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Abstract 

This Appendix contains additional methods details and results for Black, Hollingsworth, 
Nunes, and Simon, The Effect of Health Insurance on Mortality: Power Analysis and 
What Can We Learn from the Affordable Care Act Coverage Expansions?  
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A1. Synthetic Control Results 

We sought to assess whether we could obtain a better match between treated and control states, 

and thus tighter confidence bounds, using synthetic control methods.  We used two approaches.  In the 

first, we combined the Full-Expansion States into a single treated unit and used usual synthetic control 

methods (Abadie, Diamond, and Hainmueller, 2010)1 to construct a synthetic match using the Non-

Expansion States as donor states.  We report results in Figure A-2, and report the weights on donor states 

in Table A-12.  

The synthetic control approach minimizes the difference between the pre-treatment mortality 

rates of the treated states and a weighted combination of the Non-Expansion States. However, the 

maximum difference between the two series is still sizeable, at around 0.02 in 2007.  Moreover, visually, 

a large gap arises in 2013. Thus, this approach fails to create a close enough match in 2013 for this 

method to produce a satisfying solution to our concern with non-parallel trends. We were not persuaded 

that, for our data, the synthetic control approach is an improvement over the triple-difference design.2 

We also considered an extension of the synthetic control strategy, following Xu (2017).  Xu’s 

“generalized synthetic control (gsynth)” method generates a separate synthetic control for each full-

expansion state, drawn from the non-expansion states. One can then conduct DD analyses on the 

resulting treated and control units, and obtain analytical standard errors (which the original method does 

not provide).  This procedure does not allow for weighting different units. We therefore only discuss 

state-level results.3 While we cannot exactly replicate our triple difference models using the gsynth 

method, we constructed an approximation, by using as the treated units each treated state’s 55 to 64 year 

olds, and as the donor pool both every non-expansion state’s 55 to 64 year olds and every state’s 

(expansion or not) 65 to 74 year olds.  We present results in Appendix Figure A-3. Similar to the simpler 

synthetic control method presented above, there is a large drop in amenable mortality in Full-Expansion 

States in 2013; mortality in expansion states then rebounds in 2014.  The poor pre-period fit is even more 

pronounced with county-level data, and is driven by small counties, which have highly varying death 

                                                
1 We used code for this approach from Soni (2016). 
2  A further concern with the synthetic control approach is that it gives zero weight to most donor states and assigns positive 
weights to several very-low-population states (Alaska, Maine, Wyoming) that do not otherwise seem good matches for the 
Full-Expansion States.  Appendix Table A-8 shows the weights on each donor state. 

3  Although we could not directly use population weights within Xu’s method, we simulate doing so by repeatedly running 
his procedure on bootstrapped datasets with draws weighted by population.  Results, with both state-level and county-level 
data, were similar to those we discuss in the text. 



3 
 

rates and are hard to fit even with a large donor pool.  We concluded that the gsynth approach cannot be 

reliably applied to our data  

A2.  Results for Different Demographic Groups 

In this and the next two sections, we assess the effects of Medicaid expansion on mortality for 

various subgroups.  The demographic groups we consider are males, females, non-Hispanic blacks, non-

Hispanic whites, and Hispanics.  We also consider subgroups based on education and mortality based 

on cause of death.  Our data has limitations for all subgroups except gender.  For race and ethnicity, we 

can obtain estimates of the first stage (change in uninsurance rates) only at the state level, not the county 

level, due to limitations of the SAHIE data.  The DD design does not explicitly use the first stage, but it 

is central to assessing what coefficient magnitudes are reasonable.  For education, population data is 

available only for broad age groups (45-64 and 65+; 5-year average).  For analysis by prior insurance 

status and by income, we observe percent uninsured and percent below 138% of the FPL threshold for 

full ACA expansion at the county*year level, but cannot directly study these subsamples because the 

mortality data does not contain information on income or insurance.   

We begin our analysis of demographic subgroups in Figure A-5 with leads-and-lags graphs of 

the triple differences in amenable mortality for samples subdivided on gender and on race/ethnicity.  

Most post-expansion point estimates are insignificant.  The exception is non-Hispanic Blacks, who show 

a post-expansion drop in mortality.  However, for this subgroup, we observe non-parallel pre-treatment 

trends even with the triple-difference specification; the post-expansion drop in mortality could merely 

reflect continuation of those trends.  Also, the first stage for non-Hispanic Blacks is not greatly different 

from that for the population as a whole (Table A-3).  Thus, the point estimates in Figure A-5 (around -

0.05) are not possible as true effects of Medicaid expansion.   

We turn next to DD and triple-difference regression results for amenable mortality for these 

subsamples, starting with demographic subsamples in Table A-3.  The “all” row in Table A-3 is the same 

as in text Table 2.  The first column of Table A-3 shows the first-stage change in uninsurance rates for 

Full- versus Non-Expansion States, in percent, for persons aged 50-64 (the closest available age match 

to our main treatment sample). All first stages are small; the largest is for Hispanics at 1.5% (not 

significant).   

In Table A-3, a number of the DD coefficients in column (2) are significant and negative, but 

significance disappears in the triple-difference specification except for non-Hispanic Blacks.  However, 

as noted above, these estimates are suspect due to non-parallel pre-treatment trends and implausibly large 
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point estimates.  We are also wary of assigning too much importance to statistically significant results 

in particular specifications given the number of estimates we produced, although we did not conduct 

formal Bonferroni type p-value adjustments. 

