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1 Theoretical Derivations

1.1 Stationary Equilibrium Growth

This section derives the paper’s equations defining equilibrium growth (6-8), following the ap-

proach in Krebs (2003a,b). Country subscripts j are omitted for legibility. First, note that the
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household’s problem can be written in recursive form as:

V(w,k,e) = maxu(c) + BE[V (w', K, &) (1)

subject to:
w' = w[l +r(k,e)] —c (2)
where 7(.) is as defined in paper equation (5). Substituting (2)) into (1) and taking the first-order

conditions (FOCs) for ¢ and k yields:

u, = BE[V,] (3)
0 = BE[V]

Next, substituting in the decision rules ¢ = g(w,%, e) and K = f (w,%, e) yields the Benveniste-

Scheinkman conditions:

Vi = BEVLIO+rRe)l 3
. @E%w{[R’f(a)—a’“—u—w)nk(s)]—[Rh(a)—ah—u—w)nh(s)]}]

(1+ k)2

Substituting based on and iterating forward then yields the Euler equation and no-arbitrage

condition, respectively:

w, = BE[uy[(1+r(K, )] (4)

0 - 5E[u;w,{m ()= = (1= <e('1>]+— Eu;z ()= 3" = (=) <e’>]}] 5

Next, invoking the assumed utility function u(c) = 611%, the budget constraint , and the
fact that ¢ = ¢[1 + r(k',&')]w’ (where ¢ = 1 — § denotes the consumption-out-of-wealth ratio),
substitution and rearranging in yields the desired result that:

1

F=1-c= (ﬁE[(l +r(k',5'))1ﬂ])” (6)

The same substitutions allow us to factor out as pre-determined terms ¢ and w’ = (14 r)w — ¢
in , yielding the desired condition:

(IR ) = & = (L= mnh() = [RM() = 0" = (1= ) ()]}

0=BE| (1+ &) (14 (&)

] (7)



Finally, the expression for average growth can be derived by again invoking w’ = [1 +T(%, e)jw—c
and ¢ = ¢[1 + r(k,&')]w'. First, note that the definition of @ implies that:

¢ = 1+ r(k,e)w ®)
_ +rke)w—c

oo [1+r(%, e)]w

Consequently, expected growth can readily be shown to equal paper equation (8), as desired:

ol - o[ et

= (1= +E[F,e))) =G+ EFH, )

1+ r(K, {1+ rk, e)w — ¢}

Cc

c[l+ T(E',s')]w’] _ g

Cc

1.2 Proposition 1

Proposition 1: Cyclone Risk and Avg. Growth An increase in cyclone risk has a theoret-
ically ambiguous effect on average growth:
dg

0
dp,

VIIA

Proof: We demonstrate the possibility of both positive and negative effects of cyclone risk on
average growth by construction. In order to maintain analytic transparency, we present a simple
parameterization where, each period, there is just a binary probability ¢ that a cyclone occurs
with intensity ¢, = £, whereas, with probability 1 — ¢, no cyclone occurs (g, = 0). The mean
disaster realization is thus p, = ¢¢. For clarity, we also separate the average depreciation term O
back into its underlying components: §; = §; + mu* = §;, + 7¢n*(Z), and analogously for human
capital. In this setting, expressions @ and become:

T = B el 1+ (9)

wi(k)[Re(k) = 61 — won(2) = (1= m)n* )] ]
(1 — wp (k) [Ba(E) — 6, — mon"(E) — (1 — )" (3)]

+1-6) {0+ [ BIRE) - 52— mon¥ @)+ (1 = nNRUE) = 5. = o @] 7]



[Ra(R) = 5 — 7o () = (1 = ) (E)] = [Rulk) = 8 — o (2) = (1 = )" (@)])

