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APPENDIX (FOR ONLINE PUBLICATION ONLY) 
The value of life depends greatly on the elasticity of intertemporal substitution, which under CRRA is equal 
to the inverse of 𝛾𝛾, the coefficient of relative risk aversion. The specification in the main text, which sets 
𝛾𝛾 = 2, calculated that Social Security raised the aggregate social value of post-1940 reductions by $11.5 
trillion (10.5 percent). Appendix Table A1 and Appendix Table A2, which both replicate Table 4 from the 
main text, show that varying 𝛾𝛾 over the range [1.5, 2.5] yields analogous increases that range from 8.3 
percent to 14.2 percent.  

The first two columns of Appendix Table A3 show that when a strong bequest motive is present, the 
increase in the aggregate social value of life attributable to Social Security is equal to $5.5 trillion (5.4 
percent). Finally, the third column of Appendix Table A3 shows that fully annuitizing all wealth and future 
earnings at age 20 increases the aggregate value of life by $17.7 trillion (16 percent), relative to a setting 
with no annuity markets. 

Appendix Figure A1 reports average out-of-pocket medical spending, by age, for a healthy individual in 
health state 1 and for a very sick individual in health state 20. These spending data include all inpatient, 
outpatient, prescription drug, and long-term care payments made by the individual, as estimated by the 
Future Elderly Model. The large increase in spending that occurs after age 80 is due primarily to the large 
costs of long-term care. 

Appendix A provides proofs for lemmas and propositions stated in the main text. Appendix B provides 
descriptions of the data employed by the numerical models presented in Section IV, and Appendix C 
provides supporting calculations for those models. Finally, Appendix D provides derivations for the value 
of statistical life and the value of statistical illness for a fully annuitized consumer when mortality is 
stochastic. 
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Appendix Tables and Figures 
 

Appendix Table A1. Aggregate social value of historical and prospective reductions in mortality when the 
degree of relative risk aversion is set equal to 𝜸𝜸 = 𝟐𝟐.𝟓𝟓 (billions of dollars) 

 (1) (2) (3) 
 No annuity Social Security Social Security + 50% 
Historical reduction:    
    1940-2010 $222,046  $253,546  $269,951  
    1970-2010 $109,580  $126,291  $135,146  
    
10% reduction, all ages:    
    All causes $23,879  $27,569  $29,566  
    Cancer $6,943  $8,081  $8,697  
    Diabetes $762  $885  $951  
    Heart disease $5,068  $5,910  $6,374  
    Homicide $189  $187  $184  
    Infectious diseases $349  $408  $441  

Notes: These aggregate values were calculated using the 2015 US population by age. Panel A reports the current value 
of historical reductions in all-cause mortality. Panel B reports the value of a 10 percent prospective reduction in 
mortality. Column (1) presents estimates under the assumption that individuals have no annuities in retirement. 
Column (2) presents estimates under the assumption that individuals receive typical Social Security benefits that are 
financed by an earnings tax. Column (3) increases the generosity of Social Security by 50%, financed by an increase 
in the earnings tax. The net present value of individuals’ wealth at age 20 is the same across all three columns. The 
degree of relative risk aversion, 𝛾𝛾, is equal to the inverse of the elasticity of intertemporal substitution. In the main 
text, we assume that 𝛾𝛾 = 2. 

 

Appendix Table A2. Aggregate social value of historical and prospective reductions in mortality when the 
degree of relative risk aversion is set equal to 𝜸𝜸 = 𝟏𝟏.𝟓𝟓 (billions of dollars) 

 (1) (2) (3) 
 No annuity Social Security Social Security + 50% 
Historical reduction:    
    1940-2010 $27,121  $29,381  $30,465  
    1970-2010 $5,750  $6,277  $6,555  
    
10% reduction, all ages:    
    All causes $1,661  $1,822  $1,903  
    Cancer $183  $200  $209  
    Diabetes $1,185  $1,310  $1,379  
    Heart disease $63  $61  $59  
    Homicide $80  $89  $94  
    Infectious diseases $0  $0  $0  

Notes: These aggregate values were calculated using the 2015 US population by age. Panel A reports the current value 
of historical reductions in all-cause mortality. Panel B reports the value of a 10 percent prospective reduction in 
mortality. Column (1) presents estimates under the assumption that individuals have no annuities in retirement. 
Column (2) presents estimates under the assumption that individuals receive typical Social Security benefits that are 
financed by an earnings tax. Column (3) increases the generosity of Social Security by 50%, financed by an increase 
in the earnings tax. The net present value of individuals’ wealth at age 20 is the same across all three columns. The 
degree of relative risk aversion, 𝛾𝛾, is equal to the inverse of the elasticity of intertemporal substitution. In the main 
text, we assume that 𝛾𝛾 = 2. 
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Appendix Table A3. Aggregate social value of historical and prospective reductions in mortality when a bequest 
motive is present or when consumer is fully annuitized (billions of dollars) 

 (1) (2)  (3) (4) 
 Bequest motive  No bequest motive 
 No annuity Social Security  No annuity Full annuitization 
Historical reduction:      
    1940-2010 $102,744  $108,261   $109,356  $127,030  
    1970-2010 $50,110  $53,081   $53,492  $60,571  
      
10% reduction, all ages:      
    All causes $11,042  $11,758   $11,550  $13,403  
    Cancer $3,150  $3,362   $3,348  $3,708  
    Diabetes $348  $371   $368  $412  
    Heart disease $2,338  $2,512   $2,425  $2,755  
    Homicide $99  $95   $105  $173  
    Infectious diseases $163  $176   $166  $192  

Notes: The bequest motive specification is described at the end of Appendix C1. These aggregate values were 
calculated using the 2015 US population by age. Panel A reports the current value of historical reductions in all-cause 
mortality. Panel B reports the value of a 10 percent prospective reduction in mortality. Column (1) presents estimates 
under the assumption that individuals have no annuities. Column (2) presents estimates under the assumption that 
individuals receive typical Social Security benefits that are financed by an earnings tax. Column (3) increases the 
generosity of Social Security by 50%, financed by an increase in the earnings tax. The net present value of individuals’ 
wealth at age 20 is the same across all three columns. 
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Appendix Figure A1. Annual out-of-pocket medical spending for a healthy person versus a very sick patient 

 
Notes: These medical spending estimates include out-of-pocket spending on both health care and nursing homes. State 
1 corresponds to a healthy individual with no impaired activities of daily living (ADL) and no chronic conditions. 
State 20 corresponds to an individual with three or more ADL’s and four or more chronic conditions. Additional 
characteristics for these health states are provided in Table 1. These estimates are provided by the Future Elderly 
Model, which is described in greater detail in Appendix B2. 
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A. Mathematical proofs of results from main text 
Proof of Lemma 1: 

Recall that the transition intensities 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 ∀𝑗𝑗 < 𝑖𝑖. The optimization problem in the absorbing state 𝑛𝑛 
is therefore a standard deterministic problem. We can contemplate a successive solution strategy by starting 
in state 𝑛𝑛 and then moving sequentially to state 𝑛𝑛 − 1, 𝑛𝑛 − 2, etc. Thus, we can consider the deterministic 
optimization problem for an arbitrary state 𝑖𝑖 by taking 𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑗𝑗), 𝑗𝑗 > 𝑖𝑖, as given (exogenous): 

𝑉𝑉(0,𝑊𝑊0, 𝑖𝑖) = max
𝑐𝑐𝑖𝑖(𝑡𝑡)

�� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) +�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)
𝑗𝑗>𝑖𝑖

�𝑑𝑑𝑑𝑑
𝑇𝑇

0
� 

subject to: 

𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡)
𝜕𝜕𝜕𝜕

= 𝑟𝑟𝑊𝑊𝑖𝑖(𝑡𝑡) + 𝑚𝑚𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖(𝑡𝑡),𝑊𝑊𝑖𝑖(0) = 𝑊𝑊0 

Optimal consumption and wealth in state 𝑖𝑖 are denoted by 𝑐𝑐𝑖𝑖(𝑡𝑡) and 𝑊𝑊𝑖𝑖(𝑡𝑡), respectively. Denote the optimal 
value-to-go function as: 

𝑉𝑉�(𝑢𝑢,𝑊𝑊𝑖𝑖(𝑢𝑢), 𝑖𝑖) = max
𝑐𝑐𝑖𝑖(𝑡𝑡)

�� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) +�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)
𝑗𝑗>𝑖𝑖

�𝑑𝑑𝑑𝑑
𝑇𝑇

𝑢𝑢
� 

Setting 𝑉𝑉�(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖) = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖) then demonstrates that 𝑉𝑉(⋅) satisfies the HJB (11) for 𝑖𝑖. 
See Theorem 1 and the proof of Theorem 2 in Parpas and Webster (2013) for additional details and intuition 
behind this result. 

QED 

Proof of Lemma 2: 

From (12), the marginal utility of life-extension is: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝜀𝜀=0

=
𝜕𝜕
𝜕𝜕𝜕𝜕 � 𝑒𝑒−𝜌𝜌𝜌𝜌 exp�−� �𝜇𝜇(𝑠𝑠) − 𝜀𝜀𝜀𝜀(𝑠𝑠)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑡𝑡

0
��𝑢𝑢�𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖

𝜀𝜀(𝑡𝑡), 𝑗𝑗)
𝑗𝑗>𝑖𝑖

� 𝑑𝑑𝑑𝑑
𝑇𝑇

0
�

𝜀𝜀=0

 

= � 𝑒𝑒−𝜌𝜌𝜌𝜌 �� 𝛿𝛿(𝑠𝑠)𝑑𝑑𝑠𝑠
𝑡𝑡

0
� 𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)

𝑗𝑗>𝑖𝑖

� 𝑑𝑑𝑑𝑑
𝑇𝑇

0

+ � 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)�
𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕 + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝜕𝜕𝜕𝜕(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡)𝑗𝑗>𝑖𝑖

𝜕𝜕𝑊𝑊𝑖𝑖
𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕 �𝑑𝑑𝑑𝑑

𝑇𝑇

0
�

𝜀𝜀=0

 

where 𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡) and 𝑊𝑊𝑖𝑖
𝜀𝜀(𝑡𝑡) represent the equilibrium variations in 𝑐𝑐𝑖𝑖(𝑡𝑡) and 𝑊𝑊𝑖𝑖(𝑡𝑡) caused by this perturbation. 

We conclude the proof by showing that the second term in the last equality is equal to 0. Note that along 
this path, wealth at time 𝑡𝑡 is equal to:  

𝑊𝑊𝑖𝑖(𝑡𝑡) = 𝑊𝑊0𝑒𝑒𝑟𝑟𝑟𝑟 +� 𝑒𝑒𝑟𝑟(𝑡𝑡−𝑠𝑠)𝑚𝑚𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑 −
𝑡𝑡

0
� 𝑒𝑒𝑟𝑟(𝑡𝑡−𝑠𝑠)𝑐𝑐𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑,
𝑡𝑡

0
 

which implies 𝜕𝜕𝑊𝑊𝑖𝑖
𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

= −∫ 𝑒𝑒𝑟𝑟(𝑡𝑡−𝑠𝑠) 𝜕𝜕𝑐𝑐𝑖𝑖
𝜀𝜀(𝑠𝑠)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑𝑡𝑡
0 . From the solution to the costate equation, we know that: 
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𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� = �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠𝑆̃𝑆(𝑖𝑖, 𝑠𝑠)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)

𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑟𝑟 + 𝜃𝜃(𝑖𝑖)𝑒𝑒−𝑟𝑟𝑟𝑟 

Thus, we can rewrite the second term in the expression for 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜀𝜀=0

 above as: 

      � �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠𝑆̃𝑆(𝑖𝑖, 𝑠𝑠)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)

𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑 + 𝜃𝜃(𝑖𝑖)
𝑇𝑇

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑟𝑟

𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑇𝑇

0

− � 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝜕𝜕𝜕𝜕(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)

𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡)𝑗𝑗>𝑖𝑖

� 𝑒𝑒𝑟𝑟(𝑡𝑡−𝑠𝑠) 𝜕𝜕𝑐𝑐𝑖𝑖
𝜀𝜀(𝑠𝑠)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑡𝑡

0
𝑑𝑑𝑑𝑑

𝑇𝑇

0
�

𝜀𝜀=0

 

= � �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠𝑆̃𝑆(𝑖𝑖, 𝑠𝑠)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)

𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑟𝑟

𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑇𝑇

0

− � �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠𝑆̃𝑆(𝑖𝑖, 𝑠𝑠)�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)

𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑟𝑟

𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑇𝑇

0
+ � 𝜃𝜃(𝑖𝑖)𝑒𝑒−𝑟𝑟𝑟𝑟

𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝑇𝑇

0
�

𝜀𝜀=0

 

= 𝜃𝜃(𝑖𝑖) 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑒𝑒−𝑟𝑟𝑟𝑟𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0�����������
�
𝜀𝜀=0

𝑊𝑊0+∫ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑚𝑚𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇
0          

 

= 0 

where, as in the deterministic case, the last equality follows from application of the budget constraint. 