A3 Variation Based on Education Level 

In Figure A-6, we show leads-and-lags graphs for the triple difference in amenable mortality for 

subsamples stratified on education.  Low education predicts poverty and hence eligibility for Medicaid 

expansion; it may also affect the mortality response to the “treatment” of obtaining Medicaid.  Recall 

that for these subsamples, we study persons aged 45-64, and the triple difference compares these persons 

to all persons age 65+.  We present leads-and-lags graphs for elementary school only; partial high school 

without graduating; high-school graduate; and some college.  There is no evidence of a post-expansion 

decline in mortality for any subgroup, including the less-than-high-school groups. 

In Table A-4, we show regression results by education level.  The first row shows full sample 

results.  These differ from text Table 2 due to the broader age range that we use due to data limitations.  

Note that in our preferred triple-difference specification, the point estimate for overall mortality is now 

positive (higher mortality) and insignificant, and that Medicaid expansion predicts a significant drop in 

mortality for the elderly (a placebo group).  Both results cast further doubt on whether an effect of 

Medicaid expansion on mortality can be reliably detected. 

The first column shows the relevant first stages.  The first stage is close to 4% for persons without 

a high school degree, but drops to 1.5% for high school graduates with no college, and to 1% for persons 

with some college.  However, the non-high-school graduates are only 12% of the 45-64 age group, so 

the power gained from a stronger first stage is offset by smaller sample size. 

The first row shows full sample results.  The second through fifth rows show effects for the four 

education groups, starting with the lowest group, those with only elementary school completion, while 

the other rows show successively higher education categories.  All DD and triple-difference point 

estimates are insignificant, consistent with the leads-and-lags graphs in Figure 5.  The point estimate for 

three of the four education groups, including the least educated, are positive (opposite from predicted). 

A4.  Variation by Primary Cause of Death 

In Table A-5, we present results by cause of death, for the top 4 causes of death: cancer, diabetes, 

cardiovascular causes, and respiratory illnesses, and also for HIV.  Figure A-7 provides the 

corresponding leads-and-lags graphs.  All of these causes are within the broad category of amenable 
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mortality.  First-stage estimates are not available with our data, because we lack data on Medicaid 

insurance takeup among those with specific diseases.  However, Soni et al. (2018a, 2018b) use a DiD 

design based on Medicaid expansion and report a 2.4% first stage among persons with cancer diagnoses 

and a 6.4% increase in early-stage cancer diagnoses. Diabetics could plausibly benefit more strongly 

from Medicaid expansion given the negative correlation between income and diabetes prevalence and 

evidence from the Oregon Medicaid Experiment that gaining Medicaid insurance predicts increased 

diabetes diagnosis (Baicker et al., 2013). HIV is another specific condition, for which health insurance 

has predicted lower mortality in previous studies (Goldman et al., 2001).  However, both DD and triple-

difference coefficients are insignificant for all causes of death.  

A5.  Variation by Pre-ACA Uninsurance and Poverty Rates 

We turn next to an effort to exploit pre-AC`A uninsurance rates and poverty levels.  We cannot 

measure the second stage (mortality by individual income and insurance status) from the mortality data, 

so we address this source of heterogeneity indirectly at the county level.  The DD specification is the 

same as above; the third difference for is high-versus-low pre-ACA uninsurance rates in counties.  We 

compare “treated” high-uninsurance counties (the counties with the highest pre-ACA uninsurance rates, 

defined so that they together contain 20% of the U.S. population) to “control” counties with the lowest 

pre-ACA uninsurance rates, also containing 20% of the U.S. population; we drop all other counties. This 

is similar to the analysis in Finkelstein and McKnight (2008), exploiting pre-Medicare variation in 

insurance levels, and Courtemanche et al. (2017) for the ACA.  The third difference for high-vs-low 

poverty counties is similar:  high-poverty counties (the counties with the highest poverty rates, together 

containing 20% of the US. population) versus low-poverty counties (counties with the lowest poverty 

rates, also containing 20% of the U.S. population); we drop all other counties.  These comparisons rely 

on all ACA-induced sources of health insurance expansion, rather than Medicaid expansion alone. 

We present leads-and-lags graphs for amenable mortality in Figure A-8.  Neither graph shows 

evidence of a treatment effect.  Both graphs show signs of a pre-treatment trend toward lower mortality 

in the last few years prior to ACA expansion, in both high-uninsurance counties and high-poverty 

counties, which does not continue in the post-expansion period and indeed reverses for the high-

uninsurance counties. 

We present regression estimates in Table A-6, for the full sample and for demographic 

subsamples.  Data are sufficient to let us compute first-stage estimates only for the full sample and for 

male and female subsamples.  The first stage remain quite small.  There is no evidence of significant 
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effects of Medicaid expansion on mortality.  For the full sample, the coefficients for both subsamples 

are insignificant.  For the comparison of high-vs-low uninsurance counties, the coefficient is positive 

(opposite from predicted).  For the demographic subsamples, five of the 14 coefficients are positive; and 

the only significant coefficient is also positive.4  

A6.  Alternative Specifications: ATT Weights; All-Non-Elderly Adults; and Total Mortality 

In Tables A-7 through A-11, we present results using a number of different specifications.  Table 

A-7 is similar to text Table 2, but uses the following alternative specifications:  (i) ATT * population 

weights (we use population weights in the text); (ii) using linear state trends; (iii) running regressions 

at the state instead of the county level, with population weights); and running state-level 

regressions without population weights.  All triple-difference coefficients are insignificant.  Figure 

A-9 provides leads-and-lags graphs for amenable mortality with ATT * population weights. 