(14 21+ [wrBRe(B) — b — @) (w6 + 1 m)] + (1 = wi(0) [Ralk) — 60— 1 (E) (6 + 1 — )]
[Rk(%) Y - mnk(g)] - [Rh(i&) Y - mnh(g)}
1+ 02 (L4 [n B Ra(B) — 81— mon (@) + (1 — wn () [Ru(R) — 0 — mom )] )7

+(1—¢) =0

Whiile it is possible to apply the implicit function theorem to @D— to derive analytic expres-
dk ds
&) &>
therefore analytically illustrate the possibility of higher average growth due to higher storm risk in

sions for and thus ultimately fl—g, we have not found these expressions to be instructive. We
the simplest possible case where human and physical capital are perfectly symmetric. That is, as-
sume that both types of capital are equally vulnerable to cyclone damages n*(g;) = 1" (&) = n(e;),
enter production symmetrically (with Cobb-Douglas exponents @« = 1 —a = 0.5), and have equal
baseline depreciation rates d;, = 0, = . In this case, it is straightforward to show that the
optimal capital share equation is solved by k* = 1, implying equal optimal investment in
both types of capital in stationary equilibrium. The optimal savings rate @D in the symmetric

setting then reduces to:

1

5 = (BEIO+r#,))

1 A A 5

= 5 o g -a -t 1-m) b o) {5 o= mone) i

where A denotes total factor productivity. Here, the impact of a change in storm risk on optimal

savings depends only on its direct effect in , and is given byﬂ
ds

=B ET =)+ 1) 7 ()

n

0g (12)

where the portfolio return in case of a storm 7(2) = 4 — § — 7¢n(g) — (1 — 7)n(€) and 3 are both
as in .

Since depreciation damages are assumed to be increasing in storm intensity (% > 0), ex-
pression immediately shows that the equilibrium savings rate is increasing in average storm

intensity if v > 1, unaffected by storm risk if v = 1 (logarithmic preferences), and decreasing in

1 That is, there is no additional indirect effect via a change in k.



storm risk if 7 < 1f]

- >0 ify>1
ds _ =0 ify=1 (13)
z ) 0 T

<0 ify<1

The corresponding change in average growth due to storm risk is then given by:

dg ds , d(1+ Elr(g"))
Y= S+ eI (14

Where is given by , s remains defined by (|1 , and:

B = 50— mon@) — o0 —m(E) = 5 6~ on() (15)
A+ ErE) _ o
de 0z

To complete the characterization of % 2, we assume the same functional form for 7(Z) as in the

empirical part of the paper:
n(E) = &) (16)
Utilizing , , and in and rearranging then implies that:
dg €y—1
T = @U-D6EE

1maﬂ§w1—w[r+é—a—w¢x)@—u—wﬁx>]71+§—6—¢@@w>+1

where s remains defined by . Consequently,

dg

sign(——

) (17)

- (- ﬁwn{[ﬁ” o) |14 o €ﬂ)@w¢+1—ﬂﬂqf1+§—5—¢&@ﬁﬂ+l}

It immediately follows from that, within the realm of permissible parameter values (where
depreciation does not exceed 100 percent even in case of a storm), average growth is unambigu-
ously decreasing in storm risk whenever v < 1.

In contrast, if agents are sufficiently risk averse with v > 1, average growth may be increasing

2

This conclusion follows from the fact that all terms in (12| are positive except for 7%%(')] , which is negative,

and (1 — v), whose sign consequently determines the overall sign of .



in storm risk. Figure A1l showcases this possibility by displaying average growth as a function
of average storm risk . = ¢£ (while varying £) for different values of v (for example calibration
=098, A=1¢=01,0=.1& =0.5,& =2):
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Figure A1 demonstrates that the ‘f—‘g may be ambiguous in sign not only across but even within
calibrations, depending on the level of baseline storm risk at which it is evaluated. This demon-

strates the theoretical ambiguity claim of Proposition 1.

