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Appendix A. A Helpman and Krugman (1985) Model

This section shows that our estimating equations can also be generated using a model of monopo-
listic competition, increasing returns to scale, and costless trade.

Appendix A.1. Preferences, Endowments and Technology

Let i,j = 1, . . . ,N index countries, let g = 1, . . . ,G index goods (or industries), and let ω ∈ Ωgi
index varieties of a horizontally differentiated good g produced in country i as in Krugman (1980).
Preferences are internationally identical and homothetic with the nested structure:

U =
G

∏
g=1

(
Ug
)ηg and Ug =

(
N

∑
i=1

∫
ω∈Ωgi

xgi(ω)
ρg−1

ρg dω

) ρg
ρg−1

,

where ρg > 1 is the elasticitiy of substitution, ηg > 0, Σgηg = 1, and xgi(ω) is a quantity
consumed. Let pgi(ω) be the corresponding price. We assume that trade is costless so that all
consumers worldwide face the same price pgi(ω). Then the price index associated with Ug is

Pg =

(
N
∑

i=1

∫
ω∈Ωgi

pgi(ω)1−ρg dω

) 1
1−ρg

.

Let f = 1, . . . ,K index primary factors such as labor. Vf i is country i’s exogenous endowment
of factor f and w f i is its price. Let wi = (w1i, . . . ,wKi). We assume that factors are mobile across
industries within a country and immobile across countries.

Turning to technology, a firm uses both primary factors and intermediate inputs of goods h =
1, . . . ,G. The production function is Cobb-Douglas in (a) an index of primary factors and (b) CES
indexes of each of the G intermediate goods. This results in a unit cost function for ω ∈ Ωgi of the
form

φgi(wi,p) =
[
cgi(wi)

]γg0
G

∏
h=1

P
γgh
gh (36)

where

Pgh =

(
N

∑
j=1

∫
ν∈Ωhj

αgh phj(ν)
1−ρh dν

) 1
1−ρh

,

p = {phj(ν) : ν ∈ Ωhj, ∀h,j} is the set of all product prices, ν ∈ Ωhj indexes varieties when used as
inputs, and the γgh are positive constants with ΣG

h=0γgh = 1. cgi(wi) is a constant-returns-to-scale
unit cost function associated with primary factors. Pgh is the unit cost function associated with the
CES index of intermediate good h in the production of good g. The αgh are constants that allow for
empirically relevant factor intensity asymmetries.45

Marginal costs are φgi(wi,p). Per variety variable costs are φgi(wi,p)qgi(ω). We assume that
fixed costs are proportional to marginal costs and given by φgi(wi,p)φg for some constant φg > 0.

Appendix A.2. Firm Behavior

Profits for any variety ω ∈ Ωgi are[
pgi − φgi(wi,p)

]
qgi − φgi(wi,p)φg.

45We assume that a firm does not buy from itself. Since anything it bought from itself would have zero measure, we
do not have to keep track of this in the expression for Pgh; however, we will have to keep track of this in the discussion
of profit maximization below.
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There are two sources of demand for ω ∈ Ωgi: (1) Consumers in country j demand pgi
−ρg Pρg−1

g ηgYj
where Yj is national income. (2) Downstream producers of variety ν ∈ Ωhj each demand
bij(g,h)

[
qhj + φh

]
where, by Shephard’s Lemma,

bij(g,h; wj,p) =
∂φhj(wj,p)

∂pgi
.

bij(g,h; wj,p) is necessarily complicated notation because we need to track the entire global supply
chain. Aggregating over both final and intermediate-input demands for a typical variety ω ∈ Ωgi
yields the following result that will be useful later:

Lemma 1 qgi = p−ρg
gi κg for some κg > 0 and all i.

The proof appears in the appendix to this section. The last line of the proof is an expression for κg,
from which it is apparent that κg is a constant from the firm’s perspective.

Using lemma 1, profit maximization for ω ∈ Ωgi yields the standard optimal price:

pgi =
ρg

ρg − 1
φgi(wi,p). (37)

Zero profits for ω ∈ Ωgi, together with this pricing rule, yield:

qgi = (ρg − 1)φg . (38)

Turning to factor markets, consider the demand for factor f by firm ω ∈ Ωgi. By Shephard’s
Lemma this (direct) demand per unit of output is

d f gi(wi,p) =
∂φgi(wi,p)

∂w f i
.