QED 

Proof of Lemma 3: 

The proof proceeds by induction on 𝑖𝑖 ≤ 𝑛𝑛 . For the base case 𝑖𝑖 = 𝑛𝑛 , in which no state transitions are 
possible, the solution to the costate equation (13) simplifies to:29 

𝑝𝑝𝜏𝜏
(𝑛𝑛) = 𝜃𝜃(𝑛𝑛)𝑒𝑒−𝑟𝑟𝑟𝑟 = exp �−� 𝜌𝜌 + 𝜇𝜇𝑛𝑛(𝑠𝑠)𝑑𝑑𝑑𝑑

𝜏𝜏

0
�𝑢𝑢𝑐𝑐(𝑐𝑐𝑛𝑛(𝜏𝜏),𝑞𝑞𝑛𝑛(𝜏𝜏)) 

= 𝜃𝜃(𝑛𝑛)𝑒𝑒−𝑟𝑟𝑟𝑟𝑒𝑒−𝑟𝑟(𝜏𝜏−𝑡𝑡) 
= 𝑝𝑝𝑡𝑡

(𝑛𝑛)𝑒𝑒−𝑟𝑟(𝜏𝜏−𝑡𝑡) 

= exp �−� 𝜌𝜌 + 𝜇𝜇𝑛𝑛(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
�𝑢𝑢𝑐𝑐(𝑐𝑐𝑛𝑛(𝑡𝑡),𝑞𝑞𝑛𝑛(𝑡𝑡))𝑒𝑒−𝑟𝑟(𝜏𝜏−𝑡𝑡) 

This then implies: 

𝑢𝑢𝑐𝑐(𝑐𝑐𝑛𝑛(𝑡𝑡), 𝑞𝑞𝑛𝑛(𝑡𝑡)) = 𝑒𝑒𝑟𝑟(𝜏𝜏−𝑡𝑡)𝑒𝑒−𝜌𝜌(𝜏𝜏−𝑡𝑡) exp �−� 𝜇𝜇𝑛𝑛(𝑠𝑠)𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡
� 𝑢𝑢𝑐𝑐(𝑐𝑐𝑛𝑛(𝜏𝜏),𝑞𝑞𝑛𝑛(𝜏𝜏)) 

which shows that the lemma holds for 𝑖𝑖 = 𝑛𝑛. 

                                                      
29 When no transitions are possible, the solution reduces to the first-order condition presented in Section II.B. 
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For the induction step, suppose the lemma is true for 𝑗𝑗 > 𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1. For any subinterval [0, 𝜏𝜏], the 
solution of the costate equation can be written as: 

 
𝑝𝑝𝑡𝑡

(𝑖𝑖) = �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠 exp�−� 𝜇𝜇𝑖𝑖(𝑢𝑢) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑢𝑢)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑠𝑠

0
��𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)

𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑟𝑟 + 𝜃𝜃(𝜏𝜏, 𝑖𝑖)𝑒𝑒−𝑟𝑟𝑟𝑟 

 

      
(A1) 

where 𝜃𝜃(𝜏𝜏, 𝑖𝑖) is a constant that depends on the choice of 𝜏𝜏 and 𝑖𝑖. (Take the derivative of 𝑝𝑝𝑡𝑡
(𝑖𝑖)with respect to 

𝑡𝑡 to verify.)  Evaluating equation (A1) at 𝑡𝑡 = 𝜏𝜏 and combining with equation (14) from the main text yields: 

𝑝𝑝𝜏𝜏
(𝑖𝑖) = 𝜃𝜃(𝜏𝜏, 𝑖𝑖)𝑒𝑒−𝑟𝑟𝑟𝑟 = exp�−� 𝜌𝜌 + 𝜇𝜇𝑖𝑖(𝑠𝑠) +�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

0
�𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝜏𝜏), 𝑞𝑞𝑖𝑖(𝜏𝜏)� 

which implies: 

 
𝜃𝜃(𝜏𝜏, 𝑖𝑖) = 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝜏𝜏 exp�−� 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

0
�𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝜏𝜏), 𝑞𝑞𝑖𝑖(𝜏𝜏)� 

 

 (A2)  

Plugging equations (14) and (A2) into equation (A1) yields: 

𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� exp�−� 𝜌𝜌 + 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑡𝑡

0
�

= �� 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑠𝑠 exp�−� 𝜇𝜇𝑖𝑖(𝑢𝑢) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑢𝑢)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑠𝑠

0
��𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)

𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡
� 𝑒𝑒−𝑟𝑟𝑟𝑟

+ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑒𝑒(𝑟𝑟−𝜌𝜌)𝜏𝜏 exp�−� 𝜇𝜇𝑖𝑖(𝑠𝑠) +�𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

0
�𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝜏𝜏), 𝑞𝑞𝑖𝑖(𝜏𝜏)� 

Since 𝜕𝜕𝜕𝜕(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠),𝑗𝑗)
𝜕𝜕𝑊𝑊𝑖𝑖(𝑠𝑠)

= 𝑢𝑢𝑐𝑐�𝑐𝑐(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗), 𝑞𝑞𝑗𝑗(𝑠𝑠)�  from the first-order condition in the HJB for state 𝑗𝑗 , we 
obtain: 

𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)� = � 𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝑠𝑠−𝑡𝑡) exp�−� 𝜇𝜇𝑖𝑖(𝑢𝑢) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑢𝑢)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑠𝑠

𝑡𝑡
��𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)𝑢𝑢𝑐𝑐�𝑐𝑐(𝑠𝑠,𝑊𝑊𝑖𝑖(𝑠𝑠), 𝑗𝑗), 𝑞𝑞𝑗𝑗(𝑠𝑠)�
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡

+ 𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝜏𝜏−𝑡𝑡) exp�−� 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡
� 𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝜏𝜏),𝑞𝑞𝑖𝑖(𝜏𝜏)� 

= � 𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝑠𝑠−𝑡𝑡) exp �−� 𝜇𝜇𝑖𝑖(𝑢𝑢) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑢𝑢)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑠𝑠

𝑡𝑡
��𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)𝔼𝔼 �𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝜏𝜏−𝑠𝑠) exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝜏𝜏

𝑠𝑠
� 𝑢𝑢𝑐𝑐�𝑐𝑐(𝜏𝜏,𝑊𝑊(𝜏𝜏),𝑌𝑌𝜏𝜏),𝑞𝑞𝑌𝑌𝜏𝜏(𝜏𝜏)�� 𝑌𝑌𝑠𝑠 = 𝑗𝑗,𝑊𝑊(𝑠𝑠)

𝑗𝑗>𝑖𝑖

𝜏𝜏

𝑡𝑡

= 𝑊𝑊𝑖𝑖(𝑠𝑠)� 𝑑𝑑𝑑𝑑 + 𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝜏𝜏−𝑡𝑡) exp �−� 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡
� 𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝜏𝜏), 𝑞𝑞𝑖𝑖(𝜏𝜏)� 

= 𝔼𝔼 �𝑒𝑒(𝑟𝑟−𝜌𝜌)(𝜏𝜏−𝑠𝑠) exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝜏𝜏

𝑡𝑡
� 𝑢𝑢𝑐𝑐�𝑐𝑐(𝜏𝜏,𝑊𝑊(𝜏𝜏),𝑌𝑌𝜏𝜏),𝑞𝑞𝑦𝑦𝜏𝜏(𝜏𝜏)�� 𝑌𝑌𝑡𝑡 = 𝑖𝑖,𝑊𝑊(𝑡𝑡) = 𝑊𝑊𝑖𝑖(𝑡𝑡)� 

where the second equality follows from the induction hypothesis.  

QED 
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Proof of Proposition 4: 

Choosing once again the Dirac delta function for 𝛿𝛿(⋅) in Lemma 2 yields: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 �𝜀𝜀=0

= � �𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)��𝑑𝑑𝑑𝑑
𝑇𝑇

0
 

= 𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆𝑆(𝑡𝑡)𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�𝑑𝑑𝑑𝑑
𝑇𝑇

0
� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0� 

Dividing the result by the marginal utility of wealth at time 𝑡𝑡 = 0 then yields the value of statistical life 
given by equation (15): 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) = 𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆𝑆(𝑡𝑡)

𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�

𝑢𝑢 �𝑐𝑐(0), 𝑞𝑞𝑌𝑌0(0)�
𝑑𝑑𝑑𝑑� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0

𝑇𝑇

0
� 

  

 

Applying Lemma 3 for 𝑡𝑡 = 0 allows us to rewrite VSL as: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) = 𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝜌𝜌
𝑆𝑆(𝑡𝑡)𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�

𝔼𝔼 �𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑡𝑡 exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 � 𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0�

𝑑𝑑𝑑𝑑� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0

𝑇𝑇

0
� 

= 𝔼𝔼 �� 𝑒𝑒−𝑟𝑟𝑟𝑟
𝑆𝑆(𝑡𝑡)𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�

𝔼𝔼 �exp �− ∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 � 𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0�

𝑑𝑑𝑑𝑑� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0

𝑇𝑇

0
� 

Exchanging expectation and integration then yields:  

𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) = � 𝑒𝑒−𝑟𝑟𝑟𝑟𝑣𝑣(𝑖𝑖, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
 

where the value of a life-year, 𝑣𝑣(𝑖𝑖, 𝑡𝑡), is equal to the expected utility of consumption normalized by the 
expected marginal utility of consumption: 

𝑣𝑣(𝑖𝑖, 𝑡𝑡) =
𝔼𝔼 �𝑆𝑆(𝑡𝑡)𝑢𝑢 �𝑐𝑐(𝑡𝑡),𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)��𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0�

𝔼𝔼 �𝑆𝑆(𝑡𝑡)𝑢𝑢𝑐𝑐 �𝑐𝑐(𝑡𝑡),𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)��𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑊𝑊0�
 

QED 

Proof of Proposition 5: 

Without loss of generality, we will prove the proposition for the case where the consumer transitions from 
state 1 to state 2 at time 𝑡𝑡 = 0. Because we hold quality of life constant, we omit 𝑞𝑞𝑖𝑖(𝑡𝑡) in the notation below 
in order to keep the presentation concise. 

We want to prove that 𝑐𝑐2(0) ≥ 𝑐𝑐1(0). Assume by way of contradiction that 𝑐𝑐2(0) < 𝑐𝑐1(0). We will show 
that this implies 𝑐𝑐2(𝑡𝑡) < 𝑐𝑐1(𝑡𝑡) for all 𝑡𝑡 > 0, which is a contradiction since the feasible consumption plan 
𝑐𝑐1(⋅) dominates 𝑐𝑐2(⋅).  

We proceed by inductively constructing a sequence 0 < 𝑡𝑡1 < 𝑡𝑡2 … where for each element in the sequence:  

𝑐𝑐2(𝑡𝑡𝑖𝑖) < 𝑐𝑐1(𝑡𝑡𝑖𝑖) 
𝑊𝑊1(𝑡𝑡𝑖𝑖) ≤ 𝑊𝑊2(𝑡𝑡𝑖𝑖) 
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𝑝𝑝𝑡𝑡𝑖𝑖
(1) < exp �−� 𝜆𝜆12(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡𝑖𝑖

0
� 𝑝𝑝𝑡𝑡𝑖𝑖

(2) 

To construct the sequence, for the base case 𝑖𝑖 = 1, we first note that from the first-order condition (14), we 
obtain: 

𝑝𝑝0
(1) = 𝑢𝑢𝑐𝑐�𝑐𝑐1(0)� < 𝑢𝑢𝑐𝑐�𝑐𝑐2(0)� = 𝑝𝑝0

(2) 

The costate equation (13) then implies: 

𝑝̇𝑝0
(1) = −𝑝𝑝0

(1)𝑟𝑟 − 𝜆𝜆12(0)𝑢𝑢𝑐𝑐�𝑐𝑐2(0)� 

= −𝑝𝑝0
(1)

⎣
⎢
⎢
⎡
𝑟𝑟 + 𝜆𝜆12(0)

𝑢𝑢𝑐𝑐�𝑐𝑐2(0)�
𝑢𝑢𝑐𝑐�𝑐𝑐1(0)��������

>1 ⎦
⎥
⎥
⎤
 

< −𝑝𝑝0
(1)[𝑟𝑟 + 𝜆𝜆12(0)] =

𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝜕𝜕

�
𝑡𝑡=0

 

where 𝑔𝑔(𝑡𝑡) = 𝑝𝑝0
(1) exp �−∫ 𝑟𝑟 + 𝜆𝜆12(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 �. Hence, there exists a 𝑡𝑡1 > 𝑡𝑡0 = 0 such that: 

𝑝𝑝𝑡𝑡
(1) ≤ 𝑔𝑔(𝑡𝑡) < 𝑝𝑝0

(2) exp �−� �𝑟𝑟 + 𝜆𝜆12(𝑠𝑠)�𝑑𝑑𝑑𝑑
𝑡𝑡

0
� = 𝑝𝑝𝑡𝑡

(2) exp �−� 𝜆𝜆12(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� , 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1 

which together with the first-order condition (14) implies: 

𝑒𝑒−𝜌𝜌𝜌𝜌 exp �−� �𝜇𝜇1(𝑠𝑠) + 𝜆𝜆12(𝑠𝑠)� 𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 𝑢𝑢𝑐𝑐�𝑐𝑐1(𝑡𝑡)� < 𝑒𝑒−𝜌𝜌𝜌𝜌 exp �−� �𝜇𝜇2(𝑠𝑠) + 𝜆𝜆12(𝑠𝑠)� 𝑑𝑑𝑑𝑑

𝑡𝑡

0
� 𝑢𝑢𝑐𝑐�𝑐𝑐2(𝑡𝑡)�, 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1 

so that 𝑐𝑐1(𝑡𝑡) > 𝑐𝑐2(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑡𝑡1. Since 𝑚𝑚1(𝑠𝑠) ≤ 𝑚𝑚2(𝑠𝑠) ∀𝑠𝑠, this in turn implies 𝑊𝑊1(𝑡𝑡1) ≤ 𝑊𝑊2(𝑡𝑡1). 

