Online Appendix

Randomizing Religion: The Impact of Protestant Evangelism on Economic Outcomes

Gharad Bryan, James J. Choi, Dean Karlan

This file includes the following tables:

a. Balance across treatment groups in six-month survey

Online Appendix Table 1: Characteristics of six-month survey sample

b. Attrition by characteristic

Online Appendix Table 2: Predicting attrition at six months from baseline characteristics

c. Main six-month results including communities that switched treatments

Online Appendix Table 3: Primary outcomes (including communities that switched treatment status), six-month survey

Online Appendix Table 4: Mechanisms (including communities that switched treatment status), six-month survey

Online Appendix Table 5: Secondary outcomes (including communities that switched treatment status), six-month survey

c. Main six-month results controlling for available baseline survey characteristics

Online Appendix Table 6: Primary outcomes (controlling for available baseline survey characteristics), six-month survey

Online Appendix Table 7: Mechanisms (controlling for available baseline survey characteristics), six-month survey

Online Appendix Table 8: Secondary outcomes (controlling for available baseline survey characteristics), six-month survey

d. Main six-month results without controls for respondent characteristics

Online Appendix Table 9: Primary outcomes (without controls for respondent characteristics), six-month survey

Online Appendix Table 10: Mechanisms (without controls for respondent characteristics), six-month survey

Online Appendix Table 11: Secondary outcomes (without controls for respondent characteristics), six-month survey

c. Main six-month results by components

Online Appendix Table 12: Religion intrinsic index, six-month survey

Online Appendix Table 13: Religion extrinsic index, six-month survey

Online Appendix Table 14: General religion index, six-month survey

Online Appendix Table 15: Religion - list randomized, six-month survey

Online Appendix Table 16: Monthly consumption, six-month survey

Online Appendix Table 17: Food security index, six-month survey

Online Appendix Table 18: Monthly income, six-month survey

Online Appendix Table 19: Adult labor supply, six-month survey

Online Appendix Table 20: Life satisfaction index, six-month survey

Online Appendix Table 21: Perceived relative economic status, six-month survey

Online Appendix Table 22: Trust index, six-month survey

Online Appendix Table 23: Social safety net index, six-month survey

Online Appendix Table 24: Community activities index, six-month survey

Online Appendix Table 25: Perceived stress scale index, six-month survey

Online Appendix Table 26: Powerful others index, six-month survey

Online Appendix Table 27a: Locus of control index: Internality subscale, six-month survey

Online Appendix Table 27b: Locus of control index: Chance subscale and World Value Survey question, six-month survey

Online Appendix Table 28: Life orientation index, six-month survey

Online Appendix Table 29: Expectations index and optimism index, six-month survey

Online Appendix Table 30: Grit index, six-month survey

Online Appendix Table 31: Self-control index, six-month survey

Online Appendix Table 32: Salvation by grace belief index, six-month survey

Online Appendix Table 33: Assets index, six-month survey

Online Appendix Table 34: Financial inclusion index, six-month survey

Online Appendix Table 35: Health index, six-month survey

Online Appendix Table 36: Hygiene indices, six-month survey

Online Appendix Table 37: House index, six-month survey

Online Appendix Table 38: Migration and remittance index, six-month survey

Online Appendix Table 39: No discord index and no domestic violence – list randomized, six-month survey

Online Appendix Table 40: Child labor supply and children enrolled in school, six-month survey

d. Temptation good consumption, six-month survey

Online Appendix Table 41: Consumption of temptation goods, six-month survey

e. Robustness checks, six-month survey

Online Appendix Table 42: Income treatment effect robustness checks, six-month survey

Online Appendix Table 43: Treatment effects at six months under varying missing data assumptions

f. Religious affiliation, six-month survey

Online Appendix Table 44: Summary statistics on religious affiliation by treatment group, six-month survey

g. Instrumental variable estimation, six-month survey

Online Appendix Table 45: OLS and IV regressions of composite religiosity index on primary economic outcomes, six-month survey

h. Balance across treatment groups in 30-month survey

Online Appendix Table 46: Characteristics of 30-month survey sample

i. Attrition by characteristic

Online Appendix Table 47: Predicting attrition at 30 months from six-month characteristics

j. Main 30-month results including communities that switched treatments

Online Appendix Table 48: Primary outcomes (including communities that switched treatment status), 30-month survey

Online Appendix Table 49: Mechanisms (including communities that switched treatment status), 30-month survey

Online Appendix Table 50: Secondary outcomes (including communities that switched treatment status), 30-month survey

k. Main 30-month results without controls for respondent characteristics

Online Appendix Table 51: Primary outcomes (without controls for respondent characteristics), 30-month survey

Online Appendix Table 52: Mechanisms (without controls for respondent characteristics), 30-month survey

Online Appendix Table 53: Secondary outcomes (without controls for respondent characteristics), 30-month survey

1. Main 30-month results by components

Online Appendix Table 54: Religion intrinsic index, 30-month survey

Online Appendix Table 55: Religion extrinsic index, 30-month survey

Online Appendix Table 56: General religion index, 30-month survey

Online Appendix Table 57: Religion - list randomized, 30-month survey

Online Appendix Table 58: Monthly consumption, 30-month survey

Online Appendix Table 59: Food security index, 30-month survey

Online Appendix Table 60: Monthly income, 30-month survey

Online Appendix Table 61: Adult labor supply, 30-month survey

Online Appendix Table 62: Life satisfaction index, 30-month survey

Online Appendix Table 63: Perceived relative economic status, 30-month survey

Online Appendix Table 64: Trust index, 30-month survey

Online Appendix Table 65: Social safety net index, 30-month survey

Online Appendix Table 66: Community activities index, 30-month survey

Online Appendix Table 67: Powerful others index, 30-month survey

Online Appendix Table 68a: Locus of control index: Internality subscale, 30-month survey

Online Appendix Table 68b: Locus of control index: Chance subscale and World Value Survey question, 30-month survey

Online Appendix Table 69: Expectations index, 30-month survey

Online Appendix Table 70: Grit index, 30-month survey

Online Appendix Table 71: Self-control index, 30-month survey

Online Appendix Table 72: Salvation by grace belief index, 30-month survey

Online Appendix Table 73: Assets index, 30-month survey

Online Appendix Table 74: Financial inclusion index, 30-month survey

Online Appendix Table 75: Health index, 30-month survey

Online Appendix Table 76: Hygiene indices, 30-month survey

Online Appendix Table 77: House index, 30-month survey

Online Appendix Table 78: Migration and remittance index, 30-month survey

Online Appendix Table 79: No discord index, 30-month survey

Online Appendix Table 80: No domestic violence – list randomized, 30-month survey

Online Appendix Table 81: Child labor supply and children enrolled in school, 30-month survey

m. Temptation good consumption, 30-month survey

Online Appendix Table 82: Consumption of temptation goods, 30-month survey

n. Robustness checks, 30-month survey

Online Appendix Table 83: Income treatment effect robustness checks, 30-month survey

Online Appendix Table 84: Treatment effects at 30 months under varying missing data assumptions

Online Appendix Table 1. Characteristics of six-month survey sample

	Control	V	HL	VHL	C vs. V,	C vs. HL,	C vs. VHL,	V vs. HL,	V vs. VHL,	HL vs. VHL,	p-value from joint test of
	Control	v	пь	VIL	p -value	p -value	p -value	p -value	p -value	p -value	equality across arms
	# 1.C.C	5.0.00		5 02 5	0.220	0.540	0.165	0.105	0.022	0.440	0.122
Average number of household	5.166	5.263	5.105	5.025	0.328	0.540	0.165	0.125	0.023	0.448	0.132
members	(0.068)	(0.073)	(0.073)	(0.075)							
Average number of adults	2.772	2.813	2.816	2.736	0.454	0.437	0.516	0.967	0.195	0.189	0.489
(age \geq 17) in the household	(0.036)	(0.041)	(0.043)	(0.043)							
Average number of children	2.391	2.435	2.291	2.282	0.595	0.256	0.189	0.095	0.059	0.914	0.175
(age < 17) in the household	(0.060)	(0.057)	(0.065)	(0.058)							
% female respondents	0.832	0.849	0.833	0.834	0.444	0.967	0.923	0.520	0.518	0.963	0.863
	(0.016)	(0.016)	(0.019)	(0.017)							
% married respondents	0.831	0.780	0.829	0.806	0.018	0.901	0.223	0.030	0.236	0.293	0.074
-	(0.013)	(0.017)	(0.015)	(0.015)							
Average years of education of	7.806	7.837	7.798	7.707	0.924	0.982	0.777	0.907	0.702	0.799	0.984
respondent	(0.240)	(0.229)	(0.251)	(0.251)							
% ICM Base: Koronoadal	0.246	0.232	0.234	0.241	0.849	0.865	0.951	0.984	0.896	0.913	0.997
	(0.051)	(0.050)	(0.050)	(0.050)							
% ICM Base: General Santos	0.233	0.245	0.241	0.237	0.863	0.912	0.956	0.951	0.906	0.956	0.998
	(0.047)	(0.050)	(0.050)	(0.048)							
% ICM Base: Bacolod	0.271	0.263	0.270	0.268	0.912	0.990	0.971	0.922	0.941	0.981	1.000
	(0.053)	(0.052)	(0.053)	(0.052)							
% ICM Base: Dumaguete	0.250	0.260	0.256	0.253	0.890	0.938	0.962	0.952	0.927	0.976	0.999
_	(0.049)	(0.051)	(0.051)	(0.050)							
Avg. days between June 1, 2015	154.439	156.865	147.488	153.984	0.719	0.304	0.951	0.130	0.678	0.351	0.476
and interview end date	(5.144)	(4.360)	(4.385)	(5.414)							
% households successfully	0.831	0.827	0.826	0.820	0.830	0.824	0.582	0.978	0.723	0.766	0.957
interviewed	(0.014)	(0.013)	(0.015)	(0.013)							
Number of observations	1,599	1,550	1,549	1,578							

These numbers exclude five community pairs that did not comply with their treatment assignment and three community pairs that were not visited due to risk of violence. The average number of household members is not exactly equal to the sum of the average number of adults and the average number of children because of missing ages in the data. Standard errors clustered by community are in parentheses. The following educational categories are coded as corresponding to the following number of years of education: Pre-school only = 0.5, 1st grade only = 1, 2nd grade only = 2, ..., 11th grade only = 11, some 12th grade without high school graduation = 12, high school graduation = 13, partial vocational education = 14, complete vocational education = 15, partial college = 16, college graduation = 17.

Online Appendix Table 2. Predicting attrition at six months from baseline characteristics

Baseline Characteristics			Attı	rition at six mo	nths		
Respondent age	-0.0001						-0.0003
	(0.0005)						(0.0007)
Respondent is male		0.0482					0.0578
		(0.0218)					(0.0265)
Respondent years of education			-0.0003				-0.0009
			(0.0018)				(0.0023)
Respondent income (in 1000s PHP)				0.0004			
				(0.0004)			
Household income (in 1000s PHP)					0.0003		0.0009
					(0.0003)		(0.0004)
Composite religiosity index						-0.0131	-0.0123
						(0.0083)	(0.0083)
Constant	0.1233	0.1118	0.1220	0.1161	0.1130	0.1310	0.1232
	(0.0227)	(0.0098)	(0.0187)	(0.0102)	(0.0109)	(0.0112)	(0.0426)
·							
Observations	2,467	2,467	2,467	2,460	2,466	1,941	1,940
R-squared	0.000	0.003	0.000	0.001	0.001	0.001	0.009
F-test <i>p</i> -value	0.855	0.0285	0.882	0.307	0.291	0.116	0.0475

This table shows OLS regression coefficients. The dependent variable is a dummy for attrition at 6 months in all columns. Explanatory variables were measured in the baseline survey. Standard errors clustered by community are in parentheses. The composite religiosity index is the normalized sum of the intrinsic religion, extrinsic religion, and general religion indices (see Section IV.E.2). The F-test is for the null that all the non-constant explanatory variable coefficients in the regression jointly equal zero. The sample excludes five community pairs that did not comply with their treatment assignment and three community pairs that were not visited due to risk of violence.

Online Appendix Table 3. Primary outcomes (including communities that switched treatment status), six-month survey

	1	2	3	4	5	6	7	8	9	10
	Religion	Religion	General	Religion - list	Monthly	Food security	Monthly	Adult weekly	Life	Perceived
		extrinsic index			consumption	index	income	labor supply	satisfaction	relative econ.
	mumble mack	extrinsic index	Tengion maex	Tundonnization	(PHP)	maex	(PHP)	(hours)	index	status
Panel A: Pooled specification										
Any V	0.098	0.129	0.069	0.053	4.907	0.013	380.3	0.814	0.024	-0.105
	(0.023)	(0.023)	(0.022)	(0.036)	(98.76)	(0.022)	(123.9)	(1.057)	(0.022)	(0.046)
Any HL	0.011	-0.023	-0.000	-0.018	-59.151	-0.034	111.9	-1.550	-0.012	-0.033
	(0.023)	(0.023)	(0.022)	(0.036)	(91.50)	(0.022)	(123.4)	(1.070)	(0.022)	(0.046)
FDR q -value for Any $V = C$	0.000	0.000	0.002	0.144	0.960	0.655	0.014	0.655	0.539	0.070
FWER adjusted p -value for Any V = C	0.000	0.000	0.004	0.144	1.000	1.000	0.014	1.000	1.000	0.116
Panel B: Disaggregated specification										
VHL	0.108	0.106	0.070	0.035	-55.32	-0.020	500.8	-0.773	0.012	-0.136
	(0.033)	(0.036)	(0.029)	(0.052)	(154.8)	(0.036)	(171.5)	(1.362)	(0.027)	(0.065)
HL	0.044	0.089	-0.032	0.001	-297.47	-0.033	220.4	-0.208	-0.027	-0.099
	(0.053)	(0.063)	(0.052)	(0.053)	(195.2)	(0.050)	(270.1)	(2.327)	(0.055)	(0.109)
V	0.118	0.219	0.041	0.068	-187.38	0.002	531.0	2.556	-0.010	-0.155
	(0.048)	(0.062)	(0.049)	(0.055)	(202.3)	(0.049)	(277.1)	(2.249)	(0.046)	(0.116)
FDR q -value for VHL = HL	0.408	0.793	0.150	0.534						
FWER adjusted p -value for VHL = HL		1.000	0.339	1.000						
FDR q -value for $V = C$	0.062	0.004	0.534	0.408	0.532	0.970	0.338	0.513	0.970	0.513
FWER adjusted p -value for $V = C$	0.108	0.004	1.000	1.000	1.000	1.000	0.338	1.000	1.000	0.903
Panel C: Summary information										
Control group mean	0	0	0	0.609	4,995	0	4,241	79.86	0	3.236
Control group SD	1	1	1		4,657	1	5,732	57.16	1	2.260
# observations in VHL	1,646	1,646	1,646	1,646	1,646	1,594	1,520	1,520	1,646	1,644
# observations in HL	1,596	1,596	1,596	1,596	1,596	1,568	1,487	1,486	1,596	1,595
# observations in V	1,598	1,598	1,598	1,598	1,598	1,556	1,482	1,481	1,598	1,595
# observations in C	1,667	1,667	1,667	1,667	1,667	1,635	1,557	1,557	1,667	1,664

Results in this table include observations from communities that did not follow the original treatment assignment and switched treatment status. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 4. Mechanisms (including communities that switched treatment status), six-month survey

	11	12	13	14	15	16	17	18	19	20	21
	Trust index	Social safety net index	Community activities index	Perceived stress scale index	Powerful others index	Locus of control index	Life orientation index	Expectations index	Optimism index	Grit index	Self-control index
Panel A: Pooled specification											
Any V	0.006	0.031	0.012	-0.008	0.093	-0.037	-0.034	-0.032	0.050	0.056	-0.040
•	(0.022)	(0.023)	(0.025)	(0.020)	(0.027)	(0.019)	(0.027)	(0.024)	(0.024)	(0.022)	(0.020)
Any HL	-0.013	-0.026	0.033	-0.019	0.032	0.000	0.012	-0.026	-0.032	0.015	0.007
	(0.022)	(0.023)	(0.025)	(0.020)	(0.027)	(0.019)	(0.027)	(0.025)	(0.023)	(0.022)	(0.020)
p-value for Any V = C test	0.7985	0.1920	0.6288	0.6726	0.0006	0.0565	0.2101	0.1800	0.0362	0.0127	0.0489
Panel B: Disaggregated specific	ation										
VHL	-0.007	0.006	0.045	-0.026	0.125	-0.036	-0.022	-0.061	0.018	0.067	-0.031
	(0.032)	(0.031)	(0.034)	(0.025)	(0.038)	(0.028)	(0.036)	(0.031)	(0.032)	(0.029)	(0.024)
HL	-0.010	-0.070	0.020	-0.010	0.028	-0.059	-0.056	-0.027	-0.016	0.033	0.029
	(0.043)	(0.047)	(0.057)	(0.043)	(0.059)	(0.055)	(0.066)	(0.055)	(0.060)	(0.057)	(0.046)
V	-0.014	-0.013	0.005	-0.004	0.080	-0.082	-0.093	-0.054	0.066	0.057	-0.020
	(0.045)	(0.047)	(0.059)	(0.042)	(0.058)	(0.049)	(0.068)	(0.055)	(0.065)	(0.058)	(0.049)
p-value for VHL = HL test	0.948	0.131	0.672	0.710	0.102	0.675	0.617	0.544	0.567	0.553	0.188
p-value for $V = C$ test	0.7541	0.7781	0.9308	0.9299	0.1688	0.0968	0.1727	0.3256	0.3071	0.3322	0.6818
Panel C: Summary information											
Control group mean	0	0	0	0	0	0	0	0	0	0	0
Control group SD	1	1	1	1	1	1	1	1	1	1	1
# observations in VHL	1,646	1,646	1,629	1,645	1,646	1,646	1,646	1,610	1,646	1,646	1,646
# observations in HL	1,596	1,596	1,589	1,596	1,596	1,596	1,596	1,555	1,596	1,596	1,596
# observations in V	1,598	1,598	1,582	1,597	1,598	1,598	1,598	1,565	1,598	1,598	1,598
# observations in C	1,667	1,667	1,660	1,667	1,667	1,667	1,667	1,631	1,667	1,667	1,667

Results in this table include observations from communities that did not follow the original treatment assignment and switched treatment status. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 5. Secondary outcomes (including communities that switched treatment status), six-month survey

	22	23	24	25	26	27	28	29	30	31	32	33
	Salvation by grace belief index	Assets index	Financial inclusion index	Health index	Hygiene index, non-list random.	Hygiene, list random.	House index	Migration and remittance index	No discord index	No domestic violence, list rand.	Child labor supply (hours)	# children enrolled in school
Panel A: Pooled specification												
Any V	-0.036 (0.020)	-0.021 (0.021)	0.022 (0.023)	-0.001 (0.020)	0.078 (0.024)	0.043 (0.033)	0.040 (0.025)	0.026 (0.019)	-0.037 (0.024)	-0.074 (0.040)	0.334 (0.209)	-0.020 (0.017)
Any HL	-0.006 (0.020)	-0.021 (0.021)	0.143 (0.025)	0.020 (0.019)	0.030 (0.024)	0.070 (0.033)	0.010 (0.025)	-0.005 (0.019)	-0.028 (0.024)	-0.054 (0.040)	-0.021 (0.215)	-0.011 (0.017)
p-value for Any V = C test	0.0675	0.3106	0.3566	0.9674	0.0015	0.1933	0.1061	0.1673	0.1196	0.0659	0.1118	0.2268
Panel B: Disaggregated specifi	cation											
VHL	-0.043 (0.025)	-0.041 (0.030)	0.165 (0.038)	0.019 (0.027)	0.108 (0.034)	0.111 (0.049)	0.050 (0.036)	0.021 (0.031)	-0.064 (0.034)	-0.127 (0.054)	0.313 (0.306)	-0.031 (0.023)
HL	-0.025 (0.045)	0.011 (0.055)	0.101 (0.048)	-0.012 (0.041)	0.121 (0.070)	0.127 (0.042)	0.045 (0.057)	-0.056 (0.041)	-0.038 (0.050)	-0.100 (0.058)	-0.076 (0.370)	-0.014 (0.036)
V	-0.065 (0.041)	0.008 (0.058)	-0.016 (0.044)	-0.036 (0.040)	0.182 (0.067)	0.108 (0.044)	0.073 (0.059)	-0.022 (0.039)	-0.054 (0.048)	-0.135 (0.059)	0.244 (0.396)	-0.023 (0.036)
p-value for VHL = HL test p -value for V = C test	0.710 0.1128	0.340 0.8978	0.216 0.7192	0.465 0.3632	0.849 0.0068	0.717 0.0140	0.933 0.2131	0.071 0.5749	0.617 0.2655	0.642 0.0233	0.328 0.5388	0.620 0.5104
Panel C: Summary information	n											
Control group mean	0	0	0	0	0	0.552	0	0	0	0.912	1.488	1.673
Control group SD	1	1	1	1	1		1	1	1		12.010	1.371
# observations in VHL	1,646	1,646	1,646	1,646	1,646	1,646	1,646	1,646	1,327	1,646	1,520	1,646
# observations in HL	1,596	1,596	1,596	1,596	1,596	1,596	1,596	1,596	1,342	1,596	1,486	1,596
# observations in V	1,598	1,598	1,598	1,598	1,598	1,598	1,598	1,598	1,306	1,598	1,486	1,598
# observations in C	1,667	1,667	1,667	1,667	1,667	1,667	1,667	1,667	1,390	1,667	1,557	1,667

Results in this table include observations from communities that did not follow the original treatment assignment and switched treatment status. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 6. Primary outcomes (controlling for available baseline survey characteristics), six-month survey

	1	2	3	4	5	6	7	8	9	10
	Religion	Religion	General	Religion - list	Monthly	Food security	Monthly	Adult weekly	Life	Perceived
	_	extrinsic index		-	consumption	index	income	labor supply	satisfaction	relative econ.
	munisic maex	extrinsic index	Teligion index	Talidollitzation	(PHP)	iliuex	(PHP)	(hours)	index	status
Panel A: Pooled specification										
Any V	0.102	0.129	0.080	0.045	20.03	0.013	422.2	1.045	0.025	-0.109
	(0.024)	(0.024)	(0.023)	(0.037)	(99.91)	(0.023)	(124.2)	(1.092)	(0.022)	(0.047)
Any HL	0.016	-0.020	0.000	-0.028	-110.67	-0.046	139.9	-1.844	-0.011	-0.048
•	(0.024)	(0.024)	(0.023)	(0.037)	(92.98)	(0.023)	(125.3)	(1.099)	(0.022)	(0.046)
FDR q -value for Any V = C	0.000	0.000	0.001	0.230	0.841	0.663	0.005	0.509	0.509	0.062
FWER adjusted p -value for Any V = C	0.000	0.000	0.001	0.230	1.000	1.000	0.005	1.000	1.000	0.103
Panel B: Disaggregated specification										
VHL	0.114	0.109	0.079	0.021	-75.52	-0.033	568.6	-0.629	0.012	-0.147
	(0.035)	(0.037)	(0.030)	(0.054)	(161.7)	(0.037)	(174.1)	(1.435)	(0.026)	(0.066)
HL	0.047	0.075	-0.029	-0.002	-338.94	-0.060	282.9	-0.309	-0.028	-0.081
	(0.054)	(0.064)	(0.052)	(0.055)	(197.6)	(0.050)	(270.9)	(2.388)	(0.056)	(0.109)
V	0.125	0.206	0.056	0.065	-160.81	-0.012	601.7	2.942	-0.008	-0.132
	(0.049)	(0.063)	(0.050)	(0.057)	(205.8)	(0.049)	(281.3)	(2.326)	(0.046)	(0.117)
FDR q -value for VHL = HL	0.349	0.623	0.116	0.623						
FWER adjusted p -value for VHL = HL	1.000	1.000	0.261	1.000						
FDR q -value for $V = C$	0.048	0.010	0.349	0.349	0.653	0.863	0.200	0.520	0.863	0.520
FWER adjusted p -value for $V = C$	0.084	0.010	1.000	1.000	1.000	1.000	0.200	1.000	1.000	1.000
Panel C: Summary information										
Control group mean	0	0	0	0.606	5,001	0	4,213	79.58	0	3.242
Control group SD	1	1	1		4,720	1	5,567	57.70	1	2.256
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,526	1,452	1,452	1,578	1,576
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,521	1,440	1,439	1,549	1,548
# observations in V	1,550	1,550	1,550	1,550	1,550	1,517	1,435	1,434	1,550	1,547
# observations in C	1,599	1,599	1,599	1,599	1,599	1,567	1,490	1,490	1,599	1,596

Results in this table include, where available, controls for the following respondent characteristics measured at baseline, as well as dummies for each of these variables being missing: household income, perceived relative economic status, and indexes of intrinsic religiosity, extrinsic religiosity, general religiosity, belief in salvation by grace, food security, life satisfaction, trust, social safety net, community activities, powerful others, locus of control, expectations, and grit. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 7. Mechanisms (controlling for available baseline survey characteristics), six-month survey

