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B Continuous Effort Model

The agent’s effort is e, where e ∈ [0,∞). Conditional on effort e and signal s, output

q is continuously distributed on [0, q] according to the density f(q|e, s), which satisfies

MLRP: d
dq
f ′e(q|e,s)
f(q|e,s) > 0, where f ′e denotes the partial derivative of f with respect to e.

Let s ∈ {s1, . . . , sS} be another signal of effort, with φŝê = Pr(s = ŝ|e = ê) ∈ (0, 1).

Let f(q|e) =
∑

s φ
s
ef(q|e, s). For technical reasons, assume that f ′q, f

′
e, and f ′′qe exist

everywhere, where f ′q denotes the partial derivative of f with respect to q, and f ′′qe
denotes the cross-partial derivative of f with respect to q and e. The agent’s cost of

effort is C(e), where C ′ > 0 and C ′′ > 0. We define his expected utility as:

U(w, e) =
∑
s

φse

∫ q

0

w(q, s)f(q|e, s)dq − C(e) (34)

B.1 Bilateral Limited Liability

As in Section 2.1, we assume limited liability for both principal and agent (0 ≤ w(q, s) ≤
q, ∀{q, s}). These constraints imply that w(q, s) is continuous and differentiable with

respect to q almost everywhere.

As in the first stage of Grossman and Hart (1983), assume that the principal wishes

to implement a target effort level ê; our results below will hold for any given ê, including

the (here undetermined) optimal level of ê.7

7The existence of the signal may affect the optimal level of effort. However, even if it does, the
realization of the signal may or may not affect the payment to the agent, which is the question that
we study in this section.
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For a given e, the principal’s problem is:

max
w

∑
s

φsê

∫ q

0

[q − w(q, s)] f(q|ê, s)dq (35)

s.t. ê ∈ arg max
e
U(w, e) (36)

U(w, ê) ≥ 0 (37)

w(q, s) ∈ [0, q],∀{q, s}. (38)

Assume that the cost of effort function is sufficiently convex for the second-order con-

dition to the effort choice problem to be satisfied, so that the first-order approach is

valid. Formally, we impose

sup
{zs}

∑
s

{
d2φse
de2

∫ q

zs

qf(q|e, s)dq+2
dφse
de

∫ q

zs

qf ′e(q|e, s)dq+φse
∫ q

zs

qf ′′ee(q|e, s)dq
}
< C ′′(e) ∀e

(39)

where f ′′ee is the second-order partial derivative of f with respect to e. Note that (36)

implies that U(w, e) ≥ U(w, 0). Due to LL, we have U(w, 0) ≥ 0 and so (36) implies

(37).

Lemma 5 To induce effort level ê, the optimal contract is

w(q, s) =

{
0 if q < zs(ê),

q if q ≥ zs(ê).
(40)

for thresholds zs(ê) corresponding to the different realizations of the signal.

Proof. Since the first-order approach is valid, and given a contract w(q, s), IC (36)

may be rewritten as

∑
s

[
dφsê
de

∫ q

0

w(q, s)f(q|ê, s)dq + φsê

∫ q

0

w(q, s)f ′e(q|ê, s)dq
]

= C ′(ê) (41)

The principal’s objective function is linear in w(q, s). Given two-sided limited liability,

the solution is given by

w(q, s) =

{
0 if As(q) < 0,

q if As(q) > 0.
(42)
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where

As(q) ≡ −φsêf(q|ê, s) + λ

[
dφsê
de

f(q|ê, s) + φsêf
′
e(q|ê, s)

]
(43)

where λ denotes the Lagrange multiplier associated with (41). Then

As(q) > 0 ⇐⇒ dφsê/de

φsê
+
f ′e(q|ê, s)
f(q|ê, s)

>
1

λ
(44)

Due to MLRP, (44) is satisfied for a given s if and only if q exceeds a threshold, which

we denote by zs(ê).

Proposition 4 gives a condition under which the signal has zero value for the con-

tract.

Proposition 4 Given effort ê to be induced, if ∀ s, dφsê
de

= 0 and f ′e(zs|ê,s)
f(zs|ê,s) does not

depend on s at zs = z∗, where z∗ is the maximum threshold independent of s that solves

(41), then zs = z∗ ∀ s.

Proof. If
dφsê
de

= 0 and given the optimal contract in Lemma 5, the IC in (41) may be

rewritten as ∑
s

φsê

∫ q

zs

qf ′e(q|ê, s)dq = C ′(ê). (45)

Let z∗ be the highest threshold independent of the signal realization s that solves (45).8

Now, suppose that
dφsê
de

= 0 and that f ′e(zs|ê,s)
f(zs|ê,s) does not depend on s at zs = z∗. Then,

according to (42) and (44), the threshold zs(ê) does not depend on s, and it is equal

to z∗ ∀ s.

