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A No Trade Condition
This section provides a more formal exposition of the no trade condition in Section 2. Consider a policy that provides
a small payment, db, in the event of being unemployed and is financed with a small payment in the event of being
employed, d⌧ , offered to those with observable characteristics X. Moreover, assume for simplicity that

By the envelope theorem, the utility impact of buying such a policy will be given by
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The LHS of equation (14) is a type ✓’s willingness to pay (i.e. marginal rate of substitution) to move resources from
the event of being employed to the event of being unemployed.61 The RHS of equation (14), d⌧

db

, is the cost per dollar
of benefits of the insurance policy.
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denote the set of all individuals, ✓, who prefer to purchase the additional insurance at price d⌧
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(i.e.
those satisfying equation (14)). An insurer’s profit from a type ✓ is given by (1� p (✓)) ⌧�p (✓) b. Hence, the insurer’s
marginal profit from trying to sell a policy with price d⌧
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is given by
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The first term is the amount of premiums collected, the second term is the benefits paid out, and the third term
is the impact of additional insurance on its cost. If more insurance increases the probability of unemployment,
dE [p (✓)] > 0, then it reduces premiums collected, ⌧ , and increases benefits paid, b.62

However, for the first dollar of insurance when ⌧ = b = 0, the moral hazard cost to the insurer is zero. This insight,
initially noted by Shavell (1979), suggests moral hazard does not affect whether insurers’ first dollar of insurance is
profitable – a result akin to the logic that deadweight loss varies with the square of the tax rate.

The first dollar of insurance will be profitable if and only if
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If inequality (15) does not hold for any possible price, d⌧

db

, then providing private insurance will not be profitable at
any price. The market will unravel a la Akerlof (1970). Under the natural assumption63 that profits are concave in b

and ⌧ , the inability to profitably sell a small amount of insurance also rules out the inability to sell larger insurance
contracts.

To this point, the model allows for an arbitrary dimensionality of unobserved heterogeneity, ✓. To provide a
clearer expression of how demand relates to underlying fundamentals, such as marginal rates of substitution and
beliefs, it is helpful to impose a dimensionality reduction on the unobserved heterogeneity.
Assumption A1. (Uni-dimensional Heterogeneity) Assume the mapping ✓ ! p (✓) is 1-1 and continuously
differentiable in b and ⌧ in an open ball around b = ⌧ = 0. Moreover, the marginal rate of substitution, p
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Assumption A1 states that the underlying heterogeneity can be summarized by ones’ belief, p (✓). In this case,
the adverse selection will take a particular threshold form: the set of people who would be attracted to a contract
for which type p (✓) is indifferent will be the set of higher risks whose probabilities exceed p (✓). Let P denote the
random variable corresponding to the distribution of probabilities chosen in the population in the status quo world

61Note that, because of the envelope theorem, the individual’s valuation of this small insurance policy is independent
of any behavioral response. While these behavioral responses may impose externalities on the insurer or government,
they do not affect the individuals’ willingness to pay.

62To incorporate observable characteristics, one should think of the expectations as drawing from the distribution
of ✓ conditional on a particular observable characteristic, X.

63See Appendix A.3 for a micro-foundation of this assumption.
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without a private unemployment insurance market, b = ⌧ = 0.64 And, let c

u

(p) and c

e

(p) denote the consumption
of types p (✓) in the unemployed and employed states of the world. Under Assumption A1, equation (15) can be
re-written as:
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where T (p) is given by
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which is the pooled cost of worse risks, termed the “pooled price ratio” in Hendren (2013). The market can exist
only if there exists someone who is willing to pay the markup imposed by the presence of higher risk types adversely
selecting her contract. Here, u
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(p)) � 1 is the markup individual p would be willing to pay and T (p) � 1 is the
markup that would be imposed by the presence of risks P � p adversely selecting the contract. This suggests the
pooled price ratio, T (p), is the fundamental empirical magnitude desired for understanding the frictions imposed by
private information.

The remainder of this Appendix further discusses the generality of the no trade condition. A.1 discusses multi-
dimensional heterogeneity. Appendix A.3 illustrates that while in principle the no trade condition does not rule out
non-marginal insurance contracts (i.e. b and ⌧ > 0), in general a monopolist firm’s profits will be concave in the size
of the contract; hence the no trade condition also rules out larger contracts. Appendix A.2 also discusses the ability
of the firm to potentially offer menus of insurance contracts instead of a single contract to screen workers.