	11	12	13	14	15	16	17	18	19	20	21
	Trust index	Social safety net index	Community activities index	Perceived stress scale index	Powerful others index	Locus of control index	Life orientation index	Expectations index	Optimism index	Grit index	Self-control index
Panel A: Pooled specification											
Any V	0.009	0.030	0.014	-0.008	0.095	-0.041	-0.051	-0.034	0.053	0.044	-0.033
•	(0.022)	(0.024)	(0.025)	(0.020)	(0.028)	(0.020)	(0.028)	(0.025)	(0.025)	(0.022)	(0.021)
Any HL	-0.022	-0.031	0.041	-0.022	0.045	-0.001	0.017	-0.020	-0.025	0.016	0.005
	(0.021)	(0.024)	(0.024)	(0.021)	(0.027)	(0.019)	(0.027)	(0.025)	(0.024)	(0.022)	(0.020)
p-value for Any V = C test	0.671	0.203	0.569	0.710	0.001	0.038	0.064	0.168	0.032	0.048	0.107
Panel B: Disaggregated specific	ation										
VHL	-0.009	0.004	0.056	-0.024	0.137	-0.047	-0.035	-0.055	0.024	0.053	-0.027
	(0.032)	(0.032)	(0.034)	(0.026)	(0.039)	(0.029)	(0.037)	(0.032)	(0.033)	(0.029)	(0.025)
HL	-0.022	-0.068	0.028	-0.014	0.034	-0.061	-0.042	-0.018	-0.005	0.028	0.038
	(0.043)	(0.047)	(0.056)	(0.043)	(0.058)	(0.057)	(0.067)	(0.056)	(0.060)	(0.057)	(0.047)
V	-0.014	-0.008	0.006	-0.009	0.077	-0.086	-0.102	-0.052	0.076	0.041	-0.000
	(0.046)	(0.047)	(0.058)	(0.042)	(0.059)	(0.051)	(0.068)	(0.057)	(0.065)	(0.058)	(0.050)
p -value for VHL = HL test	0.786	0.148	0.626	0.820	0.077	0.795	0.922	0.515	0.627	0.674	0.159
p -value for $V = C$ test	0.762	0.869	0.920	0.833	0.194	0.091	0.135	0.364	0.247	0.479	0.999
Panel C: Summary information											
Control group mean	0	0	0	0	0	0	0	0	0	0	0
Control group SD	1	1	1	1	1	1	1	1	1	1	1
# observations in VHL	1,578	1,578	1,561	1,577	1,578	1,578	1,578	1,542	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,542	1,549	1,549	1,549	1,549	1,508	1,549	1,549	1,549
# observations in V	1,550	1,550	1,534	1,549	1,550	1,550	1,550	1,518	1,550	1,550	1,550
# observations in C	1,599	1,599	1,592	1,599	1,599	1,599	1,599	1,567	1,599	1,599	1,599

Results in this table include, where available, controls for the following respondent characteristics measured at baseline, as well as dummies for each of these variables being missing: household income, perceived relative economic status, and indexes of intrinsic religiosity, extrinsic religiosity, general religiosity, belief in salvation by grace, food security, life satisfaction, trust, social safety net, community activities, powerful others, locus of control, expectations, and grit. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 8. Secondary outcomes (controlling for available baseline survey characteristics), six-month survey

	22	23	24	25	26	27	28	29	30	31	32	33
	Salvation by grace belief index	Assets index	Financial inclusion index	Health index	Hygiene index, non-list random.	Hygiene, list random.	House index	Migration and remittance index	No discord index	No domestic violence, list rand.	Child labor supply (hours)	# children enrolled in school
Panel A: Pooled specification												
Any V	-0.033 (0.021)	-0.025 (0.021)	0.020 (0.024)	0.000 (0.020)	0.094 (0.024)	0.042 (0.033)	0.033 (0.025)	0.028 (0.019)	-0.032 (0.025)	-0.071 (0.041)	0.233 (0.217)	-0.013 (0.017)
Any HL	-0.004 (0.020)	-0.029 (0.021)	0.157 (0.025)	0.014 (0.020)	0.029 (0.024)	0.064 (0.033)	0.003 (0.025)	-0.013 (0.019)	-0.031 (0.025)	-0.045 (0.041)	0.032 (0.225)	-0.012 (0.017)
p-value for Any V = C test	0.110	0.234	0.400	0.983	0.000	0.202	0.175	0.147	0.201	0.082	0.283	0.443
Panel B: Disaggregated specific	cation											
VHL	-0.037 (0.026)	-0.051 (0.031)	0.180 (0.039)	0.013 (0.028)	0.119 (0.034)	0.110 (0.049)	0.035 (0.034)	0.011 (0.031)	-0.058 (0.037)	-0.118 (0.056)	0.288 (0.330)	-0.021 (0.025)
HL	-0.024 (0.045)	0.004 (0.056)	0.126 (0.048)	-0.028 (0.041)	0.139 (0.069)	0.118 (0.043)	0.040 (0.055)	-0.076 (0.039)	-0.033 (0.051)	-0.078 (0.058)	-0.078 (0.385)	-0.014 (0.037)
V	-0.061 (0.042)	-0.001 (0.060)	-0.009 (0.043)	-0.044 (0.041)	0.216 (0.066)	0.104 (0.045)	0.073 (0.057)	-0.032 (0.040)	-0.040 (0.049)	-0.119 (0.061)	0.094 (0.411)	-0.015 (0.036)
p-value for VHL = HL test p -value for V = C test	0.784 0.143	0.329 0.989	0.300 0.834	0.337 0.287	0.780 0.001	0.870 0.021	0.933 0.207	0.033 0.417	0.648 0.412	0.473 0.050	0.375 0.819	0.860 0.671
Panel C: Summary information	1											
Control group mean	0	0	0	0	0	0.558	0	0	0	0.903	1.555	1.667
Control group SD	1	1	1	1	1		1	1	1		12.280	1.367
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,267	1,578	1,452	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,297	1,549	1,439	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,263	1,550	1,439	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,331	1,599	1,490	1,599

Results in this table include, where available, controls for the following respondent characteristics measured at baseline, as well as dummies for each of these variables being missing: household income, perceived relative economic status, and indexes of intrinsic religiosity, extrinsic religiosity, general religiosity, belief in salvation by grace, food security, life satisfaction, trust, social safety net, community activities, powerful others, locus of control, expectations, and grit. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 9. Primary outcomes (without controls for respondent characteristics), six-month survey

	1	2	3	4	5	6	7	8	9	10
	Religion	Religion	General	Religion - list	Monthly	Food security	Monthly	Adult weekly	Life	Perceived
		extrinsic index			consumption	index	income	labor supply	satisfaction	relative econ.
	mumsic maex	extrinsic index	rengion index	randomization	(PHP)	ilidex	(PHP)	(hours)	index	status
Panel A: Pooled specification										
Any V	0.097	0.123	0.079	0.043	20.69	0.003	390.7	0.610	0.003	-0.132
	(0.023)	(0.023)	(0.023)	(0.038)	(98.86)	(0.024)	(134.4)	(1.118)	(0.022)	(0.050)
Any HL	0.020	-0.013	-0.001	-0.028	-191.02	-0.038	84.9	-1.889	0.006	-0.029
	(0.023)	(0.023)	(0.023)	(0.038)	(98.86)	(0.024)	(134.4)	(1.118)	(0.022)	(0.050)
FDR q -value for Any V = C	0.000	0.000	0.001	0.258	0.888	0.888	0.023	0.888	0.888	0.024
FWER adjusted p -value for Any V = C	0.000	0.000	0.002	0.258	1.000	1.000	0.023	1.000	1.000	0.041
Panel B: Disaggregated specification										
VHL	0.117	0.110	0.077	0.015	-170.3	-0.035	475.6	-1.279	0.010	-0.161
	(0.034)	(0.037)	(0.031)	(0.055)	(163.9)	(0.038)	(198.7)	(1.619)	(0.027)	(0.071)
HL	0.054	0.079	-0.024	0.005	-357.0	-0.052	348.3	1.072	-0.024	-0.036
	(0.055)	(0.064)	(0.055)	(0.056)	(204.4)	(0.054)	(284.0)	(2.639)	(0.056)	(0.124)
V	0.124	0.204	0.057	0.065	-139.6	-0.013	634.8	3.586	-0.029	-0.138
	(0.050)	(0.064)	(0.051)	(0.058)	(214.7)	(0.053)	(292.9)	(2.507)	(0.048)	(0.128)
FDR q -value for VHL = HL	0.369	0.734	0.187	0.839						
FWER adjusted p -value for VHL = HL	1.000	1.000	0.422	1.000						
FDR q -value for $V = C$	0.057	0.013	0.369	0.369	0.651	0.803	0.186	0.461	0.651	0.559
FWER adjusted p -value for $V = C$	0.099	0.013	1.000	1.000	1.000	1.000	0.186	0.768	1.000	1.000
Panel C: Summary information										
Control group mean	0	0	0	0.606	5,001	0	4,213	79.58	0	3.242
Control group SD	1	1	1		4,720	1	5,567	57.70	1	2.256
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,526	1,452	1,452	1,578	1,576
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,521	1,440	1,439	1,549	1,548
# observations in V	1,550	1,550	1,550	1,550	1,550	1,517	1,435	1,434	1,550	1,547
# observations in C	1,599	1,599	1,599	1,599	1,599	1,567	1,490	1,490	1,599	1,596

Results in this table do not include controls for respondent characteristics, only treatment dummies and community pair or ICM base dummies. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 10. Mechanisms (without controls for respondent characteristics), six-month survey

	11	12	13	14	15	16	17	18	19	20	21
	Trust index	Social safety net index	Community activities index	Perceived stress scale index	Powerful others index	Locus of control index	Life orientation index	Expectations index	Optimism index	Grit index	Self-control index
Panel A: Pooled specification											
Any V	-0.004	0.016	0.010	-0.006	0.078	-0.033	-0.051	-0.062	0.060	0.036	-0.024
·	(0.022)	(0.024)	(0.025)	(0.021)	(0.026)	(0.020)	(0.027)	(0.025)	(0.024)	(0.022)	(0.021)
Any HL	-0.014	-0.023	0.032	-0.023	0.059	-0.006	0.014	0.004	-0.029	0.021	-0.003
	(0.022)	(0.024)	(0.025)	(0.021)	(0.026)	(0.020)	(0.027)	(0.025)	(0.024)	(0.022)	(0.021)
p-value for Any V = C test	0.842	0.501	0.694	0.776	0.003	0.100	0.062	0.015	0.014	0.096	0.235
Panel B: Disaggregated specification	ation										
VHL	-0.018	-0.007	0.041	-0.029	0.136	-0.038	-0.036	-0.059	0.031	0.058	-0.028
	(0.033)	(0.032)	(0.035)	(0.027)	(0.038)	(0.029)	(0.037)	(0.035)	(0.033)	(0.029)	(0.025)
HL	-0.025	-0.065	0.021	-0.016	0.048	-0.070	-0.048	0.001	-0.016	0.022	0.028
	(0.044)	(0.051)	(0.060)	(0.044)	(0.061)	(0.057)	(0.067)	(0.057)	(0.064)	(0.059)	(0.047)
V	-0.020	-0.025	-0.004	-0.003	0.070	-0.084	-0.105	-0.064	0.079	0.039	0.007
	(0.046)	(0.050)	(0.060)	(0.043)	(0.060)	(0.051)	(0.069)	(0.058)	(0.068)	(0.059)	(0.052)
p-value for VHL = HL test	0.889	0.285	0.738	0.768	0.149	0.574	0.868	0.308	0.462	0.559	0.236
p -value for $V = C$ test	0.664	0.624	0.950	0.950	0.243	0.096	0.127	0.268	0.245	0.507	0.895
Panel C: Summary information											
Control group mean	0	0	0	0	0	0	0	0	0	0	0
Control group SD	1	1	1	1	1	1	1	1	1	1	1
# observations in VHL	1,578	1,578	1,561	1,577	1,578	1,578	1,578	1,542	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,542	1,549	1,549	1,549	1,549	1,508	1,549	1,549	1,549
# observations in V	1,550	1,550	1,534	1,549	1,550	1,550	1,550	1,518	1,550	1,550	1,550
# observations in C	1,599	1,599	1,592	1,599	1,599	1,599	1,599	1,567	1,599	1,599	1,599

Results in this table do not include controls for respondent characteristics, only treatment dummies and community pair or ICM base dummies. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 11. Secondary outcomes (without controls for respondent characteristics), six-month survey

	22	23	24	25	26	27	28	29	30	31	32	33
	Salvation by grace belief index	Assets index	Financial inclusion index	Health index	Hygiene index, non-list random.	Hygiene, list random.	House index	Migration and remittance index	No discord index	No domestic violence, list rand.	Child labor supply (hours)	# children enrolled in school
Panel A: Pooled specification												
Any V	-0.038 (0.020)	-0.033 (0.024)	0.026 (0.025)	-0.004 (0.020)	0.097 (0.025)	0.037 (0.034)	0.018 (0.027)	0.023 (0.020)	-0.030 (0.025)	-0.070 (0.041)	0.300 (0.220)	-0.011 (0.031)
Any HL	-0.003 (0.020)	-0.029 (0.024)	0.145 (0.025)	0.018 (0.020)	0.027 (0.025)	0.064 (0.034)	0.017 (0.027)	-0.018 (0.020)	-0.031 (0.025)	-0.047 (0.041)	-0.104 (0.220)	-0.086 (0.031)
p-value for Any V = C test	0.061	0.161	0.291	0.844	0.000	0.273	0.500	0.248	0.225	0.085	0.175	0.731
Panel B: Disaggregated specifi	cation											
VHL	-0.041 (0.026)	-0.063 (0.036)	0.171 (0.039)	0.014 (0.028)	0.125 (0.037)	0.101 (0.049)	0.035 (0.039)	0.005 (0.032)	-0.061 (0.036)	-0.117 (0.055)	0.195 (0.325)	-0.097 (0.045)
HL	-0.026 (0.045)	0.025 (0.062)	0.114 (0.048)	-0.029 (0.042)	0.140 (0.074)	0.122 (0.044)	0.058 (0.064)	-0.068 (0.040)	-0.043 (0.056)	-0.077 (0.058)	-0.181 (0.398)	-0.081 (0.067)
V	-0.058 (0.042)	0.006 (0.066)	-0.006 (0.045)	-0.047 (0.041)	0.210 (0.070)	0.097 (0.045)	0.065 (0.064)	-0.029 (0.041)	-0.041 (0.053)	-0.115 (0.061)	0.210 (0.413)	0.010 (0.066)
p -value for VHL = HL test p -value for V = C test	0.757 0.168	0.165 0.932	0.285 0.893	0.334 0.243	0.841 0.003	0.655 0.032	0.737 0.305	0.078 0.469	0.760 0.432	0.475 0.060	0.367 0.612	0.810 0.881
Panel C: Summary information	n											
Control group mean	0	0	0	0	0	0.558	0	0	0	0.903	1.555	1.667
Control group SD	1	1	1	1	1		1	1	1		12.280	1.367
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,267	1,578	1,452	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,297	1,549	1,439	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,263	1,550	1,439	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,331	1,599	1,490	1,599

Results in this table do not include controls for respondent characteristics, only treatment dummies and community pair or ICM base dummies. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 12. Religion intrinsic index, six-month survey

	1	2	3	4	5	6	7	8	9
	Religion intrinsic index - 5 questions	I enjoy thinking about my religion	It is important to me to spend time in private thought and prayer	had a strong	I try hard to live all my life according to my religious beliefs	My whole approach to life is based on religion	Although I am religious, I don't let it affect my daily life (not used)	It doesn't much matter what I believe so long as I am good (not used)	Although I believe in my religion, many other things are more important in life (not used)
Panel A: Pooled specification									
Any V	0.102	0.017	0.029	0.033	0.077	0.133	-0.062	-0.029	-0.079
	(0.024)	(0.014)	(0.015)	(0.016)	(0.022)	(0.030)	(0.024)	(0.022)	(0.029)
Any HL	0.014	-0.023	-0.005	0.014	0.043	0.012	-0.008	-0.004	-0.024
	(0.024)	(0.014)	(0.015)	(0.016)	(0.023)	(0.030)	(0.023)	(0.022)	(0.028)
p-value for Any V = C test	0.000	0.217	0.054	0.035	0.001	0.000	0.009	0.189	0.006
Panel B: Disaggregated specification									
VHL	0.115	-0.007	0.023	0.047	0.120	0.143	-0.070	-0.032	-0.102
	(0.034)	(0.019)	(0.021)	(0.024)	(0.031)	(0.042)	(0.033)	(0.030)	(0.046)
HL	0.047	-0.010	0.003	0.032	0.060	0.047	-0.077	-0.038	-0.115
	(0.055)	(0.036)	(0.030)	(0.028)	(0.051)	(0.074)	(0.056)	(0.041)	(0.064)
V	0.123	0.028	0.028	0.049	0.084	0.162	-0.125	-0.057	-0.154
	(0.050)	(0.034)	(0.030)	(0.028)	(0.046)	(0.071)	(0.058)	(0.039)	(0.064)
p -value for VHL = HL test p -value for V = C test	0.246	0.932	0.532	0.648	0.254	0.208	0.909	0.889	0.849
	0.015	0.417	0.343	0.083	0.070	0.022	0.032	0.147	0.016
Panel C: Summary information									
Control group mean Control group SD # observations in VHL # observations in HL # observations in V # observations in C	0	4.570	4.710	4.701	4.341	3.766	1.764	1.470	2.132
	1	0.729	0.647	0.638	0.986	1.291	1.150	0.851	1.300
	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578
	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549
	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550
	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater religiosity. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 13. Religion extrinsic index, six-month survey

	1	2	3	4	5	6	7
	Religion extrinsic index	I go to religious services because it helps me to make friends	I pray mainly to gain relief and protection	What religion offers me most is comfort in times of trouble and sorrow	Prayer is for peace and happiness	I go to religious services mostly to spend time with my friends	I go to religious services mainly because I enjoy seeing people there
Panel A: Pooled specification							
Any V	0.130	0.151	0.022	0.052	0.002	0.201	0.153
	(0.024)	(0.032)	(0.017)	(0.019)	(0.010)	(0.035)	(0.030)
Any HL	-0.021	-0.060	0.018	0.004	-0.005	-0.019	-0.031
	(0.024)	(0.032)	(0.017)	(0.020)	(0.010)	(0.035)	(0.031)
p-value for Any V = C test	0.000	0.000	0.198	0.006	0.864	0.000	0.000
Panel B: Disaggregated specific	cation						
VHL	0.109	0.090	0.040	0.056	-0.004	0.183	0.123
	(0.037)	(0.049)	(0.027)	(0.026)	(0.017)	(0.054)	(0.044)
HL	0.073	0.045	0.053	0.037	0.003	0.114	0.076
	(0.065)	(0.084)	(0.045)	(0.044)	(0.022)	(0.094)	(0.084)
V	0.204	0.233	0.057	0.084	0.008	0.301	0.230
	(0.064)	(0.078)	(0.047)	(0.042)	(0.020)	(0.092)	(0.084)
p-value for VHL = HL test p -value for V = C test	0.596	0.597	0.788	0.688	0.802	0.460	0.575
	0.002	0.003	0.225	0.047	0.704	0.001	0.006
Panel C: Summary information	1						
Control group mean Control group SD # observations in VHL # observations in HL # observations in V	0	3.690	4.583	4.381	4.828	3.319	3.149
	1	1.427	0.852	0.926	0.468	1.501	1.551
	1,578	1,578	1,578	1,578	1,578	1,578	1,578
	1,549	1,549	1,549	1,549	1,549	1,549	1,549
	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater religiosity. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 14. General religion index, six-month survey

	1	2	3	4	5	6	7	8
		To what extent do	In the last month, have you		In how many of the past 7	How satisfied are	How often do you	
	General religion	you consider	tried to convince anyone else	How many people?	days did you pray privately	you with your	go to religious	ICM religion
	index	yourself a religious person?	to change the way they think about God?		in places other than at a place of worship?	spiritual life right now?	service? (number	
		person?	about God?		place of worship?	now?	of days in a year)	
Panel A: Pooled specification								
Any V	0.077	0.020	0.012	0.028	0.201	-0.013	0.937	0.121
	(0.023)	(0.017)	(0.009)	(0.052)	(0.066)	(0.020)	(0.621)	(0.039)
Any HL	0.001	-0.004	-0.026	0.000	-0.111	0.011	-1.382	0.081
·	(0.023)	(0.016)	(0.009)	(0.053)	(0.064)	(0.020)	(0.621)	(0.040)
p-value for Any V = C test	0.055	0.215	0.189	0.475	0.142	0.806	0.870	0.074
Panel B: Disaggregated specifi	ication							
VHL	0.077	0.016	-0.014	0.026	0.092	-0.002	-0.438	0.202
	(0.031)	(0.023)	(0.013)	(0.070)	(0.087)	(0.024)	(0.803)	(0.050)
HL	-0.029	-0.028	-0.042	-0.063	-0.153	0.009	-0.668	0.047
	(0.054)	(0.035)	(0.021)	(0.119)	(0.162)	(0.042)	(1.438)	(0.087)
V	0.052	-0.009	-0.002	-0.022	0.109	-0.017	1.832	0.100
	(0.051)	(0.035)	(0.020)	(0.089)	(0.150)	(0.046)	(1.412)	(0.084)
p-value for VHL = HL test	0.055	0.215	0.189	0.475	0.142	0.806	0.870	0.074
p -value for $V = C$ test	0.312	0.790	0.933	0.801	0.469	0.718	0.196	0.232
Panel C: Summary informatio	n							
Control group mean	0	2.795	0.301	0.887	5.062	4.119	39.53	13.97
Control group SD	1	0.703	0.459	2.275	2.792	0.933	27.90	1.57
# observations in VHL	1,578	1,578	1,578	1,577	1,578	1,578	1,576	1,473
# observations in HL	1,549	1,549	1,549	1,547	1,549	1,549	1,549	1,457
# observations in V	1,550	1,550	1,550	1,548	1,550	1,550	1,548	1,455
# observations in C	1,599	1,599	1,599	1,596	1,599	1,599	1,598	1,515

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater religiosity. See Appendix for details on variable construction. "ICM religion" is the sum of the agreement with three statements ("The Bible is accurate in all that it teaches," "I believe the Bible has decisive authority over what I say and do," and "I believe the Christian God—Father, Son, and Holy Spirit—is the only true God") that were scored from 1 to 5, where higher numbers represent more agreement. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 15. Religion - list randomized, six-month survey

	22	23	24
	Religion - list randomized	I have made a personal commitment to Jesus Christ that is still important to me today (list randomized)	I have read or listened to the Bible in the past week (list randomized)
Panel A: Pooled specification			
Any V	0.048	0.048	0.049
	(0.037)	(0.046)	(0.044)
Any HL	-0.028	0.013	-0.069
	(0.038)	(0.046)	(0.044)
p-value for Any V = C test	0.197	0.303	0.262
Panel B: Disaggregated specification			
VHL	0.020	0.059	-0.019
	(0.054)	(0.066)	(0.061)
HL	-0.002	0.037	-0.041
	(0.055)	(0.069)	(0.065)
V	0.070	0.064	0.075
	(0.057)	(0.069)	(0.065)
p-value for VHL = HL test p -value for V = C test	0.653	0.720	0.710
	0.222	0.355	0.247
Panel C: Summary information			
Control group mean Control group SD # observations in VHL # observations in HL # observations in V	0.606	0.657	0.555
	1,578	1,578	1,578
	1,549	1,549	1,549
	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables, elicited via list randomization, are indicated in the column title. If the statement in the column title is true, the observation is coded as a 1, and if false, it is coded as a 0. "Religion - list randomized" is the average of the two variables in the rightmost columns. Standard errors clustered by community are in parentheses.

Online Appendix Table 16. Monthly consumption, six-month survey

	1	2	3	4
	Monthly consumption	Food consumption	Non-food	Celebration
	(PHP)	(PHP)	consumption (PHP)	spending (PHP)
Panel A: Pooled specification				
Any V	-1.078	40.07	-53.52	12.37
	(100.4)	(72.97)	(44.07)	(9.447)
Any HL	-102.960	-24.54	-72.72	-5.69
·	(93.3)	(71.40)	(37.71)	(9.659)
p-value for Any V = C test	0.991	0.583	0.226	0.191
Panel B: Disaggregated specification	on			
VHL	-102.2	16.13	-126.0	7.660
	(159.5)	(121.0)	(65.65)	(16.65)
HL	-314.3	-167.26	-115.1	-31.950
	(203.0)	(136.4)	(100.7)	(18.65)
V	-167.4	-76.51	-75.2	-15.717
	(209.5)	(136.7)	(108.5)	(20.38)
p -value for VHL = HL test	0.309	0.232	0.901	0.034
p -value for $V = C$ test	0.425	0.576	0.489	0.441
Panel C: Summary information				
Control group mean	5,001	3,439	1,461	100.8
Control group SD	4,720	3,125	2,634	643.4
# observations in VHL	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 17. Food security index, six-month survey

	1	2	3	4
	Food security index	No household member has gone hungry in last six months	No household member has gone to bed hungry in last six months outside of lean season	Number of days no member of the household went to bed hungry (last 7 days)
Panel A: Pooled specification				
Any V	0.010 (0.023)	0.008 (0.008)	0.007 (0.008)	-0.010 (0.019)
Any HL	-0.044 (0.023)	-0.017 (0.008)	-0.011 (0.008)	-0.041 (0.019)
p-value for Any V = C test	0.649	0.349	0.392	0.590
Panel B: Disaggregated specification				
VHL	-0.033 (0.037)	-0.009 (0.013)	-0.004 (0.013)	-0.051 (0.031)
HL	-0.050 (0.051)	-0.019 (0.019)	-0.014 (0.019)	-0.043 (0.041)
V	-0.007 (0.050)	0.000 (0.018)	0.002 (0.018)	-0.023 (0.041)
p-value for VHL = HL test p -value for V = C test	0.728 0.885	0.595 0.993	0.554 0.913	0.845 0.579
Panel C: Summary information				
Control group mean	0	0.824	0.856	6.685
Control group SD	1	0.381	0.351	0.838
# observations in VHL	1,526	1,526	1,526	1,526
# observations in HL	1,521	1,521	1,521	1,519
# observations in V	1,517	1,517	1,517	1,516
# observations in C	1,567	1,567	1,567	1,565

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 18. Monthly income, six-month survey

	1	2	3	4	5	6	7	8
	Monthly income (PHP)	Agricultural labor income (last 30 days)	Livestock and fishing income (last 30 days)	Formal employment income (last 30 days)	Self- employment income (last 30 days)	Daily labor income (last 30 days)	Employment (formality unclear) income (last 30 days)	Business profit (most recent month with normal sales)
Panel A: Pooled specification								
Any V	386.1	87.69	26.13	45.53	124.7	32.65	54.98	-5.161
	(126.8)	(63.91)	(32.02)	(55.62)	(41.09)	(94.54)	(23.67)	(18.31)
Any HL	131.2	-59.09	105.58	37.95	-46.4	53.31	33.13	-4.441
	(126.3)	(62.62)	(28.31)	(57.34)	(41.54)	(95.68)	(21.47)	(18.27)
p-value for Any V = C test	0.003	0.171	0.415	0.414	0.003	0.730	0.021	0.778
Panel B: Disaggregated specificat	tion							
VHL	524.4	33.78	135.0	88.39	79.67	80.53	86.22	-8.884
	(175.0)	(89.86)	(51.17)	(74.19)	(31.30)	(121.9)	(30.19)	(30.93)
HL	287.9	-219.24	28.4	57.49	43.79	369.68	38.20	-49.02
	(278.4)	(150.9)	(69.94)	(120.6)	(44.09)	(243.8)	(36.43)	(37.60)
V	574.2	-85.07	-19.7	80.35	187.09	362.81	67.14	-45.02
	(285.4)	(158.5)	(61.53)	(103.2)	(91.48)	(231.7)	(40.11)	(43.48)
p-value for VHL = HL test p -value for V = C test	0.390	0.101	0.214	0.808	0.444	0.216	0.236	0.270
	0.045	0.592	0.749	0.437	0.042	0.118	0.095	0.301
Panel C: Summary information								
Control group mean Control group SD # observations in VHL # observations in HL	4,213	1,078	163.4	645.5	113.8	1,998	110.1	123.9
	5,567	2,715	1,362.0	2,088.0	862.3	4,253	907.9	1,415.0
	1,452	1,452	1,452	1,452	1,452	1,452	1,452	1,578
	1,440	1,440	1,440	1,440	1,440	1,440	1,440	1,549
# observations in V	1,435	1,435	1,435	1,435	1,435	1,435	1,435	1,550
# observations in C	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses. Responses in the category of "other work outside the household" have been manually reclassified into fishing, self-employment, and other employment of unclear formality. In the table, we report categories that consolidate together formal employment and operation of a business that is not the household's; fishing and livestock tending; and housework in an outside household and daily labor.

