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In section 1 of the supplemental appendix, we expand on the connection between our work
and that of two recent papers. In section 2, we discuss further some extensions mentioned
in section 5 of the original paper. Finally, in sections 3 and 4 we develop the regular “just-
identified” (T = P ) case and prove its results. Theorem and assumption numbering in the
supplemental appendix follow that of the main text.

1 Connections to prior work

Our paper is not the first to explore the intersection of quantile regression and panel data.
Here we briefly touch on the relationship between our work and two very recent contributions,
those of Chernozhukov, Fernández-Val, Hahn and Newey (2013), CFHN for short, and of
Arellano and Bonhomme (2016).

CFHN includes some results on quantile effects in the context of a wide-ranging analysis of
identification in non-separable panel data models. The simplest case allowing for interesting
comparisons between their results and our own is when P = 2 with the non-constant covariate
binary-valued (i.e., Xt = (1, X2t)′). For simplicity we ignore time effects in what follows so
that the conditional distribution of Yt given X = x is stationary over time and, if (3) is also
being maintained, so is the distribution of random coefficients.

Following the notation of CFHN let Ti (x) = ∑T
t=1 1 (Xit = x) and define

Ḡi (y, x) =

 Ti (x)−1∑T
t=1 1 (Xit = x) 1 (Yit ≤ y) , Ti (x) > 0

0, Ti (x) = 0

and also

ĜM (y, x) =
∑N
i=1 Ḡi (y, x) 1

(
Xi ∈ XM

)
∑N
i=1 1 (Xi ∈ XM)

.

Their quantile treatment effect (QTE) estimate is

λ̂ (τ) = Ĝ−1
M (τ, 1)− Ĝ−1

M (τ, 0) .

To understand the relationship between λ̂ (τ) and our unconditional quantile effect (UQE)
estimand further, we simplify to the case where T = 2. Let
π01 = Pr

(
X21 = 0, X22 = 1|X ∈ XM

)
and π10 = Pr

(
X21 = 1, X22 = 0|X ∈ XM

)
. Let

ĜM (y, x) p→ GM (y, x), under the random coefficients data generating process (3) we have
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that

GM (y, 1) = π01FB1+B2

(
y|X22 = 1,X ∈ XM

)
+ π10FB1+B2

(
y|X21 = 1,X ∈ XM

)
GM (y, 0) = π01FB1

(
y|X21 = 0,X ∈ XM

)
+ π10FB1

(
y|X22 = 0,X ∈ XM

)
,

so that λ (τ) = G−1
M (τ, 1)−G−1

M (τ, 0) does not correspond to any quantile of B2, even if
our conditional monotonicity assumption holds. Indeed if we set
FB1+B2

(
y|X22 = 1,X ∈ XM

)
= FB1

(
y|X22 = 0,X ∈ XM

)
and

FB1+B2

(
y|X21 = 1,X ∈ XM

)
= FB1

(
y|X21 = 0,X ∈ XM

)
for all y ∈ Yt we will have λ (τ)

identically equal to zero for all τ ∈ (0, 1) and our movers’ UQE, βM2 (τ), possibly different
from zero for all τ ∈ (0, 1). The difference between CFHN’s estimand and our movers’
UQE arises from how marginalization over X occurs. CFHN marginalize over X before
inverting to recover quantile effects, we first recover quantile effects for each possible
x ∈ XM and then ‘marginalize’. Under our correlated random coefficients structure the
CFHN estimand will, in general, not recover quantiles of B2.

Arellano and Bonhomme (2016) study identification and estimation of the model

QYt|X,A (τ |X, A) = X ′tβ (τ) + Aγ (τ) (1)

for all τ ∈ (0, 1) . Here A corresponds to an unobserved time-invariant regressor. Arel-
lano and Bonhomme (2016) also allow for a particular form of dependence between X
and A, hence their model is a correlated random effects one. If A were observed, then
θ (τ) =

(
β (τ)′ , γ (τ)

)′
could be estimated by the τ th linear pooled quantile regression of Yt

onto Xt and A (here the pooling is across all periods of data t = 1, . . . , T ). This set-up
represents an alternative generalization of the linear panel model of Chamberlain (1984)
to the quantile regression setting. Their approach and ours are non-nested.1 The Arellano
and Bonhomme (2016) model effectively includes two-dimensional unobserved heterogeneity.
The first component of this heterogeneity vector is A, this component is allowed to covary
with X is a reasonably flexible way. The second component corresponds to the common
factor in the random coefficients on Xt and A. This component is independent of both X
and A. Relatedly their set-up also requires a comonotonicity assumption on the random
coefficients.

