1 Overfitting Corr(t
u
i , w0

i |ι̂ ≥ 0.95)

Our Indirect Inference estimator minimizes the distance between real and simulated moments,

measured as a weighted Euclidean distance, with the weighting matrix being the inverse variance-

covariance matrix of the estimated vector of moments. This is the optimal weighting matrix in

that it induces efficiency, but effectively, it puts relatively less weight on moments that are im-

precisely estimated. Hence, precision may come at the expense of a potentially deteriorated fit,

an issue that is salient for the auxiliary statistic that formally pins down production technology

complementarities, Corr(t
u
i , w0

i |ι̂ ≥ 0.95). The computation of Corr(t
u
i , w0

i |ι̂ ≥ 0.95) is very taxing

on the data as it utilizes only a small number of firms, the most productive ones, and within

these firms, only a small number of workers, those who initiate their jobs with a transition from

unemployment. The implication is that the the covariance between starting wages and unem-

ployment duration in very productive firms is relatively imprecisely estimated, and thus only

carries a light weight in the main estimation. It is therefore not surprising that our main esti-

mation face difficulties in fitting this moment precisely. As a robustness check on our estimates

and subsequent analysis and conclusion, this appendix presents a set of estimates where we ar-

tificially scale up the weight put on the covariance between starting wages and unemployment

duration in very productive firms. This forces a near-perfect fit to the central moment identifying

production function complementarity.

Specifically, let Σ be the weight matrix in the Indirect inference estimator. In the main esti-

mation, we take Σ = Ŵ−1, where W is the variance-covariance matrix of the vector of auxiliary

statistics and data moments used in the estimation, denoted a. Suppose Corr(t
u
i , w0

i |ι̂ ≥ 0.95)

is the kth entry in the moment vector. We conduct a separate estimation using an augmented

weight matrix Σ which is equal to Ŵ−1 except that the (k, k)-entry has been scaled up by a

factor 50,000. The Indirect Inference estimator is consistent for any choice of weighting matrix,

as long as it is symmetric and positive definite. The augmented weighting matrix retains these

properties, and delivers a consistent, albeit overfitted, estimate of the structural parameters. For

the augmented
√

N(ω̂ − ω0) →d N (0, (1 + S−1)[J′ΣJ]−1J′ΣŴΣJ[J′ΣJ]−1), where J = ∂a(ω)/∂ω

evaluated at ω̂, and from which we obtain the reported standard errors.

B.1.1 Structural Parameter Estimates

The structural parameters, estimated with the augmented weighting matrix, are presented in

Table 1, alongside our preferred parameter estimates reported in Table 2 for comparison. The

two sets of parameters are largely identical. In the augmented estimation, the elasticity of search

13



cost with respect to search effort is 1.068 in comparison to 1.077 in the main estimation, with the

relative off-the-job to on-the-job search intensity κ, the rate at which offers arrive exogenously

s, the recruitment cost function cv(v), and the reallocation rate δ0 also being very similar in

the two estimations. The same holds true for the estimated vacancy and worker heterogeneity

distributions Γ(p) and Ψ(h), see Figure B.1 for a graphical rendition, and also for the estimated

parameters of the CES match production function f (h, p). In particular, the overfitted estimates,

forcing a near-perfect fit to Corr(t
u
i , wi), delivers an estimate of ρ at −2.198. This is almost

identical to our preferred estimate at −2.045.

The main difference between the overfitted and main estimation is in the job destruction

process, and to a lesser extent in the estimated bargaining power β. The overfitted estimation

predicts that the vast majority of workers in the population, 93%, have relatively low job destruc-

tion risk. In our preferred estimation 86% of workers faced relatively low job destruction risk.

Also consistent with the main estimation, the overfitted estimates predicts that workers with

high job destruction risk face have a very weak attachment to the labor market, with the average

time spent in employment between unemployment spells being approximately 6 months (among

employed workers high layoff rate workers account for only 1%, similar to our main estimation).

However, with overfitting, the estimated model yields a job destruction rate faced by low layoff

workers, δL, that is three times higher than in the preferred estimate presented in Table 2. We

have δL = 0.186 in the augmented estimation versus δL = 0.063 in our preferred estimation. The

overfitted estimate of workers’ bargaining power parameter β is higher than in the main estima-

tion, with the overfitted estimation yielding β = 0.233 versus a preferred estimate of β = 0.177.

B.1.2 Model Fit

Table 2 present the fit of the model estimated with the augmented weighting matrix, and also al-

low comparison to the fit of our preferred estimated model. As expected, overfitting Corr(t
u
i , wi)

result in a perfect fit. The improved fit to this particular auxiliary statistics comes at the expense

of a deterioration in the fit of a closely related moment, namely the average unemployment for

worker hired into top-ranked firms, and to a less extent the standard deviation of these unem-

ployment durations. In the overfitted estimation, we overestimate the duration of unemployment

spells by a factor of almost two. For the remaining moments listed in Table 2 there is no sub-

stantial difference between the fit of our preferred estimate, and the overfitted model estimate.