A.1 Multi-Dimensional Heterogeneity
This section solves for the no-trade condition when there does not exist a one-to-one mapping between ✓ and p (✓).
In this case, there is potentially heterogeneous willingness to pay for additional UI for different types ✓ with the same
p (✓). I assume for simplicity that the distribution of p (✓) has full support on [0, 1] and the distribution of u
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has full support on [0,1) (this is not essential, but significantly shortens the proof). I show that there exists a
mapping, f (p) : A ! ⇥ , where A ⇢ [0, 1] such that the no trade condition reduces to testing
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To see this, fix a particular policy, d⌧
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, and consider the set of ✓ that are willing to pay for this policy:
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I construct f (p) : A ! ⇥ as follows. Define A to be the range of p̃ when taking values of d⌧
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64In other words, the random variable P is simply the random variable generated by the choices of probabilities,
p (✓), in the population.

65If p̃ is not strictly increasing (e.g. because of “advantageous selection”), it will be strictly more profitable to an
insurance company to sell the insurance at a higher price. Hence, one need not test the no trade condition for such
intermediate values of d⌧

db

where p̃ is decreasing in p.
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To see this, note that
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which proves the desired result.
Intuitively, it is sufficient to check the no trade condition for the set of equivalent classes of types with the same

willingness to pay for d⌧

dp

. Within this class, there exists a type that one can use to check the simple uni-dimensional
no trade condition.

A.2 Robustness to Menus
Here, I illustrate how to nest the model into the setting of Hendren (2013), then apply the no trade condition in
Hendren (2013) to rule out menus in this more complex setting with moral hazard. I assume here that there are
no additional choices, a, other than the choice p, although the presence of such additional choices should not alter
the proof as long as they are not observable to the insurer. With this simplification, the only distinction relative to
Hendren (2013) is the introduction of the moral hazard problem in choosing p. This section shows that allowing p to
be a choice doesn’t make trade any easier than in a world where p (✓) is exogenous and not affected by the insurer’s
contracts; hence the no trade condition results from Hendren (2013) can be applied to rule out menus.

I consider the maximization program of a monopolist insurer offering a menu of insurance contracts. Whether
there exists any implementable allocations other than the endowment corresponds to whether there exists any alloca-
tions other than the endowment which maximize the profit, ⇡, subject to the incentive and participation constraints.

Without loss of generality, the insurer can offer a menu of contracts to screen types, {⌫ (✓) ,� (✓)}
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contains the disutility of effort.

Given the menu of contracts offered by the insurer, individuals choose their likelihood of unemployment. Let
q̂ (�, ✓) denote the choice of probability of employment for a type ✓ given the utility difference between employment
and unemployment, �, so that the agent’s effort cost is  (q̂ (�; ✓) ✓). Note that a type ✓ that accepts a contract
containing � will choose a probability of employment q̂ (�; ✓) that maximizes their utility. I assume that q̂ is weakly
increasing in � for all ✓.

Let C
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�1 (x) denote the consumption levels required in the employed and unem-
ployed state to provide utility level x. Let ⇡ (�, ⌫; ✓) denote the profits obtained from providing type ✓ with contract
terms ⌫ and �, given by
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Note that the profit function takes into account how the agents’ choice of p varies with �.
Throughout, I maintain the assumption that profits of the monopolist are concave in (⌫,�). Such concavity can

be established in the general case when u is concave and individuals do not choose p (see Hendren (2013)). But,
allowing individuals to make choices, p, introduces potential non-convexities into the analysis. However, it is natural
to assume that if a large insurance contract would be profitable, then so would a small insurance contract. In Section
A.3 below, I show that global concavity of the firm’s profit function follows from reasonable assumptions on the
individuals’ utility function. Intuitively, what ensures global concavity is to rule out a case where small amounts of
insurance generate large increases in marginal utilities (and hence increase the demand for insurance).