Our model, effectively, includes only a single dimension of unobserved heteroegeneity. How-
1Although their estimation procedure is mainly applied to quantile regression specifications like those of

equation (1), their identification results are more general and include cases where the time-invariant regressor
enters in a nonseparable way.
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ever we impose weaker comonotonicity assumptions and leave the dependence structure
between the heterogeneity and X nonparametric. Additionally, we impose restrictions on
the number of covariates that can be included, while they do not require such restrictions.
Also, additive separability of A and X is ruled out by our model. Our view is that both
approaches are attractive, with the merits of each being context specific.

2 Extensions

Using stayers to estimate time effects when T > P

We describe a potential estimation procedure to use stayer realizations to estimate the overi-
dentified (T>P) model.

Let xl denote a stayer realization of X and consider the full rank decomposition xl = ulvl.
Let mul

= IT − ul (u′lul)
−1 ul and observe that mul

x = ulvl − ul (u′lul)
−1 ulvl = 0. We

therefore have

mul
QY|X (τ |x) = mul

wδ (τ)

for l = L+1, . . . ,M . If we define Π̄ (τ) =
(
Π (τ)′ ,muL+1QY|X (τ |x)′ , . . . ,muM

QY|X (τ |x)′
)′

and Ḡ = (G′, (G∗)′)′, with G as defined in (25) and G∗ equal to

G∗
T (M−L)×(R+PL)

=


muL+1w 0T0′P · · · 0T0′P

... ... . . . ...
muM

w 0T0′P · · · 0T0′P

 ,
we have the relationship Π̄ (τ) = Ḡγ (τ), upon which the obvious analog estimator may be
based. In fact we incorporate stayers in this way in the empirical analysis reported in Section
4.

Non-shrinking mass of stayers in the irregular case

In some applications, it is common to observe a positive mass of stayers at D = 0 along with
a small number of near-stayers. We can model this in our discrete bandwidth framework by
letting Pr(D = 0) = π0 + 2φ0hN where π0 > 0 and keeping Pr(D = hN) = Pr(D = −hN) =
φ0hN .
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In this case, it will be possible to estimate δ(τ) at a
√
N rate since the mass of stayers is

bounded away from 0. On the other hand, the conditional beta for near-stayer realizations
will still be estimated at rate

√
Nh3

N since the slowest rate of convergence prevails. Their
asymptotic variance will be reduced since the term associated with the estimation of δ(τ)
vanishes. Estimation of conditional betas for strict-mover realizations can now be performed
at the

√
N rate rather than

√
NhN .

Despite these improvements, the movers’ ACQE now becomes inconsistent since the fraction
of stayers does not vanish asymptotically. We can modify the estimator and include the
near-stayers’ coefficients as an approximation to the stayers’ coefficients in the following
way:

ˆ̄βN(τ) =
L∑
l=1

β(τ ; xlN)q̂MlN
{

1
N

N∑
i=1

1(Di 6= 0)
}

+
L∑

l=L1+1
β(τ ; xlN)q̂l|±h

{
1
N

N∑
i=1

1(Di = 0)
}
,

where q̂l|±h =
1
N

∑N

i=1 1(Xi=xlN )
1
N

∑N

i=1 1(|Di|=hN )
. The term∑L

l=L1+1 β(τ ; xlN)q̂l|±h approximates E[β(τ ; X)|X ∈

XS
N ] using the near-stayers. The conditional beta for near-stayers is estimated at rate

√
Nh3

N

but their contribution is now of order Op(1) rather than Op(hN) in the previous case. There-
fore, the convergence rate of the ACQE estimator will be

√
Nh3

N as well.