The deteriorated fit to unemployment durations is also visible in Figure B.2 which plots

14



Table 1: Structural Parameter Estimates—Overfitting Corr(t
u
i , wi)

Preferred Overfitted

Annual job destruction rate, low type, δL 0.063
(0.0001)

0.186
()

Annual job destruction rate, high type, δH 1.905
(0.0001)

2.031
()

Job destruction type distribution, ξL = Pr(δ = δL) 0.858
(0.0001)

0.931
()

Search cost function c(s) = (c0s)1+1/c1

1+1/c1

c0 54.420
(0.0002)

77.276
()

c1 12.911
(0.0002)

14.680
()

Recruitment cost function cν(ν) =
ν1+1/cν1

1+1/cν1

c1v 0.012
(0.0001)

0.011
()

Exogenous search, s 0.034
(0.0001)

0.034
()

Annual reallocation rate, δ0 0.106
(0.0001)

0.116
()

Off-the-job to on-the-job relative search efficiency, κ 0.845
(0.0001)

0.808
()

Firm productivity CDF on p ∈ [0, 1], Φ(p) = Beta(βΦ
0 , βΦ

1 )

βΦ
0 (scale) 1.188

(0.0001)
1.106

()

βΦ
1 (shape) 3.151

(0.0001)
3.112

()

Worker skill CDF on h ∈ [0, 1], Ψ(h) = Beta(βΨ
0 , βΨ

1 )
βΨ

0 (scale) 2.638
(0.0970)

3.350
()

βΨ
1 (shape) 16.022

(0.0971)
16.352

()

Match production function, f (h, p) = f0

(
α
(
h + h

)ρ
+ (1 − α)

(
p + p

)ρ
) 1

ρ

ρ −2.045
(0.0155)

−2.198
()

α 0.311
(0.0001)

0.324
()

f0 931.169
(0.0001)

909.647
()

Workers’ bargaining power, β 0.177
(0.0001)

0.233
()

Std. deviation, wage measurement error, σw 0.094
(0.0015)

0.110
()

Note: Standard errors in parentheses.
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Figure B.1: Firm- and Worker Heterogeneity Distributions

0.0

0.25

0.50

0.75

1.00

0 0.25 0.50 0.75 1.00

Firm types p, worker types h
Note: The black solid line shows the estimated vacancy heterogeneity distribution

Γ(p) for our preferred estimation. The green solid line shows Γ(p) for the

overfitted estimation. The dashed line shows the estimated population worker

heterogeneity distribution Ψ(h)for our preferred estimation. The green dashed

line shows Ψ(p) for the overfitted estimation.
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Table 2: Model Fit—Overfitting Corr(t
u
i , wi)

Data Sim.

Preferred Overfitted

Labor Market Transitions

Number of jobs in employment cycle, average 2.182
()

2.178 2.230

Number of jobs in employment cycle, std. dev. 1.541
()

1.260 1.281

Average share of matches in a cross section ending in EU-transition 0.338
()

0.348 0.347

Cross Section Heterogeneity

Log firm wage, employment weighted average 5.254
()

5.252 5.250

Log firm wage, employment weighted std. dev. 0.168
()

0.160 0.171

Log firm wage, newly hired workers average 5.167
()

5.166 5.170

Log firm wage, newly hired workers std. dev. 0.222
()

0.201 0.227

Firm size in FTE, average 8.646
()

8.874 8.509

Fraction of active firms to worker population 0.091
()

0.089 0.090

Within-job annual log wage growth, average 0.009
()

0.005 0.005

Firm effects from auxiliary log wage regression (??), average 5.238
()

5.217 5.219

Firm effects from auxiliary log wage regression (??), std. dev. 0.179
()

0.149 0.161

Worker effects from auxiliary log wage regression (??), std. dev. 0.218
()

0.220 0.199

Residuals from auxiliary log wage regression (??), std. dev. 0.134
()

0.129 0.135

Mean-min wage ratio 1.854
()

1.799 1.797

Labor Market Sorting

Unemployment duration (in weeks) for workers hired into top ranked firms, average 57.395
()

78.466 104.774

Unemployment duration (in weeks) for workers hired into top ranked firms, std. dev. 69.853
()

80.484 88.066

Starting wage (in DKK) for workers hired into top ranked firms, average 186.0
()

172.8 180.1

Starting wage (in DKK) for workers hired into top ranked firms, std. dev. 62.3
()

44.8 45.5

Correlation(unemployment duration, starting wage) for workers hired into top ranked firms −0.168
()

−0.381 -0.168

Note: Standard errors obtained by block-bootstrap in parentheses.
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Figure B.2: Model Fit with Overfitting—Quarterly Kaplan-Meier Employment Hazards.