I prove the sufficiency of the no trade condition for ruling out trade by mapping it into the setting of Hendren
(2013). To do so, define ⇡̃ (⌫,�; ✓) to be the profits incurred by the firm in the alternative world in which individuals
choose p as if they faced their endowment (i.e. face no moral hazard problem). Now, in this alternative world,
individuals still obtain total utility ⌫ by construction, but must be compensated for their lost utility from effort
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because they can’t re-optimize. But, note this compensation is second-order by the envelope theorem. Therefore, the
marginal profitability for sufficiently small insurance contracts is given by

⇡ (⌫,�; ✓)  ⇡̃ (⌫,�; ✓)

Now, define the aggregate profits to an insurer that offers menu {⌫ (✓) ,� (✓)}
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because insurance causes an increase in p. Now, Hendren (2013) shows that the no trade condition implies that
⇧̃  0 for all menus, {⌫ (✓) ,� (✓)}. Therefore, the no trade condition also implies ⇧  0 for local variations in the
menu {⌫ (✓) ,� (✓)} around the endowment. Combining with the concavity assumption, this also rules out larger
deviations.

Conversely, if the no trade condition does not hold, note that the behavioral response is continuous in �, so that
sufficiently small values of insurance allow for a profitable insurance contract to be traded.

A.3 Concavity Assumption and Sufficient Conditions for Concavity
The presence of moral hazard in this multi-dimensional screening problem induces the potential for non-convexities in
the constraint set. Such non convexities could potentially limit the ability of local variational analysis to characterize
the set of implementable allocations. To be specific, let ⇡ (�, µ; ✓) denote the profit obtained from type ✓ if she is
provided with total utility µ and difference in utilities �,
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To guarantee the validity of our variational analysis for characterizing when the endowment is the only implementable
allocation, it will be sufficient to require that ⇡ (�, µ; ✓) is concave in (�, µ).

Assumption. ⇡ (�, µ; ✓) is concave in (�, µ) for each ✓

This assumption requires the marginal profitability of insurance to decline in the amount of insurance provided.
If the agents choice of p is given exogenously (i.e. does not vary with �), then concavity of the utility functions, u
and v, imply concavity of ⇡ (�, µ; ✓). Assumption A.3 ensures that this extends to the case when p is a choice and
can respond to ✓.
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The goal is to show the Hessian of ⇡ is negative semi-definite. I proceed in three steps. First, I derive conditions
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Taking another derivative with respect to �, applying the identity � =  0 (p̂ (�)), and collecting terms yields
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This inequality holds as long as people are willing to pay less than a 100% markup for a small amount of insurance,
evaluated at their endowment.

Finally, the third term is positive as long as  000
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A.3.4 Summary
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Therefore, the unsubstantiated assumption for the model is that the convexity of the effort function increases in
p,  000

> 0. An alternative statement of this assumption is that @
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@�2 < 0, so that the marginal impact of � on
the employment probability is declining in the size of �. Put differently, it is an assumption that providing utility
incentives to work has diminishing returns.

Future work can derive the necessary conditions when individuals can make additional actions, a (✓), in response
to unemployment. I suspect the proofs can be extended to such cases, but identifying the necessary conditions for
global concavity would be an interesting direction for future work.

A.4 Motivating the Average Pooled Price Ratio when Insurers don’t know P

To see the theoretical relevance of E [T (P )], suppose an insurer seeks to start an insurance market by randomly
drawing an individual from the population and, perhaps through some market research, learns exactly how much this
individual is willing to pay. The insurer offers a contract that collects $1 in the event of being employed and pays an
amount in the unemployed state that makes the individual perfectly indifferent to the policy. If p is the probability
this individual will become unemployed, then all risks P � p will choose to purchase the policy as well. The profit
per dollar of revenue will be
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So, if the original individual was selected at random from the population, the expected profit per dollar would be
positive if and only if
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If the insurer is randomly choosing contracts to try to sell, the average pooled price ratio, E [T (P )], provides
information on whether or not a UI market would be profitable.

B Details of Empirical Approach

B.1 Proof of Proposition 1

I prove the proposition in two steps. First, I show that cov
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And:
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Proof of Proposition.

Note that since E [P |P � p] � p,
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which is the desired result.