The same concern applies in the UQE estimation where the share of stayers does not vanish
asymptotically. It is also possible to show that the rate of convergence will deteriorate
from

√
NhN to

√
Nh3

N . The result in this case is analogous to that in Graham and Powell
(2012) where the mass at D = 0 simplifies the estimation of the common coefficients while
complicating the estimation of average partial effects.

In the case when there is a mass of stayers but no near-stayers, i.e. Pr(D = 0) = π0 and
Pr(|D| = hN) = 0, it is not possible to identify the ACQE and UQE. This is a result similar
to that found in the overidentified case, which does not contain near-stayers as well. Rates of
convergence for the movers’ ACQE and the movers’ UQE will be of order N−1/2, since there
is no shrinking mass of near-stayers involved in the rate calculations. It is also possible to
show the set identification of the ACQE and the UQE in a way similar to the overidentified
case. We present the results for the just-identified case with no near-stayers in section 3
below.
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Continuous regressors

The identification results in the previous section are all based on the conditional quantiles
of Yt given X = x for t = 1, . . . , T . There are different methods of estimating these con-
ditional quantiles depending on the structure of the support of X. When the support of X
is discrete, as is assumed in this paper, we can write by standard arguments the following
linear representation of our first step conditional quantile estimator:

Q̂Yt|X (τ |x)−QYt|X (τ |x) = 1
N

N∑
i=1

(
1
(
Yit ≤ QYt|X(τ |x)

)
− τ

)
1(Xi = x)

fYt|X(QYt|X(τ |x)|x)pN
+RN(τ ; x)

where pN is the probability associated with support point x and the residual RN(τ ; x) goes
to 0 in probability as N →∞.

A kernel based estimator can be used to compute the analog estimator when X has continuous
support. Examples include local linear regression (Qu and Yoon, 2015), or inversion of
conditional CDF estimates (Lee, 2013). The Bahadur representation of these estimators is
the following:

Q̂Yt|X (τ |x)−QYt|X (τ |x)

= 1
NbTP

N∑
i=1

(
1
(
Yit ≤ QYt|X(τ |x)

)
− τ

)
K (B−1 (vec(Xi)− vec(x)))

fYt|X(QYt|X(τ |x)|x)fX(x) +RN(τ ; x)

where K(·) is a kernel function, and B = bITP where b is a bandwidth converging to 0.

These representations contain just two differences. The first difference is the presence of the
kernel in the continuous case. We note that this kernel function converges to an indicator
for {Xi = x} whenever K(0) = 1. This restriction is satisfied by different kernels, including
a uniform kernel with support [−1/2, 1/2].

The second difference is the density of X versus its probability that it is equal to x. The
bandwidth term bTP also is present with the density. These two terms can be reconciled
if we consider the probability that X is included in a TP -dimensional neighborhood of x
with diameter equal to b. For exposition, consider T = P = 1. Then, the probability
that X ∈ [x − b/2,x + b/2] is approximately equal to fX(x)b. This probability can be
approximated with the mass pN if this mass depends on the sample size through b such that
pN = O(b). That way, discrete probabilities will behave like probabilities for continuous
densities, and NpN will be the approximate sample size for the support point, similar to the
Nb in traditional nonparametric density estimation.
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We see that there is no substantial difference between the asymptotic representations, except
that it is much simpler to impose conditions on the asymptotic convergence of Π̂t (τ ; x) −
Πt (τ ; x) in the discrete case than in the continuous case. For this reason, we conjecture
that our rates of convergence and limit distribution results will generalize to the case of
continuous regressors (under additional regularity conditions). Such an extension, however,
is likely to be difficult and non-trivial.