For the induction step, suppose that the following properties also hold for 𝑖𝑖 ≥ 1:  

𝑐𝑐2(𝑡𝑡𝑖𝑖) < 𝑐𝑐1(𝑡𝑡𝑖𝑖) 
𝑊𝑊1(𝑡𝑡𝑖𝑖) ≤ 𝑊𝑊2(𝑡𝑡𝑖𝑖) 

𝑝𝑝𝑡𝑡𝑖𝑖
(1) < exp �−� 𝜆𝜆12(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡𝑖𝑖

0
� 𝑝𝑝𝑡𝑡𝑖𝑖

(2) 

The induction hypothesis implies: 

𝑐𝑐(𝑡𝑡𝑖𝑖 ,𝑊𝑊1(𝑡𝑡𝑖𝑖), 2) ≤ 𝑐𝑐(𝑡𝑡𝑖𝑖,𝑊𝑊2(𝑡𝑡𝑖𝑖), 2) = 𝑐𝑐2(𝑡𝑡𝑖𝑖) < 𝑐𝑐1(𝑡𝑡𝑖𝑖) 

so that: 

𝑝̇𝑝𝑡𝑡𝑖𝑖
(1) = −𝑝𝑝𝑡𝑡𝑖𝑖

(1)𝑟𝑟 − 𝑒𝑒−𝜌𝜌𝑡𝑡𝑖𝑖𝑆̃𝑆(1, 𝑡𝑡𝑖𝑖)𝜆𝜆12(𝑡𝑡𝑖𝑖)𝑢𝑢�𝑐𝑐(𝑡𝑡𝑖𝑖,𝑊𝑊1(𝑡𝑡𝑖𝑖), 2)� 

= −𝑝𝑝𝑡𝑡𝑖𝑖
(1)

⎣
⎢
⎢
⎡
𝑟𝑟 + 𝜆𝜆12(𝑡𝑡𝑖𝑖)

𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡𝑖𝑖,𝑊𝑊1(𝑡𝑡𝑖𝑖), 2)�
𝑢𝑢𝑐𝑐�𝑐𝑐1(𝑡𝑡𝑖𝑖)��������������

>1 ⎦
⎥
⎥
⎤
 

< −𝑝𝑝𝑡𝑡𝑖𝑖
(1)[𝑟𝑟 + 𝜆𝜆12(𝑡𝑡𝑖𝑖)] =

𝜕𝜕𝑔𝑔�(𝑡𝑡𝑖𝑖)
𝜕𝜕𝜕𝜕

�
𝑡𝑡𝑖𝑖=0
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with 𝑔𝑔�(𝑡𝑡𝑖𝑖) = 𝑝𝑝𝑡𝑡𝑖𝑖
(1) exp �−∫ �𝑟𝑟 + 𝜆𝜆12(𝑠𝑠)�𝑑𝑑𝑑𝑑𝑡𝑡

𝑡𝑡𝑖𝑖
�. Hence, there exists a 𝑡𝑡𝑖𝑖+1 > 𝑡𝑡𝑖𝑖 such that: 

𝑝𝑝𝑡𝑡
(1) ≤ 𝑔𝑔�(𝑡𝑡) 

< exp �−� 𝜆𝜆12(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡𝑖𝑖

0
� 𝑝𝑝𝑡𝑡𝑖𝑖

(2) exp �−� �𝑟𝑟 + 𝜆𝜆12(𝑠𝑠)�𝑑𝑑𝑑𝑑
𝑡𝑡

𝑡𝑡𝑖𝑖
� = 𝑝𝑝𝑡𝑡

(2) exp �−� 𝜆𝜆12(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� , 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1 

In particular, again with the first-order condition (14) for all 𝑡𝑡𝑖𝑖 ≤ 𝑡𝑡 ≤ 𝑡𝑡𝑖𝑖+1: 

exp �−� �𝜇𝜇1(𝑠𝑠) + 𝜆𝜆12(𝑠𝑠)� 𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 𝑢𝑢𝑐𝑐�𝑐𝑐1(𝑡𝑡)� < exp �−� �𝜇𝜇2(𝑠𝑠) + 𝜆𝜆12(𝑠𝑠)� 𝑑𝑑𝑑𝑑

𝑡𝑡

0
� 𝑢𝑢𝑐𝑐�𝑐𝑐2(𝑡𝑡)� 

which in turn implies 𝑢𝑢𝑐𝑐�𝑐𝑐1(𝑡𝑡)� < 𝑢𝑢𝑐𝑐�𝑐𝑐2(𝑡𝑡)� and 𝑐𝑐2(𝑡𝑡) < 𝑐𝑐1(𝑡𝑡). Once again, together with the assumption 
𝑚𝑚1(𝑠𝑠) ≤ 𝑚𝑚2(𝑠𝑠), this implies 𝑊𝑊1(𝑡𝑡𝑖𝑖+1) ≤ 𝑊𝑊2(𝑡𝑡𝑖𝑖+1).  

Thus, we have proven the existence of the sequence. We then obtain 𝑐𝑐2(𝑡𝑡) < 𝑐𝑐1(𝑡𝑡) ∀𝑡𝑡 by noting that {𝑡𝑡𝑖𝑖}𝑖𝑖≥0 
strictly increases due to the uniformly boundedness condition on 𝜆𝜆12(𝑡𝑡), which is the desired contradiction. 

We note that this proof implies that the consumption paths 𝑐𝑐1(𝑡𝑡) and 𝑐𝑐2(𝑡𝑡) cross (at most) once. As soon 
as 𝑐𝑐1(𝑡𝑡) exceeds 𝑐𝑐2(𝑡𝑡) for some time 𝑡𝑡0, 𝑐𝑐1(𝑡𝑡) will exceed 𝑐𝑐2(𝑡𝑡) for 𝑡𝑡 > 𝑡𝑡0. However, we have that 𝑐𝑐2(𝑡𝑡) 
exceeds 𝑐𝑐1(𝑡𝑡) prior to 𝑡𝑡0. In particular, consumption jumps up at the transition point. See Figure 2 for an 
illustration. 

QED 

Proof of Proposition 6: 

Without loss of generality, consider the case 𝑡𝑡 = 0, as depicted in Figure 2. From Proposition 5 it is clear 
that 𝑐𝑐1(𝑡𝑡) and 𝑐𝑐2(𝑡𝑡) are decreasing, 𝑐𝑐2(0) ≥ 𝑐𝑐1(0), 𝑐𝑐2(𝑡𝑡) ≥ 𝑐𝑐1(𝑡𝑡) for 𝑡𝑡 ≤ 𝑡𝑡0 , and 𝑐𝑐2(𝑡𝑡) ≤ 𝑐𝑐1(𝑡𝑡) for 𝑡𝑡 >
𝑡𝑡0. Making use of the assumption that no state transitions occur for 𝑡𝑡 > 0, we have that: 

𝑉𝑉𝑉𝑉𝑉𝑉(2,0) = �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑆𝑆2(𝑡𝑡)𝑢𝑢�𝑐𝑐2(𝑡𝑡)�
𝑆𝑆2(𝑡𝑡)𝑢𝑢𝑐𝑐�𝑐𝑐2(𝑡𝑡)�

𝑇𝑇

0

𝑑𝑑𝑑𝑑 

= �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑢𝑢�𝑐𝑐2(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐2(𝑡𝑡)�

𝑇𝑇

0

𝑑𝑑𝑑𝑑 

and: 

𝑉𝑉𝑉𝑉𝑉𝑉(1,0) = �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑢𝑢�𝑐𝑐1(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐1(𝑡𝑡)�

𝑇𝑇

0

𝑑𝑑𝑑𝑑 

Let 𝑌𝑌(𝑥𝑥) = 𝑢𝑢(𝑥𝑥)
𝑢𝑢𝑐𝑐(𝑥𝑥). Under the stated assumptions on preferences, we have that:30  

𝑌𝑌′(𝑥𝑥) = 1 −
𝑢𝑢(𝑥𝑥)𝑢𝑢𝑐𝑐𝑐𝑐(𝑥𝑥)

�𝑢𝑢𝑐𝑐(𝑥𝑥)�2
> 0, 

                                                      
30 Strictly speaking, this proof requires only that 𝑌𝑌′(𝑥𝑥) > 0 and 𝑌𝑌′′(𝑥𝑥) > 0. The stated assumptions on preferences 
are therefore sufficient, but not necessary. 
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𝑌𝑌′′(𝑥𝑥) =
2�𝑢𝑢𝑐𝑐𝑐𝑐(𝑥𝑥)�2𝑢𝑢(𝑥𝑥) − 𝑢𝑢𝑐𝑐2(𝑥𝑥)𝑢𝑢𝑐𝑐𝑐𝑐(𝑥𝑥)− 𝑢𝑢𝑐𝑐(𝑥𝑥)𝑢𝑢(𝑥𝑥)𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥)

�𝑢𝑢𝑐𝑐(𝑥𝑥)�3
> 0 

Employing Taylor’s theorem then implies that for some 𝜉𝜉(𝑡𝑡) that lies in-between 𝑐𝑐1(𝑡𝑡) and 𝑐𝑐2(𝑡𝑡): 

𝑉𝑉𝑉𝑉𝑉𝑉(2,0) = �𝑒𝑒−𝑟𝑟𝑟𝑟𝑌𝑌�𝑐𝑐2(𝑡𝑡)�
𝑇𝑇

0

𝑑𝑑𝑑𝑑 

= �𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑌𝑌�𝑐𝑐1(𝑡𝑡)� + [𝑐𝑐2(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)]𝑌𝑌′�𝑐𝑐1(𝑡𝑡)� +
1
2

[𝑐𝑐2(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)]2𝑌𝑌′′�𝜉𝜉(𝑡𝑡)������������������
>0

�
𝑇𝑇

0

𝑑𝑑𝑑𝑑 

≥ �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

0

𝑌𝑌�𝑐𝑐1(𝑡𝑡)�𝑑𝑑𝑑𝑑 + � 𝑒𝑒−𝑟𝑟𝑟𝑟
𝑡𝑡0

0

𝑌𝑌′�𝑐𝑐1(𝑡𝑡)� [𝑐𝑐2(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)]���������
≥0

𝑑𝑑𝑑𝑑 + �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

𝑡𝑡0

𝑌𝑌′�𝑐𝑐1(𝑡𝑡)� [𝑐𝑐2(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)]���������
≤0

𝑑𝑑𝑑𝑑 

≥ �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

0

𝑌𝑌�𝑐𝑐1(𝑡𝑡)�𝑑𝑑𝑑𝑑 + � 𝑒𝑒−𝑟𝑟𝑟𝑟
𝑡𝑡0

0

𝑌𝑌′�𝑐𝑐1(𝑡𝑡0)�[𝑐𝑐2(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)]𝑑𝑑𝑑𝑑 + � 𝑒𝑒−𝑟𝑟𝑟𝑟
𝑡𝑡0

0

𝑌𝑌′�𝑐𝑐1(𝑡𝑡0)�[𝑐𝑐2(𝑡𝑡) − 𝑐𝑐1(𝑡𝑡)]𝑑𝑑𝑑𝑑 

= �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

0

𝑌𝑌�𝑐𝑐1(𝑡𝑡)�𝑑𝑑𝑑𝑑 + 𝑌𝑌′�𝑐𝑐1(𝑡𝑡0)� �� 𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

0

𝑐𝑐2(𝑡𝑡)𝑑𝑑𝑑𝑑 − �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

0

𝑐𝑐1(𝑡𝑡)𝑑𝑑𝑑𝑑�
�����������������������

=0

 

= �𝑒𝑒−𝑟𝑟𝑟𝑟
𝑇𝑇

0

𝑌𝑌�𝑐𝑐1(𝑡𝑡)�𝑑𝑑𝑑𝑑 

= 𝑉𝑉𝑉𝑉𝑉𝑉(1,0) 

where the final step follows from the budget constraint. 

QED 

Proof of Proposition 7:  

From (12), the marginal utility of preventing an illness or death is: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜀𝜀=0

=
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑒𝑒−𝜌𝜌𝜌𝜌 exp�−� �𝜇𝜇𝑖𝑖(𝑠𝑠) − 𝜀𝜀𝛿𝛿𝑖𝑖,𝑁𝑁+1(𝑡𝑡)� +��𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)− 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)�

𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑡𝑡

0
��𝑢𝑢�𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)�

𝑇𝑇

0

+ ��𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)�
𝑗𝑗>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖
𝜀𝜀(𝑡𝑡), 𝑗𝑗)�𝑑𝑑𝑑𝑑�

𝜀𝜀=0

 

= � 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) ��� �𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑡𝑡

0
��𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑗𝑗>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)�−�𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑗𝑗>𝑖𝑖

𝑉𝑉(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)� 𝑑𝑑𝑑𝑑
𝑇𝑇

0

+ � 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)�
𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

+�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝜕𝜕𝜕𝜕(𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗)

𝜕𝜕𝜕𝜕
𝑗𝑗>𝑖𝑖

𝜕𝜕𝑊𝑊𝑖𝑖
𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕 �𝑑𝑑𝑑𝑑

𝑇𝑇

0
 

Following the same argument as in the VSL case, the second term in the last equality is equal to 0. 