0.00

0.04

0.08

0.12

0.16

0 2 4 6 8 10

Kaplan-Meier EE spell hazard

Spell duration (years)

0.00

0.02

0.04

0.06

0.08

0 2 4 6 8 10

Kaplan-Meier EU spell hazard

Spell duration (years)

Note: Data in dashed line. Preferred model estimate in dotted line. Overfitted model estimate in solid line.

Kaplan-Meier estimates of employment hazard functions, split in competing risk job-to-job and

job-to-unemployment transition hazards. The the overfitting has minimal impact on the fit to

the Kaplan-Meier job-to-job transition hazard rates. However, the fit to the Kaplan-Meier job-

to-unemployment transition hazard function is significantly worsened. In particular, the model

estimate based on the augmented weighting matrix is underestimates the hazard rate at job

durations up to two years. For longer job durations, the fit of the overfitted model is similar to

our preferred estimate.

Figure B.3, showing job-to-job transition hazard rates as a function of the inflow rank ι̂, fur-

ther confirms that the job-to-job transition process is largely unaffected by the overfitting of

Corr(t
u
i , wi). The model estimate obtained using the augmented weighting matrix basically coin-

cides with the hazard rate profile predicted by our preferred estimate, except perhaps at the least

productive firms, where underestimation of the hazard rate is slightly more pronounced in the

with overfitting than without.

Figure B.4, plotting empirical and simulated unemployment-to-job transition hazard func-

tions, confirms the overfitted model’s problems in reproducing observed unemployment dura-

tion data. Even if we did not use the unemployment-to-job transition hazard functions as a
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Figure B.3: Model Fit with Overfitting—Quarterly Inflow Rank Conditional Job-to-job Transition

Hazard Rates
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0 0.25 0.50 0.75 1.00
Inflow rank, ι̂

Note: The green dashed line shows job-to-job transition hazard rates estimated on

real data (Gaussian non-parametric regression with bandwidth 0.02). The solid

black line shows simulated job-to-job transition hazard rates for the estimated

model equilibrium (preferred estimates). The black dotted line shows simu-

lated job-to-job transition hazard rates for the estimated model equilibrium

with overfitting.
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Figure B.4: Model Fit with Overfitting—Quarterly Kaplan-Meier Unemployment-to-job Hazard.
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Note: Data in green dashed line. Preferred model estimate in black dotted line.

Overfitted model fit in black solid line.

target in the estimation, our preferred estimate does a notably good job in fitting these. In

contrast, Figure B.4 reveals that the overfitted model does a poor job at predicting the strong

duration dependence at relatively short unemployment durations (less than 2 years), where the

model severely underestimates the unemployment-to-job transition hazard rate. At longer dura-

tions, the overfitted model overestimates the hazard rate, even more than our preferred model

estimate.

Overfitting Corr(t
u
i , wi) was done to force a near-perfect fit to a particular auxiliary statistic

that directly help pin down production function complementarities in the data. Our estima-

tion also include another set of auxiliary statistics that directly informs on labor market sorting,

namely the regression coefficients β0k and β1k from the regression (5.3). Figure B.5 plots the fit of

the augmented estimation to this set of moments (along with the real data counterpart and the fit

of our preferred estimation). We note that our preferred and overfitted model estimate virtually

coincide.

Overall, overfitting Corr(t
u
i , wi) in the estimation (naturally) leads to a perfect fit to this aux-

iliary statistic. The improved fit obtained at the expense of a worsened fit to the distribution of

of unemployment spell durations. Other moments are not affected in any substantial way.
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Figure B.5: Model Fit with Overfitting—Inflow Rank Conditional Job-to-job Transition Hazard

Functions
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Note: Left panel: Green dots represent the constant term β0 estimated on real data, black squares represent the

constant term β0 estimated on simulated data (preferred estimate), black triangles represent the constant

term β0 estimated on simulated data (overfitted estimate). Rigth panel: Green dots represent the slope

term β1 estimated on real data, black squares represent the slope term β1 estimated on simulated data

(preferred estimate), black triangles represent the constant term β0 estimated on simulated data (overfitted

estimate).

21



Table 3: Log Wage Variance Decomposition with Overfitting—The AKM Approach

Data Sim.

Preferred Overfitted

Value Percent of

Var(ln wit)

Value Percent of

Var(ln wit)

Value Percent of

Var(ln wit)

Var (ln wit) 0.097 100% 0.087 100% 0.082 100%

Var (χi) 0.070 71% 0.056 64% 0.047 57%

Var
(

ϕJ(i,t)

)
0.014 14% 0.011 13% 0.015 18%

Var (ε it) 0.015 15% 0.015 17% 0.016 20%

2Cov
(

χi, ϕJ(i,t)

)
−0.002 0% 0.005 6% 0.004 5%

Note: Data refers to empirical results. Sim. refers to results obtained on data simulated from the estimated

structural model (preferred and overfitted).