Choice of Bandwidth

In the spirit of the argument given immediately above, we can use our discrete bandwidth
asymptotics to gain some insight into bandwidth selection. As discussed earlier, we need that
hN → 0, NhN →∞, and Nh3

N → 0 as N →∞. These conditions allow us to put shrinking
mass on some support points (hN → 0), while allowing for consistent estimation of objects
conditional on these shrinking mass support points (NhN → ∞). The third condition is
required to eliminate the bias in our estimators for the ACQE and UQE. Let a be a P × 1
vector of constants. The fastest rate of convergence in mean square for either a′ ˆ̄β(τ) to
a′β̄(τ) or β̂p(τ) to βp(τ) is N−2/3 with bandwidth sequences of the form h∗N = C0N

−1/3 for
some constant C0. Consider first the MSE for the estimator a′ ˆ̄β(τ). Using the results of
Theorem 6, the asymptotic bias will be equal to

bias = 2a′(E[β(τ ; X)]− E[β(τ ; X)|D = 0])φ0hN

and therefore the asymptotic MSE minimizing bandwidth constant is

C0 = 1
2

(
1
φ2

0

)1/3 (
a′ (Υ1(τ, τ) + Ξ0Σδ(τ, τ)Ξ′0) a

a′(E[β(τ ; X)]− E[β(τ ; X)|D = 0])(E[β(τ ; X)]− E[β(τ ; X)|D = 0])′a

)1/3

which is similar to the one found in Graham and Powell (2012) for average partial effects.
Since choosing bandwidth with order exactly equal to N−1/3 leads to an asymptotic bias,
we can choose a slightly faster bandwidth sequence, say, of order o(N−1/3) such that the
asymptotic bias disappears. An alternative is to use a plug-in bandwidth using an estimate
of C0 and then bias correct. This approach preserves the rate of convergence of N−1/3.

We now consider the bias associated with the estimation of βp(τ), the UQE associated with
the pth regressor. The leading term of the asymptotic bias of β̂p(τ) is equal to

bias = 2φ0hN
FBp(βp(τ))− FBp|D=0(βp(τ))

fBp(βp(τ)) .
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Once again, the MSE minimizing rate for the bandwidth is N−1/3 and the mean squared
error minimizing choice of constant is

C0 = 1
2

(
1
φ2

0

)1/3
 Υ3(τ, τ) + Υ4(τ, τ)[
FBp(βp(τ))− FBp|D=0(βp(τ))

]
2

1/3

.

Trimming Extremal Quantiles

Suppose the researcher proceeds with the estimation of conditional quantiles ranging from
τ = ε to τ = 1− ε so that only these conditional quantiles are identified. We can decompose
the moment condition used for the estimation of βp(τ) for p = 1, . . . , P in three parts:

τ = m(b)

= E
[ˆ 1

0
1(βp(u; X) ≤ b)du

]

= E
[ˆ ε

0
1(βp(u; X) ≤ b)du

]
+ E

[ˆ 1−ε

ε

1(βp(u; X) ≤ b)du
]

+ E
[ˆ 1

1−ε
1(βp(u; X) ≤ b)du

]
.

The first and third term are uniformly bounded below and above by 0 and ε respectively.
Therefore,

τ − 2ε ≤ E
[ˆ 1−ε

ε

1(βp(u; X) ≤ b)du
]
≤ τ.

Let V be uniformly distributed on [ε, 1− ε] independently from X. We can think of this V
as the trimmed version of the unobserved heterogeneity U . Then, we see that

τ − 2ε
1− 2ε ≤ Fβp(V ;X)(b) ≤

τ

1− 2ε,

and therefore, the UQE for the pth regressor is partially identified with bounds equal to

βp(τ) ∈
[
F−1
βp(V ;X)

(
τ − 2ε
1− 2ε

)
, F−1

βp(V ;X)

(
τ

1− 2ε

)]
.

These lower and upper bounds are identified since we can identify β(τ ; X) when τ ∈ [ε, 1−ε].
We also see that this identification region collapses to a point as ε approaches zero. These
bounds may be used instead of the point estimates if it is believed that a significant portion
of the conditional quantiles need to be trimmed. The researcher may also compare the lower
and upper bounds’ estimates to get a rough sense of the contribution of these extremal
quantiles to identification.
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3 Analysis of T = P case with no “near-stayers”

Consider an alternative setup, where there is a non-shrinking point mass of stayers, and
no near-stayers. For simplicity, we will assume that all probabilities and support points
are fixed. This allows us to satisfy assumption 2 trivially. Let π0 = P(D = 0) be strictly
positive. The estimation of δ(τ) will proceed as in the previous case, with a different rate of
convergence since there is a point mass of stayers that is bounded away from zero. Proofs
can be found in section 4 of this supplemental appendix.