Factor market clearing in country i is thus

Vf i =
G

∑
g=1

ngid f gi(wi,p)
[
qgi + φg

]
(39)

where ngi =
∫

ω∈Ωgi
dω is the measure of identical firms producing varieties of g in country i.

Appendix A.3. Equilibrium

Define n∗ =
{

n∗gi

}
∀g,i

, w∗ =
{

w∗f i

}
∀ f ,i

, and p∗ = {p∗gi(ω) : ω ∈ Ωgi, ∀g,i}. An equilibrium is a

triplet (w∗,p∗,n∗) such that when consumers maximize utility and firms maximize profits, product
markets clear internationally for each variety, factor markets clear nationally for each factor, and
profits are zero. Market clearing and zero profits imply that all income is factor income (Yi =
Σ f w f iVf i) and that trade is balanced. It follows from this definition of equilibrium that (w∗,p∗,n∗)
is an equilibrium if it satisfies equations (37)–(39). 46

46From equation (38), firm output qgi = qg is independent of i. Since qg = p−ρg
gi κg, it follows that price pgi = pg is

also independent of i. As discussed in Remark 1 of the appendix to this section, this plays no role and is for expositional
simplicity.
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Appendix A.4. Empirical Specification

This subsection shows how the alternate model of the previous section delivers the empirical
specifications in the main text. Assume that the cost function for primary factors is

cgi(wi) =

[
∑

f

α f g

δgi

(
w f i

π f i

)1−σ
] 1

1−σ

(40)

where the α f g control (exogenous) factor intensities, the π f i are factor-augmenting productivity
(technology) parameters, σ is the elasticity of substitution, and the δgi are Ricardian technology
parameters. We will assume that cost functions satisfy equation (40) for the remainder of this
appendix. When the δgi = 1 for all g and i, equation (40) is a special case of Trefler’s (1993)
factor-augmenting technology and PFPE is straightforwardly defined as

w f i

π f i
=

w f ,us

π f ,us
. (41)

We consider a diversified equilibrium in which the Ricardian technology differences δgi lead
to failure of PFPE.47 It is straightforward to show that there are δgi which support a diversified
equilibrium, but we will need to ensure that our empirical counterparts of δgi, δ̂gi, are consistent
with such an equilibrium. Here we review several minor points about diversification. First, the
δgi can be interpreted as differences in quality, in which case our diversification has the flavour of
Schott (2004).48 Schott provides abundant evidence of diversification in his analysis of ‘product
overlap’ at the 10-digit HS level. Second, we can treat observed diversification as trade in varieties
rather than as a function of aggregation bias. Third, country-level productivity can be loaded onto
either the π f i or the δgi so a normalization is needed. As in th main text, we normalize the δgi using
δg,us = 1 for all g and ΣgθLgiδgi = 1 ∀i where θLgi is the share of country i’s total labor endowment
employed in industry g.

If varieties of good g are produced both by country i and by the United States, then Shephard’s
lemma implies

d f gi = β f id f g,us/δgi (42)

where

β f i ≡
(

w f i/π f i

w f ,us/π f ,us

)−σ ( π f i

π f ,us

)−1

. (43)

Appendix A.5. The Three Estimating Equations

We now show that the above model delivers three estimating equations that are identical to those
derived in the main text. Consider first the Vanek equation. Recall that Ff i = D f (ING − B)−1Ti is
the factor content of trade using observed factor usage D f . Let D f (β f ) be a 1× GN matrix with
typical element β f id f g,us/δgi (the right-hand side of equation 42) and define

Ff i(β f ) ≡ D f
(

β f
)
[ING − B]−1 Ti . (44)

(We suppress the δgi as arguments.) Under our cost function assumption (equation 40), D f (β f )
equals the data D f and Ff i(β f ) equals the data Ff i. It follows that the Vanek equation becomes

Ff i(β f ) = Vf i − si ∑N
j=1 Vf j . (V)

47δgi prevents international goods price equalization from leading to international productivity adjusted factor price
equalization.

48This is similar to calibrating ‘wedges’ e.g., Hottman, Redding and Weinstein (2014) infer quality as the wedge that
rationalizes demand for a given set of prices and quantities.
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As in the main text, because Ff i(β f ) is linear in D f (β f ), D f (β f ) is linear in β f , (therefore) Ff i(β f )
is linear in β f , and equation (V) can be written as a system of linear equations that uniquely solve
for the vector β f .