To generate the ATT (average treatment effect on the treated) weights, we first average the 

covariates over the pre-treatment period (2009-2013). We then run a logit regression, which predicts 

whether a county is in a Full- or Non-Expansion State, using all variables in Table A-2 to generate the 

fitted propensities p for each county. ATT weights are calculated as (p/(1-p)). 

Figure A-10 presents leads-and-lags graphs for DD and triple differences for total mortality, 

instead of amenable mortality.  Figure A-10 presents leads-and-lags graphs for DD and triple 

differences for non-amenable mortality. 

In Table A-8, we present triple-difference results using these same alternative 

specifications with each of the demographic subgroups.  The significant, negative coefficient for 

non-Hispanic Blacks survives in several of these specifications, but loses significance in state-

level regressions without population weights.  All other coefficients are insignificant, except that 

we find a significant negative coefficient for men in state-level regressions without population 

weights.  The sizeable differences, for several subgroups, between state-level regressions with and 

without population weights confirm our initial concern that results from this specification are 

sensitive to outlier results in a few low-population states.  Figure A-12 provides leads-and-lags 

graphs for amenable mortality for demographic subgroups, with ATT * population weights. 

In Table A-9, we present triple-difference results with these alternative specifications with 

each of the education subgroups.  All estimated effects are statistically insignificant.  Figure A-13 

                                                
4  In Table A-6, we use all counties and estimate continuous versions of the comparisons in Table 6 between high and low 
uninsurance (or poverty) counties, again with insignificant results. 
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provides leads-and-lags graphs for amenable mortality for education subgroups, with ATT * 

population weights. 

In Table A-10, we present triple-difference results with these alternative specifications with 

each cause of death.  All estimated effects are statistically insignificant.  Figure A-14 provides 

leads-and-lags graphs for amenable mortality by cause of death, with ATT * population weights. 

Figure A-15 presents leads-and-lags graphs for the comparison of high-versus low poverty 

and high-versus low-uninsurance counties, with ATT * population weights.  Figure A-16 is similar, 

but the sample is all non-elderly adults. 

In Table A-11, we present triple-difference results using two alternative specifications 

(ATT * population weights, and comparing all non-elderly adults to all elderly adults), for each of 

the demographic subgroups.  There are some scattered significant coefficients, positive for women 

and negative for men (with ATT * population weights) and for non-Hispanic Blacks (for the broad 

age range), but no consistent results across specifications.  Figure A-17 presents leads-and-lags 

graphs for the comparison of amenable mortality for all non-elderly adults. 

 

Across all tables, the scattered significant coefficients that we find are far too large in 

magnitude to be true causal effects.  Indeed, given our standard errors, only implausibly large 

coefficients would appear to be statistically significant. 

 



Table A-1. Medicaid Expansion States (2014-2016) 

This table includes Medicaid expansions through 2016.  It is based on combining and reconciling the classification of states as “full expansion,” “None,” or in-
between (“mild” or “substantial” expansion), by Simon, Cawley and Soni (2017), Lou et al. (2018), and Kaiser Family Foundation (2015).  Most states could be 
classified based on their rules for when and to what level they expanded Medicaid for all adults. Arizona required special care; see detailed analysis below.  Because 
our mortality data are annual, we consider New Hampshire to be a 2015 expansion, Alaska to be a 2016 expansion, and Louisiana to be a 2017 expansion, hence 
beyond our study period.   

In the “expansion details” column, “ACA Expansion” means regular expansion to 138% of FPL, on the date stated in the “Effective Date” column.  In the 
“inclusion/exclusion column, C = control (non-expansion), T = treatment (full expansion); other states are excluded.  Simon et al. (2017) classify early expansion 
states as “mild” or “substantial” expansion, based on their assessment of the extent to which enrollment increase with full Affordable Care Act expansion in 2014.  
This classification of states based on expansion status is also used in Black et al. (2018) (“BHNS”). % change in uninsured enrollees (2013-20156) come from 
SAHIE estimates for ages 18-64 and considering all income groups.  

State Abbr. Expansion Details  Effective 
Date 

% change in uninsured 
enrollees (2013-2016) 

Inclusion/ Exclusion Expansion type Compare to BHNS 

Alabama AL None  6.4 C [.] None Consistent 
Alaska AK Medicaid Expansion 09/01/2015 

6.8 

T [2016] None Consistent for 2014-
2015 (expanded late 
2015) 

Arizona5 AZ § 1115 Waiver (100% FPL, but closed 
to new enrollees in 2011) 
ACA Expansion 

2000 
 
01/01/2014 9.6 

T[2014] Full Consistent 

Arkansas6 AR § 1115 Waiver 01/01/2014 
12.4 

T [2014] 
Private Option 

Full Consistent 

California7 CA § 1115 Waiver (LA county) 
§ 1115 Waiver (200% FPL) 
ACA Expansion 

01/01/1995 
11/01/2010 
01/01/2014 13.5 

Excluded 
(Early expansion) 
 

Substantial Consistent 

Colorado8 CO § 1115 Waiver (to 10% of FPL) 04/01/2012 8.6 T [2016] Full Consistent 