Online Appendix Table 19. Adult labor supply, six-month survey

	1	2	3	4	5	6	7
	Adult weekly labor supply (hours)	Hours in agricultural labor (last 7 days)	Hours in livestock and fishing (last 7 days)	Hours in formal employment (last 7 days)	Hours in self employment (last 7 days)	Hours in daily labor (last 7 days)	Hours in employment with unclear formality (last 7 days)
Panel A: Pooled specification							
Any V	0.926 (1.091)	-2.072 (1.149)	0.776 (0.439)	-0.114 (0.563)	0.986 (0.272)	0.806 (1.141)	0.544 (0.234)
Any HL	-1.822 (1.095)	-1.534 (1.147)	0.809 (0.420)	-0.818 (0.587)	-0.350 (0.269)	-0.192 (1.144)	0.264 (0.225)
p-value for Any V = C test	0.397	0.072	0.078	0.839	0.000	0.480	0.021
Panel B: Disaggregated specific	ation						
VHL	-0.878 (1.417)	-3.584 (1.407)	1.598 (0.636)	-0.889 (0.842)	0.634 (0.311)	0.565 (1.476)	0.799 (0.338)
HL	-0.149 (2.390)	-2.394 (3.158)	0.550 (0.973)	-1.057 (1.357)	0.429 (0.483)	2.371 (2.842)	-0.047 (0.395)
V	2.951 (2.321)	-3.469 (3.096)	1.163 (1.253)	-0.280 (1.320)	1.596 (0.624)	3.652 (2.748)	0.290 (0.393)
p-value for VHL = HL test p -value for V = C test	0.761 0.204	0.707 0.263	0.342 0.354	0.898 0.832	0.696 0.011	0.515 0.185	0.053 0.461
Panel C: Summary information							
Control group mean	79.58	26.66	3.016	10.21	1.856	35.93	1.912
Control group SD	57.70	41.78	13.870	27.89	11.470	47.37	11.110
# observations in VHL	1,452	1,452	1,452	1,452	1,452	1,452	1,452
# observations in HL	1,439	1,439	1,439	1,439	1,439	1,439	1,439
# observations in V	1,434	1,434	1,434	1,434	1,434	1,434	1,434
# observations in C	1,490	1,490	1,490	1,490	1,490	1,490	1,490

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses. Responses in the category of "other work outside the household" have been manually reclassified into fishing, self-employment, and other employment of unclear formality. In the table, we report categories that consolidate together formal employment and operation of a business that is not the household's; fishing and livestock tending; and housework in an outside household and daily labor.

Online Appendix Table 20. Life satisfaction index, six-month survey

	1	2	3	4	5	6	7	8	9	10	11	12
				About how o	often during	he past 30 days o	lid you feel		_			
	Life satisfaction index	Kessler K6 nonspecific distress scale	Nervous	Hopeless	Restless or fidgety	So depressed that nothing could you cheer you up	That everything was difficult	Worthless	How would you describe your satisfaction with life?	Taking all things together, would you say you are happy?	Did you experience the following feelings during a lot of the day yesterday? Enjoyment + happiness - worry - sadness	Did you smile or laugh a lot yesterday?
Panel A: Pooled specification												
Any V	0.019	0.078	0.030	0.020	-0.052	-0.048	0.018	0.057	-0.123	0.030	-0.006	0.009
	(0.022)	(0.100)	(0.023)	(0.021)	(0.025)	(0.024)	(0.026)	(0.020)	(0.073)	(0.012)	(0.026)	(0.006)
Any HL	-0.010	0.291	0.069	0.004	0.064	0.048	0.057	0.027	-0.176	-0.021	0.017	-0.004
	(0.022)	(0.099)	(0.022)	(0.022)	(0.024)	(0.023)	(0.026)	(0.020)	(0.075)	(0.012)	(0.026)	(0.006)
p-value for Any V = C test	0.392	0.439	0.185	0.359	0.037	0.045	0.485	0.005	0.094	0.015	0.820	0.161
Panel B: Disaggregated specifi	cation											
VHL	0.009	0.385	0.100	0.026	0.015	0.003	0.079	0.088	-0.301	0.009	0.009	0.004
	(0.028)	(0.123)	(0.031)	(0.025)	(0.030)	(0.031)	(0.031)	(0.029)	(0.098)	(0.015)	(0.037)	(0.009)
HL	-0.031	0.314	0.040	-0.010	0.056	0.069	0.058	0.043	-0.161	-0.026	-0.016	-0.014
	(0.056)	(0.264)	(0.050)	(0.050)	(0.066)	(0.054)	(0.072)	(0.046)	(0.161)	(0.031)	(0.058)	(0.014)
V	-0.018	0.058	-0.000	-0.009	-0.063	-0.038	0.019	0.070	-0.187	0.022	-0.039	-0.003
	(0.047)	(0.250)	(0.048)	(0.050)	(0.060)	(0.052)	(0.064)	(0.045)	(0.156)	(0.025)	(0.056)	(0.013)
p-value for VHL = HL test p -value for V = C test	0.478	0.789	0.227	0.474	0.529	0.238	0.768	0.330	0.380	0.255	0.669	0.240
	0.708	0.816	0.995	0.859	0.292	0.463	0.766	0.125	0.234	0.370	0.491	0.836
Panel C: Summary information	n											
Control group mean Control group SD # observations in VHL	0	21.500	3.127	3.950	3.464	3.836	3.045	4.242	5.666	3.134	0.420	0.897
	1	4.756	1.141	1.103	1.182	1.151	1.417	1.035	3.200	0.596	1.160	0.303
	1,578	1,577	1,574	1,569	1,571	1,569	1,571	1,568	1,575	1,562	1,578	1,578
# observations in HL	1,549	1,549	1,547	1,540	1,543	1,541	1,543	1,534	1,547	1,534	1,549	1,549
# observations in V	1,550	1,550	1,550	1,548	1,545	1,543	1,541	1,539	1,548	1,539	1,550	1,550
# observations in C	1,599	1,598	1,593	1,580	1,594	1,588	1,589	1,575	1,598	1,588	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to less psychological distress and higher life satisfaction. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

ace your
r in terms of

Panels A and B show treatment effect estimates relative to control. The dependent variable, indicated in the column title, has been coded so that more positive numbers correspond to higher perceived relative economic status. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

	1	2	3	4
	Trust index	In general, would you say that most people can be trusted or that most people cannot be trusted?	Do you think most people would try to take advantage of you if they got a chance, or would they try to be fair?	Would you say that most of the time people try to be helpful, or that they are mostly just looking out for themselves?
Panel A: Pooled specification				
Any V	0.004	-0.000	0.005	-0.001
·	(0.022)	(0.010)	(0.010)	(0.011)
Any HL	-0.023	-0.003	-0.002	-0.021
	(0.022)	(0.010)	(0.009)	(0.011)
p-value for Any V = C test	0.865	1.000	0.625	0.958
Panel B: Disaggregated specificat	tion			
VHL	-0.019	-0.003	0.003	-0.021
	(0.032)	(0.015)	(0.014)	(0.015)
HL	-0.023	0.000	0.003	-0.030
	(0.043)	(0.019)	(0.020)	(0.022)
V	-0.018	-0.005	-0.002	-0.013
	(0.046)	(0.021)	(0.022)	(0.021)
p-value for VHL = HL test	0.927	0.870	0.986	0.718
p-value for $V = C$ test	0.704	0.811	0.932	0.533
Panel C: Summary information				
Control group mean	0	0.458	0.637	0.582
Control group SD	1	0.498	0.481	0.493
# observations in VHL	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more trust. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 23. Social safety net index, six-month survey

	1	2	3	4	5	6	7	8	9
	Social safety net index	Likelihood that could access 40 PHP from a source outside household for urgent need	Likelihood that could access 1,000 PHP from a source outside household for urgent need	Do you discuss personal issues with anyone outside your close family?		Household received meals from another household in local community (last 30 days)	Number of meals received	Household gave meals to another household in local community (last 30 days)	Number of meals given
Panel A: Pooled specification									
Any V	0.026	0.018	-0.025	0.020	0.250	0.004	0.344	0.000	0.193
	(0.024)	(0.025)	(0.033)	(0.012)	(0.573)	(0.011)	(0.162)	(0.011)	(0.182)
Any HL	-0.027	-0.028	0.044	-0.001	0.165	-0.003	-0.264	-0.010	-0.539
	(0.024)	(0.026)	(0.033)	(0.012)	(0.570)	(0.010)	(0.164)	(0.011)	(0.185)
p-value for Any V = C test	0.282	0.489	0.461	0.104	0.663	0.732	0.034	0.989	0.289
Panel B: Disaggregated specificat	tion								
VHL	-0.000	-0.011	0.020	0.018	0.424	0.001	0.089	-0.010	-0.337
	(0.032)	(0.033)	(0.044)	(0.016)	(0.782)	(0.014)	(0.205)	(0.015)	(0.267)
HL	-0.076	-0.064	-0.009	0.004	-0.045	-0.036	-0.393	-0.036	-0.429
	(0.048)	(0.053)	(0.071)	(0.021)	(1.287)	(0.024)	(0.333)	(0.025)	(0.472)
V	-0.023	-0.023	-0.071	0.025	-0.075	-0.022	0.206	-0.026	0.081
	(0.048)	(0.053)	(0.072)	(0.024)	(1.109)	(0.022)	(0.386)	(0.023)	(0.494)
p -value for VHL = HL test p -value for V = C test	0.140	0.346	0.692	0.496	0.696	0.136	0.159	0.302	0.846
	0.631	0.662	0.323	0.292	0.946	0.331	0.594	0.246	0.870
Panel C: Summary information									
Control group mean Control group SD	0	3.617 1.160	2.359 1.345	0.387 0.487	8.480 26.170	0.557 0.497	4.497 7.855	0.683 0.465	5.260 8.675
# observations in VHL # observations in HL	1,578	1,578	1,578	1,552	1,530	1,535	1,531	1,536	1,489
	1,549	1,549	1,549	1,538	1,518	1,528	1,525	1,520	1,471
# observations in V # observations in C	1,550	1,550	1,550	1,528	1,504	1,517	1,510	1,504	1,463
	1,599	1,599	1,599	1,583	1,551	1,570	1,551	1,563	1,525

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more access to a social safety net. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 24. Community activities index, six-month survey

	1	2	3	4
	Community activities index	Did you attend any village leaders meetings? (last 6 months)	Have you participated in any community activities? (last 6 months)	How frequently did you participate in community activities? (number of days in a year)
Panel A: Pooled specification				
Any V	0.005	-0.019	0.007	0.666
	(0.025)	(0.011)	(0.013)	(0.510)
Any HL	0.041	-0.001	0.014	1.354
	(0.025)	(0.011)	(0.012)	(0.507)
p-value for Any V = C test	0.851	0.085	0.573	0.193
Panel B: Disaggregated specificate	ion			
VHL	0.045	-0.020	0.021	1.998
	(0.034)	(0.015)	(0.016)	(0.800)
HL	0.019	-0.024	0.011	1.658
	(0.058)	(0.025)	(0.031)	(0.996)
V	-0.011	-0.043	0.009	1.126
	(0.059)	(0.026)	(0.031)	(0.975)
p -value for VHL = HL test p -value for V = C test	0.655	0.852	0.750	0.748
	0.857	0.094	0.771	0.249
Panel C: Summary information				
Control group mean Control group SD # observations in VHL # observations in HL	0	0.651	0.527	9.165
	1	0.477	0.499	21.560
	1,561	1,554	1,546	1,533
	1,542	1,540	1,533	1,523
# observations in V	1,534	1,532	1,525	1,516
# observations in C	1,592	1,589	1,580	1,561

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more involvement in community activities. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

	1	2	3	4	5
	Perceived stress scale index	How often have you felt that you were unable to control the important things in your life?	How often have you felt confident about your ability to handle your personal problems?	How often have you felt that things were going your way?	Were niling iin so
Panel A: Pooled specification					
Any V	-0.011	0.055	-0.065	-0.024	-0.005
ing v	(0.020)	(0.023)	(0.023)	(0.022)	(0.025)
		, ,	, ,	,	. ,
Any HL	-0.018	-0.015	0.005	-0.049	0.022
	(0.021)	(0.023)	(0.024)	(0.022)	(0.025)
p-value for Any V = C test	0.597	0.016	0.005	0.285	0.846
Panel B: Disaggregated specification					
VHL	-0.026	0.042	-0.061	-0.072	0.021
	(0.026)	(0.036)	(0.035)	(0.030)	(0.033)
HL	-0.009	0.069	-0.016	-0.079	0.010
	(0.044)	(0.057)	(0.056)	(0.054)	(0.052)
V	-0.007	0.118	-0.064	-0.044	-0.035
	(0.043)	(0.057)	(0.052)	(0.049)	(0.053)
p -value for VHL = HL test	0.684	0.650	0.434	0.901	0.843
p-value for $V = C$ test	0.876	0.038	0.216	0.368	0.509
Panel C: Summary information					
Control group mean	0	2.896	3.430	2.936	3.265
Control group SD	1	1.109	1.095	1.013	1.165
# observations in VHL	1,577	1,572	1,574	1,567	1,569
# observations in HL	1,549	1,543	1,543	1,536	1,539
# observations in V	1,549	1,544	1,543	1,538	1,545
# observations in C	1,599	1,596	1,593	1,583	1,590

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to less stress. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 26. Powerful others index, six-month survey

	1	2	3	4	5	6	7
	Powerful others index	I feel like what happens in my life is mostly determined by God	Although I might have good ability, I will not be successful without appealing to God	My life is chiefly controlled by God	Getting what I want requires pleasing God	Whether or not I have an accident and hurt myself physically depends mostly on God	In order to have my plans work, I make sure that they fit with God's plan for me
Panel A: Pooled specification							
Any V	0.093 (0.027)	0.109 (0.024)	0.030 (0.017)	0.088 (0.022)	0.022 (0.023)	0.049 (0.031)	0.057 (0.019)
Any HL	0.044 (0.027)	0.021 (0.024)	0.026 (0.017)	0.044 (0.022)	0.007 (0.023)	0.016 (0.032)	0.052 (0.019)
p-value for Any V = C test	0.001	0.000	0.075	0.000	0.346	0.118	0.003
Panel B: Disaggregated specifica	ution						
VHL	0.135 (0.038)	0.128 (0.035)	0.054 (0.020)	0.131 (0.032)	0.028 (0.032)	0.066 (0.047)	0.108 (0.027)
HL	0.031 (0.060)	0.037 (0.051)	-0.025 (0.037)	0.060 (0.052)	-0.031 (0.048)	0.029 (0.073)	0.046 (0.041)
V	0.073 (0.059)	0.118 (0.048)	-0.016 (0.036)	0.095 (0.048)	-0.019 (0.048)	0.048 (0.071)	0.051 (0.042)
p-value for VHL = HL test p -value for V = C test	0.085 0.222	0.068 0.015	0.033 0.659	0.175 0.050	0.246 0.689	0.614 0.501	0.123 0.229
Panel C: Summary information							
Control group mean	0	4.271	4.612	4.388	4.458	3.907	4.502
Control group SD	1	1.057	0.744	0.998	0.954	1.276	0.801
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to higher perception of God's role in determining outcomes in life. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 27a. Locus of control index: Internality subscale, six-month survey

	1	2	3	4	5	6	7	8	9	10
	Locus of control index	Internality subscale	Whether or not I am successful depends mostly on my ability	Whether or not I have an accident and hurt myself depends mostly on how careful I am on a daily basis	When I make plans, I am almost certain to make them work	How many friends I have depends on how nice a person I am	I can pretty much determine what will happen in my life	I am usually able to protect my personal interests	When I get what I want it's usually because I worked hard for it	My life is determined by my own actions
Panel A: Pooled specification										
Any V	-0.035 (0.020)	0.088 (0.026)	0.091 (0.020)	0.015 (0.021)	0.070 (0.033)	0.009 (0.017)	0.084 (0.036)	0.041 (0.028)	0.047 (0.015)	0.014 (0.019)
Any HL	-0.000 (0.020)	-0.019 (0.026)	-0.023 (0.021)	-0.013 (0.021)	-0.018 (0.031)	-0.017 (0.017)	0.024 (0.036)	-0.006 (0.028)	0.015 (0.015)	-0.040 (0.018)
p-value for Any V = C test	0.075	0.001	0.000	0.461	0.033	0.610	0.021	0.147	0.001	0.465
Panel B: Disaggregated specific	ation									
VHL	-0.035 (0.029)	0.069 (0.035)	0.068 (0.031)	0.001 (0.032)	0.051 (0.040)	-0.008 (0.021)	0.108 (0.050)	0.035 (0.035)	0.060 (0.020)	-0.026 (0.027)
HL	-0.064 (0.057)	0.002 (0.060)	0.028 (0.046)	-0.022 (0.042)	0.087 (0.081)	-0.042 (0.039)	0.014 (0.086)	-0.033 (0.069)	-0.006 (0.034)	-0.017 (0.038)
V	-0.085 (0.050)	0.103 (0.056)	0.145 (0.042)	0.001 (0.043)	0.175 (0.078)	-0.022 (0.038)	0.067 (0.084)	0.011 (0.066)	0.025 (0.033)	0.033 (0.038)
p-value for VHL = HL test p -value for V = C test	0.605 0.090	0.298 0.067	0.393 0.001	0.586 0.974	0.666 0.026	0.389 0.562	0.312 0.425	0.326 0.869	0.044 0.439	0.831 0.383
Panel C: Summary information										
Control group mean	0	0	4.218	4.123	3.108	4.510	2.333	3.402	4.578	4.309
Control group SD	1	1	1.027	1.042	1.422	0.780	1.478	1.279	0.775	0.881
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to higher perceptions of people's ability to control their life/fate. See Appendix for details on variable construction. The variables to the right of the second column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 27b. Locus of control index: Chance subscale and World Values Survey question, six-month survey

	11	12	13	14	15	16	17	18	19	20
	Chance subscale	To a great extent my life is controlled by accidental happenings	Often there is no chance of protecting my personal interests from bad luck happening	what I want,		Whether or not I get into an accident and hurt myself physically is mostly a matter of luck	It is not wise for me to plan too far ahead because many things turn out to be a matter of good or bad fortune	Whether or not I am successful depends on whether I am lucky enough to be in the right place at the right time	It is chiefly a matter of fate whether or not I have a few friends or many friends	Closest to your view on a scale on which (1) "everything in life is determined by fate" and (10) "people shape their fate themselves"
Panel A: Pooled specification										
Any V	-0.098 (0.028)	-0.135 (0.032)	-0.046 (0.028)	-0.075 (0.028)	-0.058 (0.038)	-0.025 (0.030)	-0.101 (0.037)	-0.029 (0.026)	-0.127 (0.032)	-0.192 (0.079)
Any HL	0.004 (0.028)	-0.006 (0.032)	-0.019 (0.028)	0.008 (0.028)	-0.016 (0.039)	-0.026 (0.030)	0.016 (0.037)	0.010 (0.027)	0.057 (0.032)	0.060 (0.080)
p-value for Any V = C test	0.001	0.000	0.101	0.009	0.135	0.413	0.007	0.268	0.000	0.016
Panel B: Disaggregated specific	cation									
VHL	-0.094 (0.038)	-0.141 (0.049)	-0.065 (0.037)	-0.065 (0.038)	-0.075 (0.050)	-0.051 (0.043)	-0.084 (0.055)	-0.019 (0.036)	-0.069 (0.041)	-0.128 (0.118)
HL	-0.064 (0.076)	-0.044 (0.102)	-0.090 (0.073)	0.014 (0.077)	-0.053 (0.082)	-0.050 (0.067)	-0.078 (0.090)	-0.012 (0.059)	-0.074 (0.102)	-0.168 (0.204)
V	-0.157 (0.075)	-0.152 (0.103)	-0.117 (0.073)	-0.072 (0.069)	-0.102 (0.082)	-0.046 (0.071)	-0.190 (0.087)	-0.057 (0.057)	-0.219 (0.099)	-0.343 (0.181)
p-value for VHL = HL test p -value for V = C test	0.708 0.036	0.343 0.140	0.738 0.110	0.313 0.297	0.796 0.216	0.992 0.512	0.945 0.029	0.909 0.317	0.958 0.028	0.843 0.060
Panel C: Summary information										
Control group mean	0	2.704	2.749	2.412	3.074	2.786	2.994	2.061	2.463	5.907
Control group SD	1	1.418	1.343	1.325	1.477	1.379	1.459	1.106	1.386	4.071
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,549
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to lower perception of chance's ability to determine outcomes in life. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 28. Life orientation index, six-month survey

	1	2	3	4	5	6	7
	Life orientation index	In uncertain times, I usually expect the best	If something can go wrong for me, it will	I'm always optimistic about my future.	I hardly ever expect things to go my way	I rarely count on good things happening to me	Overall, I expect more good things to happen to me than bad
Panel A: Pooled specification							
Any V	-0.050	-0.005	-0.081	0.015	-0.062	-0.008	0.002
,	(0.027)	(0.017)	(0.041)	(0.018)	(0.026)	(0.029)	(0.020)
Any HL	0.016	0.006	-0.013	0.005	-0.031	0.029	0.047
	(0.027)	(0.017)	(0.041)	(0.019)	(0.026)	(0.029)	(0.020)
p-value for Any V = C test	0.065	0.774	0.048	0.428	0.017	0.792	0.928
Panel B: Disaggregated specific	ation						
VHL	-0.034	0.002	-0.094	0.020	-0.093	0.023	0.048
	(0.037)	(0.028)	(0.056)	(0.026)	(0.036)	(0.037)	(0.029)
HL	-0.046	0.052	-0.111	0.011	-0.086	-0.066	0.072
	(0.068)	(0.048)	(0.089)	(0.046)	(0.071)	(0.107)	(0.052)
V	-0.103	0.043	-0.171	0.030	-0.110	-0.099	0.024
	(0.069)	(0.048)	(0.093)	(0.043)	(0.065)	(0.101)	(0.050)
p-value for VHL = HL test	0.862	0.316	0.854	0.857	0.917	0.415	0.637
p-value for $V = C$ test	0.132	0.372	0.065	0.494	0.089	0.326	0.633
Panel C: Summary information							
Control group mean	0	4.381	3.009	4.423	2.216	2.435	4.283
Control group SD	1	0.867	1.413	0.868	1.175	1.327	0.991
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more positive expectations. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 29. Expectations index and optimism index, six-month survey

	1	2	3	4	5	6
	Expectations index		Where do you think you will be on the relative economic status ladder 5 years from now?	Optimism index		How pessimistic are you in general, on a scale of 1 to 7?
Panel A: Pooled specification						
Any V	-0.037	-0.014	-0.136	0.053	0.056	0.100
, ·	(0.025)	(0.065)	(0.059)	(0.024)	(0.039)	(0.042)
Any HL	-0.016	-0.032	-0.026	-0.024	-0.022	-0.049
	(0.025)	(0.069)	(0.059)	(0.024)	(0.038)	(0.042)
p-value for Any V = C test	0.133	0.836	0.023	0.029	0.154	0.019
Panel B: Disaggregated specifica	tion					
VHL	-0.055	-0.054	-0.160	0.030	0.036	0.051
	(0.032)	(0.090)	(0.076)	(0.032)	(0.047)	(0.062)
HL	-0.014	0.006	-0.010	-0.007	-0.076	0.057
	(0.056)	(0.139)	(0.147)	(0.061)	(0.105)	(0.096)
V	-0.054	-0.084	-0.119	0.069	0.001	0.203
	(0.057)	(0.148)	(0.140)	(0.066)	(0.116)	(0.099)
p-value for VHL = HL test	0.468	0.672	0.314	0.541	0.276	0.955
p -value for $V = C$ test	0.344	0.569	0.393	0.298	0.990	0.040
Panel C: Summary information						
Control group mean	0	6.743	4.834	0	5.544	5.398
Control group SD	1	2.781	2.455	1	1.699	1.750
# observations in VHL	1,542	1,500	1,474	1,578	1,578	1,578
# observations in HL	1,508	1,467	1,444	1,549	1,549	1,549
# observations in V	1,518	1,480	1,465	1,550	1,550	1,550
# observations in C	1,567	1,541	1,494	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to higher optimism. See Appendix for details on variable construction. The variables in the second, third, fifth, and sixth columns have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 30. Grit index, six-month survey