Turning to the Wage equation, substitute factor demands (equation 42) into the factor-market
clearing condition (equation 39) and solve for productivity adjusted wages to obtain

w f i/π f i

w f ,us/π f ,us
=

[
π f ,usVf ,us

π f iVf i

]1/σ
(

G

∑
g=1

d f g,usQgi

δgiVf us

)1/σ

. (45)

See the appendix for a proof. Rearranging this equation yields the “Wage Equation":

W f i(D f , Q, Vf i, δ) ≡
[

G

∑
g=1

d f g,usQgi

δgiVf i

]−1

= β f i (W)

where δ ≡ {δgi}∀g,i and W f i() is a function.
Turning to the third and last equation, the Techniques equation, we aggregate equation (42)

up to the same level as the Vanek and Wage equations, namely, at the factor-country level.
Specifically, taking the employment-weighted average of equation (42) yields ∑g θ f gid f gi/d f g,us =

∑g θ f giβ f i/δgi where θ f gi is the share of Vf i that is employed in industry g. The θ f gi are data and
satisfy ∑g θ f gi = 1. Rearranging to isolate β f i yields

Tf i(D f , δ) ≡
∑G

g=1 θ f gi
(
d f gi/d f g,us

)
∑G

g=1 θ f gi/δgi
= β f i (T)

where Tf i() is a function.
While the interpretation of δgi is different than in the main text, our strategy to cali-

brate it remains the same. A in the main text, we use the normalizations δg,us = 1 and
∑g θLgiδgi = 1. From equation (42), δgi = (d f g,us/d f gi)β f i. Hence, δgi = δgi/ ∑g θLgiδgi =
(d f g,us/d f gi)/ ∑g θLgi(d f g,us/d f gi). This establishes that we can calibrate the δgi using data on
factor usages d f gi.49 Note that since the calibrated δgi satisfy equation (13), they are consistent
with a diversified equilibrium. As in the main text, this calibration of δgi depends on f and
so is not unique. As in the main text, we work with the geometric mean of the two: δgi =

[(dUg,us/dUgi)βUi]
1/2[(dSg,us/dSgi)βSi]

1/2. This yields

δ̂gi ≡
(dUg,us/dUgi)

1/2(dSg,us/dSgi)
1/2

∑G
g′=1 θLg′i(dUg′,us/dUg′i)1/2(dSg′,us/dSg′i)1/2

. (46)

49Intuitively, a Ricardian technology difference δgi/δg,us is the average difference in input requirements d f g,us/d f gi
after purging them of their factor-augmenting productivity and wage components β f i.
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Appendix to Appendix A

Proof of Lemma 1 We start with a preliminary result involving change of indexes. From equation

(36), φhj(wj,p) =
[
chj(wj)

]γh0
G
∏

g=1
P

γhg
hg where Phg =

(
N
∑

i=1

∫
ω∈Ωgi

αhg pgi(ω)1−ρg dω

) 1
1−ρg

. Also, note

that ∂P
γhg′

hg′ /∂pgi(ω) = 0 for g′ 6= g and ∂P
γhg
hg /∂pgi(ω) = γhgP

γhg−1+ρg

hg αhg pgi(ω)−ρg . Hence

bij(g,h,wj,p) = ∂φhj(wj,p)/∂pgi(ω)

= cγg0

hj ∏g′ 6=g P
γhg′

hg′

[
γhgP

γhg−1+ρg

hg αhg pgi(ω)−ρg
]

= φhj(wj, p)γhgP−1+ρg
hg αhg pgi(ω)−ρg .

(47)

As explained in section (Appendix A.2), demand for variety ω ∈ Ωgi is the sum of

demands for final goods and intermediate inputs: qgi(ω) = pgi(ω)−ρg Pρg−1
g ηgΣN

j=1Yj +

ΣG
h=1ΣN

j=1

∫
ν∈Ωhj

bij(g,h,wj,p)
[
qhj(ν) + φh

]
dν. Substituting in equation (47), the lemma follows

with κg ≡ Pρg−1
g ηgΣN

j=1Yj + ΣG
h=1ΣN

j=1

∫
ν∈Ωhj

φhj(wj, p)γhgP−1+ρg
hg αhg

[
qhj(ν) + φh

]
dν. �

Proof of Equation (42): By Shephard’s lemma, d f gi = ∂φgi/∂w f i. Hence, d f gi =[
∂φgi/∂cgi

] [
∂cgi/∂w f i

]
=
[
γg0c−1

gi φgi

] [
α f g
(
w f i
)−σ (

π f i
)σ−1 (

δgi
)−1 (cgi

)σ
]
. Recall that at the end

of section Appendix A.3 we established that pgi = pg. Hence from equation (37), 1 = pgi/pg,us =