1.3 Corollary 1

Proposition 1 establishes that an increase in cyclone risk can increase average growth. In order
to prove Corollary 1, it is thus sufficient to demonstrate that the increase in cyclone risk in those
cases results in a decline in welfare. Following the same approach as Krebs (2003b), one can
re-write household lifetime utility (again omitting country j subscripts for legibility and focusing

on the relevant case with v > 1) as:

EO ﬁt t
t=0 1—2

o, L Eol{eog(k, )}y Eol{cog(k, e)g(k, €)1 ]
= 1_7+6 - + T

Uo (18)




where initial consumption ¢y = (1 — $)(1 + r(ko, £0))wo is pre-determined (since ho, ko, and &g
are given) except for the equilibrium savings rate s, and ¢(.) is the consumption growth factor
g = 2= =)+ T(E, er)]. Given the assumption of independently distributed shocks and

Ct—1

following Krebs (2003b) one can write as:

E, t G 0 _ 19
;ﬁ 1= (1 =91 - BEg(k,e)']) 1

Uy =

(1 =71 = B{og(E)' "+ (1-0)g(0)'7})

where g(e) = (3) [1+4 — 6 — m¢&,(5)%2 — (1 — m)& ()] . Differentiating Uy with respect to &
then yields:

dUy (1= 3) (=)L + r(ko, 20))wo ™ + (1 = 3)' (1 + r(ko, £0))wo] 7 - (—7€165(E) )]

E 6 (0= B{og@T + (1 - Hg0) 7))
4 (il)co K . [A]
-1 B {og@ " + (1990 )]
where
A = = o 4 (1= 00 EY)

T = E 143 - - 6@ - 1= maE® |+ 5 [-mose e - (- DEGE]
PO F |+ g - 0= mo6@7] +5meneEe

For the relevant case where v > 1, we have already shown that % > 0, so that the first part in
is unambiguously negative. If the parameters are such that ( ) > 0 and 49 > 0, this is
sufficient to ensure that the second line in (20)) is also negative as it then follows that A > 0, and,
consequently, that the welfare effects of cyclone risk increases are negative. Intuitively, di—.g) >0
if the precautionary savings effect is sufficiently strong to dominate the direct depreciation effect
even during cyclone events. However, the present focus on areas of the parameter space where

average growth impacts are positive (i.e., % = (/ﬁdg(g + (1 —¢)%“9 > 0) is not sufficient to

dz dz
guarantee that (;) > 0. While it is less analytically transparent in this case to show that
% < 0, intuitively cyclone risk increases should always be welfare-decreasing as households

could have chosen to save more and throw away more of their income (representing higher



insurance premia) even in the absence of such risk increases, if this would make them better off.
In order to formally demonstrate that such welfare declines can exist in the same settings giving
rise to positive growth effects, we resort to a numerical evaluation of at the same parameters
as in Figure A1 (6 =0.985, A=1,¢ =0.1,0 = .1, {; = 0.5, and &, = 2, evaluated variably
for initial conditions g9 = 0 or g9 = ). Figure A2 shows that welfare declines with cyclone risk,

even in the area of the parameter space where output growth increases.
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To summarize, we have shown that, in the same setup used in Proposition 1 to illustrate the
possibility of a positive effect of cyclone risk on output growth, the effect of an increase in cyclone
risk on welfare is negative. Consequently, we have shown that cyclone risk may affect output

growth and welfare in opposite ways.

1.4 Proposition 2

The claims of Proposition 2 follow from (i) the equation for realized growth in stationary equi-

librium (paper eqn. 9) with the definition of portfolio returns (paper eqn. 5) substituted in:



e = —2= =G +wrB){RE(F) = 0F = (1= 7)) (e50)} (21)
(1= wilk)){R}(R) = 0] — (1= 7)) ()}
Claims (1)-(2) focus on the case where financial markets are incomplete (7; < 1):

1) Cyclone realizations have a negative effect on contemporaneous growth ( ZZ—’:”; <0).
Js
This claim follows directly from differentiating (21)):

Agit _ ~\p1 v o’ 7 o’
dgj,t o (SJ)(l WJ)( 1) [wk(k )8€jt + (]- wk(kj))agj’t <0 (22)

2) Cyclone realizations have a persistently negative effect on output levels in the sense that
there is no compensating positive growth rebound after the storm ( Z dt“ <0).