B.1.3 Log Wage Variance Decompositions

Finally, we check the sensitivity of our log wage variance decompositions to overfitting Corr(t
u
i , wi).

AKM Regressions Table 3 presents log wage variance decompositions using the AKM ap-

proach. The table contains the decomposition on data, for our preferred estimate (both also

reported in Table 4), and for the overfitted estimates. The overfitted model generates slightly less

log wage variation than our preferred estimate, which underestimates the variation observed in

the data. However, the relative importance of the four components in the AKM log wage variance

decomposition is not substantially affected by the overfitting. According the overfitted AKM log

wage decomposition, 57% of log wage variation is comprised of worker heterogeneity, 18% of

firm heterogeneity, 5% is wage sorting, and 20% is comprised of residual log wage variation. The

corresponding AKM shares for our preferred estimate are 64%, 13%, 6% and 17%, respectively.

Accounting for Labor Market Sorting Next, we consider our main log-wage variance decom-

position (??), which decompose log wage variance into components coming from firm hetero-

geneity, worker heterogeneity, labor market frictions and labor market sorting. Table 4 contains

this decomposition. To facilitate comparison we also present the decomposition for our main

estimation (otherwise to be found in Table ??). First, we note again that the overfitted model

estimate generates less wage dispersion, with total simulated log wage variance at 0.071 relative

to 0.079 in the main estimation. However, the log wage projections in the two estimated models

comprise the same share of the simulated variance, about 93%.

Overfitting has very little impact on the log wage variance decomposition. The main source
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Table 4: Log-Wage Variance Decomposition with Overfitting—Accounting for Labor Market Sort-

ing

Preferred Overfitted

Value

Percent of

Var(ln wit) Value

Percent of

Var(ln wit)

Worker effect 0.037 51% 0.031 47%

Firm effect 0.008 11% 0.011 17%

Friction effect 0.017 23% 0.016 24%

Sorting effect 0.011 15% 0.008 12%

Total predicted variance 0.073 100% 0.066 100%

Total simulated variance 0.079 108% 0.071 108%

of variation is still worker heterogeneity (47% in the augmented estimation versus 51% in our

preferred estimation), followed by labor market frictions (23% versus 24%). In the main esti-

mation the labor market sorting generates a slightly higher share of wage variation than firm

heterogeneity. With overfitted estimates, the patterns is reversed, and firm heterogeneity account

for a slightly larger share of log wage variation than labor market sorting. Still, the actual shares

are comparable, with firm heterogeneity accounting for 11% in the main estimation and 17% with

overfitted estimates. The shares for labor market sorting are 15% (preferred) and 12% (overfitted).

In conclusion, overfitting Corr(t
u
i , wi) leads to relatively minor changes in the structural pa-

rameter estimates (as expected as both our preferred estimates and the overfitted estimates are

obtained from consistent estimators), and a near-perfect fit to Corr(t
u
i , wi) at the expense of a

deteriorated fit to the distribution of unemployment durations. The fit to remaining moments is

largely unaffected. Our log wage variance decompositions are robust with respect to the over-

fitting. That is, the fact that our preferred estimates does not exactly reproduce Corr(t
u
i , wi) as

observed in the data, does not in any substantial way impact the conclusions we draw from the

model regarding the degree of sorting in the labor market, and its implication for the observed

wage distribution.

B.2 Stratification by Education

In this appendix we present estimated models, fit analysis, and log wage variance decompositions

on data stratified in high- and low-educated workers. The conclusions if the main text are robust

to stratification by education.
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B.2.1 Stratified Data

We split our analysis data as described in Section 4 into high and low educated workers. A high

educated worker has 15 or more years of education. This amounts to at least an undergraduate

college degree or equivalent. We denote the remaining workers low educated workers, even if

they may have e.g. high school or vocational qualifications. Our treatment of the stratified data

is identical to the treatment of the full sample; see section 4 for details. Table 5 contains basic

descriptive statistics for the two strata, as well as the pooled data.

B.2.2 Structural Parameter Estimates

Table 6 presents the estimates of the structural parameters for high and low educated workers,

and for comparison purposes, also the estimates obtained on the pooled data (also reported in

Table 2 in the main text). The structural parameters are precisely estimated.

Our estimates for the job destruction process again clearly identifies two latent types workers

with very different labor market attachment for each education group: high and low layoff

workers. The high layoff workers have extremely high job destruction rates, estimated to be

2.087 and 1.949 per year for high and low education workers, respectively. Expected duration in

employment between two unemployment spells is thus only about 6 months for the high layoff

types, independent of length of education. The low layoff type workers in the two education

groups face annual job destruction rates of 0.152 for high education workers, and 0.075 for low

education workers. It is perhaps surprising that the low layoff type workers with low education

face a lower job destruction than the low layoff types with high education. Notice however,

that the share of high layoff types is much higher among low education workers, at 0.137, than

among high education workers, where the share of high layoff types is 0.041. The resulting

average annual job destruction rate in the populations of high and low education workers are 0.