We add the following assumption to guarantee identification.

Assumption 8. (INVERTIBILITY) E[W∗′W∗|D = 0] is invertible.

Theorem 8. Suppose that Assumptions 1 through 6 and 8 are satisfied, then in the T = P

case (i)
√
N
(
δ̂ (·)− δ (·)

)
converges in distribution to a mean-zero Gaussian process Zδ (·),

where Zδ (·) is defined by its covariance function

Σδ(τ, τ ′) = E[Zδ (τ) Zδ (τ ′)′]

= (min(τ, τ ′)− ττ ′)
π0

E
[
W∗′W∗|D = 0

]−1
E
[
W∗′X∗Λ(τ, τ ′; X)X∗′W∗|D = 0

]
×

E
[
W∗′W∗|D = 0

]−1
,

and (ii)
√
N
(
β̂ (·; ·)− β (·; ·)

)
also converges in distribution to a mean zero Gaussian process

Z (·, ·), where Z (·, ·) is defined by its covariance function

Σ(τ,xl, τ ′,xm) = E
[
Z (τ,xl) Z (τ ′,xm)′

]
= (min (τ, τ ′)− ττ ′) x−1

l Λ (τ, τ ′; xl) x−1′
l

pl
· 1 (l = m) + x−1

l wlΣδ(τ, τ ′)w′mx−1′
m ,

for l,m = 1, . . . , L.

The main difference between this result and the one in the just identified case is that only
stayer realizations must be used for estimation of δ(τ) in the T = P case, while we chose to
use the movers’ realizations only for its estimation in the overidentified, T > P case. This
is reflected in the Σδ(·) term.
It is also possible to estimate the movers’ ACQE in the just-identified setup, as in the
overidentified case.
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Theorem 9. Let

̂̄
β
M

(τ) =
1
N

∑N
i=1 X−1

i

(
Q̂Y|X (τ |Xi)−Wiδ̂(τ)

)
1(Xi ∈ XM)

1
N

∑N
i=1 1(Xi ∈ XM)

=
L∑
l=1

β̂(τ ; xl)q̂Ml

be the movers’ ACQE, where q̂Ml =
1
N

∑N

i=1 1(Xi=xl)
1
N

∑N

i=1 1(Xi∈XM )
. Under Assumptions 1 through 6 and

8, we have that:

√
N
(̂̄
β
M

(τ)− β̄M(τ)
)

D→ Zβ̄(τ),

a mean-zero Gaussian process, on τ ∈ (0, 1). The variance of the Gaussian process Zβ̄(·) is
defined as

E
[
Zβ̄(τ)Zβ̄(τ ′)′

]
=

C
(
β(τ,X), β(τ ′,X)|X ∈ XM

)
Pr (X ∈ XM) + Υ1(τ, τ ′) + Ξ0Σδ(τ, τ ′)Ξ′0

with

Υ1(τ, τ ′) = min (τ, τ ′)− ττ ′
Pr (X ∈ XM) E

[
X−1Λ(τ, τ ′; X)X−1′|X ∈ XM

]
Ξ0 = E

[
X−1W|X ∈ XM

]
.

Finally, we can also recover estimates of the movers’ UQE in a similar way to the irregular
bandwidth setup.