	1	2	3	4	5	6	7	8	9
	Grit index	New ideas and projects sometimes distract me from previous ones	Setbacks don't discourage me	I have been obsessed with a certain idea or project for a short time but later lost interest	I am a very hard worker	I often set a goal but later choose to pursue a different one	I have difficulty maintaining my focus on projects that take more than a few months	I finish whatever I begin	I am diligent
Panel A: Pooled specification									
Any V	0.041 (0.022)	-0.011 (0.029)	0.075 (0.025)	-0.006 (0.025)	0.082 (0.019)	-0.040 (0.029)	-0.013 (0.025)	0.059 (0.021)	0.026 (0.018)
Any HL	0.017 (0.022)	0.015 (0.028)	-0.030 (0.025)	0.020 (0.025)	0.002 (0.019)	0.006 (0.029)	0.072 (0.024)	0.001 (0.021)	-0.014 (0.017)
p-value for Any V = C test	0.065	0.719	0.003	0.805	0.000	0.174	0.616	0.005	0.137
Panel B: Disaggregated specification									
VHL	0.056 (0.029)	0.005 (0.037)	0.040 (0.035)	0.015 (0.030)	0.084 (0.027)	-0.036 (0.037)	0.059 (0.032)	0.058 (0.028)	0.011 (0.025)
HL	0.030 (0.058)	0.024 (0.069)	-0.075 (0.057)	0.048 (0.061)	0.006 (0.041)	-0.019 (0.069)	0.105 (0.063)	0.029 (0.052)	0.010 (0.042)
V	0.041 (0.058)	-0.011 (0.075)	0.036 (0.058)	-0.004 (0.063)	0.082 (0.041)	-0.082 (0.065)	-0.004 (0.062)	0.098 (0.048)	0.057 (0.040)
p-value for VHL = HL test p -value for V = C test	0.671 0.484	0.782 0.882	0.045 0.528	0.591 0.954	0.064 0.046	0.809 0.211	0.474 0.953	0.587 0.043	0.974 0.156
Panel C: Summary information									
Control group mean	0	3.148	3.499	3.120	4.241	3.193	3.071	4.249	4.421
Control group SD	1	1.235	1.272	1.180	0.935	1.226	1.192	0.942	0.851
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more grit. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 31. Self-control index, six-month survey

	1	2	3	4	5	6	7	8	9	10	11
	Self control index	I have a hard time breaking bad habits	I get distracted easily	I say inappropriate things	I refuse things that are bad for me, even if they are fun.	I'm good at resisting temptation	People would say that I have very strong self- discipline	Pleasure and fun sometimes keep me from getting work done	that feel good in the moment but	Sometimes I can't stop myself from doing something, even if I know it's wrong	I often act without thinking through all the alternatives
Panel A: Pooled specification											
Any V	-0.034	-0.043	-0.003	-0.026	0.019	-0.097	-0.060	0.014	-0.041	-0.004	-0.008
	(0.021)	(0.026)	(0.026)	(0.030)	(0.026)	(0.029)	(0.027)	(0.026)	(0.028)	(0.029)	(0.028)
Any HL	0.006	-0.036	-0.023	-0.020	0.039	-0.008	0.009	0.054	0.008	0.027	-0.008
	(0.020)	(0.026)	(0.026)	(0.030)	(0.026)	(0.029)	(0.027)	(0.026)	(0.028)	(0.029)	(0.028)
p-value for Any V = C test	0.095	0.100	0.899	0.396	0.457	0.001	0.027	0.596	0.148	0.893	0.759
Panel B: Disaggregated specifi	cation										
VHL	-0.027	-0.076	-0.026	-0.045	0.057	-0.103	-0.050	0.068	-0.028	0.026	-0.015
	(0.025)	(0.037)	(0.039)	(0.037)	(0.038)	(0.040)	(0.036)	(0.030)	(0.034)	(0.038)	(0.032)
HL	0.039	-0.046	-0.030	-0.022	0.060	0.019	0.005	0.153	0.063	0.073	0.008
	(0.047)	(0.062)	(0.065)	(0.067)	(0.077)	(0.079)	(0.069)	(0.068)	(0.064)	(0.056)	(0.064)
V	-0.001	-0.050	-0.018	-0.026	0.018	-0.062	-0.050	0.100	0.019	0.049	0.012
	(0.050)	(0.063)	(0.061)	(0.072)	(0.078)	(0.081)	(0.065)	(0.073)	(0.063)	(0.056)	(0.066)
p-value for VHL = HL test	0.155	0.615	0.957	0.728	0.962	0.103	0.436	0.198	0.153	0.442	0.722
p -value for $V = C$ test	0.980	0.429	0.772	0.717	0.819	0.444	0.440	0.171	0.768	0.384	0.855
Panel C: Summary information	n										
Control group mean	0	3.032	2.863	3.014	3.135	3.358	3.219	3.136	2.947	2.961	2.946
Control group SD	1	1.353	1.294	1.377	1.362	1.432	1.244	1.282	1.295	1.330	1.309
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more self-control. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 32. Salvation by grace belief index, six-month survey

	1	2	3	4
	Salvation by grace belief index	If I am good enough, God will cleanse me of my sins	I follow God's laws so that I can go to heaven	I will go to heaven because I have accepted Jesus Christ as my personal savior
Panel A: Pooled specification				
Any V	-0.036	-0.059	-0.052	0.019
,	(0.020)	(0.020)	(0.016)	(0.011)
Any HL	-0.005	-0.016	-0.006	0.003
·	(0.020)	(0.020)	(0.016)	(0.011)
p-value for Any V = C test	0.079	0.004	0.001	0.080
Panel B: Disaggregated specifica	ution			
VHL	-0.040	-0.073	-0.057	0.022
	(0.026)	(0.032)	(0.022)	(0.014)
HL	-0.021	-0.060	-0.037	0.019
	(0.045)	(0.042)	(0.039)	(0.024)
V	-0.061	-0.100	-0.085	0.029
	(0.041)	(0.039)	(0.036)	(0.026)
p-value for VHL = HL test	0.696	0.792	0.616	0.901
p-value for $V = C$ test	0.143	0.011	0.019	0.268
Panel C: Summary information				
Control group mean	0	1.386	1.358	0.559
Control group SD	1	0.883	0.736	0.497
# observations in VHL	1,578	1,473	1,473	1,578
# observations in HL	1,549	1,457	1,457	1,549
# observations in V	1,550	1,455	1,455	1,550
# observations in C	1,599	1,515	1,515	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater belief in the doctrine of salvation by grace. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 33. Assets index, six-month survey

	1	2	3	4	5	6	7	8	9	10	11	12
	Assets index	Number of productive assets	Value of productive assets	Number of house assets	Value of house assets	Number of productive assets acquired in last 6 months	Value of productive assets acquired in last 6 months	Number of house assets acquired in last 6 months	Value of the house assets acquired in last 6 months	Money set aside in savings	Chance that would have 40 PHP available for urgent need	Chance that would have 1,000 PHP available for urgent need
Panel A: Pooled specification												
Any V	-0.027	-0.178	-58.34	-0.048	305.0	-0.016	-4.034	-0.055	-204.5	-13.58	0.081	0.015
,	(0.021)	(0.047)	(66.27)	(0.108)	(607.3)	(0.007)	(5.702)	(0.041)	(215.0)	(44.97)	(0.027)	(0.024)
Any HL	-0.025	-0.042	-129.64	-0.080	429.3	-0.004	0.974	-0.001	-0.2	-30.47	-0.016	-0.037
	(0.021)	(0.048)	(67.01)	(0.110)	(627.3)	(0.008)	(5.771)	(0.041)	(213.1)	(43.29)	(0.027)	(0.024)
p-value for Any V = C test	0.211	0.000	0.379	0.660	0.616	0.032	0.480	0.182	0.342	0.763	0.003	0.532
Panel B: Disaggregated specific	ation											
VHL	-0.050	-0.218	-185.4	-0.129	755.6	-0.020	-3.049	-0.055	-209.2	-38.51	0.067	-0.019
	(0.031)	(0.056)	(96.90)	(0.162)	(901.3)	(0.010)	(7.374)	(0.047)	(320.6)	(71.37)	(0.037)	(0.030)
HL	0.014	-0.011	-138.0	0.383	1,165.1	-0.006	15.807	0.034	-16.0	-153.54	0.008	-0.033
	(0.057)	(0.162)	(191.1)	(0.265)	(1,212)	(0.023)	(16.81)	(0.118)	(497.0)	(99.2)	(0.063)	(0.060)
V	0.008	-0.163	-61.5	0.374	1,139.7	-0.020	10.288	-0.040	-208.4	-144.67	0.100	0.032
	(0.060)	(0.164)	(208.2)	(0.266)	(1,166)	(0.023)	(17.55)	(0.113)	(493.4)	(106.3)	(0.056)	(0.055)
p -value for VHL = HL test	0.265	0.193	0.795	0.056	0.746	0.557	0.278	0.465	0.698	0.202	0.352	0.818
p-value for $V = C$ test	0.899	0.322	0.768	0.161	0.329	0.397	0.558	0.722	0.673	0.174	0.079	0.556
Panel C: Summary information												
Control group mean	0	1.877	1,217	6.621	12,300	0.211	81.8	1.348	3,046	602	3.415	1.888
Control group SD	1	2.005	3,110	4.920	29,000	0.408	243.0	2.120	10,500	3,777	1.266	1.143
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,578	1,567	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,549	1,529	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,550	1,537	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,599	1,581	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more assets. Variables denoting monetary value are in Philippine pesos. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 34. Financial inclusion index, six-month survey

	1	2	3	4
	Financial inclusion index	· · · · · · · · · · · · · · · · · · ·	Do you by yourself or with other people currently have an account at a bank?	Have you made a deposit at a financial institution in the past 6 months?
Panel A: Pooled specification				
Any V	0.020	0.002	0.005	0.006
	(0.024)	(0.009)	(0.009)	(0.006)
Any HL	0.157	0.052	0.036	0.027
	(0.025)	(0.010)	(0.009)	(0.006)
p-value for Any V = C test	0.396	0.813	0.571	0.288
Panel B: Disaggregated specifica	ntion			
VHL	0.179	0.055	0.042	0.033
	(0.038)	(0.015)	(0.012)	(0.009)
HL	0.124	0.029	0.038	0.019
	(0.048)	(0.024)	(0.021)	(0.013)
V	-0.010	-0.025	0.014	-0.003
	(0.044)	(0.022)	(0.018)	(0.012)
p-value for VHL = HL test p -value for V = C test	0.297	0.288	0.852	0.300
	0.811	0.267	0.435	0.811
Panel C: Summary information				
Control group mean	0 1	0.265	0.143	0.059
Control group SD		0.441	0.350	0.236
# observations in VHL # observations in HL # observations in V	1,578	1,578	1,504	1,493
	1,549	1,549	1,486	1,456
	1,550	1,550	1,482	1,459
# observations in C	1,599	1,599	1,522	1,507

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more financial inclusion. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 35. Health index, six-month survey

	1	2	3	4
		Negative of number	Negative of number of	
		of serious health	household members that	Negative of total number
	Health index	events in the	have suffered an illness that	of workdays missed due
		household (last 6	has kept them from working	to illness (last 30 days)
		months)	(last 30 days)	
Panel A: Pooled specification				
Any V	0.000	-0.024	0.003	0.166
•	(0.020)	(0.015)	(0.008)	(0.105)
Any HL	0.015	0.019	0.002	0.049
	(0.020)	(0.015)	(0.008)	(0.109)
p-value for Any V = C test	0.988	0.121	0.703	0.116
Panel B: Disaggregated specifica	tion			
VHL	0.014	-0.005	0.005	0.208
	(0.028)	(0.023)	(0.011)	(0.137)
HL	-0.027	0.024	-0.017	-0.293
	(0.042)	(0.027)	(0.018)	(0.215)
V	-0.044	-0.020	-0.016	-0.203
	(0.041)	(0.032)	(0.016)	(0.215)
p-value for VHL = HL test	0.352	0.318	0.263	0.019
p-value for V = C test	0.288	0.523	0.319	0.347
Panel C: Summary information				
Control group mean	0	-0.313	-0.125	-1.247
Control group SD	1	0.721	0.385	5.233
# observations in VHL	1,578	1,577	1,527	1,527
# observations in HL	1,549	1,548	1,519	1,517
# observations in V	1,550	1,548	1,512	1,510
# observations in C	1,599	1,590	1,563	1,561

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to better health. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 36. Hygiene indices, six-month survey

	1	2	3	4	5	6
	Hygiene index - non-list randomized	Animals kept in sanitary way	No household members practice open defecation	Hygiene index - list randomized	I wash my hands after going to the bathroom (list randomized)	I treat my water before drinking it (list randomized)
Panel A: Pooled specification						
Any V	0.092 (0.024)	0.024 (0.010)	0.038 (0.011)	0.043 (0.033)	0.032 (0.041)	0.055 (0.044)
Any HL	0.030 (0.024)	-0.001 (0.010)	0.022 (0.011)	0.066 (0.033)	0.041 (0.041)	0.092 (0.044)
p-value for Any V = C test	0.000	0.019	0.001	0.191	0.443	0.215
Panel B: Disaggregated specific	cation					
VHL	0.121 (0.034)	0.022 (0.014)	0.060 (0.016)	0.108 (0.049)	0.072 (0.058)	0.144 (0.065)
HL	0.136 (0.070)	0.037 (0.027)	0.055 (0.031)	0.121 (0.043)	0.096 (0.058)	0.146 (0.057)
V	0.208 (0.067)	0.066 (0.027)	0.074 (0.028)	0.105 (0.045)	0.086 (0.055)	0.124 (0.060)
p -value for VHL = HL test p -value for V = C test	0.836 0.002	0.588 0.016	0.870 0.009	0.779 0.020	0.694 0.116	0.976 0.040
Panel C: Summary information		0.010	0.007	0.020	0.110	0.040
Control group mean	0	0.700	0.648	0.558	0.698	0.418
Control group SD	1	0.459	0.478	0.556	0.038	0.418
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V # observations in C	1,550 1,599	1,550 1,599	1,550 1,599	1,550 1,599	1,550 1,599	1,550 1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to better hygiene. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 37. House index, six-month survey

	1	2	3	4	5	6	7
	House index	All rooms leak-free	At least some rooms leak- free	All rooms able to be safely locked	At least some rooms able to be safely locked	Primary energy source for lighting is electricity	Primary latrine is inside the house
Panel A: Pooled specification							
Any V	0.030 (0.025)	0.003 (0.010)	0.002 (0.007)	-0.011 (0.011)	0.004 (0.010)	0.014 (0.013)	0.020 (0.009)
Any HL	0.007 (0.025)	0.005 (0.010)	-0.008 (0.007)	0.004 (0.011)	0.004 (0.010)	0.004 (0.013)	0.002 (0.009)
p-value for Any V = C test	0.239	0.725	0.771	0.279	0.728	0.276	0.035
Panel B: Disaggregated specifica	ıtion						
VHL	0.036 (0.036)	0.008 (0.014)	-0.006 (0.009)	-0.008 (0.014)	0.008 (0.014)	0.018 (0.019)	0.022 (0.012)
HL	0.045 (0.059)	-0.027 (0.021)	0.013 (0.017)	0.000 (0.023)	-0.000 (0.025)	0.041 (0.036)	0.022 (0.019)
V	0.068 (0.060)	-0.028 (0.021)	0.021 (0.016)	-0.019 (0.023)	-0.002 (0.026)	0.055 (0.034)	0.041 (0.018)
p -value for VHL = HL test p -value for V = C test	0.879 0.258	0.107 0.178	0.282 0.199	0.729 0.418	0.734 0.947	0.515 0.111	0.988 0.020
Panel C: Summary information							
Control group mean	0	0.320	0.871	0.275	0.580	0.665	0.109
Control group SD	1	0.467	0.336	0.447	0.494	0.472	0.311
# observations in VHL	1,578	1,578	1,578	1,578	1,578	1,578	1,578
# observations in HL	1,549	1,549	1,549	1,549	1,549	1,549	1,549
# observations in V	1,550	1,550	1,550	1,550	1,550	1,550	1,550
# observations in C	1,599	1,599	1,599	1,599	1,599	1,599	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to better house quality. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 38. Migration and remittance index, six-month survey

	1	2	3	4	5	6
	Migration and remittance index	Number of migrators in the household	Number of days migrators were away (last 6 months)	Number of migrators who sent remittances or brought money home (last 6 months)	Household had at least one migrator send remittances or bring money home (last 6 months)	Amount received in remittances or cash brought home (PHP - last 6 months)
Panel A: Pooled specification						
Any V	0.027	0.022	1.565	0.007	0.003	10.13
Ž	(0.019)	(0.010)	(0.891)	(0.008)	(0.006)	(77.68)
Any HL	-0.015	-0.002	-0.458	-0.008	-0.005	-78.91
·	(0.019)	(0.010)	(0.884)	(0.008)	(0.006)	(70.71)
p-value for Any V = C test	0.159	0.024	0.080	0.366	0.622	0.896
Panel B: Disaggregated specific	cation					
VHL	0.013	0.021	1.081	-0.001	-0.001	-73.88
	(0.031)	(0.015)	(1.470)	(0.013)	(0.010)	(110.1)
HL	-0.083	-0.036	-2.356	-0.031	-0.028	-124.15
	(0.038)	(0.018)	(2.009)	(0.016)	(0.011)	(175.4)
V	-0.039	-0.010	-0.522	-0.014	-0.020	-27.00
	(0.039)	(0.019)	(1.967)	(0.016)	(0.012)	(174.9)
p -value for VHL = HL test	0.030	0.003	0.086	0.070	0.107	0.755
p-value for $V = C$ test	0.403	0.596	0.791	0.360	0.281	0.877
Panel C: Summary information	!					
Control group mean	0	0.176	12.680	0.141	0.104	709.5
Control group SD	1	0.456	46.250	0.402	0.305	5293.0
# observations in VHL	1,578	1,578	1,568	1,574	1,572	1,504
# observations in HL	1,549	1,549	1,540	1,547	1,545	1,515
# observations in V	1,550	1,550	1,543	1,549	1,548	1,503
# observations in C	1,599	1,599	1,583	1,597	1,593	1,549

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to higher migration and remittances. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 39. No discord index and no domestic violence, six-month survey

	1	2	3	4	5	6	7	8
		During the last 1 n	nonth, did you have a	ny major arguments w	ith your spouse or par	tner over (higher	= fewer arguments)	
	No discord index	Spending on major household items or assets?	Saving decisions?	The behavior and disciplining of children?	Interactions with relatives?	Alcohol consumption?	Any other issues?	Someone in my household is experiencing physical abuse (list randomization - higher = less abuse)
Panel A: Pooled specification								
Any V	-0.034	-0.002	-0.007	-0.003	-0.022	-0.012	-0.003	-0.072
·	(0.024)	(0.011)	(0.011)	(0.012)	(0.008)	(0.009)	(0.009)	(0.040)
Any HL	-0.029	-0.029	0.002	-0.011	-0.012	-0.001	0.004	-0.048
	(0.024)	(0.011)	(0.011)	(0.012)	(0.008)	(0.009)	(0.008)	(0.040)
p-value for Any V = C test	0.164	0.887	0.527	0.813	0.009	0.181	0.755	0.078
Panel B: Disaggregated specific	cation							
VHL	-0.063	-0.030	-0.004	-0.013	-0.034	-0.014	0.001	-0.118
	(0.036)	(0.016)	(0.015)	(0.016)	(0.011)	(0.014)	(0.011)	(0.055)
HL	-0.036	-0.036	-0.006	-0.025	0.007	0.010	-0.012	-0.081
	(0.052)	(0.023)	(0.022)	(0.024)	(0.016)	(0.021)	(0.019)	(0.058)
V	-0.049	-0.013	-0.017	-0.017	-0.008	0.001	-0.021	-0.120
	(0.049)	(0.021)	(0.020)	(0.024)	(0.016)	(0.019)	(0.020)	(0.061)
p-value for VHL = HL test	0.617	0.799	0.942	0.627	0.013	0.257	0.473	0.509
p-value for $V = C$ test	0.326	0.538	0.403	0.482	0.606	0.977	0.316	0.050
Panel C: Summary informatio	n							
Control group mean	0	0.716	0.745	0.530	0.859	0.782	0.826	0.903
Control group SD	1	0.451	0.436	0.499	0.348	0.413	0.379	
# observations in VHL	1,267	1,266	1,267	1,266	1,267	1,266	1,266	1,578
# observations in HL	1,297	1,297	1,297	1,297	1,295	1,296	1,295	1,549
# observations in V	1,263	1,262	1,262	1,261	1,263	1,263	1,262	1,550
# observations in C	1,331	1,330	1,331	1,331	1,331	1,331	1,330	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to less discord and abuse. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 40. Child labor supply and and children enrolled in school, six-month survey

	1	2	3	4	5	6	7	8
	Child labor supply (hours)	Hours in agricultural labor (last 7 days)	Hours in livestock and fishing (last 7 days)	Hours in formal employment (last 7 days)	Hours in self employment (last 7 days)	Hours in daily labor (last 7 days)	Hours in employment with unclear formality (last 7 days)	Number of children enrolled in school
Panel A: Pooled specification								
Any V	0.244	0.015	-0.047	0.006	-0.049	0.268	0.051	-0.016
This v	(0.215)	(0.104)	(0.042)	(0.045)	(0.032)	(0.173)	(0.032)	(0.017)
Any HL	0.013	-0.083	0.013	-0.024	-0.042	0.194	-0.045	-0.012
	(0.220)	(0.104)	(0.041)	(0.045)	(0.031)	(0.178)	(0.032)	(0.017)
p-value for Any V = C test	0.256	0.883	0.263	0.893	0.123	0.123	0.119	0.349
Panel B: Disaggregated specifi	cation							
VHL	0.264	-0.077	-0.031	-0.019	-0.087	0.475	0.004	-0.028
	(0.318)	(0.134)	(0.045)	(0.051)	(0.046)	(0.277)	(0.043)	(0.024)
HL	-0.074	-0.014	0.032	0.025	-0.020	-0.055	-0.043	-0.014
	(0.376)	(0.192)	(0.080)	(0.091)	(0.081)	(0.281)	(0.039)	(0.037)
V	0.116	0.025	-0.033	0.057	-0.020	0.033	0.055	-0.018
	(0.406)	(0.232)	(0.075)	(0.087)	(0.079)	(0.328)	(0.070)	(0.036)
p -value for VHL = HL test	0.404	0.750	0.398	0.624	0.343	0.075	0.275	0.687
p -value for V = C test	0.775	0.913	0.656	0.512	0.797	0.920	0.439	0.618
Panel C: Summary information	n							
Control group mean	1.555	0.437	0.075	0.066	0.094	0.846	0.038	1.667
Control group SD	12.280	4.998	2.114	1.813	2.615	10.510	1.451	1.367
# observations in VHL	1,452	1,452	1,452	1,452	1,452	1,452	1,452	1,578
# observations in HL	1,439	1,439	1,439	1,439	1,439	1,439	1,439	1,549
# observations in V	1,434	1,434	1,434	1,434	1,434	1,434	1,434	1,550
# observations in C	1,490	1,490	1,490	1,490	1,490	1,490	1,490	1,599

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 41. Consumption of temptation goods, six-month survey

	1	2
	Consumption of alcoholic beverages (last week × 30 / 7, PHP)	Consumption of cigarettes (last week × 30 / 7, PHP)
Panel A: Pooled specification		
Any V	-8.547	0.534
•	(6.619)	(6.292)
Any HL	17.076	-4.451
	(6.665)	(6.294)
p-value for Any V = C test	0.1976	0.9324
Panel B: Disaggregated specification		
VHL	8.707	-3.530
	(9.516)	(8.968)
HL	6.994	5.746
	(15.17)	(14.34)
V	-15.289	11.346
	(10.96)	(14.26)
p -value for VHL = HL test	0.913	0.525
p-value for $V = C$ test	0.1640	0.4268
Panel C: Summary information		
Control group mean	93.77	157.70
Control group SD	286.60	332.90
# observations in VHL	1,566	1,556
# observations in HL	1,531	1,510
# observations in V	1,528	1,502
# observations in C	1,582	1,566

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 42. Income treatment effect robustness checks, six-month survey

	1	2	3	4
	Monthly income (PHP)	Monthly income (PHP) - winsorized 99th percentile	Monthly income (PHP) - winsorized 95th percentile	Log of monthly income (PHP)
Panel A: Pooled specification				
Any V	386.1	356.4	276.9	0.102
	(126.8)	(100.9)	(80.28)	(0.023)
Any HL	131.2	83.5	26.0	-0.005
,	(126.3)	(100.3)	(80.10)	(0.023)
FDR q -value for Any V = C	0.015	0.003	0.004	0.000
FWER adjusted p -value for Any V = C	0.015	0.003	0.004	0.000
Panel B: Disaggregated specification				
VHL	524.4 (175.0)	441.2 (141.9)	301.6 (112.1)	0.097 (0.032)
HL	287.9	287.0	288.8	0.045
	(278.4)	(226.1)	(186.0)	(0.056)
V	574.2	591.3	565.2	0.154
	(285.4)	(230.2)	(186.8)	(0.053)
FDR q -value for VHL = HL				
FWER adjusted p -value for VHL = HL				
FDR q -value for $V = C$	0.271	0.064	0.016	0.023
FWER adjusted p -value for $V = C$	0.271	0.064	0.016	0.023
Panel C: summary information				
Control group mean	4,213	4,095	3,831	7.962
Control group SD	5,567	4,307	3,336	1.019
# observations in VHL	1,452	1,452	1,452	1,353
# observations in HL	1,440	1,440	1,440	1,359
# observations in V	1,435	1,435	1,435	1,349
# observations in C	1,490	1,490	1,490	1,393

Panels A and B show treatment effect estimates relative to control. See Appendix for details on variable construction. The dependent variable is shown in the column headings. Standard errors clustered by community are in parentheses. The q-values in each column represent what the q-value on the income treatment effect would be if the effect on income as defined in the column heading were tested along with the other primary economic outcomes. The q-values in a given column are computed independently of the q-values in the other columns.