QED 
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B. Data 
B1. Earnings 
We obtain earnings data for employed individuals under the age of 65 from the 2016 Current Population 
Survey (CPS).31 We also obtain earnings data for respondents over the age of 55 from the 2014 Health and 
Retirement Survey (HRS). For both surveys, the data represent earnings before taxes and other deductions, 
and include wages, salaries, and tips. The HRS earnings data also include self-employment income. (The 
CPS data exclude self-employed individuals.) 

The CPS earnings data are binned into the following age groups: 16-19, 20-24, 25-34, 35-44, 45-54, and 
55-64. We collapse the HRS earnings data into the following age groups: 55-64, 65-74, 75-84, 85-94, and 
95-104. The resulting estimates are plotted in Appendix Figure B1. We smooth the data by fitting it to a 
quartic polynomial, and include an indicator variable for ages over 65. The dependent variable in the 
regression is the CPS earnings estimate for ages under 65, and the HRS estimate for ages over 65. Finally, 
we constrain the fitted prediction to be non-negative. 

 

 

 

                                                      
31 These data are available at http://data.bls.gov/pdq/querytool.jsp?survey=le. 



 66 

Appendix Figure B1. Annual earnings estimates from CPS and HRS 

 
Notes: This figure plots annual earnings by midpoint of age group as estimated by the 2016 Current Population Survey 
(CPS) for respondents under age 65, and as estimated by the 2014 Health and Retirement Survey (HRS) for 
respondents over age 55. The fitted line corresponds to a regression of annual earnings on a quartic polynomial in age 
and an indicator equal to 1 for ages 65 and over. The dependent variable in that regression, annual earnings, 
corresponds to CPS estimates for ages under 65 and HRS estimates for ages over 65.  

B2. Mortality, quality of life, and medical spending 
We obtain data on mortality, quality of life, and medical spending by health state from the Future Elderly 
Model (FEM). The FEM follows Americans aged 50 years and older and projects their health and medical 
spending over time. A complete technical document detailing the FEM is available online.32 The FEM is a 
microsimulation that follows the evolution of individual-level health trajectories and economic outcomes, 
rather than the average or aggregate characteristics of a cohort. The FEM has three core modules. The first 
is the Replenishing Cohorts module, which predicts economic and health outcomes of new cohorts of 50-
year-olds with data from the Panel Study of Income Dynamics (PSID), and incorporates trends in disease 
and trends in other outcomes based on data from external sources, such as the National Health Interview 
Survey and the American Community Survey. This module generates cohorts as the simulation proceeds, 
so that we can measure outcomes for the age 50+ population in any given year.  

                                                      
32 A complete technical description is available at roybalhealthpolicy.usc.edu/fem/technical-specifications/. 
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The second component is the Health Transition module, which uses the longitudinal structure of the Health 
and Retirement Survey (HRS) to calculate transition probabilities across various health states, including 
chronic conditions, functional status, body-mass index, and mortality, using linear and nonlinear 
multivariate regression models. These transition probabilities depend on a battery of predictors: age, sex, 
education, race, ethnicity, smoking behavior, marital status, employment and health conditions. Baseline 
factors are also controlled for using a series of initial health variables measured at age 50. FEM transitions 
produce a large set of simulated outcomes, including diabetes, high-blood pressure, heart disease, cancer 
(except skin cancer), stroke or transient ischemic attack, and lung disease (either or both chronic bronchitis 
and emphysema), disability, and body-mass index. Disability is measured by limitations in instrumental 
activities of daily living, activities of daily living, and residence in a nursing home. This dynamic simulation 
method has undergone extensive benchmarking and validation.  

Finally, the Policy Outcomes module combines individual-level outcomes into aggregate outcomes, such 
as medical care costs (Medicare, Medicaid and Private), federal, state and property taxes, Social Security 
expenditures and contributions. Individual health spending is predicted with regard to health status (chronic 
conditions and functional status), demographics (age, sex, race, ethnicity and education), nursing home 
status, and mortality. Estimates are based on spending data from the Medical Expenditure Panel Survey for 
individuals aged 64 and younger and the Medicare Current Beneficiary Survey for individuals aged 65 and 
older, who constitute the bulk of the Medicare population. This module has been comprehensively tested 
against national aggregates. 

An example of how the three modules interact is as follows. For year 2014, the model begins with the 
population of Americans aged 50 and older based on nationally representative data from the HRS. 
Individual-level health and economic outcomes for the next two years are predicted using the Policy 
Outcomes module. The cohort is then aged two years using the Health Transition Module. Aggregate health 
and functional status outcomes for those years are then calculated. At that point, a new cohort of 50-year-
olds is introduced into the 2016 population using the Replenishing Cohort module, and they join those who 
survived from 2014 to 2016. This forms the age 50+ population for 2016. The transition model is then 
applied to this population. The same process is repeated until reaching the last year of the simulation.  
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C. Supporting calculations for numerical models 
Appendix C1 provides details regarding the implementation of the deterministic mortality model employed 
in Section IV.C, and explains how it is used to derive the aggregate insurance value of Social Security. This 
model is estimated numerically using standard dynamic programming methods. 

Appendix C2 provides a derivation of the stochastic mortality model employed in Section IV.B. This model 
is solved analytically and thus provides exact solutions.  

C1. Deterministic mortality  
In this model, there is only one health state and we abstract from quality of life. The optimal value function 
then simplifies to: 

𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡)� = max
𝑐𝑐(𝑡𝑡)

 �𝑒𝑒−𝜌𝜌(𝑠𝑠−𝑡𝑡)𝑆𝑆𝑡𝑡(𝑠𝑠)𝑢𝑢(𝑐𝑐(𝑠𝑠))
𝑇𝑇

𝑠𝑠=𝑡𝑡

 

We can use the value function to rewrite the optimization problem as a recursive Bellman equation: 

𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡)� = max
𝑐𝑐(𝑡𝑡)

 𝑢𝑢�𝑐𝑐(𝑡𝑡)� +
1 − 𝑑𝑑(𝑡𝑡)

𝑒𝑒𝜌𝜌
𝑉𝑉�𝑡𝑡 + 1,𝑊𝑊(𝑡𝑡 + 1)� 

Because the problem is finite, we can work backwards from the final period. We discretize the state space 
into 𝑁𝑁𝑤𝑤 = 3,000 points evenly distributed across the interval [0,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚]. Let that set of values be {𝑊𝑊𝑛𝑛}. 
Define 𝑔𝑔𝑡𝑡�𝑊𝑊(𝑡𝑡)� = 𝑊𝑊(𝑡𝑡 + 1) as a mapping from the current wealth state, 𝑊𝑊(𝑡𝑡), to the optimal wealth 
state in the following period, 𝑊𝑊(𝑡𝑡 + 1). 

It is clear that the consumer should consume all her wealth in the final period, i.e., 𝑔𝑔𝑇𝑇�𝑊𝑊(𝑇𝑇)� = 0 for all 
𝑊𝑊(𝑇𝑇) ∈ {𝑊𝑊𝑛𝑛}. This implies that 𝑉𝑉�𝑇𝑇,𝑊𝑊(𝑇𝑇)� = 𝑢𝑢�𝑊𝑊(𝑇𝑇) + 𝑦𝑦(𝑇𝑇)� for all 𝑊𝑊(𝑇𝑇) ∈ {𝑊𝑊𝑛𝑛}.  

Next, we calculate 𝑉𝑉(𝑇𝑇 − 1,𝑊𝑊𝑇𝑇−1) = max
𝑔𝑔(𝑊𝑊𝑇𝑇−1)=𝑊𝑊𝑇𝑇

 𝑢𝑢(𝑊𝑊𝑇𝑇−1 + 𝑦𝑦(𝑇𝑇 − 1) −𝑊𝑊𝑇𝑇/𝑒𝑒𝑟𝑟) + 1−𝑑𝑑(𝑇𝑇−1)
𝑒𝑒𝜌𝜌

𝑉𝑉(𝑇𝑇,𝑊𝑊𝑇𝑇). 

In other words, for each 𝑊𝑊(𝑇𝑇 − 1) ∈ {𝑊𝑊𝑛𝑛}, we calculate the optimal 𝑉𝑉�𝑇𝑇 − 1,𝑊𝑊(𝑇𝑇 − 1)� by determining 
which choice of 𝑔𝑔𝑇𝑇−1�𝑊𝑊(𝑇𝑇 − 1)� = 𝑊𝑊(𝑇𝑇) ∈ {𝑊𝑊𝑛𝑛} will maximize utility. This algorithm is then repeated 
for 𝑡𝑡 = 𝑇𝑇 − 2,𝑇𝑇 − 3, … ,1. 

Given the initial condition, 𝑊𝑊1, we can then employ our results to calculate 𝑊𝑊(2) = 𝑔𝑔1�𝑊𝑊(1)�, 𝑊𝑊(3) =
𝑔𝑔2�𝑊𝑊(2)�,…, 𝑊𝑊(𝑇𝑇) = 𝑔𝑔𝑇𝑇−1�𝑊𝑊(𝑇𝑇 − 1)�. Period consumption, 𝑐𝑐(𝑡𝑡), is then calculated using the equation 
for the budget constraint. Finally, we use the analytical formulas derived in Section II to calculate the value 
of statistical life. 

When accounting for a bequest motive, we follow Kopczuk and Lupton (2007) and assume the utility 
from leaving a bequest is linear in wealth: 

𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡)� = max
𝑐𝑐(𝑡𝑡)

 𝑢𝑢�𝑐𝑐(𝑡𝑡)� +
1
𝑒𝑒𝜌𝜌 ��

1 − 𝑑𝑑(𝑡𝑡)�𝑉𝑉�𝑡𝑡 + 1,𝑊𝑊(𝑡𝑡 + 1)� + 𝑑𝑑(𝑡𝑡)𝛼𝛼𝛼𝛼(𝑡𝑡 + 1)� 

Kopczuk and Lupton (2007) estimate that the constant 𝛼𝛼−𝛾𝛾 is approximately equal to $50,000, where 𝛾𝛾 is 
the coefficient of relative risk aversion from a CRRA utility function. We adopt a (stronger) estimate of 
$35,000 when accounting for a bequest motive. This parameterization implies that the marginal utility of 
consumption is less than the marginal utility of leaving a bequest when consumption in the last year of life 
is more than $35,000. 

Insurance value of Social Security 
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We calculate the insurance value of Social Security at all ages by estimating its wealth equivalence. That 
is, we follow Mitchell et al. (1999) and estimate the amount of wealth, 𝑊𝑊∗, required to equalize the utilities 
of a non-annuitized individual and an individual with Social Security. In other words, we solve for 
compensating wealth at age 𝑡𝑡, 𝑊𝑊∗(𝑡𝑡), such that 𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡) + 𝑊𝑊∗(𝑡𝑡)� = 𝑉𝑉𝑆𝑆𝑆𝑆�𝑡𝑡,𝑊𝑊𝑆𝑆𝑆𝑆(𝑡𝑡)�. Wealth for a non-
annuitized individual, 𝑊𝑊(𝑡𝑡), and wealth for an individual with Social Security, 𝑊𝑊𝑆𝑆𝑆𝑆(𝑡𝑡), are calculated by 
the deterministic model for the first two policy scenarios discussed in the main text.  

We solve for 𝑊𝑊∗(𝑡𝑡) by applying a numerical search algorithm. We estimate that, at age 65, having access 
to Social Security is equivalent to an increase in wealth of 16.5 percent for a non-annuitized individual. By 
way of comparison, Mitchell et al. (1999) estimate the before-tax value of full (complete) annuitization at 
age 65 to be 37.4 percent of wealth, using the same parameters for risk aversion, interest rate, and the 
discount rate. 

The aggregate insurance value of Social Security is then calculated by aggregating over the 2015 US 
population: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑆𝑆 = �𝑊𝑊∗(𝑎𝑎)𝑓𝑓(𝑎𝑎)
110

𝑎𝑎=0

 

C2. Stochastic mortality 
We focus on the case where the consumer does not have access to annuities. We assume that the consumer’s 
lifetime wealth is available at time 𝑡𝑡 = 0, so that we can abstract away from the income-generating process. 
This allows us to generate an analytic solution to the consumer’s problem, given by: 

max
𝑐𝑐(𝑡𝑡)

𝔼𝔼 ��𝑒𝑒−𝜌𝜌𝜌𝜌𝑆𝑆0(𝑡𝑡)𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)� + 𝑒𝑒−𝜌𝜌(𝑡𝑡+1) ��𝑆𝑆0(𝑡𝑡)− 𝑆𝑆0(𝑡𝑡 + 1)�𝑢𝑢(𝑊𝑊(𝑡𝑡 + 1), 𝑏𝑏𝑡𝑡)�
𝑇𝑇

𝑡𝑡=0

� 𝑌𝑌0,𝑊𝑊0� 

subject to:  

𝑊𝑊(0) = 𝑊𝑊0, 
𝑊𝑊(𝑡𝑡) ≥ 0, 

𝑊𝑊(𝑡𝑡 + 1) = �𝑊𝑊(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟(𝑡𝑡,𝑌𝑌𝑡𝑡) 

Here, 𝑌𝑌𝑡𝑡 denotes the consumer’s health state at time 𝑡𝑡, and we allow the interest rate to depend on it so as 
to model health-related wealth shocks, as described in the main text. Of course, a constant interest rate 
𝑟𝑟(𝑡𝑡, 𝑖𝑖) = 𝑟𝑟 is included as a special case. The parameter 𝑏𝑏𝑡𝑡 measures the bequest motive. The utility function 
is: 

𝑢𝑢(𝑐𝑐, 𝑞𝑞) = 𝑞𝑞
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾
−
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾
 

where 𝑐𝑐 is the subsistence level of consumption for a healthy person. Because optimal consumption is 
unaffected by affine transformations of utility, we will assume 𝑢𝑢(𝑐𝑐, 𝑞𝑞) = 𝑞𝑞𝑐𝑐1−𝛾𝛾/(1− 𝛾𝛾) when solving the 
model for consumption. 