This result means that if the signal s is not informative about marginal changes

of effort from the implemented effort level (i.e., if dφsê/de = 0), and if the likelihood

ratio of output f ′e(q|ê,s)
f(q|ê,s) does not depend on the signal s for q = z∗, then the wage

does not depend on the realization of the signal s. Note that these conditions can

be satisfied even if dφse/de > 0 almost everywhere, and even if the likelihood ratio of

output depends on the signal almost everywhere.

8If
dφs

ê

de = 0, and if there are several thresholds independent of the signal realization that solve
(45) and therefore elicit effort ê, cost minimization imposes that the principal chooses the highest
threshold.
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B.2 Monotonicity Constraint

We now also impose a monotonicity constraint as in Innes (1990): ∀ {q, s},

0 ≤ w (q + ε)− w (q) ≤ ε ∀ ε. (46)

For simplicity, we assume that the likelihood ratio is unbounded from above:

lim
q→q

f ′e(q|ê, s)
f(q|ê, s)

=∞ (47)

∀ s. As in the baseline model, this assumption allows to rule out corner solutions,

thereby ensuring that the strike price is lower than q for all signal realizations.

For a given e, the principal’s problem is given by (35)-(38), with the additional

monotonicity constraint (46). Assume that the cost of effort function is sufficiently

convex for the second-order condition to the effort choice problem to be satisfied, so

that the first-order approach is valid. Formally, we impose

sup
{zs}

∑
s

{
d2φse
de2

∫ q

zs

(q−zs)f(q|e, s)dq+2
dφse
de

∫ q

zs

(q−zs)f ′e(q|e, s)dq+φse
∫ q

zs

(q−zs)f ′′ee(q|e, s)dq
}
< C ′′(e) ∀e

As in the previous section, (36) implies (37). Let q = q(θ, e), where θ is a random

variable with PDF g and CDF G which is independent of e; we assume that q = q(θ, e)

is twice differentiable with respect to θ and e, and that q′θ(θ, e) > 0 and q′e(θ, e) > 0,

where q′θ(θ, e) and q′e(θ, e) are the partial derivatives of q with respect to θ and e,

respectively. Then Lemma 6 gives the optimal contract and Proposition 5 gives a

condition under which the contract does not depend on the signal.

Lemma 6 Conditional on s, the optimal contract is w(q, s) = max{q−zs, 0} for some

zs.

Proof. We prove this Lemma by contradiction, as in Poblete and Spulber (2012). For

any given realization s of the signal, let the “critical ratio” be defined as

ρ(θ, e) ≡ g(θ)

1−G(θ)

q′e(θ, e)

q′θ(θ, e)
.

According to Proposition 3 in Poblete and Spulber (2012), MLRP implies that the

critical ratio is increasing in θ. It remains to be shown that for any given si, and
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holding constant the contract for other signal realizations, any contract which is not

of the form w(q, s) = max{q − zs, 0} for some zs is dominated. The Proof follows the

same lines as the proof of Proposition 1 in Poblete and Spulber (2012).

Proposition 5 Given effort ê to be induced, if dφsê/de = 0 and
∫ q
zs
f ′e(q|ê,s)dq∫ q

zs
f(q|ê,s)dq

does not

depend on s at zs = z∗∗, where z∗∗ is determined by (54), then zs = z∗∗ ∀ s.

Proof. For a given level of effort ê to be induced, and given Lemma 6, the principal’s

problem is

min
{zs}

∑
s

φsê

∫ q

zs

(q − zs)f(q|ê, s)dq (48)

s.t.
∑
s

[
dφsê
de

∫ q

zs

(q − zs)f(q|ê, s)dq + φsê

∫ q

zs

(q − zs)f ′e(q|ê, s)dq
]

= C ′(ê) (49)

The first-order condition with respect to zs is

−φsê
∫ q

zs

f(q|ê, s)dq − λ
(
dφsê
de

∫ q

zs

−f(q|ê, s)dq + φsê

∫ q

zs

−f ′e(q|ê, s)dq
)

= 0 (50)

where λ > 0 is the Lagrange multiplier associated with the IC (49). The equation in

(50) can be rewritten

−φsê + λ

(
dφsê
de

+ φsê

∫ q
zs
f ′e(q|ê, s)dq∫ q

zs
f(q|ê, s)dq

)
= 0 (51)

where the threshold zs in (51) is a critical point such that the derivative of the La-

grangian is zero.

For any threshold zs ≤ 0, and since f(q|ê, s) = f ′e(q|ê, s) = 0 for q < 0, the first

derivative of the Lagrangian with respect to zs is

L′(zs) = −φsê
∫ q

0

f(q|ê, s)dq−λ
(
dφsê
de

∫ q

0

−f(q|ê, s)dq + φsê

∫ q

0

−f ′e(q|ê, s)dq
)

= −φsê+λ
dφsê
de

,

(52)

since
∫ q

0
f(q|ê, s)dq = 1 and

∫ q
0
f ′e(q|ê, s)dq = 0. Comparing with (??), and since MLRP

implies
∫ q
zs
f ′e(q|ê, s)dq > 0, we have L′(zs) < 0 for zs ≤ 0. Therefore, the optimal zs

which solves the minimization problem in (48) must be positive for any s. Note that

this ensures that the principal’s LL is satisfied.