0.231 (high education workers) and 0.332 (low education workers). Hence, on average, education

insures against labor market risk as measured by the likelihood of job destruction.

The search cost for low education workers is slightly more elastic with respect to search

intensity than for of high education workers, with elasticities estimated at 1.10 and 1.07 for low

and high education workers, respectively. These elasticities are very similar to that estimated on

pooled data. The recruitment cost function is highly convex for both groups, although slightly

more so for high education workers.

The exogenous level of search s and the relative efficiency of off-the-job to on-the-job search

κ are also similar across education groups, and similar to the estimates obtained on the pooled
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Table 5: Stratification by Education—Analysis Data Summary Statistics

Pooled data High Education Low Education

All years 1994 2003 All years 1994 2003 All years 1994 2003

Number of observations 6,815,884 658,465 703,707 759,511 62,172 86,156 6,056,373 596,293 617,551

Number of individuals 782,951 552,869 588,643 97,197 53,729 75,208 685,754 499,140 513.435

Number of job spells 1,698,990 490,309 511,604 191,662 49,617 67,559 1,507,328 440,691 444,045

Number of unemployment spells 608,065 168,155 192,102 61,278 12,554 18,596 546,787 155,601 173,505

Number of firms 117,847 53,537 58,210 27,783 10,664 12,671 113,686 51,789 55,744

Number of firm-years 559,920 53,537 58,249 118,646 10,664 12,671 539,619 51,789 55,744
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Table 6: Structural Parameter Estimates—Stratification by Education

Pooled data High Education Low Education

Annual job destruction rate, low type, δL 0.063
(0.0001)

0.152
()

0.075
(0.0001)

Annual job destruction rate, high type, δH 1.905
(0.0001)

2.087
()

1.949
(0.0001)

Job destruction type distribution, ξL = Pr(δ = δL) 0.858
(0.0001)

0.959
()

0.863
(0.0001)

Search cost function c(s) = (c0s)1+1/c1

1+1/c1

c0 54.420
(0.0002)

62.772
()

35.385
(0.0002)

c1 12.911
(0.0002)

14.791
()

10.170
(0.0002)

Recruitment cost function cv(v) =
v1+1/cv

1

1+1/cv
1

c1v 0.012
(0.0001)

0.012
()

0.019
(0.0001)

Exogenous search, s 0.034
(0.0001)

0.045
()

0.041
(0.0001)

Annual reallocation rate, δ0 0.106
(0.0001)

0.113
()

0.096
(0.0001)

Off-the-job to on-the-job relative search efficiency, κ 0.845
(0.0001)

0.764
()

0.834
(0.0001)

Vacancy distribution CDF on p ∈ [0, 1], Γ(p) = Beta(βΓ
0 , βΓ

1)

βΓ
0 (scale) 1.188

(0.0001)
1.415

()
1.070
(0.0001)

βΓ
1 (shape) 3.151

(0.0001)
2.214

()
4.342
(0.0001)

Worker skill distribution CDF on h ∈ [0, 1], Ψ(h) = Beta(β
ψ
0 , β

ψ
1 )

β
ψ
0 (scale) 2.638

(0.0970)
5.149

()
2.728
(0.1016)

β
ψ
1 (shape) 16.022

(0.0971)
14.760

()
19.779
(0.1017)

Match production function, f (h, p) = f0

(
α
(
h + h

)ρ
+ (1 − α)

(
p + p

)ρ
) 1

ρ

f0 931.169
(0.0001)

934.804
()

969.588
(0.0001)

α 0.311
(0.0001)

0.434
()

0.471
(0.0001)

ρ −2.045
(0.0001)

−1.845
()

−2.147
(0.0001)

Workers’ bargaining power, β 0.177
(0.0155)

0.140
()

0.203
(0.0125)

Std. deviation, wage measurement error, σw 0.094
(0.0015)

0.102
()

0.110
(0.0018)

Note: Standard errors in parentheses.
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Figure B.6: Stratified Estimation—Firm- and Worker Heterogeneity Distributions
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Note: The black solid line shows the estimated vacancy heterogeneity distribution Γ(p). The dashed line shows

the estimated population worker heterogeneity distribution Ψ(h).

data. The reallocation rate at 0.113 per year is slightly higher for high education workers than

for low education workers where the estimated reallocation rate is 0.096. From a modeling point

of view, reallocation shocks are treated as job destruction shocks without the unemployment

experience, or with very short unemployment spells that are not recorded in the data. Hence,

the presence of reallocation spells allow us to capture a(n extreme form of) structural duration

dependence in the job finding rate among unemployment workers.