Online Appendix Table 43. Treatment effects at six months under varying missing data assumptions

					Unadjusted				
					Treatment Effect				
			Bounds		Estimate			Bounds	
	1	2	3	4	5	6	7	8	9
Religion intrinsic index	-1.135	-0.013	0.052	0.073	0.102	0.117	0.138	0.203	1.330
	(0.047)	(0.019)	(0.019)	(0.019)	(0.024)	(0.019)	(0.019)	(0.020)	(0.048)
	[0.000]	[0.655]	[0.015]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
Religion extrinsic index	-0.839	0.009	0.073	0.094	0.130	0.136	0.158	0.222	1.058
	(0.036)	(0.020)	(0.019)	(0.019)	(0.024)	(0.019)	(0.019)	(0.020)	(0.035)
	[0.000]	[0.664]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]	[0.000]
General religion index	-1.694	-0.036	0.031	0.054	0.077	0.099	0.122	0.189	1.866
	(0.062)	(0.019)	(0.019)	(0.019)	(0.023)	(0.019)	(0.019)	(0.019)	(0.067)
	[0.000]	[0.245]	[0.127]	[0.006]	[0.001]	[0.000]	[0.000]	[0.000]	[0.000]
Last month HH consumption (PHP)	-8,291	-393.0	-126.9	-38.21	-1.078	139.2	227.9	494.0	7,722
	(467.8)	(77.05)	(75.77)	(75.60)	(100.4)	(75.64)	(75.84)	(77.21)	(354.1)
	[0.000]	[0.000]	[0.126]	[0.754]	[0.991]	[0.1]	[0.004]	[0.000]	[0.000]
Food security index	-1.104	-0.116	-0.048	-0.025	0.010	0.020	0.043	0.111	0.969
	(0.041)	(0.018)	(0.018)	(0.018)	(0.023)	(0.018)	(0.018)	(0.018)	(0.040)
	[0.000]	[0.000]	[0.026]	[0.331]	[0.778]	[0.311]	[0.021]	[0.000]	[0.000]
Last month HH income (PHP)	-13,138	-231.0	156.5	285.6	386.1	543.9	673.1	1,061	13,734
	(722.3)	(95.98)	(96.16)	(96.62)	(126.8)	(98.11)	(99.14)	(103.3)	(582.0)
	[0.000]	[0.017]	[0.126]	[0.01]	[0.015]	[0.000]	[0.000]	[0.000]	[0.000]
Adult labor supply (last 7 days)	-83.08	-4.845	-1.017	0.259	0.926	2.811	4.087	7.915	87.25
	(3.064)	(0.828)	(0.824)	(0.828)	(1.091)	(0.841)	(0.851)	(0.892)	(3.156)
	[0.000]	[0.000]	[0.218]	[0.754]	[0.595]	[0.003]	[0.000]	[0.000]	[0.000]
Life satisfaction index	-1.350	-0.100	-0.030	-0.007	0.019	0.039	0.063	0.132	1.473
	(0.047)	(0.018)	(0.018)	(0.018)	(0.022)	(0.018)	(0.018)	(0.018)	(0.054)
	[0.000]	[0.000]	[0.126]	[0.754]	[0.595]	[0.052]	[0.001]	[0.000]	[0.000]
Perceived relative economic status	-2.152	-0.351	-0.193	-0.141	-0.113	-0.035	0.017	0.175	2.013
	(0.078)	(0.036)	(0.035)	(0.035)	(0.047)	(0.035)	(0.035)	(0.036)	(0.078)
	[0.000]	[0.000]	[0.000]	[0.000]	[0.05]	[0.312]	[0.628]	[0.000]	[0.000]

This table shows Any V treatment effects estimated when values are imputed for missing observations. The imputed value for each missing observation is taken from the observed distribution of the missing individual's base and treatment arm. In each column, missing VHL/V observations are assigned the value x from their corresponding distribution, and missing HL/control observations are assigned the value y from their corresponding distribution. Column 1: x = minimum, y = maximum. Column 2: x = mean minus 0.25 standard deviations, y = mean plus 0.25 standard deviations. Column 3: x = mean minus 0.1 standard deviations. Column 6: x = mean plus 0.05 standard deviations, y = mean plus 0.05 standard deviations, y = mean minus 0.05 standard deviations. Column 7: x = mean plus 0.1 standard deviations, y = mean minus 0.2 standard deviations. Column 8: x = mean plus 0.25 standard deviations, y = mean minus 0.25 standard deviations. Column 9: y = minimum. Standard errors are in parentheses, and FDR y-values are in brackets.

Online Appendix Table 44. Summary statistics on religious affiliation by treatment group, six-month survey

Treatment group	Religion	mean	sd	min	ma
	Catholic	0.700	0.458	0	1
	Muslim	0.008	0.087	0	1
	Iglesia Filipina Independiente	0.022	0.147	0	1
C	Iglesia Ni Cristo	0.009	0.097	0	1
C	Jehovah's Witness	0.006	0.079	0	1
	Protestant (Evangelical, Baptist, etc.)	0.209	0.407	0	1
	Mormon	0.003	0.056	0	1
	Other	0.042	0.201	0	1
	Catholic	0.689	0.463	0	1
	Muslim	0.005	0.072	0	1
	Iglesia Filipina Independiente	0.018	0.134	0	1
V	Iglesia Ni Cristo	0.023	0.151	0	1
V	Jehovah's Witness	0.001	0.036	0	1
	Protestant (Evangelical, Baptist, etc.)	0.206	0.405	0	1
	Mormon	0.002	0.044	0	1
	Other	0.055	0.227	0	1
	Catholic	0.712	0.453	0	1
	Muslim	0.002	0.044	0	1
	Iglesia Filipina Independiente	0.007	0.084	0	1
111	Iglesia Ni Cristo	0.020	0.141	0	1
HL	Jehovah's Witness	0.000	0.000	0	0
	Protestant (Evangelical, Baptist, etc.)	0.200	0.400	0	1
	Mormon	0.003	0.051	0	1
	Other	0.056	0.230	0	1
	Catholic	0.665	0.472	0	1
	Muslim	0.001	0.036	0	1
	Iglesia Filipina Independiente	0.036	0.186	0	1
X 77 T	Iglesia Ni Cristo	0.016	0.125	0	1
VHL	Jehovah's Witness	0.003	0.050	0	1
	Protestant (Evangelical, Baptist, etc.)	0.213	0.410	0	1
	Mormon	0.003	0.056	0	1
	Other	0.064	0.244	0	1
	Catholic	0.692	0.462	0	1
	Muslim	0.004	0.063	0	1
	Iglesia Filipina Independiente	0.021	0.143	0	1
T . 1	Iglesia Ni Cristo	0.017	0.130	0	1
Total	Jehovah's Witness	0.003	0.051	0	1
	Protestant (Evangelical, Baptist, etc.)	0.207	0.405	0	1
	Mormon	0.003	0.052	0	1
	Other	0.054	0.226	0	1

These summary statistics are calculated using only the religious affiliation of survey respondents (and not of other household members). The statistics exclude five community pairs that did not comply with their treatment assignment.

Online Appendix Table 45. OLS and IV regressions of composite religiosity index on primary economic outcomes, six-month survey

	1	2	3	4	5	6
	Last month HH consumption (PHP)	Food security index	Last month HH income (PHP)	Adult labor supply (last 7 days)	Life satisfaction index	Perceived relative economic status
Any V (OLS)	-1.078	0.010	386.1	0.926	0.019	-0.113
	(100.4)	(0.023)	(126.8)	(1.091)	(0.022)	(0.047)
Composite religiosity index (IV)	-8.174	0.079	3,073	7.294	0.144	-0.859
	(749.8)	(0.170)	(1,222)	(8.554)	(0.161)	(0.387)
Composite religiosity index (naïve	-46.57	-0.030	-291.1	-2.307	0.119	0.072
OLS estimate within HL and C)	(75.73)	(0.019)	(96.09)	(0.860)	(0.023)	(0.043)
Control group mean	5001	0	4213	79.58	0	3.242
Control group SD	4720	1	5567	57.70	1	2.256
# observations in VHL	1,578	1,526	1,452	1,452	1,578	1,576
# observations in HL	1,549	1,521	1,440	1,439	1,549	1,548
# observations in V	1,550	1,517	1,435	1,434	1,550	1,547
# observations in C	1,599	1,567	1,490	1,490	1,599	1,596

The first row shows the treatment effect estimates from Panel A of Table 1. The composite religiosity index is composed of the intrinsic religion, extrinsic religion, and general religion indices. The second row shows estimates from an instrumental variables regression where the composite religiosity index is instrumented with the Any V dummy. The third row shows the naive OLS estimate of the effect of the composite religiosity index on each outcome within the HL and control groups. Dependent variables are indicated in the column title. See Appendix and Section IV.E.2 for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 46. Characteristics of 30-month survey sample

	Control	V	HL	VHL	C vs. V, p -value	C vs. HL, p-value	C vs. VHL, p-value	V vs. HL, p-value	V vs. VHL, p-value	HL vs. VHL, p -value	p -value from joint test of equality across arms
Panel A: Outcomes measured at 30 mon	ths										, , , , , , , , , , , , , , , , , , , ,
Average number of household	5.131	5.166	5.020	4.941	0.738	0.268	0.068	0.170	0.041	0.451	0.133
members	(0.070)	(0.079)	(0.072)	(0.076)							
Average number of adults	2.863	2.887	2.903	2.797	0.674	0.446	0.198	0.785	0.124	0.051	0.215
(age \geq 17) in the household	(0.035)	(0.045)	(0.040)	(0.037)							
Average number of children	2.268	2.279	2.116	2.144	0.894	0.072	0.149	0.042	0.099	0.736	0.098
(age < 17) in the household	(0.063)	(0.057)	(0.056)	(0.059)							
% female respondents	0.808	0.830	0.826	0.809	0.257	0.333	0.956	0.805	0.332	0.424	0.580
•	(0.012)	(0.015)	(0.013)	(0.015)							
% married respondents	0.705	0.660	0.711	0.698	0.033	0.760	0.729	0.027	0.078	0.546	0.103
1	(0.013)	(0.016)	(0.016)	(0.014)							
Average years of education of	7.504	7.528	7.552	7.385	0.936	0.880	0.709	0.941	0.655	0.620	0.960
respondent	(0.213)	(0.215)	(0.238)	(0.239)							
% ICM Base: Koronoadal	0.223	0.196	0.210	0.231	0.674	0.842	0.911	0.828	0.597	0.758	0.954
	(0.048)	(0.046)	(0.048)	(0.049)							
% ICM Base: General Santos	0.252	0.261	0.234	0.242	0.904	0.793	0.890	0.704	0.796	0.900	0.983
	(0.050)	(0.052)	(0.049)	(0.049)							
% ICM Base: Bacolod	0.263	0.280	0.288	0.269	0.817	0.741	0.929	0.921	0.887	0.809	0.988
	(0.052)	(0.054)	(0.055)	(0.053)							
% ICM Base: Dumaguete	0.262	0.263	0.269	0.257	0.983	0.927	0.950	0.944	0.934	0.878	0.999
	(0.051)	(0.052)	(0.053)	(0.051)							
# weeks between June 1, 2015	143.143	142.300	142.704	143.409	0.388	0.642	0.787	0.667	0.257	0.456	0.677
and interview end date	(0.695)	(0.687)	(0.640)	(0.695)							
% households successfully	0.769	0.751	0.738	0.749	0.353	0.120	0.293	0.553	0.928	0.604	0.456
interviewed	(0.013)	(0.015)	(0.015)	(0.014)							
Number of observations	1,481	1,389	1,366	1,441							
Panel B: Outcomes measured at 6 month	hs										
Average number of household	5.207	5.295	5.160	5.056	0.425	0.663	0.179	0.214	0.033	0.350	0.188
members	(0.078)	(0.077)	(0.076)	(0.081)	****		21272		******	*****	*****
Average number of adults	2.788	2.825	2.868	2.758	0.540	0.192	0.617	0.509	0.289	0.084	0.332
(age \geq 17) in the household	(0.041)	(0.046)	(0.046)	(0.044)	0.0.10	0.172	0.017	0.000	0.209	0.00.	0.002
Average number of children	2.411	2.452	2.292	2.294	0.650	0.192	0.210	0.061	0.072	0.986	0.153
(age < 17) in the household	(0.068)	(0.061)	(0.059)	(0.063)	0.050	0.172	0.210	0.001	0.072	0.760	0.133
% married respondents	0.847	0.800	0.846	0.833	0.031	0.979	0.483	0.039	0.133	0.520	0.131
70 married respondents	(0.013)	(0.017)	(0.014)	(0.014)	0.051	0.777	0.705	0.057	0.133	0.520	0.131
Average years of education of	7.733	7.896	7.986	7.509	0.623	0.459	0.514	0.794	0.264	0.181	0.547
respondent	(0.233)	(0.238)	(0.251)	(0.253)							
Number of observations	1,316	1,230	1,257	1,298							

These numbers exclude the five community pairs that did not comply with their treatment assignment and four community pairs that were not visited due to risk of violence. The average number of household members is not exactly equal to the sum of the average number of adults and the average number of children because of missing ages in the data. Standard errors clustered by community are in parentheses. Years of education are coded as described in Online Appendix Table 1.

Online Appendix Table 47. Predicting attrition at 30 months from six-month characteristics

Six-month characteristics	Attrition at 30 months										
Respondent age	-0.0012						-0.0016				
	(0.0004)						(0.0004)				
Respondent is male		0.0322					0.0382				
		(0.0140)					(0.0144)				
Respondent years of education			0.0010				0.0007				
			(0.0013)				(0.0014)				
Respondent income (in 1000s PHP)				0.0023							
				(0.0018)							
Household income (in 1000s PHP)					-0.0000		-0.0001				
					(0.0009)		(0.0009)				
Composite religiosity index						0.0010	0.0053				
						(0.0060)	(0.0060)				
Constant	0.2294	0.1765	0.1741	0.1748	0.1776	0.1817	0.2291				
	(0.0192)	(0.0067)	(0.0110)	(0.0064)	(0.0076)	(0.0061)	(0.0244)				
Observations	6,179	6,234	6,234	5,742	5,776	6,234	5,732				
R-squared	0.002	0.001	0.000	0.000	0.000	0.000	0.004				
F-test <i>p</i> -value	0.00463	0.0218	0.429	0.200	0.965	0.863	0.00341				

This table shows OLS regression coefficients. The dependent variable is a dummy for attrition at 30 months in all columns. Explanatory variables were measured in the six-month survey. Standard errors clustered by community are in parentheses. The composite religiosity index is the normalized sum of the intrinsic religion, extrinsic religion, and general religion indices (see Section IV.E.2). The F-test is for the null that all the nonconstant explanatory variable coefficients in the regression jointly equal zero. The sample excludes five community pairs that did not comply with their treatment assignment and four community pairs that were not visited due to risk of violence.

Online Appendix Table 48. Primary outcomes (including communities that switched treatment status), 30-month survey

	1	2	3	4	5	6	7	8	9	10
	Religion	Religion	General	Religion - list	Monthly	Food security	Monthly	Adult weekly	Life	Perceived
		extrinsic index			consumption	index	income	labor supply	satisfaction	relative econ.
	mumsie mack	extrinsic index	rengion index	randomization	(PHP)	maex	(PHP)	(hours)	index	status
Panel A: Pooled specification										
Any V	-0.050	-0.007	-0.012	0.003	126.3	-0.019	-177.7	-1.190	0.002	0.095
	(0.025)	(0.025)	(0.025)	(0.039)	(86.22)	(0.023)	(183.8)	(2.151)	(0.022)	(0.043)
Any HL	0.034	0.016	-0.041	0.028	-54.6	-0.055	216.7	1.239	0.028	0.006
	(0.025)	(0.025)	(0.025)	(0.039)	(86.42)	(0.023)	(186.9)	(2.159)	(0.022)	(0.043)
FDR q -value for Any $V = C$	0.179	0.932	0.932	0.932	0.432	0.613	0.613	0.697	0.936	0.160
FWER adjusted p -value for Any V = C	0.179	1.000	1.000	1.000	0.720	1.000	1.000	1.000	1.000	0.160
Panel B: Disaggregated specification										
VHL	-0.011	0.012	-0.053	0.029	75.57	-0.074	52.14	0.292	0.031	0.107
	(0.029)	(0.032)	(0.031)	(0.053)	(112.5)	(0.034)	(279.9)	(3.085)	(0.026)	(0.060)
HL	0.017	0.035	-0.019	0.097	256.10	-0.009	793.81	7.924	0.065	0.199
	(0.065)	(0.073)	(0.061)	(0.054)	(193.0)	(0.049)	(388.6)	(4.227)	(0.051)	(0.108)
V	-0.063	0.010	0.009	0.059	455.36	0.028	422.54	5.571	0.046	0.314
	(0.064)	(0.069)	(0.063)	(0.053)	(206.5)	(0.046)	(428.2)	(4.246)	(0.054)	(0.112)
FDR q -value for VHL = HL	0.886	0.886	0.886	0.860						
FWER adjusted p -value for VHL = HL		1.000	1.000	1.000						
FDR q -value for $V = C$	0.860	0.886	0.886	0.860	0.084	0.548	0.474	0.381	0.474	0.032
FWER adjusted p -value for $V = C$	1.000	1.000	1.000	1.000	0.141	0.973	0.973	0.762	0.973	0.032
Panel C: Summary information										
Control group mean	0	0	0	0.350	6,399	0.00	8,132	135.60	0	3.664
Control group SD	1	1	1		3,895	1.00	10,400	104.20	1	2.038
# observations in VHL	1,500	1,500	1,500	1,500	1,500	1,499	1,500	1,500	1,500	1,499
# observations in HL	1,411	1,411	1,411	1,411	1,411	1,410	1,411	1,411	1,411	1,410
# observations in V	1,428	1,428	1,428	1,428	1,428	1,428	1,428	1,428	1,428	1,428
# observations in C	1,539	1,539	1,539	1,539	1,539	1,537	1,539	1,539	1,539	1,538

Results in this table include observations from communities that did not follow the original treatment assignment and switched treatment status. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 49. Mechanisms (including communities that switched treatment status), 30-month survey

	11	12	13	14	15	16	17	18
	Trust index	Social safety net index	Community activities index	Powerful others index	Locus of control index	Expectations index	Grit index	Self-control index
Panel A: Pooled specification								
Any V	-0.022 (0.022)	0.033 (0.019)	-0.034 (0.023)	-0.044 (0.023)	-0.003 (0.021)	0.049 (0.021)	0.001 (0.020)	-0.015 (0.018)
Any HL	-0.029 (0.022)	0.032 (0.019)	-0.006 (0.023)	-0.006 (0.023)	0.005 (0.021)	0.009 (0.021)	-0.043 (0.020)	-0.021 (0.018)
p-value for Any V = C test	0.315	0.079	0.136	0.057	0.873	0.023	0.953	0.410
Panel B: Disaggregated specific	ation							
VHL	-0.051 (0.029)	0.063 (0.026)	-0.041 (0.030)	-0.049 (0.030)	0.004 (0.029)	0.058 (0.027)	-0.041 (0.028)	-0.036 (0.025)
HL	-0.087 (0.055)	0.025 (0.046)	-0.025 (0.052)	0.039 (0.067)	0.021 (0.057)	0.064 (0.048)	-0.043 (0.058)	-0.091 (0.062)
V	-0.070 (0.047)	0.039 (0.047)	-0.053 (0.054)	-0.001 (0.067)	0.023 (0.057)	0.116 (0.052)	0.005 (0.062)	-0.082 (0.064)
p-value for VHL = HL test p -value for V = C test	0.512 0.1375	0.419 0.4116	0.762 0.3267	0.182 0.9852	0.763 0.6800	0.903 0.0268	0.980 0.9387	0.377 0.2035
Panel C: Summary information								
Control group mean	0	0	0	0	0	0	0	0
Control group SD	1	1	1	1	1	1	1	1
# observations in VHL	1,500	1,500	1,500	1,500	1,500	1,499	1,500	1,500
# observations in HL	1,411	1,411	1,411	1,411	1,411	1,410	1,411	1,411
# observations in V	1,428	1,428	1,428	1,428	1,428	1,427	1,428	1,428
# observations in C	1,539	1,539	1,539	1,539	1,539	1,537	1,539	1,539

Results in this table include observations from communities that did not follow the original treatment assignment and switched treatment status. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 50. Secondary outcomes (including communities that switched treatment status), 30-month survey

	19	20	21	22	23	24	25	26	27	28	29	30
	Salvation by grace belief index	Assets index	Financial inclusion index	Health index	Hygiene index, non-list random.		House index	Migration and remittance index	No discord index	No domestic violence, list rand.	Child labor supply (hours)	# children enrolled in school
Panel A: Pooled specification												
Any V	0.086	0.018	0.034	-0.023	0.048	0.064	0.023	-0.019	-0.030	-0.052	0.037	-0.023
	(0.020)	(0.023)	(0.023)	(0.022)	(0.022)	(0.041)	(0.024)	(0.022)	(0.020)	(0.039)	(0.270)	(0.014)
Any HL	0.003	0.016	0.059	-0.012	-0.010	0.030	0.033	0.023	-0.007	-0.058	-0.171	-0.013
	(0.020)	(0.023)	(0.022)	(0.022)	(0.022)	(0.041)	(0.024)	(0.022)	(0.020)	(0.038)	(0.273)	(0.013)
p-value for Any V = C test	0.000	0.433	0.133	0.288	0.027	0.124	0.337	0.389	0.129	0.182	0.892	0.086
Panel B: Disaggregated specifi	cation											
VHL	0.087	0.035	0.093	-0.035	0.039	0.093	0.057	0.002	-0.038	-0.109	-0.110	-0.038
	(0.027)	(0.037)	(0.033)	(0.031)	(0.032)	(0.057)	(0.033)	(0.031)	(0.026)	(0.052)	(0.381)	(0.020)
HL	-0.024	0.055	0.071	-0.019	0.018	0.018	0.084	0.056	-0.042	-0.070	0.487	0.018
	(0.053)	(0.060)	(0.058)	(0.045)	(0.063)	(0.057)	(0.058)	(0.043)	(0.045)	(0.055)	(0.561)	(0.029)
V	0.062	0.056	0.047	-0.030	0.073	0.042	0.087	0.024	-0.055	-0.047	0.751	0.007
	(0.052)	(0.060)	(0.054)	(0.049)	(0.057)	(0.062)	(0.050)	(0.053)	(0.042)	(0.055)	(0.629)	(0.028)
p-value for VHL = HL test p -value for V = C test	0.035	0.751	0.728	0.710	0.730	0.184	0.652	0.210	0.932	0.472	0.286	0.063
	0.2292	0.3571	0.3883	0.5409	0.2052	0.5005	0.0786	0.6554	0.1965	0.3881	0.2336	0.8103
Panel C: Summary information	n											
Control group mean Control group SD # observations in VHL # observations in HL # observations in V	0	0	0	0	0	0.413	0	0	0	0.920	2.187	1.682
	1	1	1	1	1		1	1	1		16.32	1.328
	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500	1,500
	1,411	1,411	1,411	1,411	1,411	1,411	1,411	1,411	1,411	1,411	1,411	1,411
	1,428	1,428	1,428	1,428	1,428	1,428	1,428	1,428	1,427	1,428	1,428	1,428
# observations in C	1,539	1,539	1,539	1,539	1,539	1,539	1,539	1,539	1,539	1,539	1,539	1,539

Results in this table include observations from communities that did not follow the original treatment assignment and switched treatment status. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 51. Primary outcomes (without controls for respondent characteristics), 30-month survey

	1	2	3	4	5	6	7	8	9	10
	Religion intrinsic index	Religion extrinsic index	General religion index	Religion - list randomization	Monthly consumption (PHP)	Food security index	Monthly income (PHP)	Adult weekly labor supply (hours)	Life satisfaction index	Perceived relative econ status
Panel A: Pooled specification										
Any V	-0.054 (0.026)	-0.011 (0.026)	-0.027 (0.025)	-0.005 (0.022)	80.42 (96.95)	-0.023 (0.025)	-271.0 (208.5)	-1.871 (1.222)	-0.008 (0.022)	0.084 (0.046)
Any HL	0.036 (0.026)	0.016 (0.026)	-0.043 (0.025)	0.011 (0.022)	-163.95 (96.95)	-0.041 (0.025)	166.8 (208.5)	0.231 (1.222)	0.035 (0.022)	0.019 (0.046)
FDR q-value for Any $V = C$ FWER adjusted p-value for Any $V = C$	0.146 0.146	0.908 1.000	0.556 0.834	0.941 1.000	0.489 1.000	0.489 1.000	0.389 0.779	0.381 0.635	0.709 1.000	0.381 0.402
Panel B: Disaggregated specification										
VHL	-0.018 (0.031)	0.005 (0.034)	-0.070 (0.031)	0.007 (0.029)	-83.53 (130.4)	-0.064 (0.038)	-104.2 (316.2)	-1.640 (1.770)	0.027 (0.027)	0.103 (0.067)
HL	0.016 (0.068)	0.035 (0.074)	-0.028 (0.064)	0.008 (0.040)	204.11 (222.9)	-0.013 (0.055)	870.1 (434.7)	4.784 (2.420)	0.081 (0.052)	0.259 (0.118)
V	-0.075 (0.067)	0.001 (0.071)	-0.018 (0.068)	-0.004 (0.036)	494.48 (236.0)	0.002 (0.054)	501.0 (470.3)	2.963 (2.294)	0.044 (0.054)	0.364 (0.124)
FDR q-value for VHL = HL FWER adjusted p-value for VHL = HL	0.909 1.000	0.909 1.000	0.909 1.000	0.834 1.000		 		 	 	
FDR q-value for V = C FWER adjusted p-value for V = C	0.834 1.000	0.989 1.000	0.909 1.000	0.834 1.000	0.111 0.185	0.971 0.971	0.431 0.863	0.395 0.790	0.500 0.863	0.022 0.022
Panel C: Summary information										
Control group mean	0	0	0	0.347	6378	0	8162	67.78	0	3.662
Control group SD	1	1	1		3789	1	10500	52.50	1	2.045
# observations in VHL	1441	1441	1441	1441	1441	1440	1441	1441	1441	1440
# observations in HL	1366	1366	1366	1366	1366	1365	1366	1366	1366	1365
# observations in V	1389	1389	1389	1389	1389	1389	1389	1389	1389	1389
# observations in C	1481	1481	1481	1481	1481	1479	1481	1481	1481	1480

Results in this table do not include controls for respondent characteristics. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 52. Mechanisms (without controls for respondent characteristics), 30-month survey