B.2 Specification for Point Estimation
I follow Hendren (2013) by assuming that Z = P + ✏, where ✏ has the following structure. With probability �,
individuals report a noisy measure of their true belief P that is drawn from a [0, 1]-censored normal distribution with
mean P +↵ (X) and variance �

2. With this specification, ↵ (X) reflects potential bias in elicitations and � represents
the noise. While this allows for general measurement error in the elicitations, it does not produce the strong focal
point concentrations shown in Figure 1 and documented in existing work (Gan et al. (2005); Manski and Molinari
(2010)). To capture these, I assume that with probability 1�� individuals take their noisy report with the same bias
↵ (X) and variance �

2, but censor it into a focal point at 0, 50, or 100. If their elicitation would have been below ,
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they report zero. If it would have been between  and 1� , they report 50; and if it would have been above 1� ,
they report 1. Hence, I estimate four elicitation error parameters: (�,�,,↵ (X)) that capture the patterns of noise
and bias in the relationship between true beliefs, P , and the elicitations reported on the surveys, Z.66

Ideally, one would flexibly estimate the distribution of P given X at each possible value of X. This would enable
separate estimates of the minimum pooled price ratio for each value of X. However, the dimensionality of X prevents
this in practice. Instead, I again follow Hendren (2013) and adopt an index assumption on the cumulative distribution
of beliefs, F (p|X) =

´
p

0
f

P

(p̃|X) dp̃,
F (p|X) = F̃ (p|Pr {U |X}) (18)

where I assume F̃ (p|q) is continuous in q (where q 2 {0, 1} corresponds to the level of Pr {U |X}). This assumes
that the distribution of private information is the same for two observable values, X and X

0, that have the same
observable unemployment probability, Pr {U |X} = Pr {U |X 0}. Although one could perform different dimension
reduction techniques, controlling for Pr {U |X} is particularly appealing because it nests the null hypothesis of no
private information (F (p|X) = 1 {p  Pr {U |X}}).67

A key difficulty with using functions to approximate the distribution of P is that much of the mass of the
distribution is near zero. Continuous probability distribution functions, such as the Beta distributions used in
Hendren (2013), require very high degrees for the shape parameters to acquire a good fit. Therefore, I approximate
P as a sum of discrete point-mass distributions.68 Formally, I assume

F̃ (p|q) = w1 {p  q � a}+ (1� w)⌃
i

⇠

i

1 {p  ↵

i

}

where ↵

i

are a set of point masses in [0, 1] and ⇠

i

is the mass on each point mass. I estimate these point mass
parameters using maximum likelihood estimation. For the baseline results, I use 3 mass points, which generally
provides a decent fit for the data. I then compute the pooled price ratio at each mass point and report the minimum
across all values aside from the largest mass point. Mechanically, this has a value of T (p) = 1. As noted in Hendren
(2013), estimation of the minimum T (p) across the full support of the type distribution is not feasible because of
an extremal quantile estimation problem. To keep the estimates “in-sample”, I report values for the mean value of
q = Pr {U} = 0.031; but estimates at other values of q are similarly large.

C Welfare Metrics

C.1 Proof of Proposition 2
Note under state independence, the Euler equation implies

u

0 (c
pre

(p)) = pu

0 (c
u

(p)) + (1� p)u0 (c
e

(p))

66Specifically, the p.d.f./p.m.f. of Z given P is given by

f (Z|P,X) =

8
>>>>>><

>>>>>>:

(1� �)�
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�P�↵(X)
�

⌘
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�P�↵(X)

�

⌘
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(1� �)�
⇣

1�P�↵(X)
�

⌘
+ �

⇣
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1��P�↵(X)

�
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if Z = 1

1
�

�

⇣
Z�P�↵(X)

�

⌘
if o.w.

where � denotes the standard normal p.d.f. and � the standard normal c.d.f. I estimate four elicitation error param-
eters: (�,�,,↵ (X)). � captures the dispersion in the elicitation error, � is the fraction of focal point respondents,
 is the focal point window. I allow the elicitation bias term, ↵ (X), to vary with the observable variables, X. This
allows elicitations to be biased, but maintains the assumption that true beliefs are unbiased.

This approach builds upon Manski and Molinari (2010) by thinking of the focal point responses as “interval data”
(i.e. 50/50 corresponds to some region around 50%, but not exactly 50%). However, the present approach differs from
Manski and Molinari (2010) by allowing the response to be a noisy and potentially biased measure of this response
(as 50/50 corresponds to a region around 50% for the noisy Z measure, not the true P measure).