                                                
5 Arizona used a § 1115 waiver to expand Medicaid coverage to childless adults up to 100% FPL during 2000-2011. In 2011, the state started to phase out that 
program (transitioning into Medicaid expansion).  Which category Arizona belongs in was unclear based on its rules, so we also examined the extent to which 
Medicaid enrollment increased in 2014.  See details below. 
6 Arkansas operated a limited-benefit premium-assistance program for childless adults who worked for small uninsured employers (ARHealthNetworks waiver) 
prior to the ACA.  Arkansas’s Medicaid expansion includes a “private option” under which Medicaid-eligible persons receive health insurance from the state 
insurance exchange, with a small monthly premium. 
7 California expanded Medicaid in 2010-2011, in selected counties. 
8 Colorado conducted early expansion through a § 1115 waiver in 2012, but only to persons with income <10 (ten) % of FPL, and also capped new enrollment at 
10,000 individuals. It expanded Medicaid program fully in 2014.  We ignore the small expansion in 2012, and treat Colorado as a full expansion state. 
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State Abbr. Expansion Details  Effective 
Date 

% change in uninsured 
enrollees (2013-2016) 

Inclusion/ Exclusion Expansion type Compare to BHNS 

ACA Expansion 01/01/2014 T [2014] 
Connecticut9 CT State Plan Amendment (56% FPL) 

ACA Expansion 
04/01/2010 
01/01/2014 6.4 

Excluded 
(Early Expansion) 

Substantial Consistent 

Delaware10 DE ACA Expansion 01/01/1996 
01/01/2014 5.1 

Excluded 
(Early Expansion) 

Mild Consistent 

District of 
Columbia11 

DC State Plan Amendment (133% FPL) 
§ 1115 Waiver 
ACA Expansion 

07/01/2010 
12/01/2010 
01/01/2014 4.2 

Excluded 
(Early expansion) 

Mild Consistent 

Florida FL None  10.4 C [.] None Consistent  
Georgia GA None  7.6 C [.] None Consistent  
Hawaii12 HI ACA Expansion 08/01/1994 

01/01/2014 4.6 
Excluded 
(Early expansion) 

Substantial Consistent  

Idaho ID None  8.2 C [.] None Consistent 
Illinois IL ACA Expansion 01/01/2014 9.2 T [2014] Full Consistent  
Indiana IN § 1115 Waiver 02/01/2015 

8.5 
T [2015] 
 

Full Consistent  

Iowa13 IA § 1115 Waiver 01/01/2014 
5.8 

T [2014] 
 

Full Consistent  

Kansas KS None  5.2 C [.] None Consistent  
Kentucky KY ACA Expansion 01/01/2014 13.7 T [2014] Full Consistent  
Louisiana LA ACA Expansion 07/01/2016 9.0 C [.] None Consistent  
Maine ME None  4.2 C [.] None Consistent  
Maryland MD ACA Expansion 01/01/2014 5.8 T [2014] Full Consistent  

                                                
9 Connecticut, elected to enact the Medicaid expansion in 2010 through a state amended plan at 56%. Connecticut expanded its Medicaid program fully in 2014.   
10 In Delaware, childless adults with incomes up to 100% FPL were eligible for Medicaid through the Diamond State Health Plan waiver, effective on 01/01/1996. 
11 DC expanded its Medicaid program at 133% of FPL in 2010. 
12 In Hawaii, childless adults with incomes up to 100% FPL were eligible for the state’s QUEST Medicaid managed care waiver program, effective on 08/01/1994. 
13 Under the IowaCare program, childless adults with income below 200% FPL were eligible for health insurance since 2005. However, IowaCare provided 
limited services in a limited network, so low-income adults in Iowa received a substantial coverage expansion in 2014 (Damiano et al., 2013).  During 2014-
2015, Iowa residents with income < 100% of FPL were enrolled in Medicaid managed care plans, while those with income of 100-138% of FPL received private 
insurance obtained through the Iowa health exchange, with premiums waived (a partial “private option”).  See https://www.medicaid.gov/Medicaid-CHIP-
Program-Information/By-Topics/Waivers/1115/downloads/ia/Market-Place-Choice-Plan/ia-marketplace-choice-plan-state-term-app-
06012016.pdf... 
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State Abbr. Expansion Details  Effective 
Date 

% change in uninsured 
enrollees (2013-2016) 

Inclusion/ Exclusion Expansion type Compare to BHNS 

Massachusetts14 MA “Romneycare” 
ACA Expansion 

04/12/2006 
01/01/2014 1.7 

Excluded Mild Consistent 

Michigan MI ACA Expansion 04/01/2014 8.5 T [2014] Full Consistent 
Minnesota15 MN State Plan Amendment (75% FPL) 

§ 1115 Waiver (200% FPL) 
ACA Expansion 

03/01/2010 
08/01/2010 
01/01/2014 5.6 

Excluded 
(Early Expansion) 

Substantial Consistent  

Mississippi MS None  7.3 C [.] None Consistent  
Missouri MO § 1115 Waiver (St. Louis County Only) 

(200% FPL) 
None 

07/01/2012 

5.7 

C [.] None Consistent  

Montana MT ACA Expansion 01/01/2016 

11.5 

T [2016] None Consistent for 2014-
2015 (expanded in 
2016) 

Nebraska NE None  4.1 C [.] None Consistent  
Nevada NV ACA Expansion 01/01/2014 11.2 T [2014] Full Consistent  
New Hampshire16 NH § 1115 Waiver 08/15/2014 

7.0 
T [2015] 
 

Full Consistent  

New Jersey17 NJ § 1115 Waiver (23% FPL) 
ACA Expansion 

04/01/2011 
01/01/2014 7.4 

T [2014] Full Consistent 

New Mexico NM ACA Expansion 01/01/2014 13.8 T [2014] Full Consistent  
New York18 NY § 1115 waiver 