Theorem 10. Fix p ∈ {1, . . . , P}. Under Assumptions 1 through 6 and 8 we have that

√
N
(
β̂Mp (τ)− βMp (τ)

)
D→ Zβp(τ)

on τ ∈ (0, 1) with Zβp(·) being a Gaussian process. The covariance of this Gaussian process
is equal to:

E
[
Zβp(τ)Zβp(τ ′)′

]
= Υ2(τ, τ ′) + Υ3(τ, τ ′) + Υ4(τ, τ ′)
fBp|X∈XM (βMp (τ))fBp|X∈XM (βMp (τ ′))
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with

Υ2(τ, τ ′) =
C
(
FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X)|X ∈ XM

)
Pr(X ∈ XM)

Υ3(τ, τ ′) = E
[
(min(FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X))− FBp|X(βMp (τ)|X)FBp|X(βMp (τ ′)|X))×

e′pX−1Λ(FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X),X)X−1′ep×

fBp|X(βMp (τ)|X)fBp|X(βMp (τ ′)|X)|X ∈ XM
]

Υ4(τ, τ ′) = 1
π0

E
[
fBp|X(βMp (τ)|X)fBp|X(βMp (τ ′)|X̃)epX−1WΣδ(FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X̃))×

W̃′X̃−1′ep|X ∈ XM , X̃ ∈ XM
]

where X and X̃ are independent copies.

Since in this case the UQE is not point identified, we can recover bounds using the movers’
UQE as in Theorem 1.

4 Proofs for section 3

Proof of Theorem 8. δ̂(τ)− δ(τ) has the following linear representation

√
N
(
δ̂(τ)− δ(τ)

)
=
(

1
N

N∑
i=1

W∗′
i W∗

i1(Di = 0)
)−1

× 1
N

N∑
i=1

W∗′
i X∗i
√
N
(
Q̂Y|X(τ |Xi)−QY|X(τ |Xi)

)

=
 M∑
l=L+1

w∗′l w∗l p̂l

−1
M∑

l=L+1
w∗′l x∗l p̂l

√
N
(
Q̂Y|X(τ |xl)−QY|X(τ |xl)

)

with
M∑

l=L+1
w∗′l w∗l p̂l

p−→
M∑

l=L+1
w∗′l w∗l pl = E [W∗′W∗|D = 0]π0

and
M∑

l=L+1
w∗′l x∗l p̂l

√
N
(
Q̂Y|X(τ |xl)−QY|X(τ |xl)

)
d−→

M∑
l=L+1

w∗′l x∗l
√
plZQ(τ,xl),
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which has asymptotic covariance equal to

E

 M∑
l=L+1

w∗′l x∗l
√
plZQ(τ,xl)

 M∑
l′=L+1

w∗′l′ x∗l′
√
pl′ZQ(τ ′,xl′)

′
=

M∑
l=L+1

M∑
l′=L+1

w∗′l x∗l (min (τ, τ ′)− ττ ′)Λ (τ, τ ′; xl) · 1 (l = l′) x∗′l w∗l plpl′

= (min (τ, τ ′)− ττ ′)E
[
W∗′X∗Λ(τ, τ ′; X)X∗′W∗|D = 0

]
π0.

To derive the asymptotic distribution of
√
N
(
β̂ (·; ·)− β (·; ·)

)
we note that

√
N
(
β̂ (τ ; xl)− β (τ ; xl)

)
= x−1

l

√
N
(
Q̂Y|X(τ |xl)−QY|X(τ |xl)

)
+ x−1

l wl

√
N
(
δ̂(τ)− δ(τ)

)
d−→ x−1

l ZQ(τ,xl) + x−1
l wlZδ(τ).

ZQ(τ,xl) and Zδ(τ) are independent processes since they are computed using disjoint sub-
populations: xl for l = 1, . . . , L are not used in the computation of δ̂(τ). Therefore, the
asymptotic variance of

√
N
(
β̂ (·; ·)− β (·; ·)

)
is the sum of the variance of its terms.