The estimated distributions of firm (i.e. vacancy) and worker heterogeneity Γ(p) and Ψ(h) are

rendered graphically in Figure B.6 for high education (left panel) and low education (right panel)

workers. We attach no comment to the estimated distributions, except noting that the estimated

vacancy distribution Γ(p) exhibits more variation than the worker skill distribution Ψ(h) in both

education groups. This was also the case for the distribution estimated on pooled data.

Given our focus on labor market sorting, the estimated match production function, measuring

the degree of complementarity between worker and firm heterogeneity, h and p, in the produc-

tion, is salient. Our CES specification production function specification is characterized by three

parameters, f0 measuring the scale of production, α ∈ [0, 1] measuring the relative weight of

labor input in the production, and ρ measuring the modularity of the production function. The

estimates of f0 and α are not of central interest, but are comparable across the two education
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group. The estimated ρ-parameters indicate that the production function is supermodular in

both education groups, inducing a matching pattern between worker and firms characterized

by positive sorting. For high educated workers we find ρ = −1.845, and the resulting steady

state equilibrium match distribution has Corr(h, p) = 0.11. For low educated workers, we find

ρ = −2.147, implying a steady state equilibrium match distribution with Corr(h, p) = 0.15. In

comparison, our estimate of ρ using all workers, resulted in Corr(h, p) = 0.12. Overall, we

do not find evidence that labor market sorting differ substantially by education levels, at least

when comparing the labor market of high educated workers to rest, here denoted low educated

workers.

With respect to workers’ bargaining power β, we estimate that to be 0.140 and 0.203 for high

education and low education workers, respectively. This is not a true reflection of workers’

bargaining power since they can use outside offers to gain larger shares of match output. Taking

this into account we find that high education workers, on average in a steady state cross section,

obtain XXX% of match output. The corresponding number of low education workers is XXX%.

Finally, we note that the measurement error process in wages appear similar across education

groups.

B.2.3 Model Fit

The education group specific models’ fit to the auxiliary statistics are reported in Table 7 and

Figures B.7, B.8, and B.9. The moments used in the estimation is described in Section 5, and are

identical to the set of moments used for the main estimation presented in the paper.

Starting with the moments reported in Table 7, the fit is overall good for both high and low

education worker, perhaps slightly better among low educated workers. In particular, the esti-

mated model for high education workers underestimates the employment effect in wages (here,

measured as the difference between average wages in a cross section, and the average wages of

newly hired workers), and overestimates starting wages for workers hired into top ranked firms.

For high education workers, the estimated model accounts for about 40% of observed within-job

wage growth, with the corresponding share for low education workers being 50%. This is not

surprising as our model omits human capital accumulation, likely to be a particularly important

source of wage growth among high education workers (see ?). In both groups, we are facing

problems fitting the covariance of starting wages and unemployment durations of workers hired

into top-ranked firms from unemployment. This was also the case for the main estimation in text,

pooling all workers. As also pointed out there, the less than perfect fit is likely a result of this

particular moment being very data demanding, and therefore imprecisely estimated. As shown
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in Appendix B.1, overfitting the moment deteriorates the model’s fit to unemployment durations,

but is not likely to substantially change any of the conclusion of the paper. Still, we notice that the

slightly stronger production function complementarities observed among low education workers

is consistent with these workers having a stronger correlation between unemployment duration

and starting wages in top ranked firms.

Figure B.7 plots the estimated models’ fit to Kaplan-Meier job-to-job and job-to-unemployment

transition hazard functions. In the data, all hazard functions exhibit negative duration depen-

dence, albeit the duration dependence is substantially stronger for low education workers than

for high education workers. For job-to-job transitions, the model fitted to data on high education

workers does capture negative duration dependence qualitatively, although the simulated hazard

function underestimates the job-to-job transition hazard at short job durations, and overestimates

them at very long durations exceeding 8 years. Overall, it seems the model underestimates the

extent of job-to-job transitions in the data. The fit to the Kaplan-Meier job-to-unemployment

transition hazard rate for high education workers is good, especially at short job durations, less

than 2 years, where the model captures the decline in the unconditional hazard rate very well.

At longer durations, the simulated job-to-unemployment transition hazard rate slightly exceeds

the empirical hazard. With respect to the model fitted to data on low education workers, the

fit to the Kaplan-Meier job-to-job transition rate is good, and better than was the case for high

education workers. Again. the simulated job-to-job transition hazard underpredicts the hazard

rate at shorter durations, here less than 5 years, and overpredicts the hazard rate at longer du-

rations. When it comes to the fit to the Kaplan-Meier job-to-unemployment transition hazard

rate, we again obtain a good fit at shorter durations. The estimated model for low education

workers captures the initial sharp decline in the Kaplan-Meier job-to-unemployment transition

hazard almost perfectly. However, for job spells of duration 2 years or more, the simulated

job-to-unemployment transition hazard rate exceeds the empirical rate.