φgi(wi,p)/φg,us(wus,p) =
(

cγg0
gi ∏G

h=1 P
γgh
gh

)
/
(

cγg0
g,us ∏G

h=1 P
γgh
gh

)
=
(
cgi/cg,us

)γg0 or cgi = cg,us and

φgi(wi,p) = φg,us(wus,p) . Hence, d f gi/d f g,us = (w f i/w f ,us)
−σ(π f i/π f ,us)

σ−1(δgi/δg,us)−1. Equa-
tion (42) follows with the normalization δg,us = 1. �

Remark 1 If pgi 6= pg,us then we get d f gi = d f g,us(w f i/w f ,us)
−σ(π f i/π f ,us)

σ−1(δ′gi/δ′g,us)
−1 where δ′gi =

δgi/pgi. That is, this leads to a reinterpretation of the δgi, but does not otherwise affect anything in the paper.

Proof of Equation (W): Recall that Qgi = ngi(qg + φg). Plugging this into the factor-market
clearing equation (39) yields Vf i = Σgd f giQgi. Substituting in d f gi = d f g,usβ f i/δgi (equation
13) into this expression delivers Vf i = β f iΣgd f g,usQgi/δgi. Equation (W) follows from a simple
re-arrangement. �

Appendix B. Additional Empirical Results

This section contains additional empirical results. The top row of figure A1 presents the same
results for the Vanek equation as in figures 3 and 6 except that the observations for China and
the United States are removed for visual exposition. The top row of figure A2 presents results for
the Vanek equation placing all weight on the Wage equation, and then bottom row of figure A2

presents results for the Vanek equation placing all weight on the Techniques equation. Figure A3

presents results for the Wage equation, Techniques equation, Vanek equation, and disaggregated
techniques equation when we use three types of labor (high skilled, medium skilled, and low
skilled). Table A1 presents test statistics associated with these three types of labor analogous to
Table 1. Figure A4 presents results for the Wage equation, Techniques equation, Vanek equation,
and disaggregated techniques equation for capital and labor. Table A2 presents test statistics
associated with this specification.
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Figure A1: The Vanek Equation with Outliers (US and China) not Displayed

Panel A. Two-Equation Approach (β̂ f , Equations W and T)
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Panel B. Three-Equation Approach (̂̂β f , Equations W, T and V)

Vanek Equation: Unskilled Labor Vanek Equation: Skilled Labor
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Notes: These plots are the same as those appearing in the main text except that the two outliers (China and United
States) are not displayed so as to ‘unpack’ the remaining observations. Panel A corresponds to the bottom row of figure
3. It plots Vf i − siVf w against the Government Services adjusted factor content of trade (evaluated at the two-equation
estimate of β f , β̂ f ). Panel B corresponds to the unskilled and skilled figures in the bottom row of figure 6. It plots
Vf i − siVf w against the Government Services adjusted factor content of trade (evaluated at the three-equation estimate

of β f , ̂̂β f ). The left panels are for unskilled labor and the right panels are for skilled labor. All lines are 45
◦ lines.
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Figure A2: Performance of the Vanek Equation Using βW
f i and βT

f i

Productivity Calibrated to the Wage Equation: βW
f
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Productivity Calibrated to the Techniques Equation: βT
f
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Notes: Each panel plots Vf i − siVf w against the factor content of trade F′f i(β f ) from equation (21) i.e., adjusted for

nontradable Government Services. In the top row, the β f that makes the Wage equation fit perfectly (βW
f ) is plugged

into the Vanek equation. This yields a very good fit of the Vanek equation for both unskilled labor (left panel) and
skilled labor (right panel). In the bottom row, the β f that makes the Techniques equation fit perfectly (βT

f ) is plugged
into the Vanek equation. This again yields a very good fit of the Vanek equation. Each point is a country and all lines
are 45

◦ lines.
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Table A1: Test Statistics for the Fit of the Vanek Equation

Least Skilled Labor
Factor Content Rank Variance Sign Slope
of Trade Corr. Ratio Test Test

(1) (2) (3) (4)
1. Ff i 0.980 0.040 0.974 0.199

2. Ff i(β̂ f ) 0.983 0.120 0.974 0.344

3. F′f i(β̂ f ) 0.962 0.463 0.921 0.677

4. Ff i(β̂ f ) 0.982 0.162 0.974 0.400

5. F′f i[ι] 0.493 0.000 0.002 0.005

6. F′f i(
̂̂β f ) 0.998 0.618 0.974 0.784

Medium Skilled Labor
Factor Content Rank Variance Sign Slope
of Trade Corr. Ratio Test Test