ACA Expansion 
10/01/2001 
01/01/2014 6.7 

Excluded 
(Early expansion) 

Mild Consistent  

North Carolina NC None  7.4 C [.] None  Consistent  

                                                
14 Massachusetts implemented reforms to expand insurance coverage to low-income adults in 2006. 
15 Minnesota conducted early expansion in 2010 two ways. Persons with income  ≤ 75%FPL were insured through Medical Assistance Medicaid, funded through 
a State Plan Amendment, persons with income from 75~200% of FPL were insured through MinnesotaCare, funded through a § 1115 Waiver, which had limited 
benefits and cost-sharing. 
16  New Hampshire implemented a “private option” (mandatory purchase of subsidized private insurance, instead traditional Medicaid, in 2016.  See 
https://www.medicaid.gov/Medicaid-CHIP-Program-Information/By-Topics/Waivers/1115/downloads/nh/health-protection-program/nh-health-
protection-program-premium-assistance-appvl-amend-req-06232015.pdf. 
17 New Jersey’s expansion in 2011 only extended to 23% FPL; we therefore treated it as a full expansion state. 
18 In New York, childless adults up to 78% FPL were eligible for the Medicaid (Home Relief) waiver program and childless adults up to 100% FPL were eligible 
for the Family Health Plus waiver program (Heberlein et al., 2011). 
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State Abbr. Expansion Details  Effective 
Date 

% change in uninsured 
enrollees (2013-2016) 

Inclusion/ Exclusion Expansion type Compare to BHNS 

North Dakota ND ACA Expansion 01/01/2014 6.0 T [2014] Full Consistent  
Ohio OH ACA Expansion 01/01/2014 8.1 T [2014] Full Consistent 
Oklahoma OK None  5.3 C [.] None Consistent  
Oregon OR19 ACA Expansion 01/01/2014 12.2 T [2014] Full  Consistent  
Pennsylvania PA ACA Expansion 01/01/2015 6.2 T [2015] Full Consistent  
Rhode Island RI ACA Expansion 01/01/2014 10.5 T [2014] Full Consistent  
South Carolina SC None  8.1 C [.] None Consistent  
South Dakota SD None  2.9 C [.] None Consistent  
Tennessee TN None  6.8 C [.] None Consistent  
Texas TX None  7.5 C [.] None Consistent  
Utah UT None  6.9 C [.] None Consistent 
Vermont VT20 § 1115 Waiver 

ACA Expansion 
01/01/1996 
01/01/2014 4.7 

Excluded 
(Early expansion) 

Mild Consistent 

Virginia VA None  5.3 C [.] None Consistent  
Washington21 WA § 1115 Waiver (133% FPL) 

ACA Expansion 
01/03/2011 
01/01/2014 11.1 

T [2014] Full Consistent  

West Virginia WV ACA Expansion 01/01/2014 12.8 T [2014] Full Consistent  
Wisconsin22 WI New eligibility for BadgerCare but not 

ACA Expansion 
2009 

5.5 
Excluded Substantial  Consistent 

Wyoming WY None  3.6 C [.] None Consistent  

                                                
19 In 2008, Oregon enacted a small Medicaid expansion for low-income adults through a lottery among applicants. However, less than one-third of the 90,000 
people on the waitlist were selected to apply for Medicaid in 2008 (Baicker et al., 2013), some of the denied applicants were then enrolled in 2010.  We treat 
Oregon as full expansion due to the small size of this earlier expansion. 
20 In Vermont, childless adults up to 150% FPL were eligible for Medicaid equivalent coverage through the Vermont Health Access Plan waiver program (Heberlein 
et al., 2011). Vermont Health Access Plan (Sec. 1115 waiver) was approved in 1995 and effective in 1996.  
21 Washington’s early expansion was limited to prior state plan enrollees (Sommers et al., 2013). 
22 Wisconsin received federal approval to offer Medicaid to childless adults below 100% FPL through the BadgerCare program as of 2009 (Gates & Rudowitz, 
2014); it did not formally adopt ACA expansion in 2014 and kept the income threshold at 100% FPL. 

 



Arizona Details for Table A-1 

Arizona had a S.1931 program providing Medicaid up to 106% FPL for parents. It also had a limited program for 
childless adults, under a § 1115 waiver, starting in 2001, which was closed to new entrants since 2011.23 Whether to 
treat Arizona as a full expansion state or an early expansion state turns on how many childless adults were still covered 
at the ACA onset in 2014, given churn in eligibility. The tail off in hospital admissions with Medicaid payment, and 
jump at the start of 2014 (with uninsured admissions showing the opposite pattern), persuades us that Arizona should 
be treated as a regular expansion state. 

Source: Author reproduction of HCUP figure using HCUP Fast Stats at https://www.hcup-
us.ahrq.gov/faststats/StatePayerServlet?state1=AZ.   

 
  

                                                
23 Source: https://www.kff.org/medicaid/fact-sheet/proposed-changes-to-medicaid-expansion-in-arizona/. 
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Table A-2.  Covariate Balance for Full-Expansion and Non-Expansion States 

Table shows summary statistics for county-level covariates and mortality for Full-Expansion and Non-Expansion 
states during pre-expansion period (means over 2009-2013), using county population weights.  t-statistics use two-
sample t-test for difference  and robust standard errors with state clusters.  Normalized difference is a sample-size 
independent measure of the difference between two means, scaled by standard deviation): 

.  State groups are defined in Table A-1.  Mortality rates are per 100,000 
persons.  Dollar amounts are in 2010 $. 

