
Appendices

A. Data Sources and Construction
Our data sources and basic information on the releases are presented in the table below.

Data Release Source Frequency Release time Surprise St. Dev. Units

Non-farm BLS Monthly 8:30 90.81 Thousands
Init. Claims ETA Weekly 8:30 17.82 Thousands
Durable Census Monthly 8:30 2.74 Percentage change mom
Emp. Cost BLS Monthly 8:30 0.19 Percentage change mom
Retail Census Monthly 8:30 0.55 Percentage change mom
Retail Ex. Auto Census Monthly 8:30 0.42 Percentage change mom
GDP (advance) BEA Quarterly 8:30 0.75 Percentage change qoq, ar
CPI BLS Monthly 8:30 0.12 Percentage change mom
Core CPI BLS Monthly 8:30 0.09 Percentage change mom
PPI BLS Monthly 8:30 0.40 Percentage change mom
Core PPI BLS Monthly 8:30 0.25 Percentage change mom
Hourly Earn. BLS Monthly 8:30 0.15 Dollars per hour
Unemp. BLS Monthly 8:30 0.14 Percent
FOMC Fed 8 per year 14:15∗ 8.1 Basis points

(*) We incorporate some minor deviations of timing to accommodate FOMC announcement times in the
early sample. However, in the majority of our sample the announcements are made around 14:15.

Notes: Acronyms for the sources are as follows: BEA (Bureau of Economic Analysis), BLS (Bureau
of Labor Statistics), Census (Bureau of the Census), ETA (Employment and Training Administration),
Fed (Federal Reserve Board of Governors). Acronyms of the unite are: mom (month-on-month), qoq
(quarter-on-quarter) and ar (annualized rate). Standard deviations are for the sample 1992-2017. For the
FOMC, the sample is 1992-2007.
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To calculate the macroeconomic data release surprises used in the study we proceed as
follows. Let Rj,t be the released value of a variable j at time t. Let Ej,t be the expectation
(or the survey) of this release. Then the surprise is defined as:

Sj,t = Rj,t − Ej,t

Then we standardize the surprises to so that units are comparable across different types of
announcements, and transmission coefficients capture per standard deviation effects:

sj,t =
Sj,t
σSj

where σSj is the standard deviation of the surprise for the announcement type j. For expec-
tations, we use the median prediction from the survey conducted by MMS/Action Economics
on the previous Friday of a release.

Monetary policy surprises are measured using intraday changes of Fed Funds Futures
implied yield changes around FOMC announcements, following the methodology of Kuttner
(2001).

For the yields, our high frequency data consists of 5-minute quotes of first Eurodollar
(ED1), fourth Eurodollar (ED4), on the run 2-year, 5-year, 10-year and 30-year Treasury
futures from Chicago Mercantile Exchange (CME). Eurodollar futures prices are converted
to interest rates by subtracting the price of ED1 and ED4 from 100. We calculate 20-minute
changes in future prices around macroeconomic and FOMC releases:

∆Pj,d = Pj,d,t−5min − Pj,d,t+15min

where Pj,d is the futures price of an asset j ∈{2-year, 5-year, 10-year, 30-year} on the day
d of a specific announcement and t is the time of that announcement (e.g. 8:30am). For
Eurodollar futures, we use implied interest rates to calculate announcement window changes.
For the Treasury futures, we divide the price changes by the approximate duration of the
bonds and flip the sign to convert them to yield changes.
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B. Heteroskedasticity-Based Estimation Applied to the OLS Residuals

An event study regression with a latent factor and no measurement error has the form:

yt = βst + γdtft + εt

where st = s∗t . In the usual event study setup, β can be separately identified by OLS run on
data from event days. The residual of this regression is:

φt
E = γft + εt

The counterpart for non-event days is:

φt
NE = εt

We then have the following event and non-event variance-covariance matrices for φt:

ΩφE =

(
γ2 + σ2

ε 0
. σ2

s

)

ΩφNE =

(
σ2
ε 0

0 0

)

Thus, the heteroskedasticity-based estimator for γ is given by
√

Ω̂φE
1,1 − Ω̂φNE

1,1 . Below we

show that this two-step estimation procedure produces similar coefficients to the one step
estimation we employed.

We demonstrate this point by considering FOMC announcements. To make sure that our
results are not influenced by the different number of observations, we drop the days with at
least one missing yield change. Then, we estimate equation (3.2) around FOMC announcement
days and compare the estimates of γ from the one step estimation with that of the two step
estimates.

ED1 ED4 2-year 5-year 10-year 30-year
Kalman Filter 2.10 6.96 5.62 6.00 4.24 2.44
Two-step 2.84 6.64 5.05 5.20 3.89 2.54

Notice that the estimated coefficients are very close, implying that Kalman filter and the
(two step) heteroskedasticity-based estimates are very similar. But the estimates are not ex-
actly equal. The Kalman filter takes into account the covariance between yield changes around
announcements, since the filter uses all assets at once. However, the two step estimation is
done asset by asset. Due to this information loss, coefficients are slightly different.
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C. OLS and Heteroskedasticity-based Estimators

We consider a general model which incorporates both measurement error and an unob-
servable latent factor, nesting both cases. The model is:

yt = βs∗t + γdtft + εt

st = s∗t + ηt

where yt is a log return or yield change (a scalar, without loss of generality), st is the observed
surprise, s∗t is the true headline surprise, dt is a dummy that is 1 on an announcement day
and 0 otherwise, ft is an iid N(0, 1) latent variable, and εt and ηt are processes measuring
noise in yields and measurement error of the headline surprise. We assume that st, εt and ηt
are iid, mutually uncorrelated, have mean zero, and variances σ2