Proof of Theorem 9. We see that

√
N
(̂̄
β
M

(τ)− β̄M(τ)
)

=
L∑
l=1

β(τ ; xl)
√
N
(
q̂Ml − qMl

)
(2)

+
L∑
l=1

√
N
(
β̂(τ ; xl)− β(τ ; xl)

)
q̂Ml . (3)

By a result similar to that in (76) in the main text, term (1) converges to a mean zero
Gaussian process with covariance equal to C(β(τ,X),β(τ ′,X)|X∈XM)

Pr(X∈XM ) . Term (3) converges to

L∑
l=1

√
N
(
β̂(τ ; xl)− β(τ ; xl)

)
q̂Ml

d−→
L∑
l=1

Z(τ,xl)qMl

11



which has a covariance kernel equal to

E
[
L∑
l=1

L∑
l′=1

Z(τ,xl)Z(τ,xl′)qMl qMl′
]

= E [Z(τ,xl)Z(τ,xl′)] qMl qMl′

= (min (τ, τ ′)− ττ ′)
L∑
l=1

L∑
l′=1

x−1
l Λ (τ, τ ′; xl) x−1′

l

pl
· 1 (l = l′) qMl qMl′

+
L∑
l=1

L∑
l′=1

x−1
l wlΣδ(τ, τ ′)w′l′x−1′

l′ qMl q
M
l′

= min (τ, τ ′)− ττ ′
Pr (X ∈ XM) E

[
X−1Λ(τ, τ ′,X)X−1′|X ∈ XM

]
+

L∑
l=1

x−1
l wlq

M
l Σδ(τ, τ ′)

L∑
l′=1

w′l′x−1′
l′ qMl′

= Υ1(τ, τ ′) + Ξ0Σδ(τ, τ ′)Ξ′0.

Since terms (1) and (2) are uncorrelated, the asymptotic covariance of
√
N
(̂̄
β
M

(τ)− β̄M(τ)
)

is equal to the sum of the covariance of its two terms.

Proof of Theorem 10. We start by deriving the asymptotic distribution of the sample cumu-
lative distribution function of β̂p(U ; X) with U distributed uniformly on [0, 1] independently
from X, while conditioning on X ∈ XM . The CDF estimand at c ∈ R is denoted as
FBp|X∈XM (c) and the estimator is

F̂
β̂p(U ;X)|X∈XM (c) =

1
N

∑N
i=1
´ 1

0 1(β̂p(u,Xi) ≤ c)du1(Xi ∈ XM)
1
N

∑N
i=1 1(Xi ∈ XM)

=
L∑
l=1

(ˆ 1

0
1(β̂p(u,xl) ≤ c)du

)
q̂Ml .

The integration over u ∈ (0, 1) can be done exactly since β̂p(u,xl) is piecewise linear for each
l ∈ {1, . . . , L} with finitely many pieces. This asymptotic distribution can be written as the
sum of two terms:

F̂
β̂p(U ;X)|X∈XM (c)− FBp|X∈XM (c) =

L∑
l=1

(ˆ 1

0
1(β̂p(u,xl) ≤ c)du−

ˆ 1

0
1(βp(u,xl) ≤ c)du

)
q̂Ml

+
L∑
l=1

ˆ 1

0
1(βp(u,xl) ≤ c)du

(
q̂Ml − qMl

)
.

We will show that these two terms both converge in uniformly over c ∈ R. For the first

12



term, we have that
√
N
(
β̂p(τ ; xl)− β̂p(τ ; xl)

)
d−→ (Z(τ,xl))p = Zp(τ,xl) over τ ∈ (0, 1) and

all l = 1, . . . , L, and (·)p denotes the pth element of the vector. By the same argument as in
(79), we have

√
N

(ˆ 1

0
1(β̂p(u; xl) ≤ c)du−

ˆ 1

0
1(βp(u; xl) ≤ c)du

)
=
√
N
(
β̂p(FBp|X(c|xl); xl)− β̂p(FBp|X(c|xl); xl)

)
fBp|X(c|xl) + op(1)

d−→ Zp(FBp|X(c|xl),xl)fBp|X(c|xl).

This convergence is uniform in c ∈ R since FBp|X(c|xl) ranges between 0 and 1, and uniform
in xl since its support is finite. Therefore,

L∑
l=1

√
N

(ˆ 1

0
1(β̂p(u; xl) ≤ c)du−

ˆ 1

0
1(βp(u; xl) ≤ c)du

)
q̂Ml

d−→
L∑
l=1

Zp(FBp|X(c|xl),xl)fBp|X(c|xl)qMl

for c ∈ R. Also, the second term will converge over c ∈ R to a Gaussian process Z2p(c) with
asymptotic covariance of

E [Z2p(c)Z2p(c′)′] =
C
(
FBp|X(c|X), FBp|X(c′|X)|X ∈ XM

)
Pr (X ∈ XM) .