 Full-Expansion 
States 

Non-Expansion 
States 

Difference t-
stat 

Normalized 
Difference 

 (1) (2) (3) (4) 

% age 0-19 23.36 24.35 1.11 -0.30 
% age 18-34 22.74 23.42 1.40 -0.15 
% age 35-44 12.94 13.11 0.71 -0.11 
% age 45-54 14.53 13.98 2.32 0.40 
% age 55-64 12.56 11.81 2.05 0.36 
% age 65-74 7.56 7.48 0.16 0.04 
% age 75-84 4.38 4.19 0.52 0.13 
% age 85+ 1.94 1.66 1.53 0.32 
% Male 49.21 49.13 0.47 0.04 
% White 82.91 77.43 2.19 0.36 
% Black 11.42 18.16 2.61 -0.49 
% Other Races 5.67 4.41 1.35 0.15 
% Hispanic 11.44 16.33 0.87 -0.38 
% In Poverty 14.67 16.89 2.75 -0.36 
% Managed Care Penetration 24.55 22.99 0.42 0.15 
% Disabled (ages 18-64) 16.31 17.57 1.29 -0.20 
Mean Per Capita Income 40,208 37,537 1.72 0.31 
Median Household Income 51,691 47,122 1.81 0.44 
Unemployment Rate, 16+ 8.84 8.28 1.12 0.20 
% with Diabetes 8.85 9.72 2.45 -0.46 
% Physically Inactive 22.89 24.70 1.85 -0.40 
% Obese 27.95 29.11 1.16 -0.28 
% Smoker 21.96 21.71 0.27 0.06 
Physicians/1,000 people 3.10 2.65 2.88 0.27 
% Uninsured (ages 18-64) 18.68 24.96 3.36 -1.09 
Amenable Mortality (all ages) 510.52 481.21 0.90 0.18 
Amenable Mortality (ages 55-64) 575.22 623.78 1.86 -0.24 
Non-amenable Mortality (all ages) 345.28 341.33 0.20 0.04 
Non-amenable Mortality (ages 55-64) 278.85 309.76 2.50 -0.30 
 
  

2 2 1/2( ) / [( ) / 2]j jt jc jt jcND x x s s= - +
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Table A-3:  DD and Triple-Difference Estimates: Different Demographic Groups (ages 55-64) 

First column shows annual averages over 2009-2016 for number of deaths and population in millions.  Of the full 
sample (28.8M people), 14.5M were in expansion states.  Second column shows mortality rate for persons aged 55-
64 for indicated groups.  Third column shows first-stage DD estimates of change in uninsurance rates (in percent) 
from 2013 to 2016 for indicated demographic subsamples, for persons aged 50-64, from regression of percent 
uninsurance on Full Expansion dummy, with state and year FE and state  population weights, using state-level SAHIE 
data (best available), and same covariates as the DD and triple difference regressions.  Remaining columns show 
coefficients from DD or triple difference regressions on Full-Expansion dummy or, for triple difference column, full-
expansion dummy * age 55-64 dummy, from county-level regressions with county-and year FE and population 
weights, similar to Table 2, for ln((amenable mortality/100,000 persons)+1) over 2009-2015.  Standard errors use state 
clusters.  *.**, *** indicates statistical significance at the 10%, 5%, and 1% levels, respectively; significant results at 
5% level or better in boldface.  

Demographic 
Subsamples 

Ann. Deaths  
(Pop. in M) 

Mortality 
rate 

First stage (%) 
50-64 yrs 

DiD DiD 
Triple diff. 

55-64 yrs 65-74 yrs 
 (1) (2) (3) (4) (5) (6) 

All Amenable 174,379 605.3 1.113** -0.018** -0.008 -0.004 
(28.8)   (0.452) (0.008) (0.006) (0.008) 

Male 105,465 759.8 0.692 -0.018* -0.004 -0.004 
(13.9)   (0.747) (0.010) (0.008) (0.010) 

Female 68,914 461.7 0.936 -0.020** -0.016* 0.004 
(14.9)   (0.705) (0.009) (0.009) (0.012) 

White (Not Hispanic) 129,542 589.8 1.130** -0.015* -0.011* -0.003 
(22.0)   (0.490) (0.008) (0.007) (0.009) 

Black (Not Hispanic) 32,217 917.0 0.994 -0.031* 0.020 -0.055*** 
(3.5)   (0.852) (0.016) (0.015) (0.017) 

Other 3,619 321.6 - -0.050 -0.039 -0.035 
(1.1)   - (0.060) (0.052) (0.078) 

Hispanic 9,086 398.2 1.484 -0.161*** -0.092 -0.055* 
(2.3)   (1.228) (0.057) (0.057) (0.029) 

Not Hispanic 165,293 623.1 - -0.018** -0.008 -0.005 
(26.5)   - (0.008) (0.006) (0.007) 

Pop. Weights   Yes Yes Yes Yes 
Covariates   Yes Yes Yes Yes 
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Table A-4: DD and Triple-Difference Estimates: by Educational Attainment (ages 45-64) 

First column shows annual averages over 2009-2016 for number of deaths and population in millions.  Second column 
shows mortality rate for persons aged 55-64 for indicated groups.  Third column shows first-stage DD estimates of 
change in uninsurance rates (in percent) from 2013 to 2016 for indicated education-levels, for persons aged 45-64, 
from regression of percent uninsurance on Full Expansion dummy, with state and year FE and state population 
weights.  Remaining columns show coefficients from DD or triple difference regressions on Full-Expansion dummy 
or, for triple difference column, full-expansion dummy * age 45-64 dummy, from county-level regressions with county 
and year FE and population weights, similar to Table 2, for ln((amenable mortality/100,000 persons)+1) among 
persons with indicated education levels, over 2009-2015.  Standard errors use state clusters.  *.**, *** indicates 
statistical significance at the 10%, 5%, and 1% levels, respectively; significant results at 5% level or better in boldface.  