Define the value function as: 

𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡),𝑌𝑌𝑡𝑡) = max
𝑐𝑐(𝑠𝑠)

𝔼𝔼 ��𝑒𝑒−𝜌𝜌(𝑠𝑠−𝑡𝑡)𝑆𝑆𝑡𝑡(𝑠𝑠)𝑢𝑢 �𝑐𝑐(𝑠𝑠), 𝑞𝑞𝑌𝑌𝑠𝑠(𝑠𝑠)�
𝑇𝑇

𝑠𝑠=𝑡𝑡

+ 𝑒𝑒−𝜌𝜌(𝑠𝑠+1−𝑡𝑡)�𝑆𝑆𝑡𝑡(𝑠𝑠) − 𝑆𝑆𝑡𝑡(𝑠𝑠 + 1)�𝑢𝑢(𝑊𝑊(𝑠𝑠 + 1), 𝑏𝑏𝑠𝑠)� 𝑌𝑌𝑡𝑡,𝑊𝑊(𝑡𝑡)� 

subject to: 
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𝑊𝑊(𝑠𝑠 + 1) = �𝑊𝑊(𝑠𝑠)− 𝑐𝑐(𝑠𝑠)�𝑒𝑒𝑟𝑟(𝑠𝑠,𝑌𝑌𝑠𝑠), 𝑠𝑠 > 𝑡𝑡,𝑊𝑊(𝑠𝑠) ≥ 0  

Then we obtain the following Bellman equation: 

𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑖𝑖) = max
𝑐𝑐(𝑡𝑡)

�𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� + 𝑒𝑒−𝜌𝜌𝑑𝑑𝑖𝑖(𝑡𝑡)𝑢𝑢 ��𝑤𝑤 − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖), 𝑏𝑏𝑡𝑡�

+ 𝑒𝑒−𝜌𝜌 �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)��𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡 + 1, �𝑤𝑤 − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖), 𝑗𝑗�
𝑛𝑛

𝑗𝑗=1

� 

Appendix Proposition C1:  

The value function and the optimal consumption level satisfy: 

𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑖𝑖) =
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾
𝐾𝐾𝑡𝑡,𝑖𝑖, 

𝑐𝑐∗(𝑡𝑡,𝑤𝑤, 𝑖𝑖) = 𝑤𝑤 ⋅ 𝑐𝑐𝑡𝑡,𝑖𝑖 

where: 

𝑐𝑐𝑡𝑡,𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
1 + 𝑒𝑒−𝑟𝑟(𝑡𝑡,𝑖𝑖) �

𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)� �∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗
𝑛𝑛
𝑗𝑗=1 ��

𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑡𝑡)
�

1
γ

⎦
⎥
⎥
⎥
⎤
−1

, 𝑡𝑡 < 𝑇𝑇, 

𝑐𝑐𝑇𝑇,𝑖𝑖 = �1 + 𝑒𝑒−𝑟𝑟(𝑇𝑇,𝑖𝑖) �
𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)𝑏𝑏𝑇𝑇
𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑇𝑇)�

1
γ
�

−1

 

and 𝐾𝐾𝑡𝑡,𝑖𝑖 satisfies the recursion: 

𝐾𝐾𝑡𝑡,𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡

𝑞𝑞𝑖𝑖(𝑡𝑡)
1
𝛾𝛾 + 𝑒𝑒−𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)−𝜌𝜌 �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)���𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=1

���

1
𝛾𝛾

⎦
⎥
⎥
⎥
⎤
𝛾𝛾

, 𝑡𝑡 < 𝑇𝑇, 

𝐾𝐾𝑇𝑇,𝑖𝑖 = �𝑞𝑞𝑖𝑖(𝑇𝑇)
1
𝛾𝛾 + 𝑒𝑒−𝑟𝑟(𝑇𝑇,𝑖𝑖)�𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)−𝜌𝜌𝑏𝑏𝑇𝑇�

1
𝛾𝛾�
𝛾𝛾

 

Proof of Appendix Proposition C1: see end of appendix C 

When calculating VSL, we incorporate subsistence consumption back into the utility function. In this case, 
the value function is: 

 
𝑉𝑉(0,𝑤𝑤, 𝑖𝑖) = �𝑒𝑒−𝜌𝜌𝜌𝜌𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡

0
� �𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)

𝑐𝑐(𝑡𝑡)1−𝛾𝛾

1 − 𝛾𝛾
−
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾��
𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝑇𝑇

𝑡𝑡=0

+ 𝑒𝑒−𝜌𝜌(𝑡𝑡+1)𝔼𝔼 ��exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� − exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡+1

0
���𝑏𝑏𝑡𝑡

𝑊𝑊(𝑡𝑡 + 1)1−𝛾𝛾

1 − 𝛾𝛾
−
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾��
𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

�������������������������������������������������������������������
∗

 

 

       (C1) 

In specifications without the bequest motive, the second term (*) is dropped. Rearranging yields: 
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𝑉𝑉(0,𝑤𝑤, 𝑖𝑖) = �𝑒𝑒−𝜌𝜌𝜌𝜌𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)

𝑐𝑐(𝑡𝑡)1−𝛾𝛾

1 − 𝛾𝛾
� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝑇𝑇

𝑡𝑡=0

+ 𝑒𝑒−𝜌𝜌(𝑡𝑡+1)𝑏𝑏𝑡𝑡𝔼𝔼 ��exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� − exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡+1

0
��

𝑊𝑊(𝑡𝑡 + 1)1−𝛾𝛾

1 − 𝛾𝛾
� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

−
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾
�1 + 𝑒𝑒−𝜌𝜌�𝑒𝑒−𝜌𝜌𝜌𝜌𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡

0
�� 𝑌𝑌0 = 𝑖𝑖�

𝑇𝑇

𝑡𝑡=0

� 

=
1

1 − 𝛾𝛾

⎣
⎢
⎢
⎢
⎢
⎡

𝑤𝑤1−𝛾𝛾𝐾𝐾0,𝑖𝑖 − 𝑐𝑐1−𝛾𝛾

⎣
⎢
⎢
⎢
⎡
1 + 𝑒𝑒−𝜌𝜌�𝑒𝑒−𝜌𝜌𝜌𝜌

𝑇𝑇

𝑡𝑡=0

𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
�� 𝑌𝑌0 = 𝑖𝑖�

�������������������������
life expect.  in state 𝑖𝑖,   discounted at rate 𝜌𝜌 ⎦

⎥
⎥
⎥
⎤

⎦
⎥
⎥
⎥
⎥
⎤

 

We can then calculate VSL in state 𝑖𝑖 using the following formula: 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) =

𝑉𝑉(0,𝑤𝑤, 𝑖𝑖)

𝑢𝑢𝑐𝑐 �𝑤𝑤𝑐𝑐0,𝑖𝑖, 𝑞𝑞𝑖𝑖(0)�
=
𝑉𝑉(0,𝑤𝑤, 𝑖𝑖)
𝑉𝑉𝑤𝑤(0,𝑤𝑤, 𝑖𝑖)

       (C2) 

When bequests are absent and 𝑟𝑟(𝑡𝑡, 𝑖𝑖) = 𝑟𝑟, we drop the term (*) in equation (C1), and the theory presented 
in the main text then yields the following expression for VSL: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) = 𝔼𝔼 �� exp �−� 𝜌𝜌 + 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
�
𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�

𝑢𝑢𝑐𝑐 �𝑐𝑐(0), 𝑞𝑞𝑌𝑌0(0)�

𝑇𝑇

𝑡𝑡=0

� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤� 

= �𝑒𝑒−𝑟𝑟𝑟𝑟
𝔼𝔼 �exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 � 𝑢𝑢 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝔼𝔼 �exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 � 𝑢𝑢𝑐𝑐 �𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝑇𝑇

𝑡𝑡=0

 

= �𝑒𝑒−𝑟𝑟𝑟𝑟
𝔼𝔼 �exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 � �𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)
𝑐𝑐(𝑡𝑡)1−𝛾𝛾
1 − 𝛾𝛾 −

𝑐𝑐1−𝛾𝛾
1 − 𝛾𝛾��𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝔼𝔼 �exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 � 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)𝑐𝑐(𝑡𝑡)−𝛾𝛾�𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝑇𝑇

𝑡𝑡=0

 

which can also be written as: 

 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) =

1
1 − 𝛾𝛾

�𝑒𝑒−𝑟𝑟𝑟𝑟
𝔼𝔼 �exp�−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 � 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)𝑐𝑐(𝑡𝑡)1−𝛾𝛾� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤� − 𝑐𝑐1−𝛾𝛾𝔼𝔼 �exp�−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 �� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤�

𝔼𝔼 �exp�−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 � 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)𝑐𝑐(𝑡𝑡)−𝛾𝛾� 𝑌𝑌0 = 𝑖𝑖,𝑊𝑊(0) = 𝑤𝑤��������������������������������������������������������������������

𝑣𝑣(𝑌𝑌0,𝑡𝑡)

𝑇𝑇

𝑡𝑡=0

       (C3) 

To evaluate this expression for VSL, we will make use of the following lemma. 

Appendix Lemma C2: Let 𝑊𝑊𝑡𝑡,𝑗𝑗(𝛹𝛹) =  𝔼𝔼 �exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡
0 �𝑊𝑊(𝑡𝑡)𝛹𝛹𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗}� 𝑌𝑌0,𝑊𝑊0� for 𝛹𝛹 ∈ (1,∞). 

Then 𝑊𝑊𝑡𝑡,𝑗𝑗(𝛹𝛹) satisfies the following recursion: 

𝑊𝑊0,𝑌𝑌0(𝛹𝛹) = 𝑊𝑊0
𝛹𝛹 ,𝑊𝑊0,𝑖𝑖(𝛹𝛹) = 0, 𝑖𝑖 ≠ 𝑌𝑌0, 

𝑊𝑊𝑡𝑡+1,𝑗𝑗(𝛹𝛹) = 𝑒𝑒𝑟𝑟𝑟𝑟�𝑊𝑊𝑡𝑡,𝑘𝑘(𝛹𝛹)�1− 𝑐𝑐𝑡𝑡,𝑘𝑘�
𝛹𝛹

𝑛𝑛

𝑘𝑘=1

�1 − 𝑑𝑑𝑘𝑘(𝑡𝑡)�𝑝𝑝𝑘𝑘,𝑗𝑗(𝑡𝑡) 

Proof of Appendix Lemma C2: see end of appendix C 

Note that for 𝛹𝛹 = 0 , the expression ∑ 𝑊𝑊𝑡𝑡,𝑗𝑗(0)𝑛𝑛
𝑗𝑗=1 =  𝔼𝔼 �exp �−∫ 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑𝑡𝑡

0 ��𝑌𝑌0�  is simply the 𝑡𝑡 -year 
survival probability. Applying Appendix Lemma C2, we obtain: 
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Appendix Proposition C3:  

VSL in state 𝑌𝑌0 is equal to: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑌𝑌0) =
1

1 − 𝛾𝛾
�𝑒𝑒−𝑟𝑟𝑟𝑟

∑ 𝑞𝑞𝑗𝑗(𝑡𝑡)𝑐𝑐𝑡𝑡,𝑗𝑗
1−𝛾𝛾𝑊𝑊𝑡𝑡,𝑗𝑗(1 − 𝛾𝛾)𝑛𝑛

𝑗𝑗=1 − 𝑐𝑐1−𝛾𝛾 ∑ 𝑊𝑊𝑡𝑡,𝑗𝑗(0)𝑛𝑛
𝑗𝑗=1

∑ 𝑞𝑞𝑗𝑗(𝑡𝑡)𝑐𝑐𝑡𝑡,𝑗𝑗
−𝛾𝛾𝑊𝑊𝑡𝑡,𝑗𝑗(−𝛾𝛾)𝑛𝑛

𝑗𝑗=1�������������������������������
𝑣𝑣(𝑌𝑌0,𝑡𝑡)

𝑇𝑇

𝑡𝑡=0

 

Proof of Appendix Proposition C3: see end of appendix C 

We also immediately obtain the following corollary. 