Note that Z2p(c) and ∑L
l=1 Zp(FBp|X(c|xl),xl)fBp|X(c|xl)qMl are uncorrelated since the varia-

tion in the latter is conditional on X while that in the former depends on X only. Therefore,

F̂
β̂p(U ;X)|X∈XM (c)− FBp|X∈XM (c) d−→

L∑
l=1

Zp(FBp|X(c|xl),xl)fBp|X(c|xl)qMl + Z2p(c)

for c ∈ R.

Using the same invertibility argument as in (82), we see that

√
N
(
β̂Mp (τ)− βMp (τ)

)
d−→
∑L
l=1 Zp(FBp|X(βMp (τ)|xl),xl)fBp|X(βMp (τ)|xl)qMl + Z2p(βMp (τ))

fBp|X∈XM (βMp (τ))

= Zβp(τ)

uniformly over τ ∈ (0, 1).

To conclude this proof, we evaluate E
[
Zβp (τ) Zβp (τ ′)′

]
, the asymptotic covariance of the

13



estimated UQE:

E
[
Zβp (τ) Zβp (τ ′)′

]
=
∑L
l=1

∑L
l′=1 fBp|X(βMp (τ)|xl)fBp|X(βMp (τ ′)|xl′)qMl qMl′
fBp|X∈XM (βMp (τ))fBp|X∈XM (βMp (τ ′))

× E
[
Zp(FBp|X(βMp (τ)|xl),xl)Zp(FBp|X(βMp (τ ′)|xl′),xl′)

]
+

E
[
Z2p(βMp (τ))Z2p(βMp (τ ′))

]
fBp|X∈XM (βMp (τ))fBp|X∈XM (βMp (τ ′))

where

E
[
Zp(FBp|X(βMp (τ)|xl),xl)Zp(FBp|X(βMp (τ ′)|xl′),xl′)

]
=
(
min

(
FBp|X(βMp (τ)|xl), FBp|X(βMp (τ ′)|xl′)

)
− FBp|X(βMp (τ)|xl)FBp|X(βMp (τ ′)|xl′)

)
× e′p

x−1
l Λ

(
FBp|X(βMp (τ)|xl), FBp|X(βMp (τ ′)|xl′); xl

)
x−1′
l

pl
ep · 1 (l = l′)

+ e′px−1
l wlΣδ(FBp|X(βMp (τ)|xl), FBp|X(βMp (τ ′)|xl′))w′l′x−1′

l′ ep

and

L∑
l=1

L∑
l′=1

fBp|X(βMp (τ)|xl)qMl E
[
Zp(FBp|X(βMp (τ)|xl),xl)Zp(FBp|X(βMp (τ ′)|xl′),xl′)

]
fBp|X(βMp (τ ′)|xl′)qMl′

= E


(
min

(
FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X)

)
− FBp|X(βMp (τ)|X)FBp|X(βMp (τ ′)|X)

)
Pr (X ∈ XM)

× e′p X−1Λ
(
FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X); X

)
X−1′epfBp|X(βMp (τ)|X)fBp|X(βMp (τ ′)|X)

∣∣∣X ∈ XM
]

+ e′pE
[
fBp|X(βMp (τ)|X)fBp|X(βMp (τ ′)|X̃)X−1WΣδ(FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X̃))

×W̃′X̃−1′|X ∈ XM , X̃ ∈ XM
]
ep

= Υ3(τ, τ ′) + Υ4(τ, τ ′),

where X̃ is an independent copy of X. Finally,

E
[
Z2p(βMp (τ))Z2p(βMp (τ ′))

]
=

C
(
FBp|X(βMp (τ)|X), FBp|X(βMp (τ ′)|X)|X ∈ XM

)
Pr (X ∈ XM)

= Υ2(τ, τ ′).
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