In Figure B.8 we directly consider the models ability to fit the relationship between the firm

ladder, as estimated by the inflow rank measure ι̂, and job-to-job transitions, by plotting job-to-

job transition hazard rates against the inflow rank measure ι̂. For high education workers the

empirical hazard rate drops sharply when we move from firms in the first (i.e. bottom) decile of

the firm ladder, to firms in the second decile. After this initial drop, the hazard rate continuous

to fall throughout the firm ladder, but only modestly. The estimated model for high education

workers captures perfectly the slow decline in hazard rates on the firm ladder from the second

decile and up. The estimated model is, however, unable to capture the sharp decline at the very

bottom of the firm ladder. With respect to low education workers, the fit to the inflow rank
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Table 7: Model Fit—Stratification by Education

High Education Low Education

Data Sim. Data Sim.

Labor Market Transitions

Number of jobs in employment cycle, average 2.267 2.329 2.171 2.135

Number of jobs in employment cycle, std. dev. 1.399 1.308 1.559 1.263

Average share of matches in a cross section ending in EU-transition 0.232 0.230 0.352 0.392

Cross Section Heterogeneity

Log firm wage, employment weighted average 5.554 5.577 5.219 5.226

Log firm wage, employment weighted std. dev. 0.168 0.161 0.146 0.139

Log firm wage, newly hired workers average 5.415 5.483 5.136 5.141

Log firm wage, newly hired workers std. dev. 0.256 0.244 0.188 0.193

Firm size in FTE, average 4.995 5.508 7.899 8.288

Fraction of active firms to worker population 0.167 0.158 0.098 0.096

Within-job annual log wage growth, average 0.017 0.007 0.008 0.004

Firm effects from auxiliary log wage regression, average 5.541 5.538 5.197 5.197

Firm effects from auxiliary log wage regression, std. dev. 0.187 0.152 0.163 0.131

Worker effects from auxiliary log wage regression, std. dev. 0.223 0.229 0.197 0.200

Residuals from auxiliary log wage regression, std. dev. 0.147 0.147 0.131 0.128

Mean-min wage ratio 2.096 1.979 1.786 1.723

Labor Market Sorting

Unemployment duration (in weeks) for workers hired into top ranked firms, average 48.830 95.215 59.155 70.787

Unemployment duration (in weeks) for workers hired into top ranked firms, std. dev. 62.778 81.452 71.624 76.912

Starting wage (in DKK) for workers hired into top ranked firms, average 220.848 238.396 177.824 174.930

Starting wage (in DKK) for workers hired into top ranked firms, std. dev. 70.965 61.145 56.533 42.422

Correlation(unemployment duration, starting wage) for workers hired into top ranked firms -0.056 -0.275 -0.169 -0.376

Note: Standard errors obtained by block-bootstrap in parentheses.
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Figure B.7: Model Fit with Stratification by Education—Quarterly Kaplan-Meier Employment

Hazards.
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Figure B.8: Model Fit with Stratification by Education—Quarterly Inflow Rank Conditional Job-

to-job Transition Hazard Rates
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Note: The green dashed line shows job-to-job transition hazard rates estimated on real data (Gaussian non-

parametric regression with bandwidth 0.02). The solid line shows simulated job-to-job transition hazard

rates for the estimated model equilibrium.

conditional job-to-job transition hazard rates is similar to the fit we obtained when pooling all

workers together. The estimated model captures well the hazard rate at the bottom and at the

top of the firm ladder, but the model predicts a declining pattern that is convex to the origin,

whereas the empirical hazard rates trace out a concave profile. Hence, for low education workers,

the model underpredicts the hazard rate out of firms on the middle of the firm ladder.

The coefficients β0k and β1k from the regression (5.3). These coefficients are plotted against

firm productivity bin in Figure B.9 for high education workers (top panels) and low education

workers (bottom panels). In the main estimation, pooling high and low education workers, we

found a decreasing pattern for the constant term β0, and an increasing-towards-zero pattern

for the slope coefficient β1. As is evident from Figure B.9, the same pattern is found when we

stratify the data into high and low education workers, although the declining β0-profile is less

pronounced in the stratified data, especially so in the small strata of high education workers. In

this sample the estimated constant term β0 is a bit unstable across the productivity bins, although

the overall negative gradient remains visible. The estimated model is able to reproduce some

features of the observed patterns for the β0-coefficients. First, the β0-profile for high educated
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workers declines modestly (as in the data), although the model consistently underpredicts the β0.

For low education workers, the model reproduces well the β0-coefficient for the least productive

firms, but overestimates the decline in the estimated β0’s as progressively more productive firms

are considered.