This statement follows from the AK-nature of the model. In partlcular the contemporaneous
growth rate returns to baseline levels following the disaster realization, so that dg] =0

for [ > 0. Adding up these terms with 1) thus yields the desired result that ngt“ < 0.

Finally, claim (3) pertains to the case where financial markets are complete (7TJ = 1). In this
case, all cyclone damages would insured (i.e., contained in 5m, m = k,h) and ¢;; would vanish
from equation . Consequently, cyclone realizations ¢;; would not affect growth realizations

if m; = 1, showing the desired result that dgj ‘

’Tl’j—l =0.

2 Empirical Analysis: Details and Robustness

2.1 TFP Robustness

2.1.1 Varying Lag Lengths

Table A1 presents results for the benchmark TFP specification across varying cyclone impact lag
lengths, along with Akaike/Bayesian Information Criteria (AIC/BIC).



Table A1l: TFP Impacts at Varying Lag Lengths

(1)

(2) 3)

(4)

(5)

(6)

(8)

MaxWind, 0.570%%  -0.644%F  -0.690%*  -0.735%%  -0.803*  -0.795% -0.773* -0.762
(0.265)  (0.300)  (0.324)  (0.337)  (0.414)  (0.425)  (0.460) (0.529)

MaxWind;_q  -0.552%%% _0.636*F* -0.675%%* -0.720%%% -0.750%* -0.798%* -0.759% -0.744
(0.197)  (0.240)  (0.258)  (0.271)  (0.301)  (0.379)  (0.411) (0.491)

MaxWind;_o 20.605%  -0.653*  -0.694*  -0.722%  -0.729%*  -0.731  -0.697
(0.314)  (0.343)  (0.355)  (0.386)  (0.416)  (0.497) (0.568)

MaxWind;_s3 -0.759%  -0.800%  -0.812%  -0.823* -0.806* -0.876
(0.400)  (0.410)  (0.421)  (0.440)  (0.470) (0.626)

MaxWind;_4 “0.695%F  -0.727%F  -0.719%*  -0.699%  -0.688
(0.280)  (0.312)  (0.331)  (0.374) (0.453)

MaxWind;_s 0.617%%  -0.628%  -0.588  -0.572
(0.303)  (0.338)  (0.380) (0.462)

MaxWind;_g -0.490%  -0.462  -0.432
(0.286)  (0.343) (0.434)

MaxWind,;_7 0329 -0.309
(0.340)  (0.439)

MaxWind;_g -0.297
(0.417)

Obs. 5,787 5,686 5,585 5,484 5,383 5281 5179 5,076
Adj. R? 0.970 0.970 0.971 0.971 0.972 0972 0972 0973
AIC -8416 -8378 -8340 -8304 8244 8173 8112 -8024
BIC(n=N) -8122 -8079 -8029 -8013 7921 7871 -7824  -T737
BIC(n=#Clusters)  -8285 -8244 -8201 -8174 8099  -8036  -7982  -7894

Table presents results of regression of natural log of countries’ TFP lIl(Aj t) on a constant, country fixed-effects, year
7

fixed-effects, country-specific linear time trends, and cyclone intensity in max. wind speed/kmzfor various lags.

Standard errors are heteroskedasticity-robust and clustered at the country level. *** p<{0.01, ** p<<0.05, * p<<0.1

The results are generally similar across lag lengths, but cease to be precisely estimated as

more observations are excluded at higher lag lengths. The information criteria also imply that

lower lag lengths are preferred.

2.1.2 HP-Filtering

Table A2 shows TFP results based on HP-filtering of each country’s TFP series (using annual

smoothing parameter A = 6.25), and regressing the natural logarithm of the cyclical components,

In(T'FP;;) on year fixed-effects and cyclone measures €, (with robust errors ¢;, clustered at the
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country-level).