(1) (2) (3) (4)
1. Ff i 0.972 0.033 0.895 0.181

2. Ff i(β̂ f ) 0.968 0.035 0.895 0.185

3. F′f i(β̂ f ) 0.995 0.271 1.000 0.518

4. Ff i(β̂ f ) 0.964 0.072 0.921 0.264

5. F′f i[ι] 0.405 0.005 0.553 0.064

6. F′f i(
̂̂β f ) 0.998 0.462 1.000 0.679

High Skilled Labor
Factor Content Rank Variance Sign Slope
of Trade Corr. Ratio Test Test

(1) (2) (3) (4)
1. Ff i 0.974 0.016 0.947 0.127

2. Ff i(β̂ f ) 0.941 0.044 0.842 0.202

3. F′f i(β̂ f ) 0.992 0.496 0.947 0.699

4. Ff i(β̂ f ) 0.902 0.206 0.842 0.421

5. F′f i[ι] 0.179 0.036 0.500 0.154

6. F′f i(
̂̂β f ) 0.995 0.642 0.974 0.799

Notes: These tables presents test statistics for the fit of the Vanek equation (V) for different specifications of the factor
content of trade. The top six rows are for least skilled labor. In row 1, the actual factor content of trade is used. In
row 2, the factor content of trade is calculated using β̂ f (the two-equation estimate of β f ) and equation (16). In row 3,
the factor content of trade is adjusted for nontraded Government Services using equation (21). In row 4, the nontraded
Government Services adjustment is put on the right-hand side of the Vanek equation as in part 1 of lemma 2 and as in
Davis and Weinstein (2001). In row 5, the factor content of trade is again adjusted for nontraded Government Services
using equation (21), but all elements of the vector β̂ f are set to 1. In row 6, the factor content of trade is again adjusted
for nontraded Government Services using equation (21), but the estimate of β f is from the three-equation approach. The
middle six rows repeat this exercise for medium skilled labor. The bottom six rows repeat it for high skilled labor. ‘Rank
Corr.’ is the rank or Spearman correlation between the factor content of trade and Vf i − siVf w. ‘Variance Ratio’ is the
variance of the factor content of trade divided by the variance of Vf i− siVf w. ‘Sign Test’ is the proportion of observations
for which the factor content of trade and Vf i − siVf w have the same sign. ‘Slope Test’ is the OLS slope estimate from a
regression of the factor content of trade on Vf i − siVf w.
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Figure A4: Capital and Labor
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Notes: The left-hand side plots are for capital, the right-hand side plots are for labor. The top panels are the Wage
equation (W). The upper middle panels are the Techniques equations (T). The lower middle panels are the Vanek
equations (V). The bottom panels are relative factor demands from equation (13), namely, ln(d f gi/d f g,us) = ln(β f i/δgi).
All equations are evaluated at the estimated values β̂ f i and calibrated values δ̂gi. In the top and middle panels, each
observation is a factor and country ( f ,i) while in the bottom panels each observation is a factor, industry and country
( f ,g,i). The 45

◦ line is displayed in each panel.
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Table A2: Test Statistics for the Fit of the Vanek Equation: Capital and Labor

Capital Labor
Factor Content Rank Variance Sign Slope Rank Variance Sign Slope
of Trade Corr. Ratio Test Test Corr. Ratio Test Test

(1) (2) (3) (4) (5) (6) (7) (8)