Appendix Corollary C4: 

The value of a marginal reduction in the probability of transitioning from state 𝑖𝑖 to state 𝑗𝑗 is equal to: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑗𝑗) = 𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) − 𝑉𝑉𝑉𝑉𝑉𝑉(𝑗𝑗)
𝑞𝑞𝑗𝑗(0)𝑐𝑐0,𝑗𝑗

−𝛾𝛾

𝑞𝑞𝑖𝑖(0)𝑐𝑐0,𝑖𝑖
−𝛾𝛾  

= 𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) − �
𝑞𝑞𝑗𝑗(0)
𝑞𝑞𝑖𝑖(0)��

𝑐𝑐0,𝑖𝑖

𝑐𝑐0,𝑗𝑗
�
𝛾𝛾

𝑉𝑉𝑉𝑉𝑉𝑉(𝑗𝑗) 

We have verified in our numerical calculations that Appendix Proposition C3 and Appendix Corollary 
C4 yield the same answer as the direct evaluation via equation (C2) above. 
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Proofs for Appendix C 
Proof of Appendix Proposition C1: 

The proof proceeds by induction on 𝑡𝑡 ≤ 𝑇𝑇. For the base case 𝑡𝑡 = 𝑇𝑇, note that 𝑑𝑑𝑖𝑖(𝑡𝑡) = 1, so that the first-
order condition from the Bellman equation gives: 

𝑞𝑞𝑖𝑖(𝑇𝑇)𝑐𝑐(𝑇𝑇)−𝛾𝛾 = 𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)−𝜌𝜌𝑏𝑏𝑇𝑇�𝑤𝑤 − 𝑐𝑐(𝑇𝑇)�−𝛾𝛾𝑒𝑒−𝑟𝑟(𝑇𝑇,𝑖𝑖)𝛾𝛾 

This implies that:  

𝑐𝑐(𝑇𝑇) =
𝑤𝑤𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)𝑒𝑒

�𝜌𝜌−𝑟𝑟(𝑇𝑇,𝑖𝑖)�
𝛾𝛾 �𝑞𝑞𝑖𝑖(𝑇𝑇)

𝑏𝑏𝑇𝑇
�

1
𝛾𝛾

1 + 𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)𝑒𝑒
�𝜌𝜌−𝑟𝑟(𝑇𝑇,𝑖𝑖)�

𝛾𝛾 �𝑞𝑞𝑖𝑖(𝑇𝑇)
𝑏𝑏𝑇𝑇

�
1
𝛾𝛾

 

= 𝑤𝑤 �1 + 𝑒𝑒−𝑟𝑟(𝑇𝑇,𝑖𝑖) �
𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)𝑏𝑏𝑇𝑇
𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑇𝑇)�

1
𝛾𝛾
�

�����������������
𝑐𝑐𝑇𝑇,𝑖𝑖

−1

 

Hence, we obtain: 

𝑉𝑉(𝑇𝑇,𝑤𝑤, 𝑖𝑖) =
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾
�𝑞𝑞𝑖𝑖(𝑇𝑇)𝑐𝑐𝑇𝑇,𝑖𝑖

1−𝛾𝛾 + 𝑒𝑒−𝜌𝜌𝑏𝑏𝑇𝑇𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)(1−𝛾𝛾)�1 − 𝑐𝑐𝑇𝑇,𝑖𝑖�
1−𝛾𝛾� 

=
𝑒𝑒−𝜌𝜌𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)(1−𝛾𝛾)

�𝑏𝑏𝑇𝑇
1
𝛾𝛾 + 𝑒𝑒𝑟𝑟(𝑇𝑇,𝑖𝑖)𝑒𝑒

�𝜌𝜌−𝑟𝑟(𝑇𝑇,𝑖𝑖)�
𝛾𝛾 𝑞𝑞𝑖𝑖(𝑇𝑇)

1
𝛾𝛾�
−𝛾𝛾 

= �𝑞𝑞𝑖𝑖(𝑇𝑇)
1
𝛾𝛾 + 𝑒𝑒−𝑟𝑟(𝑇𝑇,𝑖𝑖)�𝑒𝑒(𝑟𝑟(𝑇𝑇,𝑖𝑖)−𝜌𝜌)𝑏𝑏𝑇𝑇�

1
𝛾𝛾�
𝛾𝛾

 

For the induction step, suppose the proposition is true for case 𝑡𝑡 + 1. We have: 

𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑖𝑖) = max
𝑐𝑐

�𝑞𝑞𝑖𝑖(𝑡𝑡)
𝑐𝑐1−𝛾𝛾

1 − 𝛾𝛾 + 𝑏𝑏𝑡𝑡𝑒𝑒−𝜌𝜌𝑑𝑑𝑖𝑖(𝑡𝑡)
�(𝑤𝑤 − 𝑐𝑐)𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)�

1−𝛾𝛾

1 − 𝛾𝛾 + 𝑒𝑒−𝜌𝜌 �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)��𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)
𝐾𝐾𝑡𝑡+1,𝑗𝑗

1 − 𝛾𝛾 �
(𝑤𝑤 − 𝑐𝑐)𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)�

1−𝛾𝛾
𝑛𝑛

𝑗𝑗=1

� 

From the first-order condition we obtain: 

𝑞𝑞𝑖𝑖(𝑡𝑡)𝑐𝑐−𝛾𝛾 = 𝑏𝑏𝑡𝑡𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)−𝜌𝜌𝑑𝑑𝑖𝑖(𝑡𝑡)𝑒𝑒−𝑟𝑟(𝑡𝑡,𝑖𝑖)𝛾𝛾(𝑤𝑤 − 𝑐𝑐)−𝛾𝛾 + 𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)−𝜌𝜌 �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)� 𝑒𝑒−𝛾𝛾𝛾𝛾(𝑡𝑡,𝑖𝑖)(𝑤𝑤 − 𝑐𝑐)−𝛾𝛾�𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

 

Rearranging yields: 

𝑞𝑞𝑖𝑖(𝑡𝑡)𝑐𝑐−𝛾𝛾 = (𝑤𝑤 − 𝑐𝑐)−𝛾𝛾𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)−𝜌𝜌𝑒𝑒−𝑟𝑟(𝑡𝑡,𝑖𝑖)𝛾𝛾 �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)��𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

� 

which implies: 
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𝑞𝑞𝑖𝑖(𝑡𝑡)−1/𝛾𝛾𝑐𝑐 = (𝑤𝑤 − 𝑐𝑐)𝑒𝑒�𝜌𝜌−𝑟𝑟(𝑡𝑡,𝑖𝑖)�/𝛾𝛾𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)��𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

�

−1/𝛾𝛾

 

Rearranging further yields: 

 

𝑐𝑐 = 𝑤𝑤
𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑖𝑖 ��

−1/𝛾𝛾

𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑡𝑡)−1/𝛾𝛾 + 𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗
𝑛𝑛
𝑗𝑗=𝑖𝑖 ��

−1/𝛾𝛾 

= 𝑤𝑤

⎣
⎢
⎢
⎢
⎡
1 + 𝑒𝑒−𝑟𝑟(𝑡𝑡,𝑖𝑖) �

𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗
𝑛𝑛
𝑗𝑗=𝑖𝑖 �

𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑡𝑡)
�

1
𝛾𝛾

⎦
⎥
⎥
⎥
⎤

�������������������������������������������
𝑐𝑐𝑡𝑡,𝑖𝑖

−1

 

Thus we obtain: 

𝑉𝑉(𝑡𝑡,𝑤𝑤, 𝑖𝑖) = 𝑞𝑞𝑖𝑖(𝑡𝑡)𝑐𝑐𝑡𝑡,𝑖𝑖
1−𝛾𝛾 𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾
+ 𝑏𝑏𝑡𝑡𝑒𝑒−𝜌𝜌𝑑𝑑𝑖𝑖(𝑡𝑡)

𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾 �
1 − 𝑐𝑐𝑡𝑡,𝑖𝑖�

1−𝛾𝛾𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)(1−𝛾𝛾) + 𝑒𝑒−𝜌𝜌 �1− 𝑑𝑑𝑖𝑖(𝑡𝑡)�
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾 �
1 − 𝑐𝑐𝑡𝑡,𝑖𝑖�

1−𝛾𝛾𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)(1−𝛾𝛾) �𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

 

=
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾 �
𝑞𝑞𝑖𝑖(𝑡𝑡)𝑐𝑐𝑡𝑡,𝑖𝑖

1−𝛾𝛾 + 𝑒𝑒−𝜌𝜌�1− 𝑐𝑐𝑡𝑡,𝑖𝑖�
1−𝛾𝛾𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)(1−𝛾𝛾) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)��𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

�� 

=
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾
𝑞𝑞𝑖𝑖(𝑡𝑡)𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)(1−𝛾𝛾) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑖𝑖 ��

1−1/𝛾𝛾
+ 𝑒𝑒−𝜌𝜌𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)(1−𝛾𝛾)�𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑡𝑡)�

1−1/𝛾𝛾 �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1− 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗
𝑛𝑛
𝑗𝑗=𝑖𝑖 �

��𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑡𝑡)�
−1/𝛾𝛾 + 𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1− 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑖𝑖 ��

−1𝛾𝛾
�

1−𝛾𝛾  

=
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾
𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)(1−𝛾𝛾)𝑞𝑞𝑖𝑖(𝑡𝑡) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑖𝑖 �

��𝑒𝑒𝜌𝜌𝑞𝑞𝑖𝑖(𝑡𝑡)�
−1/𝛾𝛾 + 𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)�∑ 𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛
𝑗𝑗=𝑖𝑖 ��

−1𝛾𝛾
�

−𝛾𝛾 

=
𝑤𝑤1−𝛾𝛾

1 − 𝛾𝛾
⎣
⎢
⎢
⎢
⎡
𝑞𝑞𝑖𝑖(𝑡𝑡)

1
𝛾𝛾 + 𝑒𝑒−𝑟𝑟(𝑡𝑡,𝑖𝑖) �𝑒𝑒𝑟𝑟(𝑡𝑡,𝑖𝑖)−𝜌𝜌 �𝑑𝑑𝑖𝑖(𝑡𝑡)𝑏𝑏𝑡𝑡 + �1 − 𝑑𝑑𝑖𝑖(𝑡𝑡)��𝑝𝑝𝑖𝑖𝑖𝑖(𝑡𝑡)𝐾𝐾𝑡𝑡+1,𝑗𝑗

𝑛𝑛

𝑗𝑗=𝑖𝑖

��

1
𝛾𝛾

⎦
⎥
⎥
⎥
⎤
𝛾𝛾

�����������������������������������������������
𝐾𝐾𝑡𝑡,𝑖𝑖

 

QED 

Proof of Appendix Lemma C2:  

𝑊𝑊𝑡𝑡+1,𝑗𝑗(𝛹𝛹) =  𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡+1

0
� �𝑊𝑊(𝑡𝑡 + 1)�𝛹𝛹𝟏𝟏{𝑌𝑌𝑡𝑡+1 = 𝑗𝑗}� 𝑌𝑌0,𝑊𝑊0� 

= 𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� ��𝑊𝑊(𝑡𝑡) − 𝑐𝑐(𝑡𝑡)�𝑒𝑒𝑟𝑟�

𝛹𝛹
𝟏𝟏{𝑌𝑌𝑡𝑡+1 = 𝑗𝑗} exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡+1

𝑡𝑡
�� 𝑌𝑌0,𝑊𝑊0� 
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= �𝔼𝔼

⎣
⎢
⎢
⎢
⎡

𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑘𝑘} exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 𝑒𝑒𝑟𝑟𝑟𝑟𝑊𝑊(𝑡𝑡)𝛹𝛹�1− 𝑐𝑐𝑡𝑡,𝑘𝑘�

𝛹𝛹 𝔼𝔼 �𝟏𝟏{𝑌𝑌𝑡𝑡+1 = 𝑗𝑗} exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡+1

𝑡𝑡
�� 𝑌𝑌𝑡𝑡 = 𝑘𝑘�

�����������������������������
�1−𝑑𝑑𝑘𝑘(𝑡𝑡)�𝑝𝑝𝑘𝑘𝑘𝑘(𝑡𝑡)

�
� 𝑌𝑌0,𝑊𝑊0

⎦
⎥
⎥
⎥
⎤𝑛𝑛

𝑘𝑘=1

 

= 𝑒𝑒𝑟𝑟𝑟𝑟�𝑊𝑊𝑡𝑡,𝑘𝑘(Υ)�1 − 𝑐𝑐𝑡𝑡,𝑘𝑘�
𝛹𝛹

𝑛𝑛

𝑘𝑘=1

�1 − 𝑑𝑑𝑘𝑘(𝑡𝑡)� 𝑝𝑝𝑘𝑘𝑘𝑘(𝑡𝑡) 

QED 

Proof of Appendix Proposition C3:  

Note that we can rewrite one of the terms in equation (C3) as follows: 

𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)𝑐𝑐(𝑡𝑡)𝛹𝛹� 𝑌𝑌0,𝑊𝑊0� = �𝔼𝔼�exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡

0
� 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)𝑐𝑐(𝑡𝑡)𝛹𝛹𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗}� 𝑌𝑌0,𝑊𝑊0�

𝑛𝑛

𝑗𝑗=1

 

= �𝔼𝔼�exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0
� 𝑞𝑞𝑗𝑗(𝑡𝑡)𝑐𝑐𝑡𝑡,𝑗𝑗

𝛹𝛹 𝑊𝑊(𝑡𝑡)𝛹𝛹𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗}� 𝑌𝑌0,𝑊𝑊0�
𝑛𝑛

𝑗𝑗=1

 

= �𝑞𝑞𝑗𝑗(𝑡𝑡)𝑐𝑐𝑡𝑡,𝑗𝑗
𝛹𝛹 𝔼𝔼 �exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑

𝑡𝑡

0
�𝑊𝑊(𝑡𝑡)𝛹𝛹𝟏𝟏{𝑌𝑌𝑡𝑡 = 𝑗𝑗}� 𝑌𝑌0,𝑊𝑊0�

�����������������������������
𝑊𝑊𝑡𝑡,𝑗𝑗(𝛹𝛹)

𝑛𝑛

𝑗𝑗=1

 

The proof follows by setting 𝛹𝛹 = 1 − 𝛾𝛾, 0, and – 𝛾𝛾 and then plugging those results into equation (C3) as 
appropriate. 