L
In(TFP) =0+ Y _Biuejat+ e
=0

Table A2: HP-Filtered TFP Impacts

1) 2)
Dep. Variable:  In(TF P ;) In(TFP;,)
MaxWind, -1.276 Energy; -0.00818
(5.223) (0.00684)
MaxWind;_q -28.28%** Energy;_1 -0.00762*
(3.216) (0.00389)
MaxWind;_o -108.8* Energy;_o -0.00226
(60.31) (0.00201)
MaxWind;_3 3.535 Energy;_3 -0.00619
(5.626) (0.00727)
MaxWind;_4 -1.838 Energy; 4 -0.00184
(2.642) (0.00342)
MaxWind;_5 -0.311 Energy;_s5 0.00138
(1.759) (0.00159)
MaxWind;_g -60.71 Energy;_¢ -0.00155
(37.64) (0.00269)
Obs. 2,678 2,678
Adj. R? 0.0555 0.0557

Table presents regression of natural log of cyclical component

of TFP (based on HP filtering with A= 625) on a constant, year
fixed-effects and cyclone intensity for either max. wind speed/km2
(Col. 1) or energy/km2 (sum of max. wind speeds cubed) (Col 2).
Standard errors are heteroskedasticity-robust and clustered

at the country level. *** p<{0.01, ** p<<0.05, * p<<0.1

2.2 Cyclone Intensity Monte Carlo Simulation Details

First, we use the Emanuel et al.’s (2008) cyclone frequency data to estimate the projected mean
number of storms making landfall in each country j under the future climate T: gogoﬁ Next

we assume a Poisson distribution of cyclone counts (Emanuel, 2013) to randomly sample the

3 Specifically, we compute the relative increase in the number of landfalls in the synthetic track data between

present and future conditions, and apply this increase (e.g., +5%) to each country’s observed mean landfall
count (1970-2015) in the actual historical data.
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number of storms making landfall in each country j per year under the future climate (taking
n = 5,000 draws from the Poisson(#landfalls;|Thg0) distribution for each country j). Third, for
each draw of a number of storms making landfall in country j, we then randomly sample storm
characteristics (e.g., maximum wind speed) from one of the 3,000 synthetic tracks per basinﬁ in
the Emanuel data (with replacement). This process thus generates random draws over annual
cyclone realizations €; 2090, including years without storms. This process captures changes in
expected future intensity driven both by changes in the number and characteristics of storms.
Finally, we then fit appropriate distributions for each cyclone variable in each country. The

resulting parameter estimates for each country are listed below.

2.3 Country-Level Results: Expected Cyclone Impacts

Tables 1-4 below display country-level results for expected 2090-2100 annual damages to TFP,
physical capital, and human capital (%/year), along with the estimated Weibull distribution
parameters for each country’s 2080-2100 annual maximum wind speed distribution (based on
Emanuel et al.’s (2008) synthetic cyclone tracks for IPCC A1B scenario).

3 Calibration Detalils

3.1 DICE Damage Functions

This section describes the derivation of the climate change damage function coefficients in Table
4 based on the results of Table 3, which represent total expected cyclone depreciation. Hold-
ing socioeconomic factors constant, total future cyclone depreciation reflects a combination of
baseline impacts and warming damages: 07 °“(T,) = 5o graditional (Y First, given the
scientific literature’s common finding of linearity in the global cyclone intensity-temperature re-
lationship (see, e.g., Holland and Bruyere, 2014), we linearly interpolate from Tsp9¢ and specify
grdditional (Y — T Table 3 provides pairs of ‘observations’ of total damages at current and
future climates that we thus use to solve for slope parameters « via:
57 (Ty00) — 6T (Tho15)

o= 23
(To090 — To015) (23)