67Moreover, it allows the statistical model to easily impose unbiased beliefs, so that Pr {U |X} = E [P |X] for all X.
68This has the advantage that it does not require integrating over high degree of curvature in the likelihood function.

In practice, it will potentially under-state the true variance in P in finite sample estimation. As a result, it will tend to
produce lower values for T (p) than would be implied by continuous probability distributions for P since the discrete
approximation allows all individuals at a particular point mass to be able to perfectly pool together when attempting
to cover the pooled cost of worse risks.
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Now, consider the impact of unemployment on the first difference of consumption. Define �FD as the estimated
impact on the first difference in consumption:

�FD = E [log (c)� log (c�1) |U = 1]� E [log (c)� log (c�1) |U = 0]
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to

E [log (c
u

)� log (c
e

)] =
�FD

1� var(P )
var(U)

⌘ �IV

More generally, if the size of the consumption drop is increasing with p, then E [log (c
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C.2 Ex-ante labor supply derivation
This section illustrates how to use the spousal labor supply response, combined with known estimates of the spousal
labor response to labor earnings, to estimate the ex-ante willingness to pay for UI.

Spousal labor force participation generates income, y, but has an additively separable effort cost, ⌘ (✓). I assume
a spouse labor supply decision, l 2 {0, 1}, is a binary decision and is contained in the set of other actions, a. Formally,
let

 (1� p, a, ✓) =  ̃ (1� p, ã, ✓) + 1 {l = 1} ⌘ (✓)
where ⌘ (✓) is the disutility of labor for type ✓, distributed F

⌘

in the population.
Let k (y, l, p) denote the utility value to a type p of choosing l to obtain income y when they face an unemployment

probability of p. The labor supply decision is

k (y, 1, p)� k (0, 0, p) � ⌘ (✓)

so that types will choose to work if and only if it increases their utility. This defines a threshold rule whereby
individuals choose to work if and only if ⌘ (✓)  ⌘̄ (y, p) and the labor force participation rate is given by � (y, p) =
F (⌘̄ (y, p)).

Now, note that
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and making an approximation that the impact of the income y does not discretely change the instantaneous marginal
utilities (i.e. because it will be smoothed out over the lifetime or because the income is small), we have
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To compare this response to a wage elasticity, consider the response to a $1 increase in wages
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Now, let ✏

semi = d�
dlog(y) denote the semi-elasticity of spousal labor force participation. This yields
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so that the ratio of the labor supply response to p divided by the semi-elasticity of labor supply with respect to wages
reveals the average elasticity of the marginal utility function. Assuming this elasticity is roughly constant and noting
that a Taylor expansion suggests that for any function f (x), we have f(1)�f(0)
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Now, how does one estimate d�
dp

? Regressing labor force participation, l, on Z will generate an attenuated coefficient
because of measurement error in Z. If the measurement error is classical, one can inflate this by the ratio of the
variance of Z to the variance of P , or
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C.3 Derivation of W Social as weighted average of WEx�ante and WEx�post

This section shows that
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, where the

denominator is extremely small in our case. Intuitively, if higher values of p correspond to bigger consumption drops,
then the social willingness to pay is lower than is implied by the average willingness to pay measures, WEx�post and
W

Ex�ante.

C.4 Modified Baily-Chetty Condition

Proof of Proposition 3 To see this, note that the optimal allocation solves the first order condition:
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is the increased premium required to cover the cost of additional benefits, which includes the impact of the behavioral
response, d
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h
⌧

E[p]
1�E[p] + T (a (✓))

i
. Note this includes the response from additional unemployment entry (e.g. dE[p]

db

)
and through any other behavioral response through changes in the choice of a (✓). Also, note these responses are
“policy responses” as defined in Hendren (2015) – they are the behavioral response to a simultaneous increase in b

and ⌧ in a manner for which the government’s budget breaks even.
Now, one can recover the partial derivatives using the envelope theorem:
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If only p is the margin of adjustment, then
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where ✏

p,b

is the elasticity of the unemployment probability with respect to the benefit level. More generally one
would need to incorporate the fiscal externality associated with the responses from a (e.g. wages).
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Specification Baseline Demo Health Age <= 55 Age > 55
Below 