QED 
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D. The fully annuitized value of life when mortality is stochastic 
We assume a full menu of actuarially fair annuities is available, where consumers can choose consumption 
streams, 𝑐𝑐(𝑡𝑡), that depend on the evolution of their health state. Thus, the consumer is able to fully insure 
against consumption risk. The consumer’s maximization problem is: 

 
max
𝑐𝑐(𝑡𝑡)

𝔼𝔼 �� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆𝑆(𝑡𝑡)𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�𝑑𝑑𝑑𝑑
𝑇𝑇

0
� 𝑌𝑌0� 

 

      (D1) 

subject to: 

 𝔼𝔼 �� 𝑒𝑒−𝑟𝑟𝑟𝑟𝑆𝑆(𝑡𝑡)𝑐𝑐(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
� 𝑌𝑌0� = 𝑊𝑊0 + 𝔼𝔼 �� 𝑒𝑒−𝑟𝑟𝑟𝑟𝑆𝑆(𝑡𝑡)𝑚𝑚𝑌𝑌𝑡𝑡(𝑡𝑡)𝑑𝑑𝑑𝑑

𝑇𝑇

0
� 𝑌𝑌0� ≡ 𝑊𝑊(0,𝑌𝑌0) 

where 𝑊𝑊(0,𝑌𝑌0) is the net present value of wealth and future earnings.  

The consumer chooses the consumption profile at time 𝑡𝑡 based on her health state, 𝑌𝑌𝑡𝑡 = 𝑖𝑖, and on her 
available wealth, 𝑊𝑊(𝑡𝑡, 𝑖𝑖). Her available wealth finances future consumption such that:  

𝑊𝑊(𝑡𝑡, 𝑖𝑖) = 𝔼𝔼 �� 𝑒𝑒−𝑟𝑟(𝑢𝑢−𝑡𝑡) exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑢𝑢

𝑡𝑡
� 𝑐𝑐(𝑢𝑢)𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡
� 𝑌𝑌𝑡𝑡 ,𝑊𝑊(𝑡𝑡, 𝑖𝑖)� 

Appendix Lemma D1: 

The law of motion for wealth is: 

𝜕𝜕𝑊𝑊(𝑡𝑡, 𝑖𝑖)
𝜕𝜕𝜕𝜕

= �𝑟𝑟 + 𝜇𝜇𝑖𝑖(𝑡𝑡)�𝑊𝑊(𝑡𝑡, 𝑖𝑖) − 𝑐𝑐�𝑡𝑡,𝑊𝑊(𝑡𝑡, 𝑖𝑖), 𝑖𝑖� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑊𝑊(𝑡𝑡, 𝑖𝑖) −𝑊𝑊(𝑡𝑡, 𝑗𝑗)�
𝑗𝑗>𝑖𝑖

, 𝑖𝑖 = 1, … ,𝑛𝑛 

Proof of Appendix Lemma D1: see end of Appendix D 

Note that the dynamics for 𝑊𝑊(𝑡𝑡, 𝑖𝑖) will depend on 𝑊𝑊(𝑡𝑡, 𝑗𝑗), 𝑗𝑗 > 𝑖𝑖, so that �𝑌𝑌𝑡𝑡 ,𝑊𝑊(𝑡𝑡,𝑌𝑌𝑡𝑡)� is not Markov, but 

�𝑌𝑌𝑡𝑡 ,𝑊𝑊(𝑡𝑡)�, where we define the wealth vector 𝑊𝑊(𝑡𝑡) ≡ �𝑊𝑊(𝑡𝑡, 1), … ,𝑊𝑊(𝑡𝑡,𝑛𝑛)�, is Markov. 

Define the optimal value-to-go function as: 

𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡),𝑌𝑌𝑡𝑡� = max
𝑐𝑐(𝑢𝑢)

𝔼𝔼 �� 𝑒𝑒−𝜌𝜌(𝑢𝑢−𝑡𝑡) exp �−� 𝜇𝜇(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑢𝑢

𝑡𝑡
�𝑢𝑢�𝑐𝑐(𝑢𝑢), 𝑞𝑞𝑌𝑌𝑢𝑢(𝑢𝑢)�𝑑𝑑𝑑𝑑

𝑇𝑇

𝑡𝑡
� 𝑌𝑌𝑡𝑡 ,𝑊𝑊(𝑡𝑡)� 

subject to the law of motion for wealth given above. As a stochastic dynamic programming problem, 𝑉𝑉(⋅) 
satisfies the following Hamilton-Jacobi-Bellman (HJB) system of equations: 

 
�𝜌𝜌 + 𝜇𝜇𝑖𝑖(𝑡𝑡)�𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖� =

𝜕𝜕𝜕𝜕(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖)
𝜕𝜕𝜕𝜕 + max

𝑐𝑐(𝑡𝑡)
�𝑢𝑢�𝑐𝑐(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑉𝑉(𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑗𝑗) − 𝑉𝑉�𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖��

𝑗𝑗>𝑖𝑖

+ �
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊(𝑡𝑡), 𝑖𝑖�
𝜕𝜕𝑊𝑊� (𝑡𝑡,𝑘𝑘) ��𝑟𝑟 + 𝜇𝜇𝑘𝑘(𝑡𝑡)�𝑊𝑊(𝑡𝑡,𝑘𝑘) − 𝑐𝑐�𝑡𝑡,𝑊𝑊(𝑡𝑡, 𝑘𝑘), 𝑘𝑘�

𝑘𝑘≥𝑖𝑖

+ �𝜆𝜆𝑘𝑘𝑘𝑘(𝑡𝑡)�𝑊𝑊(𝑡𝑡, 𝑘𝑘) −𝑊𝑊(𝑡𝑡, 𝑙𝑙)�
𝑙𝑙>𝑘𝑘

�� , 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 

 

 (D2) 
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Similarly to the uninsured case presented in the main text, we follow Parpas and Webster (2013) and focus 
on the path of 𝑌𝑌  that begins in 𝑖𝑖  and remains in 𝑖𝑖  until time 𝑡𝑡 , with 𝑐𝑐𝑖𝑖(𝑡𝑡)  and 𝑊𝑊𝑖𝑖(𝑡𝑡)  denoting the 
corresponding optimal consumption and wealth paths. We take optimal consumption rules and value 
functions from other states as exogenous. As in the uninsured case, this approach will allow us to apply the 
standard Pontryagin maximum principle and derive analytic expressions.  

Appendix Lemma D2: 

The optimal value function for 𝑌𝑌0 = 𝑖𝑖 , 𝑉𝑉�0,𝑊𝑊(0, 𝑖𝑖), 𝑖𝑖� , for the following deterministic optimization 
problem also satisfies the HJB given by (D2), for each 𝑖𝑖 ∈ {1, … ,𝑛𝑛}: 

 
𝑉𝑉�0,𝑊𝑊���(0, 𝑖𝑖), 𝑖𝑖� = max

𝑐𝑐𝑖𝑖(𝑡𝑡)
�� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉 �𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�

𝑗𝑗>𝑖𝑖

� 𝑑𝑑𝑑𝑑
𝑇𝑇

0
�       (D3) 

 

subject to: 

𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝜕𝜕𝜕𝜕

= �𝑟𝑟 + 𝜇𝜇𝑗𝑗(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗) − 𝑐𝑐�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗� + �𝜆𝜆𝑗𝑗𝑗𝑗(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗) −𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘)�
𝑘𝑘>𝑗𝑗

, 𝑗𝑗 ≠ 𝑖𝑖 

𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑖𝑖)
𝜕𝜕𝜕𝜕

= �𝑟𝑟 + 𝜇𝜇𝑗𝑗(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑖𝑖) − 𝑐𝑐𝑖𝑖(𝑡𝑡) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑖𝑖) −𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘)�
𝑘𝑘>𝑖𝑖

 

where 𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗� and 𝑐𝑐�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�, 𝑗𝑗 > 𝑖𝑖, are taken as exogenous. 

Proof of Appendix Lemma D2: see end of Appendix D 

Following Bertsekas (2005), the Hamiltonian for the (deterministic) maximization problem (D3) is: 

 
𝐻𝐻 �𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑐𝑐𝑖𝑖(𝑡𝑡),𝑝𝑝𝑖𝑖(𝑡𝑡)� = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�

𝑗𝑗>𝑖𝑖

�

+ �𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑘𝑘) ��𝑟𝑟 + 𝜇𝜇𝑘𝑘(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑘𝑘) − 𝑐𝑐�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑘𝑘� + �𝜆𝜆𝑘𝑘𝑘𝑘(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑘𝑘) −𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑙𝑙)�
𝑙𝑙>𝑘𝑘

�
𝑘𝑘>𝑖𝑖

+ 𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖) ��𝑟𝑟 + 𝜇𝜇𝑖𝑖(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘) − 𝑐𝑐𝑖𝑖(𝑡𝑡) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑖𝑖) −𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑙𝑙)�
𝑙𝑙>𝑖𝑖

� 

      (D4) 

 

where 𝑝𝑝𝑖𝑖(𝑡𝑡) = �𝑝𝑝𝑖𝑖(𝑡𝑡, 1), … ,𝑝𝑝𝑖𝑖(𝑡𝑡,𝑛𝑛)� is the vector of costate variables corresponding to wealth 𝑊𝑊𝑖𝑖(𝑡𝑡). 

Appendix Lemma D3: 

We have that 𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖) = 𝜃𝜃𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) for 𝜃𝜃 independent of 𝑖𝑖, and 𝑝𝑝𝑖𝑖(𝑡𝑡,𝑘𝑘) = 0,𝑘𝑘 ≠ 𝑖𝑖. The necessary first-
order condition for consumption is:  

 𝑒𝑒(𝑟𝑟−𝜌𝜌)𝑡𝑡𝑢𝑢𝑐𝑐(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) = 𝜃𝜃 
 

      (D5) 

where 𝜃𝜃 = 𝑝𝑝𝑖𝑖(0, 𝑖𝑖) = 𝜕𝜕𝜕𝜕�0,𝑊𝑊𝑖𝑖(0), 𝑖𝑖�/𝜕𝜕𝑊𝑊(0, 𝑖𝑖) is the marginal utility of wealth. 

Proof of Appendix Lemma D3: see end of Appendix D 

To analyze the values of life and illness, let 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡), 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁, be a perturbation on the transition intensity 
𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡), and let 𝛿𝛿𝑖𝑖,𝑁𝑁+1(𝑡𝑡) be a perturbation on the mortality rate, 𝜇𝜇𝑖𝑖(𝑡𝑡), where ∑ ∫ 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇

0
𝑁𝑁+1
𝑗𝑗=𝑖𝑖+1 = 1, and 

consider: 
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𝑆̃𝑆𝜀𝜀(𝑖𝑖, 𝑡𝑡) = exp �−� �𝜇𝜇𝑖𝑖(𝑠𝑠) − 𝜀𝜀𝛿𝛿𝑖𝑖,𝑁𝑁+1(𝑠𝑠)� + � �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠) − 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)�
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

𝑑𝑑𝑑𝑑
𝑡𝑡

0
� , where 𝜀𝜀 > 0 

Appendix Proposition D4: 

The marginal utility of preventing an illness or death is given by: 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜀𝜀=0

= � �𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑒𝑒−𝜌𝜌𝜌𝜌 �𝑢𝑢�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)�+ �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝑗𝑗>𝑖𝑖

� + 𝜃𝜃𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑚𝑚𝑖𝑖(𝑡𝑡)− 𝑐𝑐𝑖𝑖(𝑡𝑡) −�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑗𝑗>𝑖𝑖

��
𝑇𝑇

0

− 𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑒𝑒−𝜌𝜌𝜌𝜌𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗� − 𝜃𝜃𝑒𝑒−𝑟𝑟𝑟𝑟𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)�
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

�𝑑𝑑𝑑𝑑 

 

        (D6) 
 

Proof of Appendix Proposition D4: see end of Appendix D 

To obtain the value of statistical life (VSL), we first set 𝛿𝛿𝑖𝑖,𝑁𝑁+1 equal to the Dirac delta function, and set all 
other perturbations equal to 0. Dividing the result by the marginal utility of wealth, 𝜃𝜃, then yields: 

 
𝑉𝑉𝑉𝑉𝑉𝑉 = � 𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝑒𝑒−𝑟𝑟𝑟𝑟 ��

𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡))
𝑢𝑢𝑐𝑐(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�/𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)𝑗𝑗>𝑖𝑖

�
𝑇𝑇

0

+ �𝑚𝑚𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖(𝑡𝑡) −�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑗𝑗>𝑖𝑖

��𝑑𝑑𝑑𝑑 

= 𝔼𝔼 �� 𝑒𝑒−𝑟𝑟𝑟𝑟𝑆𝑆(𝑡𝑡)𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
� 

      (D7) 

 

where the value of a statistical life-year is: 

𝑣𝑣(𝑡𝑡) =
𝑢𝑢�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�
𝑢𝑢𝑐𝑐�𝑐𝑐(𝑡𝑡), 𝑞𝑞𝑌𝑌𝑡𝑡(𝑡𝑡)�

+ 𝑚𝑚𝑌𝑌𝑡𝑡(𝑡𝑡) − 𝑐𝑐𝑌𝑌𝑡𝑡(𝑡𝑡) 

Comparing (D7) to (3) reveals that generalizing the standard model to account for stochastic mortality alone 
does not alter the basic expression for VSL. Consumers continue to discount future life-years by the rate of 
interest and by survival. We can obtain the life-cycle profile of consumption in state 𝑖𝑖 by differentiating the 
first-order condition (D5) with respect to 𝑡𝑡 . Doing so confirms that, as in the deterministic case, 
annuitization insulates consumption from mortality risk: 

𝑐̇𝑐𝑖𝑖(𝑡𝑡)
𝑐𝑐𝑖𝑖(𝑡𝑡)

= 𝜎𝜎(𝑟𝑟 − 𝜌𝜌) + 𝜎𝜎𝜎𝜎
𝑞̇𝑞
𝑞𝑞

 

Our results demonstrate that stochastic mortality, by itself, does not alter the basic insights regarding VSL 
offered by the prior literature as long as one maintains the assumption of full annuitization.  