The synthetic cyclone tracks from Emanuel et al. (2008) underlying our T5pgo simulations reflect
the IPCC’s A1B emissions scenario, which different climate models estimate to result (on average)
in 2.8°C' warming over 1980-99 temperatures by 2100 (IPCC, 2007). Based on Hawkins et al.’s

4 5,000 tracks were used in the North Atlantic Ocean.
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Table 1: Country-Level Expected Future Damages, Part 1

TFP Physical Capital Weibull Coefficients
5;2015 §;2095 Scale Shape

Anguilla 3.70061 8.12E-07 62.39823  1.95567
Netherlands Antilles 0.27462 27.17427  1.70656
American Samoa 3.68957 70.25259  1.882526
Antigua and Barbuda  1.07257 0.000129 8.65E-07 61.74667 1.788226
Australia 0.00004 1.02E-05 3.28E-07 69.9772 3.699924
Bangladesh 0.00166 0.000407 4.93E-05 50.36693 3.188151
The Bahamas 0.02920 8.46E-05 6.73E-07 70.83424 2.275997
Belize 0.01320 0.000379 0.000018 67.84988 2.254345
Bermuda 19.30000 8.31E-06 4.84E-08 63.11744 2.076133
Barbados 1.09439 0.000523 4.56E-06 58.98309 1.375166
Brunei 0.02430 8.33E-11 9.66E-14 29.73408 165.8734
Cambodia 0.00116 0.000353 6.06E-05 47.38866 2.782336
Canada 0.00002 1.33E-05 4.29E-07 43.90576 4.104966
China 0.00004 5.46E-05 3.42E-06 80.92273 6.613148
Colombia 0.00008 6.01E-05 3.33E-06 19.80464 1.462793
Comoros 0.30800 0.048813 0.000302 77.45757 2.906959
Cape Verde 0.06934 0.000978 6.34E-06 32.56799 5.854458
Costa Rica 0.00240 0.000114 3.04E-06 27.16065 1.208993
Cuba 0.00346 84.40723  2.502704
Dominica 0.50189 0.000887 0.000011 47.39346 1.511694
Dominican Republic 0.00717 0.000153 3.39E-06  76.6973 2.449758
Fiji 0.01420 0.000377 3.33E-06  57.3049 1.969591
F.S. Micronesia 1.50483 51.17152  1.315246
United Kingdom 0.00061 2.31E-05 6.03E-07 30.94393 8.530496
Guadeloupe 0.22400 56.07433  1.567775
Grenada 0.000625 6.02E-06 32.13932  1.74645
Greenland 0.00007 31.60629 10.46832
Guatemala 0.00231 0.000226 2.32E-05 57.32832 2.566435
Guam 0.84800 62.04909 1.495241
Honduras 0.00180 0.000293 6.45E-05 46.12234 1.870335
Haiti 0.00976 0.002637 0.000259 61.80358 2.254183
Indonesia 0.00010 6.53E-05 1.47E-06 41.84531 1.442086
Isle of Man 0.48700 29.40475 14.39998
India 0.00010  0.000074 71.58994  3.252822
Ireland 0.00221 7.78E-06 2.02E-07 31.49372 10.15739
Jamaica 0.02260 0.000493 2.18E-05 55.68285 1.610694
Japan 0.00086 2.38E-05 7.72E-07 69.43372 4.916136
Malaysia 0.00098  0.00007 1.35E-07 73.23889 2.410471
Martinique 0.36669 63.59187  1.493702
Mauritius 0.17829 0.000144 2.51E-07 57.10426 2.084171
Mayotte 1.20088 72.92911 2.276155
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Table 2: Country-Level Expected Future Damages, Part 11
Physical Capital