	11	12	13	14	15	16	17	18
	Trust index	Social safety net index	Community activities index	Powerful others index	Locus of control index	Expectations index	Grit index	Self-control index
Panel A: Pooled specification								
Any V	-0.023 (0.023)	0.035 (0.019)	-0.027 (0.023)	-0.048 (0.024)	-0.003 (0.021)	0.043 (0.023)	0.005 (0.020)	-0.014 (0.019)
Any HL	-0.024 (0.023)	0.029 (0.019)	-0.014 (0.023)	-0.002 (0.024)	0.006 (0.021)	0.013 (0.023)	-0.035 (0.020)	-0.014 (0.019)
p-value for Any V = C test	0.310	0.068	0.248	0.043	0.892	0.065	0.792	0.436
Panel B: Disaggregated specific	cation							
VHL	-0.047 (0.030)	0.064 (0.026)	-0.041 (0.031)	-0.050 (0.031)	0.003 (0.031)	0.056 (0.033)	-0.029 (0.029)	-0.028 (0.027)
HL	-0.086 (0.059)	0.042 (0.049)	-0.029 (0.054)	0.025 (0.070)	0.006 (0.059)	0.083 (0.051)	-0.054 (0.059)	-0.106 (0.063)
V	-0.080 (0.051)	0.062 (0.049)	-0.041 (0.055)	-0.028 (0.071)	0.006 (0.058)	0.128 (0.057)	-0.011 (0.063)	-0.103 (0.064)
p-value for VHL = HL test p-value for V = C test	0.509 0.1168	0.648 0.2042	0.838 0.4560	0.270 0.6931	0.969 0.9172	0.600 0.0247	0.673 0.8592	0.221 0.1091
Panel C: Summary information	1							
Control group mean	0	0	0	0	0	0	0	0
Control group SD	1	1	1	1	1	1	1	1
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,440	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,365	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,388	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,479	1,481	1,481

Results in this table do not include controls for respondent characteristics. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups. Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 53. Secondary outcomes (without controls for respondent characteristics), 30-month survey

	19	20	21	22	23	24	25	26	27	28	29	30
	Salvation by grace belief index	Assets index	Financial inclusion index	Health index	Hygiene index, non-list random.		House index	Migration and remittance index	No discord index	No domestic violence, list rand.	Child labor supply (hours)	# children enrolled in school
Panel A: Pooled specification												
Any V	0.086 (0.020)	-0.003 (0.026)	0.034 (0.024)	-0.015 (0.022)	0.080 (0.041)	-0.022 (0.023)	0.014 (0.025)	-0.029 (0.024)	-0.020 (0.021)	-0.046 (0.039)	0.053 (0.136)	-0.019 (0.031)
Any HL	0.007 (0.020)	0.021 (0.026)	0.054 (0.024)	-0.015 (0.022)	0.024 (0.041)	0.020 (0.023)	0.044 (0.025)	0.021 (0.024)	0.005 (0.021)	-0.062 (0.039)	-0.161 (0.136)	-0.115 (0.031)
p-value for Any $V = C$ test	0.000	0.905	0.150	0.510	0.021	0.054	0.568	0.223	0.342	0.231	0.696	0.540
Panel B: Disaggregated specifi	cation											
VHL	0.093 (0.028)	0.017 (0.042)	0.088 (0.035)	-0.029 (0.032)	0.045 (0.034)	0.104 (0.058)	0.058 (0.036)	-0.008 (0.032)	-0.015 (0.030)	-0.108 (0.053)	-0.107 (0.194)	-0.134 (0.046)
HL	-0.014 (0.054)	0.066 (0.067)	0.072 (0.062)	-0.028 (0.046)	0.045 (0.067)	0.015 (0.054)	0.093 (0.061)	0.049 (0.046)	-0.034 (0.048)	-0.086 (0.056)	0.166 (0.299)	-0.092 (0.062)
V	0.069 (0.053)	0.041 (0.066)	0.056 (0.057)	-0.031 (0.050)	0.106 (0.061)	0.060 (0.063)	0.078 (0.054)	0.011 (0.052)	-0.053 (0.050)	-0.054 (0.054)	0.387 (0.327)	0.001 (0.063)
p-value for VHL = HL test p-value for V = C test	0.049 0.1947	0.466 0.5356	0.807 0.3329	0.983 0.5419	0.989 0.0837	0.108 0.3359	0.582 0.1449	0.212 0.8267	0.702 0.2911	0.689 0.3195	0.337 0.2375	0.507 0.9813
Panel C: Summary information	n											
Control group mean Control group SD	0	0 1	0	0	0	0.405	0	0	0	0.939	1.104 8.225	1.679 1.329
# observations in VHL	1,441	1,441	1,441	1,441	1,441	 1,441	1,441	1,441	1,441	1,441	6.223 1,441	1,329
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V # observations in C	1,389 1,481	1,389 1,481	1,389 1,481	1,389 1,481	1,389 1,481	1,389 1,481	1,389 1,481	1,389 1,481	1,388 1,481	1,389 1,481	1,389 1,481	1,389 1,481

Results in this table do not include controls for respondent characteristics. Panels A and B show treatment effect estimates relative to control. In Panel A, "Any V" refers to the "Values only" and "Values, Health, and Livelihood" treatment groups, and "Any HL" refers to the "Health and Livelihood only" and "Values, Health, and Livelihood" treatment groups.

Dependent variables are indicated in the column title. Indices have been coded so that more positive numbers are better. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 54. Religion intrinsic index, 30-month survey

	1	2	3	4	5	6	7	8	9
	Religion intrinsic index - 5 questions	I enjoy thinking about my religion	It is important to me to spend time in private thought and prayer	had a strong	I try hard to live all my life according to my religious beliefs	approach to life is based on	My religion affects my daily life (not used)	My religious beliefs are important as well as my behavior (not used)	My religion is one of the most important things in my life (not used)
Panel A: Pooled specification									
Any V	-0.052 (0.025)	-0.049 (0.015)	-0.046 (0.013)	-0.029 (0.013)	-0.008 (0.015)	0.013 (0.022)	0.007 (0.019)	-0.044 (0.017)	0.008 (0.017)
Any HL	0.035 (0.025)	0.035 (0.015)	0.029 (0.013)	-0.008 (0.013)	0.007 (0.015)	0.016 (0.023)	0.040 (0.019)	0.043 (0.017)	-0.008 (0.017)
p -value for Any V = C test	0.041	0.001	0.001	0.021	0.611	0.546	0.735	0.010	0.643
Panel B: Disaggregated specifi	cation								
VHL	-0.013 (0.030)	-0.013 (0.018)	-0.015 (0.015)	-0.035 (0.015)	0.001 (0.020)	0.033 (0.030)	0.047 (0.025)	-0.000 (0.020)	0.002 (0.023)
HL	0.013 (0.067)	0.009 (0.034)	0.032 (0.034)	0.008 (0.030)	-0.019 (0.039)	-0.001 (0.056)	0.021 (0.049)	0.038 (0.037)	0.010 (0.046)
V	-0.070 (0.066)	-0.076 (0.034)	-0.041 (0.035)	-0.010 (0.031)	-0.030 (0.037)	-0.004 (0.052)	-0.012 (0.048)	-0.048 (0.039)	0.028 (0.044)
p -value for VHL = HL test p -value for V = C test	0.693 0.289	0.509 0.027	0.155 0.251	0.176 0.749	0.623 0.428	0.535 0.943	0.579 0.809	0.307 0.225	0.855 0.527
Panel C: Summary information	n								
Control group mean	0	4.560	4.652	4.665	4.535	4.242	4.402	4.477	4.491
Control group SD	1	0.624	0.596	0.566	0.688	0.939	0.840	0.727	0.770
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater religiosity. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 55. Religion extrinsic index, 30-month survey

	1	2	3	4	5	6	7
	Religion extrinsic index	I go to religious services because it helps me to make friends	I pray mainly to gain relief and protection	What religion offers me most is comfort in times of trouble and sorrow	Prayer is for peace and happiness	I go to religious services mostly to spend time with my friends	I go to religious services mainly because I enjoy seeing people there
Panel A: Pooled specification							
Any V	-0.008 (0.026)	0.017 (0.026)	-0.053 (0.016)	0.000 (0.019)	-0.030 (0.013)	0.018 (0.027)	0.016 (0.029)
Any HL	0.018 (0.026)	-0.013 (0.026)	-0.008 (0.016)	0.006 (0.019)	0.011 (0.013)	0.041 (0.027)	0.029 (0.029)
p-value for Any V = C test	0.741	0.513	0.001	0.995	0.021	0.500	0.578
Panel B: Disaggregated specific	cation						
VHL	0.012 (0.033)	0.007 (0.031)	-0.059 (0.022)	0.008 (0.023)	-0.017 (0.018)	0.060 (0.037)	0.047 (0.039)
HL	0.035 (0.074)	0.032 (0.072)	-0.029 (0.041)	-0.007 (0.045)	0.020 (0.032)	0.051 (0.076)	0.066 (0.081)
V	0.007 (0.071)	0.058 (0.065)	-0.070 (0.041)	-0.017 (0.046)	-0.017 (0.034)	0.021 (0.074)	0.053 (0.077)
p-value for VHL = HL test p -value for V = C test	0.751 0.917	0.719 0.370	0.481 0.089	0.730 0.708	0.245 0.610	0.899 0.770	0.811 0.490
Panel C: Summary information	ı						
Control group mean	0	4.074	4.648	4.429	4.657	3.974	3.797
Control group SD	1	1.123	0.660	0.808	0.599	1.178	1.276
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater religiosity. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 56. General religion index, 30-month survey

	1	2	3	4	5	6	7	8
	General religion index	To what extent do you consider yourself a religious	In the last month, have you tried to convince anyone else to change the way they think	How many people?	In how many of the past 7 days did you pray privately in places other than at a	How satisfied are you with your spiritual life right	How often do you go to religious service? (number	ICM religion
		person?	about God?		place of worship?	now?	of days in a year)	
Panel A: Pooled specification								
Any V	-0.023	-0.001	0.024	0.107	-0.292	-0.000	1.197	-0.046
·	(0.025)	(0.014)	(0.010)	(0.063)	(0.062)	(0.017)	(0.751)	(0.033)
Any HL	-0.047	0.001	-0.015	-0.164	0.060	0.018	-1.647	-0.059
	(0.025)	(0.014)	(0.010)	(0.064)	(0.062)	(0.017)	(0.751)	(0.033)
p-value for Any V = C test	0.363	0.938	0.020	0.091	0.000	0.991	0.112	0.163
Panel B: Disaggregated specifi	ication							
VHL	-0.069	-0.000	0.008	-0.052	-0.228	0.020	-0.471	-0.105
	(0.031)	(0.017)	(0.014)	(0.095)	(0.086)	(0.021)	(0.892)	(0.041)
HL	-0.027	-0.023	-0.005	-0.125	0.111	0.016	0.422	-0.052
	(0.063)	(0.031)	(0.018)	(0.118)	(0.215)	(0.040)	(1.638)	(0.080)
V	-0.004	-0.027	0.034	0.149	-0.231	-0.011	3.049	-0.032
	(0.065)	(0.033)	(0.020)	(0.155)	(0.215)	(0.041)	(1.645)	(0.079)
p-value for VHL = HL test	0.493	0.462	0.489	0.490	0.106	0.913	0.598	0.505
p-value for $V = C$ test	0.954	0.423	0.095	0.338	0.284	0.791	0.065	0.680
Panel C: Summary information	n							
Control group mean	0	3.026	0.286	0.907	5.327	4.242	41.62	14.16
Control group SD	1	0.610	0.452	3.687	2.722	0.753	33.77	1.31
# observations in VHL	1,441	1,441	1,441	1,440	1,441	1,441	1,441	1,423
# observations in HL	1,366	1,366	1,366	1,364	1,364	1,366	1,366	1,352
# observations in V	1,389	1,389	1,389	1,388	1,387	1,389	1,386	1,368
# observations in C	1,481	1,481	1,481	1,480	1,481	1,481	1,481	1,460

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater religiosity. See Appendix for details on variable construction. "ICM religion" is the sum of the agreement with three statements ("The Bible is accurate in all that it teaches," "I believe the Bible has decisive authority over what I say and do," and "I believe the Christian God—Father, Son, and Holy Spirit—is the only true God") that were scored from 1 to 5, where higher numbers represent more agreement. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 57. Religion - list randomized, 30-month survey

	1	2	3	4	5	6
	Religion - list randomized	I have made a personal commitment to Jesus Christ that is still important to me today (list randomized)	I have read or listened to the Bible in the past week (list randomized)	I often have a strong sense of God's presence (list randomized, not used)	I prayed yesterday (list randomized, not used)	My whole approach to life is based on religion (list randomized, not used)
Panel A: Pooled specification						
Any V	0.001 (0.040)	-0.011 (0.051)	0.013 (0.047)	-0.016 (0.049)	0.026 (0.050)	0.069 (0.044)
Any HL	0.021 (0.040)	0.060 (0.051)	-0.018 (0.047)	-0.007 (0.049)	0.033 (0.050)	0.021 (0.044)
p-value for Any V = C test	0.980	0.834	0.787	0.740	0.595	0.116
Panel B: Disaggregated specification						
VHL	0.019 (0.055)	0.045 (0.070)	-0.007 (0.066)	-0.025 (0.062)	0.057 (0.069)	0.089 (0.059)
HL	0.083 (0.055)	0.112 (0.069)	0.053 (0.067)	0.093 (0.068)	0.052 (0.074)	-0.032 (0.065)
V	0.052 (0.054)	0.029 (0.072)	0.075 (0.061)	0.070 (0.067)	0.039 (0.072)	0.021 (0.062)
p-value for VHL = HL test p -value for V = C test	0.287 0.343	0.327 0.692	0.401 0.222	0.097 0.292	0.941 0.587	0.058 0.734
Panel C: Summary information						
Control group mean	0.347	0.344	0.351	0.435	0.367	0.394
Control group SD						
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables, elicited via list randomization, are indicated in the column title. If the statement in the column title is true, the observation is coded as a 1, and if false, it is coded as a 0. "Religion - list randomized" is the average of the two variables in columns 2 and 3. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 58. Monthly consumption, 30-month survey

	1	2	3	4
	Monthly consumption	Food consumption	Non-food	Celebration
	(PHP)	(PHP)	consumption (PHP)	spending (PHP)
Panel A: Pooled specification				
Any V	131.9	-42.51	190.2	-15.78
	(88.24)	(57.05)	(44.85)	(16.07)
Any HL	-77.5	-42.90	-25.8	-8.82
	(88.48)	(57.20)	(44.43)	(16.09)
p -value for Any V = C test	0.136	0.457	0.000	0.327
Panel B: Disaggregated specificati	ion			
VHL	56.20	-89.54	167.4	-21.65
	(115.5)	(68.49)	(60.19)	(25.55)
HL	254.64	167.56	94.3	-7.25
	(195.5)	(137.1)	(76.84)	(33.66)
V	481.39	176.45	315.5	-10.53
	(207.2)	(134.2)	(102.69)	(34.07)
p -value for VHL = HL test	0.342	0.068	0.414	0.672
p -value for $V = C$ test	0.021	0.189	0.002	0.758
Panel C: Summary information				
Control group mean	6,378	4,474	1,630	273.5
Control group SD	3,789	2,615	1,390	892.3
# observations in VHL	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix and Section V.B for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 59. Food security index, 30-month survey

	1	2	3	4
	Food security index	No household member has gone hungry in last six months	No household member has gone to bed hungry in last six months outside of lean season	Number of days no member of the household went to bed hungry (last 7 days)
Panel A: Pooled specification				
Any V	-0.014	-0.002	-0.004	-0.009
	(0.024)	(0.006)	(0.005)	(0.013)
Any HL	-0.050	-0.011	-0.011	-0.022
	(0.024)	(0.006)	(0.005)	(0.013)
p-value for Any V = C test	0.557	0.754	0.472	0.469
Panel B: Disaggregated specification				
VHL	-0.065	-0.013	-0.015	-0.033
	(0.037)	(0.009)	(0.008)	(0.020)
HL	-0.012	-0.005	0.001	-0.009
	(0.052)	(0.013)	(0.011)	(0.029)
V	0.024	0.004	0.009	0.004
	(0.050)	(0.012)	(0.010)	(0.028)
p -value for VHL = HL test	0.349	0.561	0.165	0.438
p-value for V = C test	0.625	0.735	0.368	0.881
Panel C: Summary information				
Control group mean	0	0.936	0.955	6.876
Control group SD	1	0.245	0.208	0.587
# observations in VHL	1,440	1,440	1,440	1,440
# observations in HL	1,365	1,365	1,365	1,364
# observations in V	1,389	1,389	1,389	1,389
# observations in C	1,479	1,479	1,479	1,479

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 60. Monthly income, 30-month survey

	1	2	3	4	5	6	7	8
	Monthly income (PHP)	Agricultural labor income (last 7 days × 30/7)	Livestock and fishing labor income (last 7 days × 30/7)	Other formal labor employment income (last 7 days × 30/7)	Other casual labor income (last 7 days × 30/7)	Employment (formality unclear) income (last 7 days × 30/7)	Self- employment labor income (last 7 days × 30/7)	Non-labor income (last 30 days, not used)
Panel A: Pooled specification								
Any V	-116.9	-51.11	17.00	61.08	-103.1	46.29	-87.12	139.0
•	(189.0)	(87.53)	(36.31)	(107.7)	(104.2)	(25.13)	(140.7)	(72.06)
Any HL	246.1	3.70	8.25	-110.89	69.3	-5.32	280.97	-51.1
	(191.9)	(87.65)	(36.62)	(108.4)	(103.8)	(24.68)	(144.4)	(70.88)
p-value for Any V = C test	0.536	0.560	0.640	0.571	0.323	0.066	0.536	0.055
Panel B: Disaggregated specifica	tion							
VHL	134.3	-46.08	23.13	-40.59	-27.59	39.48	185.9	78.36
	(287.6)	(121.1)	(47.64)	(148.3)	(135.0)	(23.83)	(191.7)	(111.7)
HL	842.1	-81.43	25.13	-26.71	424.61	33.63	466.8	-179.93
	(393.9)	(241.6)	(74.80)	(211.2)	(271.9)	(24.51)	(317.4)	(149.2)
V	501.2	-90.32	50.10	206.27	228.56	73.79	32.8	14.38
	(434.7)	(234.0)	(84.95)	(254.5)	(278.8)	(49.47)	(278.7)	(168.8)
p -value for VHL = HL test	0.072	0.885	0.980	0.950	0.086	0.859	0.363	0.061
p -value for $V = C$ test	0.250	0.700	0.556	0.418	0.413	0.137	0.906	0.932
Panel C: Summary information								
Control group mean	8,162	1,463	223	1,731	2,882	9	1,854	1,551
Control group SD	10,500	3,341	1,286	5,083	4,774	171	7,843	4,526
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,438
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,364
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,386
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,476

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column 1 includes all income from agriculture that is not from self-employed work. Column 3 includes all income from fishing and tending livestock that is not from self-employed work. Column 4 includes income from wage labor and piece work excluding agricultural work, fishing, and tending livestock. Column 5 includes income from casual labor excluding agricultural work, fishing, and tending livestock. Column 6 includes income from activities where the nature of work is not identified. Column 7 includes all income from self-employed work. Column 8 includes all income from non-labor sources, and is not included in the monthly income total in column 1. Standard errors clustered by community are in parentheses.

Online Appendix Table 61. Adult labor supply, 30-month survey

	1	2	3	4	5	6	7
	Adult weekly labor supply (hours)	Hours in agricultural labor (last 7 days)	Hours in livestock and fishing (last 7 days)	Hours in other formal employment (last 7 days)	Hours in other casual labor (last 7 days)	Hours in employment with unclear formality (last 7 days)	Hours in self employment (last 7 days)
Panel A: Pooled specification							
Any V	-0.774	-0.606	-0.081	-0.062	-0.335	0.219	0.097
·	(1.099)	(0.772)	(0.306)	(0.616)	(0.832)	(0.131)	(0.681)
Any HL	0.759	-0.450	0.476	-0.992	0.264	-0.265	1.732
	(1.101)	(0.766)	(0.313)	(0.623)	(0.835)	(0.129)	(0.691)
p-value for Any V = C test	0.482	0.433	0.792	0.921	0.687	0.096	0.887
Panel B: Disaggregated specific	ation						
VHL	0.097	-1.006	0.373	-1.035	-0.071	-0.056	1.904
	(1.574)	(0.950)	(0.341)	(0.805)	(0.995)	(0.069)	(0.841)
HL	4.292	-1.903	0.811	-0.573	3.174	0.069	2.724
	(2.128)	(2.051)	(0.746)	(1.418)	(2.144)	(0.141)	(1.747)
V	2.784	-1.758	0.389	0.650	2.408	0.473	0.635
	(2.161)	(2.081)	(0.748)	(1.501)	(2.090)	(0.297)	(1.653)
p-value for VHL = HL test	0.060	0.667	0.566	0.745	0.120	0.347	0.640
p-value for $V = C$ test	0.199	0.399	0.604	0.665	0.250	0.112	0.701
Panel C: Summary information							
Control group mean	67.78	14.35	1.99	12.70	22.76	0.18	15.80
Control group SD	52.50	26.91	11.00	30.65	36.01	3.12	29.67
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Column 2 includes all hours worked in agriculture that is not self-employed work. Column 3 includes all hours worked in fishing and tending livestock that is not self-employed work. Column 4 includes hours worked in wage labor and piece work excluding agricultural work, fishing, and tending livestock. Column 5 includes hours worked in casual labor excluding agricultural work, fishing, and tending livestock. Column 6 includes hours worked in activities where the nature of work is not identified. Column 7 includes all hours worked in from self-employed work. Standard errors clustered by community are in parentheses.

Online Appendix Table 62. Life satisfaction index, 30-month survey

	1	2	3	4	5	6	7	8	9
				About how	often during	the past 30 days d	id you feel		
	Life satisfaction index	Kessler K6 nonspecific distress scale	Nervous	Hopeless	Restless or fidgety	So depressed that nothing could you cheer you up	That everything was difficult	Worthless	How would you describe your satisfaction with life?
Panel A: Pooled specification									
Any V	-0.004 (0.022)	-0.139 (0.100)	0.038 (0.022)	-0.030 (0.022)	-0.017 (0.025)	-0.058 (0.022)	-0.027 (0.025)	-0.049 (0.022)	0.068 (0.055)
Any HL	0.036 (0.022)	0.163 (0.101)	0.000 (0.023)	0.032 (0.022)	0.051 (0.025)	0.053 (0.022)	0.023 (0.026)	0.012 (0.022)	0.040 (0.055)
p-value for Any V = C test	0.841	0.166	0.094	0.174	0.497	0.008	0.297	0.025	0.217
Panel B: Disaggregated specific	cation								
VHL	0.032 (0.026)	0.034 (0.139)	0.038 (0.030)	0.007 (0.032)	0.035 (0.035)	-0.004 (0.030)	-0.001 (0.031)	-0.034 (0.029)	0.104 (0.066)
HL	0.077 (0.052)	0.172 (0.241)	0.063 (0.063)	0.013 (0.050)	0.063 (0.055)	0.017 (0.051)	0.025 (0.057)	0.002 (0.044)	0.197 (0.123)
V	0.044 (0.054)	-0.161 (0.257)	0.096 (0.062)	-0.049 (0.052)	-0.003 (0.059)	-0.102 (0.055)	-0.035 (0.064)	-0.064 (0.048)	0.270 (0.134)
p-value for VHL = HL test p -value for V = C test	0.372 0.422	0.556 0.530	0.691 0.126	0.896 0.349	0.600 0.953	0.664 0.065	0.643 0.588	0.411 0.191	0.450 0.044
Panel C: Summary information									
Control group mean	0	23.24	3.420	4.192	3.655	4.063	3.456	4.478	4.860
Control group SD	1	4.38	1.192	1.012	1.126	1.027	1.343	0.889	2.680
# observations in VHL	1,441	1,441	1,440	1,440	1,439	1,438	1,440	1,436	1,441
# observations in HL	1,366	1,366	1,364	1,364	1,366	1,363	1,364	1,362	1,366
# observations in V	1,389	1,389	1,387	1,387	1,389	1,387	1,389	1,384	1,389
# observations in C	1,481	1,481	1,478	1,477	1,481	1,480	1,481	1,479	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to less psychological distress and higher life satisfaction. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 63. Perceived relative economic status, 30-month survey

1
Where would you place your household on the ladder in terms of economic status?
0.097
(0.044)
0.019
(0.044)
0.028
0.120
(0.062)
0.234
(0.109)
0.340
(0.114)
0.286
0.003
3.662
2.045
1,440
1,365
1,389 1,480

Panels A and B show treatment effect estimates relative to control. The dependent variable, indicated in the column title, has been coded so that more positive numbers correspond to higher perceived relative economic status. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

	1	2	3	4
	Trust index	In general, would you say that most people can be trusted or that most people cannot be trusted?	Do you think most people would try to take advantage of you if they got a chance, or would they try to be fair?	Would you say that most of the time people try to be helpful, or that they are mostly just looking out for themselves?
Panel A: Pooled specification				
Any V	-0.021 (0.023)	-0.018 (0.012)	0.001 (0.011)	-0.009 (0.010)
Any HL	-0.027 (0.022)	-0.024 (0.011)	-0.032 (0.011)	0.024 (0.010)
p-value for Any V = C test	0.354	0.124	0.897	0.401
Panel B: Disaggregated specificat	tion			
VHL	-0.047 (0.030)	-0.041 (0.015)	-0.032 (0.014)	0.017 (0.015)
HL	-0.083 (0.057)	-0.059 (0.026)	-0.051 (0.030)	0.012 (0.023)
V	-0.067 (0.048)	-0.053 (0.024)	-0.011 (0.025)	-0.015 (0.022)
p-value for VHL = HL test p -value for V = C test	0.528 0.167	0.498 0.027	0.508 0.652	0.854 0.488
Panel C: Summary information				
Control group mean	0	0.497	0.605	0.567
Control group SD	1	0.500	0.489	0.496
# observations in VHL	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more trust. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 65. Social safety net index, 30-month survey