However, a novel feature of the stochastic model is that it permits an investigation into the value of 
prevention. Inspecting the expression for the marginal utility of life extension (D6), the first term inside the 
integral represents the gain in marginal utility from a reduction in the probability of exiting state 𝑖𝑖. The 
second term represents the loss in marginal utility from the reduction in probability of transitioning to other 
possible states. The net effect depends on the consumer’s marginal utility in the different states.  

To analyze the value of prevention, consider a reduction in the transition probability for only one alternative 
state, 𝑗𝑗, so that 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡) = 0 ∀𝑘𝑘 ≠ 𝑗𝑗. The value of avoiding illness 𝑗𝑗 is then equal to: 
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𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑗𝑗) =  � 𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝑒𝑒−𝑟𝑟𝑟𝑟 ��

𝑢𝑢(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡))
𝑢𝑢𝑐𝑐(𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)

𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�/𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)𝑗𝑗>𝑖𝑖

�
𝑇𝑇

0

+ �𝑚𝑚𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖(𝑡𝑡) −�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑗𝑗>𝑖𝑖

��𝑑𝑑𝑑𝑑 − �
𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�

𝜃𝜃
− 𝑊𝑊𝑖𝑖(0, 𝑗𝑗)� 

= 𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖) − 𝑉𝑉𝑉𝑉𝑉𝑉�𝑗𝑗�𝑊𝑊(0, 𝑗𝑗) = 𝑊𝑊𝑖𝑖(0, 𝑗𝑗)� 

 (D8) 

 

Thus, equation (D8) demonstrates that 𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖, 𝑗𝑗) is equal to the difference in VSL for states 𝑖𝑖 and 𝑗𝑗, with the 
caveat that VSL in state 𝑗𝑗 uses a measure of total wealth evaluated from the perspective of a person in state 
𝑖𝑖. This technicality arises because the value of the consumer’s annuity depends on her expected survival. 
For example, an annuity is worth more to a healthy 65-year-old than it is to a 65-year-old who was just 
diagnosed with lung cancer. 
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Proofs for Appendix D 
Proof of Appendix Lemma D1: 

Available wealth can be written as: 

𝑊𝑊(𝑡𝑡, 𝑖𝑖) = � exp�−� 𝑟𝑟 + 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

𝑑𝑑𝑑𝑑
𝑢𝑢

𝑡𝑡
� �𝑐𝑐𝑖𝑖(𝑡𝑡,𝑢𝑢) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑢𝑢)𝑊𝑊𝑖𝑖(𝑢𝑢, 𝑡𝑡, 𝑗𝑗)

𝑗𝑗>𝑖𝑖

� 𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
 

where with a slight abuse of notation, 𝑐𝑐𝑖𝑖(𝑡𝑡,𝑢𝑢) and 𝑊𝑊𝑖𝑖(𝑢𝑢, 𝑡𝑡, 𝑗𝑗) denote the consumption and wealth paths for 
an individual who is in state 𝑖𝑖 at time 𝑡𝑡 and remains in state 𝑖𝑖 until time 𝑢𝑢. The result then follows by taking 
the derivative with respect to 𝑡𝑡. 

Proof of Appendix Lemma D2: 

This proof follows the same logic as the proof of Lemma 1 in Appendix A. Consider the deterministic 
optimization problem (D3). Denote the optimal value-to-go function as: 

𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖� = max
𝑐𝑐𝑖𝑖(𝑡𝑡)

�� 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖,𝑢𝑢)�𝑢𝑢(𝑐𝑐𝑖𝑖(𝑢𝑢), 𝑞𝑞𝑖𝑖(𝑢𝑢)) +�𝜆𝜆𝑖𝑖𝑖𝑖(𝑢𝑢)𝑉𝑉�𝑢𝑢,𝑊𝑊𝑖𝑖(𝑢𝑢), 𝑗𝑗�
𝑗𝑗>𝑖𝑖

� 𝑑𝑑𝑑𝑑
𝑇𝑇

𝑡𝑡
� 

Setting 𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖� = 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖� then demonstrates that 𝑉𝑉(⋅) satisfies the HJB (D2) for 𝑖𝑖. 

QED 

Proof of Appendix Lemma D3: 

The costate equations for the Hamiltonian (D4) are: 

𝑝̇𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖) = −��𝑟𝑟 + 𝜇𝜇𝑖𝑖(𝑡𝑡)� + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝑙𝑙>𝑖𝑖

� 𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖), 

𝑝̇𝑝𝑖𝑖(𝑡𝑡,𝑘𝑘) = −�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘)𝑗𝑗>𝑘𝑘

+ � 𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑗𝑗)�
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘)

+ 𝜆𝜆𝑗𝑗𝑗𝑗(𝑡𝑡)�
𝑘𝑘≥𝑗𝑗>𝑖𝑖

− 𝑝𝑝𝑖𝑖(𝑡𝑡,𝑘𝑘) ��𝑟𝑟 + 𝜇𝜇𝑘𝑘(𝑡𝑡)� +�𝜆𝜆𝑘𝑘𝑙𝑙(𝑡𝑡)
𝑙𝑙>𝑘𝑘

� + 𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖)𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡), for 𝑘𝑘 > 𝑖𝑖 

From the first costate equation, we obtain: 

𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖) = 𝑒𝑒−𝑟𝑟𝑟𝑟𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝜃𝜃 

Taking first-order conditions in the Hamiltonian (D4) and plugging this in then yields:  

𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡), 𝑞𝑞𝑖𝑖(𝑡𝑡)� =
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑖𝑖�
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑖𝑖)

= 𝑒𝑒(𝜌𝜌−𝑟𝑟)𝑡𝑡𝜃𝜃 

To see that this solution works, let 𝜃𝜃 be constant across states, and set 𝑝𝑝𝑖𝑖(𝑡𝑡,𝑘𝑘) = 0 = 𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡),𝑖𝑖�
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘) . This then 

satisfies the costate equation system across 𝑖𝑖,𝑘𝑘, and 𝑡𝑡. In particular, for the second equation we obtain  



 81 

𝑝̇𝑝𝑖𝑖(𝑡𝑡,𝑘𝑘) = −𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡),𝑘𝑘�
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡,𝑘𝑘)�����������
𝑒𝑒(𝜌𝜌−𝑟𝑟)𝑡𝑡𝜃𝜃

+ 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑝𝑝𝑖𝑖(𝑡𝑡, 𝑖𝑖) 

= 0 

QED 

Proof of Appendix Proposition D4: 

Starting from equation (D3), we have: 

𝑉𝑉𝜀𝜀�0,𝑊𝑊𝑖𝑖(0, 𝑖𝑖), 𝑖𝑖� = � 𝑒𝑒−𝜌𝜌𝜌𝜌 exp �−� 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑗𝑗>𝑖𝑖

− 𝜀𝜀 � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑁𝑁+1

𝑗𝑗=𝑖𝑖+1

𝑑𝑑𝑑𝑑
𝑡𝑡

0
� �𝑢𝑢�𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)�

𝑇𝑇

0

+ � �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑉𝑉 �𝑡𝑡,𝑊𝑊𝑖𝑖
𝜀𝜀
(𝑡𝑡), 𝑗𝑗�

𝑁𝑁

𝑗𝑗=𝑖𝑖+1

� 𝑑𝑑𝑑𝑑, 

where 𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡) and 𝑊𝑊𝑖𝑖
𝜀𝜀
(𝑡𝑡) represent the equilibrium variations in 𝑐𝑐𝑖𝑖(𝑡𝑡) and 𝑊𝑊𝑖𝑖(𝑡𝑡) caused by the perturbation, 

𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡). Differentiating then yields: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜀𝜀=0

= � 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) �𝑢𝑢�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)�+ � 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

� � � � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)𝑑𝑑𝑑𝑑
𝑡𝑡

0

𝑁𝑁+1

𝑗𝑗=𝑖𝑖+1

� − 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

𝑇𝑇

0

+ 𝑒𝑒−𝜌𝜌𝜌𝜌𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)

⎣
⎢
⎢
⎡
𝑢𝑢𝑐𝑐�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)������������

𝑒𝑒−(𝑟𝑟−𝜌𝜌)𝑡𝑡𝜃𝜃

𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕 �

𝜀𝜀=0
+ �

𝜕𝜕𝜕𝜕�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)���������
𝑒𝑒−(𝑟𝑟−𝜌𝜌)𝑡𝑡𝜃𝜃

𝜕𝜕𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝜕𝜕𝜕𝜕 �

𝜀𝜀=0

𝑁𝑁

𝑗𝑗=𝑖𝑖+1 ⎦
⎥
⎥
⎤
𝑑𝑑𝑑𝑑 

Next, note that the budget constraint implies: 

0 =
𝜕𝜕𝑊𝑊0

𝜕𝜕𝜕𝜕 �𝜀𝜀=0
 

=
𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑒𝑒−𝑟𝑟𝑟𝑟 exp�−� 𝜇𝜇𝑖𝑖(𝑠𝑠) + �𝜆𝜆𝑖𝑖𝑖𝑖(𝑠𝑠)

𝑗𝑗>𝑖𝑖

− 𝜀𝜀 � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑠𝑠)
𝑁𝑁+1

𝑗𝑗=𝑖𝑖+1

𝑑𝑑𝑑𝑑
𝑡𝑡

0
��𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡) −𝑚𝑚𝑖𝑖(𝑡𝑡)

𝑇𝑇

0

+ � �𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡) − 𝜀𝜀𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)�𝑊𝑊𝑖𝑖
𝜀𝜀
(𝑡𝑡, 𝑗𝑗)

𝑁𝑁

𝑗𝑗=𝑖𝑖+1

�𝑑𝑑𝑑𝑑�

𝜀𝜀=0

 

= � �𝑒𝑒−𝑟𝑟𝑟𝑟𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) �𝑐𝑐𝑖𝑖(𝑡𝑡) −𝑚𝑚𝑖𝑖(𝑡𝑡) + � 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

� − 𝑒𝑒−𝑟𝑟𝑟𝑟𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

𝑇𝑇

0

+ 𝑒𝑒−𝑟𝑟𝑟𝑟𝑆̃𝑆(𝑖𝑖, 𝑡𝑡) �
𝜕𝜕𝑐𝑐𝑖𝑖𝜀𝜀(𝑡𝑡)
𝜕𝜕𝜕𝜕

�
𝜀𝜀=0

+ � 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)
𝜕𝜕𝑊𝑊𝑖𝑖

𝜀𝜀
(𝑡𝑡, 𝑗𝑗)
𝜕𝜕𝜕𝜕 �

𝜀𝜀=0

𝑁𝑁

𝑗𝑗=𝑖𝑖+1

��𝑑𝑑𝑑𝑑 

Plugging this last result into the expression for 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜀𝜀=0

 then yields the desired result for marginal utility: 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝜀𝜀=0

= � �𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑒𝑒−𝜌𝜌𝜌𝜌 �𝑢𝑢�𝑐𝑐𝑖𝑖(𝑡𝑡),𝑞𝑞𝑖𝑖(𝑡𝑡)� + � 𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗), 𝑗𝑗�
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

� + 𝜃𝜃𝑒𝑒−𝑟𝑟𝑟𝑟 �𝑚𝑚𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑖𝑖(𝑡𝑡) −�𝜆𝜆𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑗𝑗>𝑖𝑖

��
𝑇𝑇

0

− 𝑆̃𝑆(𝑖𝑖, 𝑡𝑡)�𝑒𝑒−𝜌𝜌𝜌𝜌�𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)𝑉𝑉�𝑡𝑡,𝑊𝑊𝑖𝑖(𝑡𝑡), 𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

− 𝜃𝜃𝑒𝑒−𝑟𝑟𝑟𝑟 � 𝛿𝛿𝑖𝑖𝑖𝑖(𝑡𝑡)𝑊𝑊𝑖𝑖(𝑡𝑡, 𝑗𝑗)
𝑁𝑁

𝑗𝑗=𝑖𝑖+1

��𝑑𝑑𝑑𝑑 

QED 
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