Madagascar
Mexico
Montserrat
Morocco
Mozambique
Myanmar

N. Mariana Islands
New Caledonia
New Zealand
Nicaragua

Niue

North Korea
Oman

Pakistan
Philippines

Palau

Papua New Guinea
Puerto Rico
Portugal
Reunion

Russia

Samoa

Saudi Arabia
Solomon Islands
Somalia

South Korea

Sri Lanka

St. Kitts & Nevis
St. Lucia

St. Pierre & Miquelon
St. Vincent & Grenadines

Turks and Caicos
Thailand

East Timor
Tonga

Trinidad and Tobago

Tanzania
USA
Venezuela

British Virgin Islands

U.S. Virgin Islands
Vietnam

Vanuatu

Wallis & Futuna
Yemen

TFP

0.00065
0.00024
3.43000
0.00042
0.00043
0.00033
3.18783
0.01192
0.00068
0.00192
1.57794
0.00136
0.00078
0.00024
0.00178
0.79432
0.00059
0.02990
0.00196
0.12300
0.00001
0.10633
0.00008
0.01240
0.00044
0.00228
0.00267
1.70099
0.80530
0.54131
1.06249
1.57200
0.00065
0.01138
0.95183
0.02910
0.00033
0.00006
0.00012
6.56492
1.54233
0.00129
0.02965
5.35447
0.00049

—

5?2015
0.000419
7.31E-05

0.000117
0.000341
0.000132

0.000029
0.000302

1.96E-05
0.000113
0.000214

6.56E-05
5.63E-05

8.39E-06

2.76E-05
0.00015
0.00014
0.000783

0.0011
0.001701
8.74E-05

3.97E-05
0.000182
0.000526
6.25E-05
0.000067

0.000227
14

0.000177

f§,2095
0.0001
1.87E-06
9.41E-07
3.49E-06
0.000104
1.42E-05

9.25E-07
6.47E-05

2.10E-07
1.44E-05
4.90E-06

2.09E-06
1.20E-06

9.08E-08

8.78E-07
1.18E-06
9.14E-07
7.95E-06

1.11E-05
1.53E-05
4.55E-07

2.37TE-07
6.57E-05
0.000526
1.36E-06
3.92E-07

9.63E-06

0.000076

Weibull Coeflicients

Scale
86.05257
103.1179
59.4275
36.28765
76.76399
48.53157
52.52581
48.19364
39.02092
56.19756
64.06889
36.08171
54.44291
47.38592
108.2431
41.29496
61.22783
61.44781
39.45657
61.86412
39.30797
48.36356
30.94611
58.20658
63.08085
47.61918
38.89352
63.17972
57.82529
33.62694
54.46851
57.86029
76.16127
39.67458
54.87697
28.78744
69.84156
122.5129
23.78803
59.44067
61.84608
91.48033
56.72905
66.98585
50.1893

Shape
3.391796
5.789748
1.702788
9.171823
2.581144
3.236179
1.63415
2.840558
6.137892
1.806228
2.668067
6.288256
2.925709
3.028682
6.122329
1.681971
1.986449
1.863509
3.486135
2.573926
4.519351
1.689022
10.31276
1.327752
2.622298
4.480676
1.787039
1.785639
1.58214
5.488935
1.283157
1.733655
2.255309
2.925687
2.723092
1.608998
3.18917
5.960866
1.421359
1.909729
1.802403
4.488925
2.485984
2.234975
3.154574



Table 3: Country-Level Results, Part 111
Expected Fatalities (Fraction of Pop.)

—

—

5?2015 5?2095

Anguilla 6.96E-07
Antigua and Barbuda 1.51E-05 5.56E-07
Australia 7.76E-08 6.04E-08
Bangladesh 2.99E-06 4.41E-07
The Bahamas 2.24E-06 2.33E-07
Belize 5.65E-06 7.29E-07
Bermuda 6.39E-06 1.03E-07
Barbados 4.36E-05 1.58E-06
Brunei 1.33E-11 4.12E-13
Cambodia 2.39E-06 4.03E-07
Canada 6.12E-08 5.45E-08
China 1.04E-07 7.16E-08
Colombia 1.44E-07 8.24E-08
Comoros 0.000832 1.71E-05
Cape Verde 2.32E-05 8.4TE-07
Costa Rica 9.89E-07 2.11E-07
Dominica 4.73E-05 2.13E-06
Dominican Republic ~ 2.04E-06 3.17E-07
Fiji 5.78E-06 3.80E-07
United Kingdom 2.45E-07 1.07TE-07
Grenada 0.000044 1.75E-06
Guatemala 1.90E-06 4.05E-07
Honduras 2.26E-06 5.12E-07
Haiti 2.63E-05 3.64E-06
Indonesia 1.87E-07 8.09E-08
India 2.44E-07