Education 
Subsample 

Ann. Deaths  
(Pop. in M) 

Mortality  
Rate 

First stage (%) 
45-64 yrs 

DiD 
45-64 yrs 

DiD 
65+ yrs 

Triple diff. 

 (1) (2) (3) (4) (5) (6) 

All Amenable 
252,285 422.1 1.048 -0.012 -0.020*** 0.014 

(59.77)  (0.738) (0.008) (0.006) (0.009) 

Elementary School 
14,776 565.4 3.747 0.047 0.014 0.066 
(2.61)  (2.530) (0.046) (0.058) (0.048) 

High School Incomplete 
33,698 768.6 3.912*** -0.009 -0.003 -0.011 
(4.38)  (1.449) (0.061) (0.064) (0.036) 

High School Complete 
110,019 607.2 1.533 -0.021 -0.032 0.010 
(18.12)  (0.939) (0.040) (0.037) (0.014) 

Some College 
86,793 250.5 0.468 -0.015 -0.026 0.013 
(34.65)  (0.572) (0.035) (0.031) (0.011) 

Population Weights   Yes Yes Yes Yes 
Covariates   Yes Yes Yes Yes 
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Table A-5: DD and Triple-Difference Estimates: by Cause of Death (age 55-64) 

First column shows annual averages over 2009-2016 for number of deaths and population in millions.  Second column 
shows mortality rate for persons aged 55-64 for indicated groups.  Remaining columns show coefficients from DD or 
triple difference regressions on Full-Expansion dummy or, for triple difference column, full-expansion dummy * age 
45-64 dummy, from county-level regressions with county and year FE and population weights, similar to Table 2, for 
ln((amenable mortality/100,000 persons)+1) among persons with indicated primary cause of death, over 2009-2016.  
Standard errors use state clusters.  *.**, *** indicates statistical significance at the 10%, 5%, and 1% levels, 
respectively; significant results at 5% level or better in boldface. 

By Cause of Death 
deaths 

(pop. In M) 
DiD 

55-64 yrs 
DiD 

65-74 yrs Triple diff. 

(1) (2) (3) (4) 

All Amenable 174,379 -0.018** -0.008 -0.004 
(28.81) (0.008) (0.006) (0.008) 

Cancer 87,170 -0.003 0.003 -0.004 
(28.81) (0.006) (0.006) (0.009) 

Diabetes 14,394 -0.024 0.001 -0.007 
(28.81) (0.019) (0.025) (0.020) 

Cardiovascular 70,677 -0.010 -0.009 0.006 
(28.81) (0.010) (0.010) (0.010) 

Respiratory 16,442 -0.030 -0.017 -0.010 
(28.81) (0.020) (0.013) (0.023) 

HIV 1,282 -0.058 0.005 -0.051 
(28.81) (0.037) (0.038) (0.060) 

Pop. Weights  Yes Yes Yes 
Covariates  Yes Yes Yes 
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Table A-6: Triple Difference Estimates:  Separating Counties by Baseline Health Uninsurance or 

Poverty Levels (age 55-64) 

First column shows annual averages over 2009-2016 for number of deaths and population aged 55-64 in millions, for 
sample of high-versus low- uninsurance counties.  Second and fourth columns column shows full-sample and by 
gender first stages; we lack the data to compute first stages for the other subsamples.  Remaining columns show 
coefficients from triple difference, county-level regressions with county and year FE and population weights, similar 
to Table 2, over 2009-2016, for amenable mortality for full sample and indicated subsamples.  Third difference in 
column (3) is between the counties with the highest uninsurance rate in 2013, containing 20% of the U.S. population, 
and the counties with the lowest uninsurance rate in 2013, containing 20% of the U.S. population.  Third difference 
in column (5) is similar but is between the counties with lowest versus highest poverty rates in 2013. Standard errors 
use state clusters.  *.**, *** indicates statistical significance at the 10%, 5%, and 1% levels, respectively; significant 
results at 5% level or better in boldface.  

Sample 

Deaths        

(pop. in M) 

First Stage 

(%) 50-64 yrs 

Triple diff. 

Uninsurance 

First Stage 

(%) 50-64 yrs 

Triple diff.  

Poverty 

  (1) (2) (3) (4) (5) 

All 66,329 1.221 0.003 0.720 0.000 
(11.9) (0.653) (0.020) (0.789) (0.013) 

Male 40,750 0.593 -0.020 0.408 -0.024 
(5.8) (0.657) (0.028) (0.721) (0.018) 

Female 26,103 1.829*** 0.050* 0.912 0.037*** 

(6.1) (0.679) (0.028) (0.791) (0.014) 

White (Not Hispanic) 51,198   -0.017   -0.015 
(9.1)   (0.018)   (0.010) 

Black (Not Hispanic) 11,970   -0.001   -0.073* 
(1.4)   (0.059)   (0.040) 

Other 1,496   -0.083   -0.005 
(0.4)   (0.137)   (0.107) 

Hispanic 3,421   0.279   0.082 
(0.9)   (0.267)   (0.103) 

Not Hispanic 
60,879   0.003   -0.005 
(10.4)   (0.021)   (0.015) 