26



We also need to establish that zs < q ∀s to rule out corner solutions. First, note

that a contract with zs ≥ q is equivalent to one with zs = q. Thus, we need to check

that limzs→q− L′(zs) > 0. We have

lim
zs→q−

L′(zs) = lim
y→q−

{
−φsêf(y|ê, s)(q̄ − y) + λ

(
dφsê
de

f(y|ê, s) + φsêf
′
e(y|ê, s)

)
(q̄ − y)

}
(53)

where the expression in brackets has the same sign as −φsê+λ
(
dφsê
de

+ φsê
f ′e(y|ê,s)
f(y|ê,s)

)
. Since

assumption (47) implies limy→q
f ′e(y|ê,s)
f(y|ê,s) = ∞, we indeed have limzs→q− L′(zs) > 0 if

λ > 0, which follows from standard arguments.

These results ensure that, ∀ s, the optimal zs is a critical point that lies in the

interval (0, q̄). It is therefore described by the necessary first-order condition in (50). If
dφsê
de

= 0, and given the optimal contract in Lemma 6, the IC in (49) may be rewritten

as ∑
s

φsê

∫ q

zs

(q − z)f ′e(q|ê, s)dq = C ′(ê) (54)

Let z∗∗ be the highest threshold independent of s that solves (54).9 Rearranging (50),

zs does not depend on s if and only if the level of zs that solves

dφsê/de

φsê
+

∫ q
zs
f ′e(q|ê, s)dq∫ q

zs
f(q|ê, s)dq

=
1

λ
(55)

does not depend on s. Since the likelihood ratio f ′e(·|ê,s)
f(·|ê,s) is strictly increasing by as-

sumption, sufficient conditions for Zs to be independent of s are dφsê/de = 0, and∫ q
z∗∗ f

′
e(q|ê,s)dq∫ q

z∗∗ f(q|ê,s)dq
=

∫ q
z∗∗ f

′
e(q|ê,s′)dq∫ q

z∗∗ f(q|ê,s′)dq
for any pair s, s′, where z∗∗ solves (54) with equality.

The second-order condition to the optimization problem in (48) are

φsêf(zs|ê, s)− λ
(
dφsê
de

f(zs|ê, s)dq + φsêf
′
e(zs|ê, s)dq

)
≥ 0 (56)

9If
dφs

ê

de = 0, and if there are several thresholds independent of the signal realization that solve
the IC and therefore elicit effort ê, cost minimization imposes that the principal chooses the highest
threshold.
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For dφsê/de = 0 and
∫ q
z∗∗ f

′
e(q|ê,s)dq∫ q

z∗∗ f(q|ê,s)dq
=

∫ q
z∗∗ f

′
e(q|ê,s′)dq∫ q

z∗∗ f(q|ê,s′)dq
for any pair s, s′, (50) gives

∫ q
zs
f ′e(q|ê)dq∫ q

zs
f(q|ê)dq

=
1

λ
(57)

where zs is a critical point. In this case, for a given s, (56) is satisfied if and only if∫ q
zs
f ′e(q|ê, s)dq∫ q

zs
f(q|ê, s)dq

≥ f ′e(zs|ê, s)
f(zs|ê, s)

(58)

This condition is satisfied for f ′e(q|e∗, s) ≤ 0: indeed, the RHS of (58) is then negative

whereas the LHS is positive since
∫ q

0
f ′e(q|ê, s)dq = 0 and that the likelihood ratio is

increasing. This condition is also satisfied for f ′e(q|ê, s) > 0: in this case, (58) may be

rewritten as ∫ q

zs

f ′e(q|ê, s)
f ′e(zs|ê, s)

dq −
∫ q

zs

f(q|ê, s)
f(zs|ê, s)

dq ≥ 0. (59)

This condition is satisfied since (i) it holds as an equality for zs = q and (ii) the LHS

of (59) is strictly decreasing in zs for q > zs given

f ′e(q|ê, s)
f ′e(zs|ê, s)

− f(q|ê, s)
f(zs|ê, s)

> 0 (60)

which follows from MLRP and q > zs. Thus, any critical point is a minimum.

This result means that if the signal s is not informative about marginal changes of

effort from the implemented effort level (i.e., if dφsê/de = 0), and if
∫ q
z f
′
e(q|ê,s)dq∫ q

z f(q|ê,s)dq
is not a

function of the signal s at the threshold output z∗∗ given the equilibrium effort ê, then

the wage does not depend on the realization of the signal s.
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