Median Wage
Above 

Median Wage
Tenure > 5 

yrs
Tenure <= 5 

yrs
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1st mass
Location 0.001 0.012 0.002 0.001 0.002 0.007 0.000 0.000 0.022

s.e. (0.001) (0.002) (0.002) (0.002) (0.001) (0.002) (0.001) (0.000) (0.003)
Weight 0.446 0.713 0.449 0.437 0.461 0.530 0.452 0.422 0.612

s.e. (0.024) (0.071) (0.054) (0.035) (0.030) (0.032) (0.034) (0.036) (0.034)
T(p) 63.839 6.301 39.032 101.038 36.986 12.413 262.088 6.9E+08 5.052

s.e. 6.1E+06 1.7E+00 1.8E+06 1.0E+07 1.1E+06 3.2E+00 7.6E+07 2.5E+08 6.0E-01

2nd mass
Location 0.031 0.031 0.032 0.030 0.031 0.037 0.024 0.018 0.0575

s.e. N/A N/A N/A N/A N/A N/A N/A N/A N/A
Weight 0.471 0.202 0.470 0.483 0.456 0.365 0.486 0.508 0.2771

s.e. (0.024) (0.071) (0.052) (0.035) (0.030) (0.032) (0.034) (0.037) (0.0341)
T(p) 4.360 8.492 4.228 4.325 4.442 5.217 4.223 5.736 4.7392

s.e. 0.203 4.194 4.576 0.306 0.279 0.417 2.181 3.008 0.5227

3rd Mass
Location 0.641 0.639 0.642 0.639 0.643 0.626 0.649 0.641 0.6420

s.e. (0.004) (0.004) (0.028) (0.005) (0.005) (0.005) (0.006) (0.005) (0.0055)
Weight 0.082 0.086 0.081 0.081 0.083 0.105 0.061 0.070 0.1105

s.e. (0.002) (0.002) (0.006) (0.003) (0.003) (0.003) (0.003) (0.002) (0.0040)

Controls
Demographics X X X X X X X X X
Job Characteristics X X X X X X X X
Health Characteristics X

Num of Obs. 26,640 26,640 22,831 11,134 15,506 13,320 13,320 17,850 8,790
Num of HHs 3,467 3,467 3,180 2,255 3,231 2,916 2,259 2,952 2,437

APPENDIX TABLE II
Estimation of F(p|X)

Alternative Controls Sub-Samples

Notes: This table presents estimates of the distribution of private information about unemployment risk, P. Column (1) reports the baseline specification. Columns (2) uses 
only demographic controls; Column (3) uses demographic, job characteristics, and health characteristics. Columns (4)-(9) report results for the baseline specification on 
various subsamples including below and above age 55 (Columns 4 and 5), above and below-median wage earners (Columns 6 and 7) and above and below 5 years of job 
tenure. The F(p) estimates report the location and mass given to each point mass, evaluated at the mean q=Pr{U=1}=0.031. For example, in the baseline specification, the 
results estimate a point mass at 0.001, 0.031, and 0.641 with weights 0.446, 0.471 and 0.082. The values of T(p) represent the markup that individuals at this location in the 
distribution would have to be willing to pay to cover the pooled cost of worse risks. All parameter estimates are constructed using maximum likelihood. Because of the non-
convexity of the optimization program, I assess the robustness to 1000 initial starting values. All standard errors are constructed using bootstrap re-sampling using 1000 re-
samples at the household level. 



mean std dev

Variable
Age 39.749 10.24
Male 0.810 0.39
Unemployment 0.057 0.23
Year 1985 7.66
Log Consumption 8.204 0.65
Log Expenditure Needs 8.125 0.32

Consumption growth (log(ct-2)-log(ct-1)) 0.049 0.358

Sample Size
Number of Observations
Number of Households

APPENDIX TABLE III
Summary Statistics (PSID Sample)

Notes: This table presents the summary statistics for the PSID sample used to estimate the 
impact of future unemployment on consumption growth in the year prior to unemployment. I 
use data from the PSID for years 1971-1997. Sample includes all household heads with non-
missing variables. 
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ONLINE APPENDIX FIGURE I: Additional Lower Bounds on E [T (P )]