Ireland 2.97E-07 9.95E-08
Jamaica 8.63E-06 9.50E-07
Japan 2.81E-07 1.21E-07
Morocco 5.66E-07 1.43E-07
Madagascar 2.57E-06 5.44E-07
Mexico 2.66E-07 1.09E-07
Myanmar 6.24E-07 1.71E-07
Mozambique 2.02E-06 4.95E-07
Montserrat 7.55E-07
Mauritius 7.55E-06 1.97E-07
Malaysia 4.34E-07 7.98E-08
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Table 4: Country-Level Results, Part IV

Expected Fatalities (Fraction of Pop.)

Nicaragua

New Zealand

Oman

Pakistan

Philippines

Portugal

Russia

Saudi Arabia

Saint Kitts and Nevis
South Korea

Saint Lucia

Sri Lanka

Turks and Caicos Islands
Thailand

Trinidad and Tobago
Tanzania

United States of America
Saint Vincent and the Grenadines
Venezuela

British Virgin Islands
Vietnam

Yemen

16

h
§j 2015

h
§ 41,2095

2.37TE-06
2.68E-07
2.56E-07
4.93E-07
1.65E-06
5.93E-07
4.80E-08
9.55E-08
1.98E-05
4.33E-07
5.23E-05
1.35E-06
0.000124
4.67E-07
1.38E-06
9.37E-07
8.74E-08
7.57E-05
1.61E-07
2.08E-05
1.58E-06
9.56E-07

5.28E-07
1.20E-07
8.67E-08
1.52E-07
2.39E-07
1.91E-07
4.85E-08
5.85E-08
6.37E-07
1.54E-07
2.07E-06
1.69E-07
4.03E-06
1.00E-07
1.46E-07
2.57E-07
6.51E-08
2.75E-06
8.26E-08
4.57TE-07
2.58E-07
3.60E-07



(2017) estimates that warming between 1986-2005 and 2015 was 0.45° to 0.2°C, we thus have
Tho90 — T015 ~ 2.35°C.

Given that global temperatures in 2015 were already around 1°C" above pre-industrial lev-
els, one additional question is whether to treat current cyclone patterns as already having been
affected by this warming. A recent review by GFDL "conclude[s] that despite statistical correla-
tions between SST [sea-surface temperatures] and Atlantic hurricane activity in recent decades,
it is premature to conclude that human activity — and particularly greenhouse warming — has
already caused a detectable change in Atlantic hurricane activity" (GFDL, 2018). In particular,
they argue that, while a trend can be observed in recent years, over a longer time horizon back to
the 1880s, one fails to detect a significant trend in cyclones (concurrent with the observed trend
in warming) once observational biases are adjusted. In this case, the damage function would ap-
ply only to warming over the DICE model base year (2015), so that 6“1 (T}) = (T} — Thoys)
(for Ty > Tho15). On the other hand, if anthropogenic warming has already been affecting cyclone
patterns, the damage function is defined over warming since pre-industrial level as for other dam-
ages in DICE. Since both our overall global impact estimates and the difference between these
scenarios are already small, we focus on the latter case where §*41on(T}) = o(T;).

We thus back out annual impact coefficients via . For example, the benchmark TFP
impact coefficient is calculated via:

= (.001048) — (.000355)

_ — 000295
A 2.35

The remaining parameters in Table 4 are computed analogously.
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