·	1	2	3	4	5	6	7	8	9
	Social safety net index	Likelihood that could access 40 PHP from a source outside household for urgent need	Likelihood that could access 1,000 PHP from a source outside household for urgent need	Do you discuss personal issues with anyone outside your close family?	How often do you usually speak to this person? (number of days in a year)	Household received meals from another household in local community (last 30 days)	Number of meals received	Household gave meals to another household in local community (last 30 days)	Number of meals given
Panel A: Pooled specification									
Any V	0.038 (0.019)	0.055 (0.024)	0.088 (0.028)	-0.005 (0.010)	1.960 (1.972)	0.004 (0.010)	0.008 (0.083)	0.008 (0.010)	-0.002 (0.086)
Any HL	0.032 (0.019)	0.041 (0.024)	0.021 (0.028)	0.005 (0.010)	1.840 (1.989)	0.011 (0.010)	0.030 (0.083)	0.009 (0.010)	-0.004 (0.085)
p-value for Any V = C test	0.046	0.021	0.002	0.647	0.321	0.693	0.921	0.417	0.983
Panel B: Disaggregated specifica	tion								
VHL	0.068 (0.026)	0.098 (0.032)	0.108 (0.041)	-0.002 (0.014)	3.705 (2.488)	0.013 (0.015)	0.033 (0.110)	0.017 (0.015)	-0.010 (0.097)
HL	0.035 (0.047)	0.007 (0.063)	0.012 (0.068)	0.017 (0.025)	2.507 (4.618)	-0.008 (0.022)	0.103 (0.178)	0.019 (0.023)	0.053 (0.211)
V	0.054 (0.047)	0.021 (0.056)	0.092 (0.067)	0.013 (0.025)	2.994 (4.433)	-0.012 (0.023)	0.089 (0.179)	0.024 (0.025)	0.077 (0.216)
p-value for VHL = HL test p -value for V = C test	0.495 0.247	0.143 0.705	0.167 0.169	0.463 0.600	0.801 0.500	0.332 0.586	0.692 0.621	0.900 0.335	0.771 0.721
Panel C: Summary information									
Control group mean	0	3.770	2.631	0.319	31.280	0.522	2.400	0.583	2.688
Control group SD	1	1.116	1.341	0.466	78.6	0.500	3.777	0.493	4.169
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,439	1,441	1,437
# observations in HL	1,366	1,366	1,366	1,365	1,363	1,366	1,365	1,365	1,361
# observations in V	1,389	1,389	1,389	1,387	1,387	1,389	1,389	1,389	1,385
# observations in C	1,481	1,481	1,481	1,478	1,477	1,481	1,478	1,481	1,476

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more access to a social safety net. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 66. Community activities index, 30-month survey

	1	2	3
	Community	Have you participated in any community	How frequently did you participate in community
	activities index	activities? (last 6 months)	activities? (number of days in a year)
Panel A: Pooled specification			
Any V	-0.023	-0.020	0.015
	(0.023)	(0.012)	(0.413)
Any HL	-0.012	-0.007	-0.130
	(0.023)	(0.012)	(0.425)
p-value for Any V = C test	0.324	0.111	0.970
Panel B: Disaggregated specificate	ion		
VHL	-0.035	-0.027	-0.114
	(0.031)	(0.016)	(0.551)
HL	-0.031	-0.017	-0.362
	(0.053)	(0.030)	(0.866)
V	-0.042	-0.031	-0.216
	(0.055)	(0.030)	(0.949)
p-value for VHL = HL test	0.939	0.748	0.780
p-value for $V = C$ test	0.437	0.310	0.820
Panel C: Summary information			
Control group mean	0	0.575	11.11
Control group SD	1	0.495	19.31
# observations in VHL	1,441	1,441	1,440
# observations in HL	1,366	1,366	1,365
# observations in V	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to more involvement in community activities. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 67. Powerful others index, 30-month survey

	1	2	3	4	5	6	7
	Powerful others index	I feel like what happens in my life is mostly determined by God	Although I might have good ability, I will not be successful without appealing to God	My life is chiefly controlled by God	Getting what I want requires pleasing God	Whether or not I have an accident and hurt myself physically depends mostly on God	In order to have my plans work, I make sure that they fit with God's plan for me
Panel A: Pooled specification							
Any V	-0.047	-0.044	-0.034	-0.006	-0.046	0.006	-0.034
•	(0.024)	(0.017)	(0.016)	(0.016)	(0.018)	(0.020)	(0.017)
Any HL	-0.004	-0.008	0.006	-0.019	0.013	-0.005	-0.002
	(0.024)	(0.016)	(0.016)	(0.016)	(0.018)	(0.021)	(0.017)
p-value for Any V = C test	0.047	0.009	0.029	0.730	0.011	0.780	0.052
Panel B: Disaggregated specifica	ntion						
VHL	-0.050	-0.051	-0.028	-0.025	-0.031	0.001	-0.035
	(0.031)	(0.022)	(0.022)	(0.021)	(0.022)	(0.031)	(0.023)
HL	0.027	0.006	0.034	0.003	0.018	0.002	0.028
	(0.069)	(0.044)	(0.041)	(0.048)	(0.044)	(0.062)	(0.043)
V	-0.017	-0.033	-0.008	0.021	-0.042	0.013	-0.009
	(0.069)	(0.047)	(0.038)	(0.046)	(0.043)	(0.061)	(0.041)
p-value for VHL = HL test	0.247	0.210	0.129	0.559	0.240	0.977	0.131
p-value for V = C test	0.800	0.489	0.826	0.647	0.331	0.836	0.816
Panel C: Summary information							
Control group mean	0	4.373	4.505	4.467	4.443	4.215	4.523
Control group SD	1	0.828	0.773	0.781	0.805	0.974	0.710
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to higher perception of God's role in determining outcomes in life. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 68a. Locus of control index: Internality subscale, 30-month survey

	1	2	3	4	5	6	7	8	9	10
	Locus of control index	Internality subscale	Whether or not I am successful depends mostly on my ability	Whether or not I have an accident and hurt myself depends mostly on how careful I am on a daily basis	When I make plans, I am almost certain to make them work	How many friends I have depends on how nice a person I am	I can pretty much determine what will happen in my life	I am usually able to protect my personal interests	When I get what I want it's usually because I worked hard for it	My life is determined by my own actions
Panel A: Pooled specification										
Any V	-0.000	-0.022	-0.011	-0.025	-0.012	-0.026	0.050	0.006	-0.035	-0.043
	(0.021)	(0.026)	(0.019)	(0.022)	(0.023)	(0.016)	(0.032)	(0.022)	(0.018)	(0.017)
Any HL	0.007	0.011	0.018	0.021	-0.007	0.009	0.014	-0.006	-0.002	-0.001
	(0.021)	(0.026)	(0.019)	(0.023)	(0.023)	(0.016)	(0.031)	(0.022)	(0.018)	(0.018)
p-value for Any = C test	0.989	0.395	0.546	0.259	0.620	0.096	0.111	0.786	0.051	0.013
Panel B: Disaggregated specific	cation									
VHL	0.008	-0.007	0.009	-0.003	-0.014	-0.014	0.066	0.001	-0.036	-0.041
	(0.030)	(0.030)	(0.024)	(0.031)	(0.030)	(0.021)	(0.038)	(0.031)	(0.022)	(0.023)
HL	0.010	0.023	-0.037	0.051	0.037	0.034	-0.029	-0.001	0.008	0.038
	(0.058)	(0.066)	(0.044)	(0.046)	(0.059)	(0.040)	(0.089)	(0.057)	(0.043)	(0.044)
V	0.013	-0.006	-0.069	0.009	0.046	-0.006	0.020	0.010	-0.029	-0.009
	(0.056)	(0.065)	(0.045)	(0.045)	(0.054)	(0.040)	(0.088)	(0.054)	(0.040)	(0.044)
p-value for VHL = HL test	0.979	0.644	0.310	0.252	0.383	0.233	0.283	0.967	0.292	0.078
p-value for $V = C$ test	0.810	0.924	0.124	0.851	0.399	0.887	0.820	0.851	0.478	0.846
Panel C: Summary information										
Control group mean	0	0	4.263	4.143	3.734	4.379	3.175	3.953	4.453	4.279
Control group SD	1	1	0.786	0.945	1.174	0.776	1.342	1.036	0.736	0.855
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to higher perceptions of people's ability to control their life/fate. See Appendix for details on variable construction. The variables to the right of the second column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 68b. Locus of control index: Chance subscale and World Values Survey question, 30-month survey

11	12	13	14	15	16	17	18	19	20
Chance subscale	To a great extent my life is controlled by accidental happenings	Often there is no chance of protecting my personal interests from bad luck happening	what I want, it is usually	found that what is going to happen	Whether or not I get into an accident and hurt myself physically is mostly a matter of luck	It is not wise for me to plan too far ahead because many things turn out to be a matter of good or bad fortune	Whether or not I am successful depends on whether I am lucky enough to be in the right place at the right time	matter of fate whether or not I have	Closest to your view on a scale on which (1) "everything in life is determined by fate" and (10) "people shape their fate themselves"
-0.017	-0.042	0.033	-0.009	-0.032	-0.029	-0.022	0.009	-0.004	0.130
(0.024)	(0.027)	(0.025)	(0.024)	(0.028)	(0.026)	(0.025)	(0.020)	(0.021)	(0.070)
-0.025	-0.082	-0.019	-0.008	0.035	0.016	0.001	-0.036	-0.047	0.085
(0.024)	(0.027)	(0.025)	(0.024)	(0.028)	(0.026)	(0.025)	(0.020)	(0.021)	(0.071)
0.470	0.122	0.188	0.712	0.251	0.270	0.389	0.678	0.834	0.065
ıtion									
-0.045	-0.126	0.011	-0.020	0.003	-0.012	-0.023	-0.030	-0.056	0.217
(0.031)	(0.033)	(0.033)	(0.032)	(0.036)	(0.038)	(0.037)	(0.029)	(0.029)	(0.097)
-0.045	-0.103	-0.086	-0.034	0.131	-0.008	-0.051	-0.051	-0.051	0.123
(0.067)	(0.068)	(0.061)	(0.055)	(0.078)	(0.077)	(0.078)	(0.051)	(0.058)	(0.213)
-0.043	-0.056	-0.047	-0.044	0.045	-0.060	-0.081	-0.004	0.009	0.229
(0.069)	(0.067)	(0.064)	(0.057)	(0.076)	(0.075)	(0.074)	(0.053)	(0.060)	(0.201)
0.998	0.733	0.101	0.799	0.107	0.955	0.706	0.665	0.937	0.661
0.538	0.400	0.466	0.440	0.557	0.426	0.274	0.939	0.879	0.256
0	2.338	2.336	2.144	2.523	2.282	2.427	1.914	1.978	5.710
1	1.200	1.147	1.115	1.233	1.234	1.239	0.944	1.021	3.367
1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,440
1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,365
1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389
1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,480
	-0.017 (0.024) -0.025 (0.024) 0.470 ************************************	Chance subscale To a great extent my life is controlled by accidental happenings -0.017 (0.024) -0.042 (0.027) -0.025 (0.024) -0.082 (0.027) 0.470 0.122 0.122 ntion (0.031) -0.126 (0.033) -0.045 (0.067) -0.103 (0.068) -0.043 (0.067) -0.056 (0.069) 0.538 (0.069) 0.733 (0.400) 0 (0.338 (0.400) 1.200 (0.441 (0.366)) 1 (0.366 (0.389) (0.389) 1.389 (0.389)	Chance subscale To a great extent my life is controlled by accidental happenings Often there is no chance of protecting my personal interests from bad luck happening -0.017 -0.042 0.033 (0.024) (0.027) (0.025) -0.025 -0.082 -0.019 (0.024) (0.027) (0.025) 0.470 0.122 0.188 ntion -0.045 -0.126 0.011 (0.031) (0.033) (0.033) -0.045 -0.103 -0.086 (0.067) (0.068) (0.061) -0.043 -0.056 -0.047 (0.069) (0.067) (0.064) 0.998 0.733 0.101 0.538 0.400 0.466 0 2.338 2.336 1 1.200 1.147 1,441 1,441 1,441 1,366 1,366 1,366 1,389 1,389 1,389	Chance subscale To a great extent my life is controlled by accidental happenings Often there is no chance of protecting my personal interests from bad luck happening When I get what I want, it is usually because I am lucky -0.017 -0.042 0.033 -0.009 (0.024) (0.027) (0.025) (0.024) -0.025 -0.082 -0.019 -0.008 (0.024) (0.027) (0.025) (0.024) 0.470 0.122 0.188 0.712 ntion -0.045 -0.126 0.011 -0.020 (0.031) (0.033) (0.033) (0.032) -0.045 -0.103 -0.086 -0.034 (0.067) (0.068) (0.061) (0.055) -0.043 -0.056 -0.047 -0.044 (0.069) (0.067) (0.064) (0.057) 0.998 0.733 0.101 0.799 0.538 0.400 0.466 0.440 0 2.338 2.336 2.144 1 1.200 1.147 1.115 </td <td>Chance subscale To a great extent my life is controlled by accidental happenings Offen there is no chance of protecting my personal interests from bad luck happening When I get what I want, it is usually because I am lucky I have often found that it is usually what is going because I am lucky -0.017 -0.042 0.033 -0.009 -0.032 (0.024) (0.027) (0.025) (0.024) (0.028) -0.025 -0.082 -0.019 -0.008 0.035 (0.024) (0.027) (0.025) (0.024) (0.028) 0.470 0.122 0.188 0.712 0.251 ntion -0.045 -0.126 0.011 -0.020 0.003 -0.045 -0.126 0.011 -0.020 0.003 (0.031) (0.033) (0.033) (0.032) (0.036) -0.045 -0.103 -0.086 -0.034 0.131 (0.067) (0.068) (0.061) (0.055) (0.078) -0.043 -0.056 -0.047 -0.044 0.045 (0.069) (0.067) (0.064)</td> <td>Chance subscale To a great extent my life is controlled by accidental happenings Offen there is no chance of protecting my personal interests from bad luck happening When I get what I want, it is usually because I am lucky I have often found that it is usually what is going by what is going to happen will happen will happen in to happen will happen in to happen will happen will happen in to happen will happen will happen in to happen will happen in to happen will happen will happen in to happen will happen will happen in to happen will happen wi</td> <td>Chance subscale To a great extent my life is controlled subscale Often there is no chance of protecting my personal interest by accidental happenings When I get what I want, found that it is usually what is going accident all the protecting my personal interest from bad luck happening When I get what I want, found that it is usually what is going because I am lucky When I get what I want, found that it is usually what is going because I am lucky Whether or no light into an accident and the usually what is going bysically is mostly a matter of good or bad fortune -0.017 -0.042 0.033 -0.009 -0.032 -0.029 -0.022 (0.024) (0.027) (0.025) (0.024) (0.028) (0.026) (0.025) -0.025 -0.082 -0.019 -0.008 0.035 0.016 0.001 (0.024) (0.024) (0.028) (0.026) (0.025) 0.038 0.470 0.122 0.188 0.712 0.251 0.270 0.389 attion -0.045 -0.126 0.011 -0.020 0.003 -0.012 -0.023 (0.031) (0.033) (0.033) (0.032) (0.036) (0.038) (0.077)</td> <td> To a great extent my life is controlled by accidental happenings Often there is no chance of by accident and hour myself physically is object as the right of happening Often there is no happen Offen there of the hierarchy Offen there is no happen Offen there i</td> <td> To a great extent my chance of charles subscale To a great extent my chance of charles subscale To a great extent my chance of chance of charles subscale To a great extent my chance of chance of charles subscale To a great extent my chance of charles subscale To a great extent my chance of protecting my charles are subscaled To a great extent my chance of protecting my charles are subscaled To a great extent my chance of protecting my charles are subscaled To a great extent my chance of protecting my charles are subscaled To a great extent my charles are subscaled To a great ex</td>	Chance subscale To a great extent my life is controlled by accidental happenings Offen there is no chance of protecting my personal interests from bad luck happening When I get what I want, it is usually because I am lucky I have often found that it is usually what is going because I am lucky -0.017 -0.042 0.033 -0.009 -0.032 (0.024) (0.027) (0.025) (0.024) (0.028) -0.025 -0.082 -0.019 -0.008 0.035 (0.024) (0.027) (0.025) (0.024) (0.028) 0.470 0.122 0.188 0.712 0.251 ntion -0.045 -0.126 0.011 -0.020 0.003 -0.045 -0.126 0.011 -0.020 0.003 (0.031) (0.033) (0.033) (0.032) (0.036) -0.045 -0.103 -0.086 -0.034 0.131 (0.067) (0.068) (0.061) (0.055) (0.078) -0.043 -0.056 -0.047 -0.044 0.045 (0.069) (0.067) (0.064)	Chance subscale To a great extent my life is controlled by accidental happenings Offen there is no chance of protecting my personal interests from bad luck happening When I get what I want, it is usually because I am lucky I have often found that it is usually what is going by what is going to happen will happen will happen in to happen will happen in to happen will happen will happen in to happen will happen will happen in to happen will happen in to happen will happen will happen in to happen will happen will happen in to happen will happen wi	Chance subscale To a great extent my life is controlled subscale Often there is no chance of protecting my personal interest by accidental happenings When I get what I want, found that it is usually what is going accident all the protecting my personal interest from bad luck happening When I get what I want, found that it is usually what is going because I am lucky When I get what I want, found that it is usually what is going because I am lucky Whether or no light into an accident and the usually what is going bysically is mostly a matter of good or bad fortune -0.017 -0.042 0.033 -0.009 -0.032 -0.029 -0.022 (0.024) (0.027) (0.025) (0.024) (0.028) (0.026) (0.025) -0.025 -0.082 -0.019 -0.008 0.035 0.016 0.001 (0.024) (0.024) (0.028) (0.026) (0.025) 0.038 0.470 0.122 0.188 0.712 0.251 0.270 0.389 attion -0.045 -0.126 0.011 -0.020 0.003 -0.012 -0.023 (0.031) (0.033) (0.033) (0.032) (0.036) (0.038) (0.077)	To a great extent my life is controlled by accidental happenings Often there is no chance of by accident and hour myself physically is object as the right of happening Often there is no happen Offen there of the hierarchy Offen there is no happen Offen there i	To a great extent my chance of charles subscale To a great extent my chance of charles subscale To a great extent my chance of chance of charles subscale To a great extent my chance of chance of charles subscale To a great extent my chance of charles subscale To a great extent my chance of protecting my charles are subscaled To a great extent my chance of protecting my charles are subscaled To a great extent my chance of protecting my charles are subscaled To a great extent my chance of protecting my charles are subscaled To a great extent my charles are subscaled To a great ex

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to lower perception of chance's ability to determine outcomes in life. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 69. Expectations index, 30-month survey

1	2	3
Expectations index	Which step of the life satisfaction ladder do you believe you will be on in 5 years?	Where do you think you will be on the relative economic status ladder 5 years from now?
0.047	0.077	0.103
(0.022)	(0.051)	(0.047)
0.016	0.051	0.011
(0.022)	(0.051)	(0.047)
0.034	0.137	0.030
ion		
0.062	0.124	0.116
(0.028)	(0.070)	(0.061)
0.073	0.163	0.119
(0.049)	(0.109)	(0.110)
0.116	0.218	0.230
(0.053)	(0.118)	(0.117)
0.826	0.727	0.981
0.029	0.065	0.050
0	6.228	5.228
1	2.452	2.150
1,440	1,437	1,438
1,365	1,362	1,362
1,388	1,385	1,387
1,479	1,476	1,477
	0.047 (0.022) 0.016 (0.022) 0.034 ion 0.062 (0.028) 0.073 (0.049) 0.116 (0.053) 0.826 0.029	Expectations index Which step of the life satisfaction ladder do you believe you will be on in 5 years? 0.047 (0.022) (0.051) 0.077 (0.051) 0.016 (0.022) (0.051) 0.051 (0.051) 0.034 0.137 0.137 ion 0.062 (0.070) 0.073 (0.049) (0.109) 0.163 (0.049) 0.016 (0.053) (0.118) 0.218 (0.118) 0.826 (0.727 (0.029) (0.065) 0.065 0 (0.228 (0.228) (0.228) (0.238)

Online Appendix Table 70. Grit index, 30-month survey

	1	2	3	4	5	6	7	8	9
	Grit index	New ideas and projects sometimes distract me from previous ones	Setbacks don't discourage me	I have been obsessed with a certain idea or project for a short time but later lost interest	I am a very hard worker	I often set a goal but later choose to pursue a different one	I have difficulty maintaining my focus on projects that take more than a few months	I finish whatever I begin	I am diligent
Panel A: Pooled specification									
Any V	0.006 (0.020)	-0.012 (0.022)	0.038 (0.021)	0.001 (0.024)	-0.022 (0.021)	0.047 (0.026)	-0.008 (0.024)	-0.017 (0.019)	0.000 (0.019)
Any HL	-0.037 (0.020)	-0.040 (0.022)	-0.002 (0.020)	-0.059 (0.024)	0.008 (0.021)	-0.034 (0.025)	-0.039 (0.024)	-0.005 (0.019)	0.015 (0.019)
p-value for Any V = C test	0.761	0.577	0.069	0.970	0.300	0.070	0.736	0.371	0.994
Panel B: Disaggregated specificatio	n								
VHL	-0.031 (0.028)	-0.055 (0.031)	0.039 (0.029)	-0.059 (0.031)	-0.012 (0.029)	0.011 (0.035)	-0.048 (0.031)	-0.021 (0.028)	0.016 (0.028)
HL	-0.053 (0.059)	-0.077 (0.059)	0.070 (0.055)	-0.150 (0.066)	0.014 (0.059)	-0.058 (0.069)	-0.065 (0.063)	0.020 (0.049)	0.020 (0.053)
V	-0.006 (0.063)	-0.040 (0.057)	0.097 (0.057)	-0.076 (0.067)	-0.016 (0.060)	0.025 (0.076)	-0.028 (0.066)	0.007 (0.052)	0.004 (0.052)
p-value for VHL = HL test p -value for V = C test	0.694 0.921	0.705 0.483	0.575 0.087	0.164 0.253	0.650 0.785	0.309 0.738	0.791 0.677	0.388 0.892	0.941 0.933
Panel C: Summary information									
Control group mean	0	2.749	3.466	2.723	4.098	2.687	2.775	4.078	4.219
Control group SD	1	1.097	1.076	1.147	0.935	1.212	1.140	0.938	0.896
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Online Appendix Table 71. Self-control index, 30-month survey

	1	2	3	4	5	6	7	8	9	10	11
	Self control index	I have a hard time breaking bad habits	I get distracted easily	I say inappropriate things	I refuse things that are bad for me, even if they are fun.	I'm good at resisting temptation	People would say that I have very strong self- discipline	Pleasure and fun sometimes keep me from getting work done	I do things that feel good in the moment but regret later on	Sometimes I can't stop myself from doing something, even if I know it's wrong	I often act without thinking through all the alternatives
Panel A: Pooled specification											
Any V	-0.014 (0.018)	-0.034 (0.026)	0.025 (0.023)	-0.009 (0.023)	0.013 (0.025)	-0.037 (0.023)	0.067 (0.020)	-0.025 (0.020)	-0.039 (0.026)	-0.024 (0.025)	-0.014 (0.024)
Any HL	-0.017 (0.018)	0.040 (0.026)	-0.040 (0.022)	0.031 (0.024)	-0.011 (0.025)	0.047 (0.023)	-0.018 (0.020)	-0.047 (0.021)	-0.041 (0.025)	-0.026 (0.025)	-0.031 (0.024)
p-value for Any V = C test	0.458	0.187	0.267	0.697	0.617	0.102	0.001	0.230	0.125	0.341	0.571
Panel B: Disaggregated specific	ication										
VHL	-0.031 (0.026)	0.007 (0.037)	-0.016 (0.033)	0.023 (0.031)	0.001 (0.030)	0.011 (0.031)	0.048 (0.026)	-0.073 (0.027)	-0.081 (0.032)	-0.048 (0.035)	-0.045 (0.029)
HL	-0.107 (0.063)	-0.029 (0.079)	-0.090 (0.060)	-0.016 (0.068)	-0.000 (0.067)	-0.001 (0.059)	-0.030 (0.060)	-0.122 (0.059)	-0.088 (0.072)	-0.121 (0.072)	-0.108 (0.077)
V	-0.101 (0.065)	-0.104 (0.074)	-0.027 (0.062)	-0.056 (0.065)	0.016 (0.066)	-0.079 (0.061)	0.048 (0.056)	-0.096 (0.059)	-0.081 (0.072)	-0.113 (0.072)	-0.078 (0.076)
p-value for VHL = HL test p -value for V = C test	0.224 0.119	0.648 0.163	0.211 0.656	0.566 0.392	0.982 0.808	0.826 0.193	0.194 0.389	0.401 0.106	0.922 0.259	0.319 0.118	0.419 0.303
Panel C: Summary information	n										
Control group mean	0	3.016	2.901	3.216	3.531	3.865	3.789	2.625	2.942	3.120	3.027
Control group SD	1	1.218	1.182	1.149	1.139	1.041	0.956	1.136	1.190	1.195	1.184
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Online Appendix Table 72. Salvation by grace belief index, 30-month survey

	1	2	3	4
	Salvation by grace belief index	If I am good enough, God will cleanse me of my sins	I follow God's laws so that I can go to heaven	I will go to heaven because I have accepted Jesus Christ as my personal savior
Panel A: Pooled specification				
Any V	0.085	0.047	0.032	0.017
	(0.020)	(0.013)	(0.014)	(0.011)
Any HL	0.009	0.008	0.006	-0.007
·	(0.020)	(0.013)	(0.014)	(0.011)
p-value for Any V = C test	0.000	0.000	0.020	0.114
Panel B: Disaggregated specifica	ution			
VHL	0.093	0.055	0.037	0.010
	(0.028)	(0.017)	(0.018)	(0.015)
HL	-0.014	-0.012	-0.018	0.001
	(0.054)	(0.033)	(0.035)	(0.028)
V	0.066	0.029	0.009	0.025
	(0.053)	(0.032)	(0.034)	(0.030)
p-value for VHL = HL test	0.047	0.049	0.108	0.740
p-value for $V = C$ test	0.215	0.369	0.802	0.409
Panel C: Summary information				
Control group mean	0	1.301	1.301	0.599
Control group SD	1	0.617	0.602	0.490
# observations in VHL	1,441	1,423	1,423	1,441
# observations in HL	1,366	1,352	1,352	1,366
# observations in V	1,389	1,368	1,368	1,389
# observations in C	1,481	1,460	1,460	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to greater belief in the doctrine of salvation by grace. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 73. Assets index, 30-month survey