A. By Year
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C. Alternative U definitions
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Notes: This figure presents additional estimates of the lower bound on the average pooled price ratio, E [TZ (PZ)]. Panel A
reports separate estimates for each wave of the survey and Panel B reports estimates by census division. Panel C reports a
set of estimates that use alternative definitions of U . This includes an indicator for involuntarily losing one’s job for three
time windows: in between surveys (0-24 months), in the 6-12 months after the survey, and 6-24 months after the survey. The
6-12 and 6-24 month specifications simulate lower bounds on E [TZ (PZ)] in a hypothetical underwriting scenario whereby
insurers would impose 6 month waiting periods. I also include specifications that interact these indicators with indicators that
the individual had positive government UI claims, which e�ectively restricts to the subset of unemployment spells where the
individual takes up government UI benefits.



ONLINE APPENDIX FIGURE II: Comparison to Other Non-Existing Insurance Markets
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Notes: Hendren (2013) argues private information prevents people with pre-existing conditions from purchasing insurance in
LTC, Life, and Disability insurance markets. This figure compares the estimates of inf T (p)� 1 for the baseline specification
in the unemployment context to the estimates in Hendren (2013) for the sample of individuals who are unable to purchase
insurance due to a pre-existing condition (blue circles) and those whose observables would allow them to purchase insurance in
each market (red hollow circles). Figure reports the confidence interval and the 5 / 95% confidence interval for each estimate
in each sample. For the sub-samples in LTC, Life, and Disability for which the market exists, one cannot reject the null
hypothesis of no private information, inf T (p) = 0. In contrast, sub-samples whose observables would prevent them from
purchasing insurance tend to involve larger estimates of the minimum pooled price ratio, which suggests the frictions imposed
by private information form the boundary of the existence of insurance markets.



ONLINE APPENDIX FIGURE III: “First Stage” Impact of Unemployment on Beliefs
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Notes: This figure presents the estimated coe�cients of a regression of the elicitations (elicited in year t) on unemployment
indicators in year t + j for j = 1, .., 8. To construct the unemployment indicators for each year t + j, I construct an indicator
for involuntary job loss in any survey wave (occuring every 2 years). I then use the data on when the job loss occured to
assign the job loss to either the first or second year in between the survey waves. Because of the survey design, this definition
potentially misses some instances of involuntary separation that occur in back-to-back years in between survey waves. To the
extent to which such transitions occur, the even-numbered years in the Figure are measured with greater measurement error.
The figure presents estimated 5/95% confidence intervals using standard errors clustered at the household level.



ONLINE APPENDIX FIGURE IV: Impact of Job Loss on Consumption
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Notes: This figure re-constructs the analysis in Figure IV using job loss instead of unemployment. I define job loss as an
indicator for being laid o� or fired from the job held in the previous wave of the survey. The figure present coe�cients from
separate regressions of leads and lags of the log change in food expenditure on an indicator of job loss, along with controls for
year indicators and a cubic in age. Sample is restricted to household heads who did not lose their job in t� 1 or t� 2.



ONLINE APPENDIX FIGURE V: Household Income Pattern Around Unemployment
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Notes: This figure presents the estimated coe�cients of a regression of leads and lags of log household income on an indicator
for unemployment. The figure replicates the sample and specification in Figure IV (Panel B) by replacing the dependent
variable with log household income as opposed to the change in log food expenditure. I restrict the sample to household heads
who are not unemployed in t� 1 or t� 2 .



ONLINE APPENDIX FIGURE VI: Impact of Unemployment on Total Consumption Expenditure
(2-year intervals)
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Notes: This figure presents the estimated coe�cients of a regression of leads and lags of log household consumption expenditure
on an indicator for unemployment. The figure replicates the sample and specification in Figure IV (Panel B) by replacing
the dependent variable with log total consumption expenditure on a sample beginning in 1999, surveyed every two years. I
restrict the sample to household heads who are not unemployed in t � 2 or t � 4 . Following the specification in Figure IV
(Panel B), the sample is restricted to observations with less than a threefold change in consumption expenditures. Post 1999,
the PSID asks a broader set of consumption questions but is conducted every two years, which prevents analyzing total 1-year
interval responses to unemployment.
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