∗, σ2
ε and σ2

η, respectively. To
estimate β, the parameter of interest in event studies, using OLS and identification through
heteroskedasticity, we need the variance-covariance matrices for event (ΩE) and non-event
(ΩNE) windows:

ΩE =

(
β2σ2

∗ + γ2 + σ2
ε βσ2

∗

. σ2
∗ + σ2

η

)
, ΩNE =

(
σ2
ε 0

0 0

)
In this general model, the OLS estimate for β is:

β̂OLS =
[Ω̂E]1,2

[Ω̂E]2,2

and the identification through heteroskedasticity estimate of β is:

β̂HET =
[Ω̂E]1,1 − [Ω̂NE]1,1

[Ω̂E]1,2

Below we derive the OLS and heteroskedasticity-based estimates in four possible cases:

1. γ = 0, σ2
η = 0 This is the case where there is neither measurement error nor a latent

factor.

Since st = s∗t , the model simplifies to:

yt = βs∗t + εt

The variance-covariance matrices around event and non-event windows are as follows:

ΩE =

(
β2σ2

∗ + σ2
ε βσ2

∗
. σ2

∗

)
ΩNE =

(
σ2
ε 0

0 0

)
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The OLS coefficient is given by:
βσ2

∗
σ2
∗

= β

Heteroskedasticity-based estimate is given by:

β2σ2
∗ + σ2

ε − σ2
ε

σ2
∗

= β

In this case both estimates are consistent and should produce the same result.

2. γ = 0, σ2
η 6= 0

This case is the classical errors in variables problem for survey-based surprises that
Rigobon and Sack (2006) consider. Now the model takes the following form:

yt = βs∗t + εt

st = s∗t + ηt

Variance-covariance matrices around event and non-event windows are given as follows:

ΩE =

(
β2σ2

∗ + σ2
ε βσ2

∗
. σ2

s

)
ΩNE =

(
σ2
ε 0

0 0

)
The OLS coefficient is given by:

βσ2
∗

σ2
s

=
βσ2

∗
σ2
∗ + σ2

η

= β

(
1−

σ2
η

σ2
∗ + σ2

η

)
Heteroskedasticity-based estimator is given by:

β2σ2
∗ + σ2

ε − σ2
ε

βσ2
∗

= β

In this case OLS has attenuation bias but heteroskedasticity-based estimate is consistent.

3. γ 6= 0, σ2
η = 0

In this case, since st = s∗t the model takes the following form:

yt = βs∗t + γdtft + εt

Model implied variance-covariance matrices around event and non-event windows are
given by:
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ΩE =

(
β2σ2

∗ + γ2 + σ2
ε βσ2

∗
. σ2

∗

)
ΩNE =

(
σ2
ε 0

0 0

)
The OLS coefficient is given by:

βσ2
∗

σ2
∗

= β

Using the variance-covariance matrices we can derive the heteroskedasticity-based esti-
mator:

β2σ2
∗ + γ2 + σ2

ε − σ2
ε

βσ2
∗

= β +
γ2

βσ2
∗

= β

(
1 +

γ2

β2σ2
∗

)
This time OLS is consistent and heteroskedasticty-based estimate is increased in absolute
value due to the variance of the latent factor. The paper shows that this is the relevant
case.

4. γ 6= 0, σ2
η 6= 0

Now we are back to the general model:

yt = βs∗t + γdtft + εt

st = s∗t + ηt

Event and non-event window variance-covariance matrices are given as follows:

ΩE =

(
β2σ2

∗ + γ2 + σ2
ε βσ2

∗
. σ2

s

)
ΩNE =

(
σ2
ε 0

0 0

)
Using the event window variance covariance matrix, we derive the OLS coefficient:

βσ2
∗

σ2
s

=
βσ2

∗
σ2
∗ + σ2

η

= β

(
1−

σ2
η

σ2
∗ + σ2

η

)
The heteroskedasticity-based estimate is given as follows:

β2σ2
∗ + γ2 + σ2

ε − σ2
ε

βσ2
∗

= β +
γ2

βσ2
∗

= β

(
1 +

γ2

β2σ2
∗

)
The table below summarizes the four cases and their implications for the coefficients:
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Case β̂OLS → β̂HET →
1. γ = 0, σ2

η = 0 β β

2. γ = 0, σ2
η 6= 0 β(1− σ2

η

σ2
∗+σ

2
η
) β

3. γ 6= 0, σ2
η = 0 β β(1 + γ2

β2σ2
∗
)

4. γ 6= 0, σ2
η 6= 0 β(1− σ2

η

σ2
∗+σ

2
η
) β(1 + γ2

β2σ2
∗
)

In the paper, we rule out cases 1, 2 and 4. Furthermore, if the interpretation offered
by case 3 is correct, the heteroskedasticity-based estimator should provide an estimate
approximately equal to the sum of the OLS event study estimate, and the variation
caused due to the unobservable component of the news. We check this in the table below.
Here γ2 is identified following the methodology in Appendix B. The OLS estimates for
the announcements differ from Table 1 because days with multiple releases are dropped.
It is striking that the sum in all cases is about equal to the heteroskedasticity-based
estimator. The difference (for some coefficients) is caused by small sample issues (verified
by a Monte Carlo exercise) and they are economically insignificant. This validates that
the extra term in the heteroskedasticity-based estimator is indeed the unobserved news
effect and that this estimator finds the combined effect of the headline surprise and the
latent factor.
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