1. Ff i 0.845 0.059 0.789 0.228 0.948 0.036 0.816 0.189

2. Ff i(β̂ f ) 0.741 0.093 0.763 0.187 0.933 0.065 0.842 0.253

3. F′f i(β̂ f ) 0.816 0.126 0.868 0.332 0.957 0.261 0.868 0.509

4. Ff i(β̂ f ) 0.685 0.124 0.711 0.246 0.927 0.107 0.868 0.324

5. F′f i[ι] -0.027 0.020 0.553 -0.052 0.074 0.000 0.447 0.006

6. F′f i(
̂̂β f ) 0.973 0.315 0.947 0.554 0.980 0.453 0.947 0.673

Notes: This table presents test statistics for the fit of the Vanek equation (V) for different specifications of the factor
content of trade. In row 1, the actual factor content of trade is used. In row 2, the factor content of trade is calculated
using β̂ f (the two-equation estimate of β f ) and equation (16). In row 3, the factor content of trade is adjusted for
nontraded Government Services using equation (21). In row 4, the nontraded Government Services adjustment is put
on the right-hand side of the Vanek equation as in part 1 of lemma 2 and as in Davis and Weinstein (2001). In row 5,
the factor content of trade is again adjusted for nontraded Government Services using equation (21), but all elements
of the vector β̂ f are set to 1. In row 6, the factor content of trade is again adjusted for nontraded Government Services
using equation (21), but the estimate of β f is from the three-equation approach. ‘Rank Corr.’ is the rank or Spearman
correlation between the factor content of trade and Vf i − siVf w. ‘Variance Ratio’ is the variance of the factor content of
trade divided by the variance of Vf i − siVf w. ‘Sign Test’ is the proportion of observations for which the factor content of
trade and Vf i − siVf w have the same sign. ‘Slope Test’ is the OLS slope estimate from a regression of the factor content
of trade on Vf i − siVf w.
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Appendix C. Small Changes in βVT
f

We establish here that when one places the unknown productivity parameters on the ‘right-hand
side’ as in equation (VT), the performance of the Vanek equation is extremely sensitive to small
changes in the vector β f .50 Start by defining the predicted factor content of trade using this
approach as F∗f i(β f ) ≡ β−1

f i Vf i − si ∑j β−1
f j Vf j. Trefler (1993a) derives a model in which Fus

f i is the
measured factor content of trade with no Ricardian productivity differences and all techniques set
equal to their US values, and F∗f i(β f ) is its predicted value (the ‘predicted factor content’). See
footnote 32. We now show that the relationship between Fus

f i and F∗f i(β f ) is extremely sensitive to
differences in β f even if those differences are very small.

Start by defining two productivity vectors for unskilled labor: βW
U and βVT

U –the latter of which
makes the Vanek equation fit perfectly with productivity terms on the right-hand side such that
Fus

Ui = F∗Ui(βVT
U )–and define the (small) difference between the two as εU =

(
βW

U
)−1 −

(
βVT

U
)−1.

Because F∗Ui(βU) is linear in its arguments, F∗Ui(βW
U )− F∗Ui(βVT

U ) = F∗Ui(εU) or

F∗Ui(βW
U )− F∗Ui(βVT

U ) = εUiVUi − si

N

∑
j=1

εUjVUj

where εUi is the ith element of εU . Now consider the variance of the right-hand side. Suppose
that the εUi are purely random variables with mean 0 and small variance σ2

εU ≈ 0.02.51 Then the
right-hand side is 0 on average. Its variance is σ2

εUvar[VUi − si ∑j VUj]. Let σ2
FU and σ2

VU be the
variances of Fus

f i and VUi − si ∑j VUj, respectively, where the variation is across observations i.
Because missing trade is so severe, the variance ratio is σ2

FU/σ2
VU = 0.0001. Hence the variance

of the right-hand side is σ2
εUσ2

VU = σ2
εUσ2

FU/0.0001 = 200σ2
FU! Thus, even though σ2

εU is small,
the right-hand side has a large variance relative to the variance of what is to be explained (σ2

FU).
Restated, F∗Ui(βW

U ) and F∗Ui(βVT
U ) may be equal on average, but because of missing trade, there is a

large variance between the two. Right-hand side approaches are like drunk dart players: Every
dart completely misses the dartboard, but if you average them you get a bull’s-eye.

This establishes that the function F∗f i(β f ) is very sensitive to the choice of β f . It thus explains
the discrepancy in results between the approaches of Trefler (1993a) and Gabaix (1997b). Even
though they generate similar values of the β f , they generate very different predictions for the
Vanek equation. Similarly, very large differences in the measured factor content of trade can result
in very similar differences in β f . This helps to explain the famous result of Gabaix (1997b) in
which he shows that setting the measured factor content of trade to zero or setting it equal to
its additive inverse affects the resulting values of β f i very little. This reason for the substantial
disagreements regarding the performance of RHS approaches (Trefler, 1993a, Gabaix, 1997b) is
new to the literature and serves as a caveat for interpreting results.

50This is an additional reason to place the β f terms on the ‘left-hand side’ as we do in our main analysis. Note that in
figure A2, the performance of the Vanek equation is not sensitive to the small differences between βW

f and βT
f .

51This is the variance of the deviations between (βW
Ui)
−1 and (βVT

Ui )
−1
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