	1	2	3	4	5	6	7	8	9	10	11	12
	Assets index		Value of productive assets		Value of house assets	Number of productive assets acquired in last 6 months	Value of productive assets acquired in last 6 months	Number of house assets acquired in last 6 months	Value of the house assets acquired in last 6 months	Money set aside in savings	Chance that would have 40 PHP available for urgent need	Chance that would have 1,000 PHP available for urgent need
Panel A: Pooled specification												
Any V	0.013	-0.103	-142.0	0.191	1,746	-0.010	0.048	0.059	750.0	101.1	0.018	0.002
Tady V	(0.024)	(0.053)	(68.63)	(0.123)	(864.7)	(0.009)	(6.230)	(0.060)	(259.9)	(103.4)	(0.028)	(0.027)
Any HL	0.018	0.050	53.5	-0.009	-135	0.013	1.344	-0.069	-319.4	-166.8	0.071	0.041
•	(0.024)	(0.052)	(69.17)	(0.122)	(859.4)	(0.009)	(6.258)	(0.060)	(258.1)	(107.3)	(0.028)	(0.026)
p-value for Any V = C test	0.590	0.051	0.039	0.120	0.044	0.293	0.994	0.331	0.004	0.329	0.532	0.949
Panel B: Disaggregated specification	ation											
VHL	0.031	-0.054	-89.57	0.177	1,601	0.003	1.478	-0.010	433.5	-68.72	0.090	0.042
	(0.039)	(0.070)	(88.91)	(0.174)	(1,274)	(0.014)	(9.990)	(0.084)	(352.5)	(159.8)	(0.041)	(0.040)
HL	0.065	0.082	131.90	0.402	1,399	0.010	-9.280	0.076	-123.1	-179.18	0.100	0.069
	(0.062)	(0.159)	(187.7)	(0.275)	(1,809)	(0.032)	(17.53)	(0.176)	(545.7)	(246.9)	(0.068)	(0.069)
V	0.059	-0.088	-89.06	0.665	3,528	-0.013	-10.872	0.186	902.7	123.72	0.046	0.041
	(0.063)	(0.160)	(159.7)	(0.307)	(1,816)	(0.030)	(17.60)	(0.181)	(660.5)	(297.3)	(0.072)	(0.071)
p-value for VHL = HL test	0.594	0.399	0.254	0.427	0.913	0.828	0.537	0.631	0.328	0.554	0.872	0.704
p-value for $V = C$ test	0.345	0.582	0.577	0.031	0.053	0.650	0.537	0.306	0.173	0.678	0.526	0.565
Panel C: Summary information												
Control group mean	0	2.140	1,450	7.924	22,300	0.136	74.87	1.176	3,567	712.7	3.617	2.167
Control group SD	1	1.978	3,013	5.109	41,400	0.343	247.50	2.086	11,900	8,573.0	1.230	1.194
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,406	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,326	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,354	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,454	1,481	1,481

Online Appendix Table 74. Financial inclusion index, 30-month survey

	1	2	3	4
	Financial inclusion index	Do you or anyone in your household currently have money set aside as savings?	Do you by yourself or with other people currently have an account at a bank?	Have you made a deposit at a financial institution in the past 6 months?
Panel A: Pooled specification				
Any V	0.039 (0.023)	0.010 (0.010)	0.007 (0.007)	0.007 (0.005)
Any HL	0.057 (0.023)	0.038 (0.010)	-0.003 (0.007)	0.009 (0.005)
p-value for Any V = C test	0.090	0.296	0.312	0.189
Panel B: Disaggregated specificat	ion			
VHL	0.096 (0.033)	0.047 (0.014)	0.004 (0.010)	0.016 (0.008)
HL	0.075 (0.059)	0.054 (0.023)	0.002 (0.016)	0.005 (0.014)
V	0.059 (0.054)	0.028 (0.022)	0.014 (0.016)	0.002 (0.013)
p-value for VHL = HL test p -value for V = C test	0.749 0.273	0.774 0.203	0.905 0.385	0.494 0.903
Panel C: Summary information				
Control group mean	0	0.273	0.096	0.047
Control group SD	1	0.446	0.295	0.212
# observations in VHL	1,441	1,437	1,440	1,441
# observations in HL	1,366	1,366	1,366	1,366
# observations in V	1,389	1,388	1,388	1,387
# observations in C	1,481	1,477	1,480	1,480

Online Appendix Table 75. Health index, 30-month survey

	1	2	3	4
		Negative of number	Negative of number of	
		of serious health	household members that	Negative of total number
	Health index	events in the	have suffered an illness that	•
		household (last 6	has kept them from working	to illness (last 30 days)
		months)	(last 30 days)	
Panel A: Pooled specification				
Any V	-0.017	-0.027	0.003	-0.046
•	(0.022)	(0.016)	(0.005)	(0.091)
Any HL	-0.017	-0.016	-0.001	-0.032
•	(0.022)	(0.016)	(0.005)	(0.092)
p-value for Any V = C test	0.452	0.091	0.507	0.610
Panel B: Disaggregated specifica	ution			
VHL	-0.034	-0.043	0.002	-0.079
	(0.032)	(0.022)	(0.007)	(0.131)
HL	-0.022	-0.026	0.000	-0.024
	(0.046)	(0.031)	(0.011)	(0.175)
V	-0.021	-0.034	0.005	-0.060
	(0.050)	(0.032)	(0.011)	(0.193)
p-value for VHL = HL test	0.793	0.599	0.849	0.754
p-value for V = C test	0.670	0.289	0.641	0.755
Panel C: Summary information				
Control group mean	0	-0.232	-0.059	-0.741
Control group SD	1	0.621	0.257	4.300
# observations in VHL	1,441	1,439	1,441	1,441
# observations in HL	1,366	1,365	1,365	1,365
# observations in V	1,389	1,389	1,388	1,388
# observations in C	1,481	1,481	1,481	1,481

Online Appendix Table 76. Hygiene indices, 30-month survey

	1	2	3	4	5
	Hygiene index - non-list randomized	Animals kept in sanitary way	Hygiene index - list randomized	I wash my hands after going to the bathroom (list randomized)	I treat my water before drinking it (list randomized)
Panel A: Pooled specification					
Any V	0.050	0.021	0.073	0.074	0.072
This V	(0.022)	(0.009)	(0.041)	(0.054)	(0.047)
Any HL	-0.008	-0.003	0.019	0.050	-0.011
	(0.022)	(0.009)	(0.041)	(0.054)	(0.047)
p-value for Any V = C test	0.025	0.025	0.079	0.172	0.126
Panel B: Disaggregated specific	cation				
VHL	0.042	0.018	0.091	0.122	0.061
	(0.033)	(0.014)	(0.058)	(0.075)	(0.066)
HL	0.038	0.016	0.002	0.101	-0.097
	(0.063)	(0.026)	(0.055)	(0.075)	(0.058)
V	0.093	0.039	0.048	0.122	-0.026
	(0.058)	(0.024)	(0.063)	(0.081)	(0.068)
p -value for VHL = HL test	0.948	0.948	0.103	0.768	0.013
p-value for $V = C$ test	0.108	0.108	0.447	0.132	0.708
Panel C: Summary information	ı				
Control group mean	0	0.776	0.405	0.424	0.386
Control group SD	1	0.417			
# observations in VHL	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481

Online Appendix Table 77. House index, 30-month survey

House index All rooms All rooms All rooms allel to be Index Some Index Index Some Index Index Index Some Index I		1	2	3	4	5	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				rooms leak-	able to be	rooms able to	lighting is
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel A: Pooled specification						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	• •						
Panel B: Disaggregated specification VHL $0.058 \\ (0.034)$ $0.017 \\ (0.015)$ $-0.013 \\ (0.009)$ $0.034 \\ (0.014)$ $0.016 \\ (0.014)$ $0.029 \\ (0.014)$ HL $0.086 \\ (0.058)$ $0.033 \\ (0.025)$ $0.006 \\ (0.014)$ $0.0015 \\ (0.023)$ $0.049 \\ (0.026)$ V $0.084 \\ (0.050)$ $-0.007 \\ (0.022)$ $0.008 \\ (0.013)$ $0.010 \\ (0.022)$ $0.021 \\ (0.024)$ $0.069 \\ (0.029)$ p-value for VHL = HL test of t	Any HL						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	p -value for Any V = C test	0.401	0.188	0.264	0.081	0.341	0.046
HL $0.086 \ 0.033 \ 0.006 \ 0.004 \ 0.015 \ 0.049 \ 0.058 \ 0.025 \ 0.014 \ 0.023 \ 0.026 \ 0.026 \ 0.032)$ V $0.084 \ -0.007 \ 0.008 \ 0.010 \ 0.021 \ 0.024 \ 0.029 \ 0.024 \ 0.029 \ 0.022 \ 0.013 \ 0.022 \ 0.024 \ 0.024 \ 0.029 \ 0.029 \ 0.024 \ 0.029 \ 0.029 \ 0.008 \ 0.010 \ 0.021 \ 0.024 \ 0.029 \ 0.029 \ 0.0097 \ 0.008 \ 0.010 \ 0.021 \ 0.024 \ 0.029 \ 0.022 \ 0.0024 \ 0.029 \ 0.0029 \ 0.0024 \ 0.0029 \ 0.0029 \ 0.0022 \ 0.0024 \ 0.0029 \ 0.$	Panel B: Disaggregated specification	ation					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	VHL						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HL						
p-value for V = C test 0.097 0.764 0.551 0.658 0.387 0.019 Panel C: Summary informationControl group mean 0 0.371 0.893 0.321 0.625 0.767 Control group SD 1 0.483 0.309 0.467 0.484 0.423 # observations in VHL $1,441$ $1,441$ $1,441$ $1,440$ $1,440$ $1,441$ # observations in HL $1,366$ $1,366$ $1,366$ $1,366$ $1,366$ $1,366$ $1,366$ $1,366$ # observations in V $1,389$ $1,389$ $1,389$ $1,389$ $1,389$ $1,389$	V						
Control group mean 0 0.371 0.893 0.321 0.625 0.767 Control group SD 1 0.483 0.309 0.467 0.484 0.423 # observations in VHL 1,441 1,441 1,441 1,440 1,440 1,441 # observations in HL 1,366 1,366 1,366 1,366 1,366 1,366 # observations in V 1,389 1,389 1,389 1,389 1,389 1,389	*						
Control group SD 1 0.483 0.309 0.467 0.484 0.423 # observations in VHL 1,441 1,441 1,441 1,440 1,440 1,441 # observations in HL 1,366 1,366 1,366 1,366 1,366 1,366 # observations in V 1,389 1,389 1,389 1,389 1,389 1,389	Panel C: Summary information						
# observations in VHL 1,441 1,441 1,441 1,440 1,440 1,440 1,441 # observations in HL 1,366 1,366 1,366 1,366 1,366 1,366 1,366 # observations in V 1,389 1,389 1,389 1,389 1,389 1,389	Control group mean	0	0.371	0.893	0.321	0.625	0.767
# observations in HL 1,366 1,366 1,366 1,366 1,366 1,366 1,366 1,366 1,389 1,389 1,389 1,389 1,389 1,389	Control group SD	1	0.483	0.309	0.467	0.484	0.423
# observations in V 1,389 1,389 1,389 1,389 1,389 1,388	# observations in VHL	1,441	1,441	1,441	1,440	1,440	1,441
			1,366	1,366	1,366	1,366	1,366
# chargetions in C 1.401 1.401 1.401 1.401 1.401 1.401	# observations in V	1,389	1,389	1,389	1,389	1,389	1,388
# observations in C 1,481 1,481 1,481 1,481 1,481 1,481	# observations in C	1,481	1,481	1,481	1,481	1,481	1,481

Online Appendix Table 78. Migration and remittance index, 30-month survey

	1	2	3	4	5
	Migration and remittance index	Number of migrators in the household	Number of migrators who sent remittances or brought money home (last 6 months)	Household had at least one migrator send remittances or bring money home (last 6 months)	Amount received in remittances or cash brought home (PHP - last 6 months)
Panel A: Pooled specification					
Any V	-0.021	-0.007	-0.010	-0.007	-35.13
·	(0.023)	(0.010)	(0.009)	(0.007)	(197.7)
Any HL	0.028	0.029	0.009	0.007	-129.35
	(0.023)	(0.011)	(0.009)	(0.007)	(195.7)
p-value for Any V = C test	0.352	0.505	0.266	0.318	0.859
Panel B: Disaggregated specifi	cation				
VHL	0.006	0.021	-0.002	-0.001	-159.1
	(0.031)	(0.015)	(0.012)	(0.011)	(178.5)
HL	0.046	0.033	0.014	0.010	146.9
	(0.043)	(0.021)	(0.018)	(0.014)	(300.0)
V	0.008	-0.001	-0.003	-0.003	339.9
	(0.053)	(0.020)	(0.018)	(0.015)	(654.5)
p-value for VHL = HL test	0.352	0.591	0.391	0.450	0.286
p -value for $V = C$ test	0.886	0.963	0.860	0.857	0.604
Panel C: Summary information	1				
Control group mean	0	0.178	0.142	0.121	1,084
Control group SD	1	0.488	0.411	0.326	7,340
# observations in VHL	1,441	1,441	1,441	1,441	1,384
# observations in HL	1,366	1,366	1,366	1,366	1,317
# observations in V	1,389	1,389	1,389	1,389	1,347
# observations in C	1,481	1,481	1,481	1,481	1,448

Online Appendix Table 79. No discord index, 30-month survey

	1	2	3	4	5	6	7
		During the last 1 m	r = fewer arguments)				
	No discord index	Spending on major household items or assets?	Saving decisions?	The behavior and disciplining of children?	Interactions with relatives?	Alcohol consumption?	Any other issues?
Panel A: Pooled specification							
Any V	-0.029	-0.010	-0.013	-0.030	0.006	-0.003	0.004
·	(0.020)	(0.008)	(0.007)	(0.008)	(0.006)	(0.008)	(0.007)
Any HL	-0.004	-0.007	-0.017	0.009	0.007	0.005	0.000
	(0.020)	(0.008)	(0.007)	(0.008)	(0.006)	(0.008)	(0.007)
p-value for Any V = C test	0.146	0.207	0.054	0.000	0.344	0.667	0.570
Panel B: Disaggregated specifi	cation						
VHL	-0.034	-0.016	-0.030	-0.022	0.013	0.001	0.003
	(0.027)	(0.011)	(0.009)	(0.011)	(0.008)	(0.011)	(0.008)
HL	-0.032	-0.026	-0.013	-0.012	-0.001	-0.003	0.009
	(0.046)	(0.016)	(0.015)	(0.020)	(0.014)	(0.015)	(0.019)
V	-0.047	-0.026	-0.008	-0.045	-0.000	-0.011	0.015
	(0.043)	(0.015)	(0.013)	(0.020)	(0.013)	(0.017)	(0.019)
p-value for VHL = HL test	0.965	0.544	0.272	0.624	0.321	0.795	0.734
p-value for $V = C$ test	0.282	0.088	0.542	0.023	0.974	0.526	0.432
Panel C: Summary information	ı						
Control group mean	0	0.848	0.864	0.645	0.876	0.850	0.891
Control group SD	1	0.359	0.343	0.478	0.329	0.357	0.311
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,440
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,388	1,388	1,388	1,388	1,388	1,388	1,388
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to less discord. See Appendix for details on variable construction. The variables to the right of the first column have not been standardized. Standard errors clustered by community are in parentheses.

Online Appendix Table 80. No domestic violence, 30-month survey

	1	2	3	4	
	Domestic violence index - list randomized	Someone in my household is experiencing physical abuse (list randomization - higher = less abuse)	Someone in my household has made me feel physical pain in the last month (list randomization - higher = less abuse, not used)	Someone in my household has hit, threatened or pushed me in the last month (list randomization - higher = less abuse, not used)	
Panel A: Pooled specification					
Any V	-0.042	-0.042	0.038	-0.047	
·	(0.039)	(0.039)	(0.040)	(0.040)	
Any HL	-0.059	-0.059	-0.012	-0.088	
	(0.039)	(0.039)	(0.040)	(0.040)	
p-value for Any V = C test	0.287	0.287	0.344	0.245	
Canel B: Disaggregated specific	cation				
VHL	-0.100	-0.100	0.025	-0.134	
	(0.053)	(0.053)	(0.052)	(0.053)	
HL	-0.078	-0.078	-0.009	-0.071	
	(0.056)	(0.056)	(0.055)	(0.059)	
V	-0.046	-0.046	0.033	-0.047	
	(0.055)	(0.055)	(0.056)	(0.059)	
p-value for VHL = HL test	0.687	0.687	0.562	0.266	
p-value for $V = C$ test	0.400	0.400	0.561	0.429	
anel C: Summary information	1				
Control group mean	0.939	0.939	0.791	0.950	
Control group SD					
# observations in VHL	1,441	1,441	1,441	1,441	
# observations in HL	1,366	1,366	1,366	1,366	
# observations in V	1,389	1,389	1,389	1,389	
# observations in C	1,481	1,481	1,481	1,481	

Panels A and B show treatment effect estimates relative to control. Dependent variables are indicated in the column title. Variables have been coded so that more positive numbers correspond to less abuse. See Appendix for details on variable construction. Standard errors clustered by community are in parentheses.

Online Appendix Table 81. Child labor supply and and children enrolled in school, 30-month survey

	1	2	3	4	5	6	7	8
	Child labor supply (hours)	Hours in agricultural labor (last 7 days)	Hours in livestock and fishing (last 7 days)	Hours in formal employment (last 7 days)	Hours in casual labor (last 7 days)	Hours in employment with unclear formality (last 7 days)	Hours in self employment (last 7 days)	Number of children enrolled in school
Panel A: Pooled specification								
Any V	0.032 (0.136)	0.050 (0.073)	-0.024 (0.061)	0.019 (0.047)	0.033 (0.090)	-0.021 (0.015)	-0.025 (0.030)	-0.026 (0.014)
Any HL	-0.039 (0.138)	0.065 (0.074)	-0.120 (0.060)	-0.059 (0.047)	-0.030 (0.091)	0.022 (0.016)	0.083 (0.032)	-0.016 (0.014)
p -value for Any V= C test	0.813	0.488	0.689	0.680	0.715	0.173	0.403	0.062
Panel B: Disaggregated specific	ation							
VHL	0.007 (0.191)	0.119 (0.108)	-0.139 (0.087)	-0.038 (0.071)	0.008 (0.101)	0.001 (0.009)	0.056 (0.043)	-0.043 (0.020)
HL	0.292 (0.284)	0.167 (0.161)	-0.114 (0.109)	-0.067 (0.087)	0.220 (0.173)	0.032 (0.043)	0.053 (0.078)	0.016 (0.029)
V	0.393 (0.319)	0.169 (0.173)	-0.020 (0.143)	0.006 (0.103)	0.303 (0.212)	-0.011 (0.011)	-0.054 (0.049)	0.006 (0.029)
p-value for VHL = HL test p -value for V = C test	0.317 0.219	0.779 0.330	0.797 0.888	0.748 0.952	0.224 0.154	0.468 0.311	0.969 0.270	0.053 0.844
Panel C: Summary information								
Control group mean	1.104	0.351	0.211	0.134	0.327	0.010	0.072	1.679
Control group SD	8.225	3.461	4.555	3.073	4.085	0.364	1.797	1.329
# observations in VHL	1,441	1,441	1,441	1,441	1,441	1,441	1,441	1,441
# observations in HL	1,366	1,366	1,366	1,366	1,366	1,366	1,366	1,366
# observations in V	1,389	1,389	1,389	1,389	1,389	1,389	1,389	1,389
# observations in C	1,481	1,481	1,481	1,481	1,481	1,481	1,481	1,481

Online Appendix Table 82. Consumption of temptation goods, 30-month survey

	1	2
	Consumption of alcoholic beverages (last week × 30 / 7, PHP)	Consumption of cigarettes (last week × 30 / 7, PHP)
Panel A: Pooled specification		
Any V	46.19	4.509
	(23.18)	(9.828)
Any HL	-14.07	11.281
	(22.74)	(9.876)
p-value for Any V = C test	0.0472	0.6467
Panel B: Disaggregated specification		
VHL	31.76	15.80
	(23.21)	(12.74)
HL	-4.31	52.36
	(15.61)	(20.31)
V	61.73	47.75
	(61.20)	(20.34)
p-value for VHL = HL test	0.180	0.088
p-value for $V = C$ test	0.3139	0.0195
Panel C: Summary information		
Control group mean	132.20	196.70
Control group SD	303.10	383.10
# observations in VHL	1,430	1,418
# observations in HL	1,352	1,349
# observations in V	1,381	1,365
# observations in C	1,472	1,455

Online Appendix Table 83: Income treatment effect robustness checks, 30-month survey

	1	2	3	4
	Monthly income (PHP)	Monthly income (PHP) - winsorized 99th percentile	Monthly income (PHP) - winsorized 95th percentile	Log of monthly income (PHP)
Panel A: Pooled specification				
Any V	-116.9	-101.2	-63.22	0.009
	(189.0)	(162.0)	(135.9)	(0.019)
Any HL	246.1	256.0	161.64	0.003
	(191.9)	(162.5)	(135.9)	(0.019)
FDR q-value for Any V = C	0.669	0.669	0.771	0.767
FWER adjusted p-value for Any V = C	1.000	1.000	1.000	1.000
Panel B: Disaggregated specification				
VHL	134.3	165.2	101.5	0.011
	(287.6)	(239.1)	(205.2)	(0.029)
HL	842.1	917.8	810.4	0.100
	(393.9)	(324.7)	(273.1)	(0.039)
V	501.2	578.8	588.8	0.111
	(434.7)	(373.0)	(306.7)	(0.042)
FDR q-value for VHL = HL FWER adjusted p-value for VHL = HL FDR q-value for V = C FWER adjusted p-value for V = C	 0.375 0.795	 0.244 0.487	 0.112 0.223	 0.027 0.045
Panel C: summary information				
Control group mean Control group SD # observations in VHL # observations in HL	8,162	7,907	7,476	8.748
	10,500	7,723	6,301	0.877
	1,441	1,441	1,441	1,285
	1,366	1,366	1,366	1,253
# observations in V # observations in C	1,389	1,389	1,389	1,263
	1,481	1,481	1,481	1,327

Panels A and B show treatment effect estimates relative to control. See Appendix for details on variable construction. The dependent variable is shown in the columns. Standard errors clustered by community are in parenthese. The q-values in each column represent what the q-value on the income treatment effect would be if the effect on income as defined in the column heading were tested along with the other primary economic outcomes. The q-values in a given column are computed independently of the q-values in the other columns.

Online Appendix Table 84. Treatment effects at 30 months under varying missing data assumptions

					Unadjusted				
					Treatment Effect				
		Lower Bounds		Estimate	Upper Bounds				
	1	2	3	4	5	6	7	8	9
Religion Intrinsic Index	-1.276	-0.188	-0.111	-0.086	-0.052	-0.035	-0.009	0.067	1.156
	(0.038)	(0.020)	(0.020)	(0.019)	(0.025)	(0.019)	(0.019)	(0.019)	(0.034)
	[0.000]	[0.000]	[0.000]	[0.000]	[0.163]	[0.283]	[0.834]	[0.001]	[0.000]
Religion Extrinsic Index	-1.109	-0.139	-0.069	-0.046	-0.008	0.001	0.025	0.095	1.043
	(0.033)	(0.020)	(0.020)	(0.020)	(0.026)	(0.020)	(0.020)	(0.020)	(0.029)
	[0.000]	[0.000]	[0.001]	[0.031]	[0.98]	[0.98]	[0.691]	[0.000]	[0.000]
General Religion Index	-1.732	-0.151	-0.078	-0.054	-0.023	-0.006	0.018	0.091	1.858
	(0.043)	(0.020)	(0.020)	(0.019)	(0.025)	(0.019)	(0.019)	(0.019)	(0.049)
	[0.000]	[0.000]	[0.000]	[0.011]	[0.726]	[0.98]	[0.691]	[0.000]	[0.000]
Last month HH consumption (PHP)	-6,535	-345.1	-46.67	52.80	131.9	251.7	351.2	649.6	11,382
	(174.3)	(64.39)	(65.16)	(65.55)	(88.24)	(66.51)	(67.07)	(69.12)	(421.7)
	[0.000]	[0.000]	[0.569]	[0.421]	[0.408]	[0.001]	[0.000]	[0.000]	[0.000]
Food security index	-1.787	-0.143	-0.065	-0.040	-0.014	0.012	0.037	0.115	1.722
	(0.056)	(0.018)	(0.018)	(0.018)	(0.024)	(0.018)	(0.018)	(0.018)	(0.054)
	[0.000]	[0.000]	[0.001]	[0.063]	[0.669]	[0.515]	[0.039]	[0.000]	[0.000]
Last month HH income (PHP)	-23,203	-1,228	-546.4	-319.2	-116.9	135.2	362.4	1,044	18,202
	(1,174)	(148.2)	(147.6)	(147.9)	(189.0)	(149.0)	(149.9)	(154.0)	(645.0)
	[0.000]	[0.000]	[0.001]	[0.063]	[0.669]	[0.515]	[0.024]	[0.000]	[0.000]
Adult labor supply (last 7 days)	-87.21	-7.218	-3.331	-2.036	-0.774	0.555	1.851	5.737	83.21
	(2.517)	(0.841)	(0.830)	(0.828)	(1.099)	(0.826)	(0.827)	(0.834)	(2.406)
	[0.000]	[0.000]	[0.000]	[0.063]	[0.669]	[0.515]	[0.031]	[0.000]	[0.000]
Life satisfaction index	-1.345	-0.123	-0.052	-0.029	-0.004	0.019	0.042	0.113	1.338
	(0.034)	(0.017)	(0.017)	(0.017)	(0.022)	(0.017)	(0.017)	(0.017)	(0.034)
	[0.000]	[0.000]	[0.003]	[0.104]	[0.841]	[0.515]	[0.023]	[0.000]	[0.000]
Perceived relative economic status	-2.145	-0.143	0.008	0.058	0.097	0.159	0.210	0.361	2.325
	(0.058)	(0.034)	(0.034)	(0.034)	(0.044)	(0.034)	(0.034)	(0.035)	(0.062)
	[0.000]	[0.000]	[0.813]	[0.104]	[0.168]	[0.000]	[0.000]	[0.000]	[0.000]

This table shows Any V treatment effects estimated when values are imputed for missing observations. The imputed value for each missing observation is taken from the observed distribution of the missing individual's base and treatment arm. In each column, missing VHL/V observations are assigned the value x from their corresponding distribution, and missing HL/control observations are assigned the value y from their corresponding distribution. Column 1: x = minimum, y = maximum. Column 2: x = mean minus 0.25 standard deviations, y = mean plus 0.25 standard deviations. Column 3: x = mean minus 0.1 standard deviations. Column 6: x = mean plus 0.05 standard deviations, y = mean minus 0.05 standard deviations, y = mean minus