With respect to the slope parameter β1, measuring the extent to which Kaplan-Meier job-to-

job transition hazard functions within productivity bins exhibit negative duration dependence,

both high and low educated workers exhibit the an increasing towards zero pattern. For the high

education workers, there is a large increase in the estimated β1-coefficient in the bottom of the

productivity ladder, after which the β1-coefficients increase only modestly, if at all. The estimated

model is cannot reproduce the large increase in β1 at the bottom of the firm productivity ladder,

but fits reasonable well the modest increase in β1 over the rest of the ladder, albeit with a tendency

for slight overestimation. For low education workers, the estimated model hits almost exactly

the β1-coefficient at the least productive firms. However, the model overpredicts the increasing

empirical β1-profile.

B.2.4 Log Wage Variance Decomposition

We here briefly review the log wage variance decompositions obtained on the stratified samples.

AKM Regressions Table 8 presents log wage variance decompositions using the AKM ap-

proach on real and simulated data. Looking first at the decomposition for the data, we note that

the covariance between worker and firm fixed effects is negative in both strata, as it was in the

pooled data. However, the covariance is quantitatively more important in the stratified log wage

variance decompositions, in particular among high education workers. Keep in mind that the

covariance is likely to be negatively biased in small samples (see e.g. Postel-Vinay and Robin

(2006)). Overall, the stratified decompositions are in line with the decomposition obtained on the

pooled data. The lion’s share of log wage variance results from worker heterogeneity, and this

source of dispersion appear to be more important among high education workers than among

low education workers. Variance in the estimated firm fixed effects is also important in both

groups, as is residual wage dispersion. Comparing the empirical decompositions to their simu-

lated counterparts, we see that the estimated models generate the observed structure of wages

reasonably well. In general, the estimated models underpredict the total amount of log wage

variance. This underestimation occurs despite the fact that the estimated models are unable to

capture the negative covariance between worker and firm fixed effects that appears in the data,

and is driven by underestimation of the variance of both worker- and firm fixed effects.
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Figure B.9: Model Fit with Stratification by Education: Inflow Rank Conditional Job-to-job Tran-

sition Hazard Functions
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Note: Left panels: Green dots represent the constant term β0 estimated on real data, black squares represent

the constant term β0 estimated on simulated data. Rigth panels: Green dots represent the slope term β1

estimated on real data, black squares represent the slope term β1 estimated on simulated data.
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Table 8: Log Wage Variance Decomposition with Stratification by Education—The AKM approach

High Education Low Education

Data Sim. Data Sim.

Value Percent of

Var(ln wit)

Value Percent of

Var(ln wit)

Value Percent of

Var(ln wit)

Value Percent of

Var(ln wit)

Var (ln wit) 0.101 100% 0.096 100% 0.082 100% 0.073 100%

Var (χi) 0.082 81% 0.064 67% 0.056 67% 0.047 64%

Var
(

ϕJ(i,t)

)
0.018 18% 0.011 11% 0.015 18% 0.007 10%

Var (ε it) 0.016 16% 0.019 20% 0.015 18% 0.014 19%

2Cov
(

χi, ϕJ(i,t)

)
−0.015 −15% 0.002 2% −0.005 −5% 0.005 7%
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Table 9: Log Wage Variance Decomposition with Stratitication by Education—Accounting for

Labor Market Sorting

High Education Low Education

Value

Percent of

Var(ln wit) Value

Percent of

Var(ln wit)

Worker effect 0.039 48% 0.035 60%

Firm effect 0.008 10% 0.005 8%

Friction effect 0.026 32% 0.009 15%

Sorting effect 0.008 10% 0.010 17%

Total predicted variance 0.081 100% 0.058 100%

Total simulated variance 0.087 107% 0.061 105%

Accounting for Labor Market Sorting Finally, we consider the stratified versions of our struc-

tural log wage variance decompositions which features wage dispersion due to worker effects,

firm effects, labor market frictions, and labor market sorting. The decompositions, which we

can only carry out on simulated data, are reported in Table 9. Table 9 only reports the vari-

ance decomposition of the low layoff type workers, which account for almost all observed wage

variation. 99% of the simulated log wage variation is within layoff type workers, and the low

layoff type workers account for 99% of employed workers. Comparing the decompositions in

Table 9 to that obtained on the pooled data and reported in Table 5, we note that worker effects

always come out as the largest contributor to wage dispersion. In the pooled data and among

high education workers, labor market frictions are the second highest contributor. Among low

education workers, labor market sorting is slightly more important the labor market frictions

in generating wage dispersion. In the pooled data, firm effects come out as the least important

source of dispersion, a pattern we also find among low education workers. Among high educa-

tion workers, firm effects and labor market sorting account for equal shares of log wage variance.

Quantitatively, each of the four dimensions of wage dispersion contributes significant amounts

of dispersion, with the shares ranging between48% and 10% for high education workers, and

8% and 60% for low education workers. Overall, the log wage variance decompositions for high

and low education workers reported in Table 9 suggests that our findings and conclusions in the

main text are robust with respect to stratification on education.
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