Pop. Weights   Yes Yes Yes Yes 
Covariates   Yes Yes Yes Yes 
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Table A-7.  Estimated Effect of Medicaid Expansion on Amenable Mortality:  Different 

Specifications 

Table 2 in the text shows DD and triple-difference estimates for county-level regressions, with county and year FE 
and population weights, of ln[(amenable mortality/100,000 persons)+1] over 2009-2016 on full-expansion dummy 
(=1 for Full-Expansion States in expansion years; 0 otherwise), and covariates. Third difference is ages 55-64 
versus ages 65-74. This table provides results for principal coefficients of interest, from regressions in which 
we vary this specification as follows:  Panel A reproduces our results from text Table 2; Panel B uses 
ATT*population weights instead of only population weights; Panel C adds linear state trends; Panel D reports 
results from regressions at state- instead of county-level (with population weights); and Panel E reports results 
from state-level regressions without weights. Standard errors use state clusters.  *, **, *** indicates statistical 
significance at the 10%, 5%, and 1% levels, respectively; significant results at 5% level or better in boldface.  

 DiD 55-64 years Triple diff. 

  (1) (2) (3) (4) 
Panel A.  Main Specification (from text Table 2)         

Full Expansion Dummy -0.018* -0.018**     
(0.010) (0.008)     

Full Expansion Dummy x Age 55-64 Dummy     -0.002 -0.004 
    (0.009) (0.008) 

Panel B.  With ATT x Population Weights         

Full Expansion Dummy -0.014 -0.015*     
(0.013) (0.009)     

Full Expansion Dummy x Age 55-64 Dummy     -0.014 -0.013 
    (0.009) (0.012) 

Panel C.  With Linear State Trends         

Full Expansion Dummy -0.006 -0.009     
(0.008) (0.008)     

Full Expansion Dummy x Age 55-64 Dummy     -0.001 -0.003 
    (0.009) (0.008) 

Panel D.  State-Level (with Pop Weights)         

Full Expansion Dummy -0.020** -0.011*     
(0.009) (0.007)     

Full Expansion Dummy x Age 55-64 Dummy     -0.006 -0.009 
    (0.008) (0.010) 

Panel E.  State-Level (No Weights) Specification         

Full Expansion Dummy -0.018** -0.009     
(0.009) (0.009)     

Full Expansion Dummy x Age 55-64 Dummy     -0.009 -0.015 

    (0.010) (0.011) 
Covariates No Yes No Yes 
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Table A-8: Triple-Difference Estimates by Demographic Group: Different Specifications 

Table 3 in the text shows DD and triple-difference estimates for different demographic groups, from county-level 
regressions, with county and year FE and population weights, of ln[(amenable mortality/100,000 persons)+1] over 
2009-2016 on full-expansion dummy (=1 for Full-Expansion States in expansion years; 0 otherwise), and covariates. 
Third difference is ages 55-64 versus ages 65-74. This table provides triple difference results for principal 
coefficients of interest, from regressions in which we vary this specification as follows:  using 
ATT*population weights; adding linear state trends; and running regressions at state- instead of county-level, 
with and without population weights. Standard errors use state clusters.  *, **, *** indicates statistical significance 
at the 10%, 5%, and 1% levels, respectively; significant results at 5% level or better in boldface. 

 Triple Difference Results 

Subsamples 
Main 

Specification 
ATT x Pop 

weights 
with Linear State 

Trends 
State-Level w. 
pop. weights 

State-Level 
unweighted 

  (1) (2) (3) (4) (5) 

All Amenable -0.004 -0.013 -0.003 -0.009 -0.015 

(0.008) (0.012) (0.008) (0.010) (0.011) 

Male -0.004 -0.003 -0.003 -0.015 -0.034** 

(0.010) (0.022) (0.010) (0.012) (0.014) 

Female 0.004 -0.022 0.005 0.006 -0.003 
(0.012) (0.015) (0.011) (0.013) (0.014) 

White (Not Hispanic) -0.003 -0.010 -0.002 -0.015 -0.002 
(0.009) (0.010) (0.009) (0.011) (0.011) 

Black (Not Hispanic) -0.055*** -0.345** -0.055*** -0.040*** 0.010 
(0.017) (0.172) (0.017) (0.014) (0.124) 

Other -0.035 0.168 -0.036 -0.056 -0.038 
(0.078) (0.269) (0.078) (0.036) (0.059) 

Hispanic -0.055* -0.153 -0.050* -0.016 0.054 
(0.029) (0.153) (0.027) (0.023) (0.156) 

Not Hispanic -0.005 -0.013 -0.004 -0.010 -0.012 

(0.007) (0.012) (0.007) (0.008) (0.011) 
Weights Pop ATT x Pop Pop Pop No 
Covariates Yes Yes Yes Yes Yes 
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Table A-9: Triple-Difference Estimates by Educational Attainment (ages 45-64) - Different 

Specifications 

Table 4 in the text shows DD and triple-difference estimates for groups with different education levels, from county-
level regressions, with county and year FE and population weights, of ln[(amenable mortality/100,000 persons)+1] 
over 2009-2016 on full-expansion dummy (=1 for Full-Expansion States in expansion years; 0 otherwise), and 
covariates. Third difference is ages 55-64 versus ages 65-74. This table provides triple difference results for 
principal coefficients of interest, from regressions in which we vary this specification as follows:  using 
ATT*population weights; adding linear state trends; and running regressions at state- instead of county-level, 
with and without population weights. Standard errors use state clusters.  *, **, *** indicates statistical significance 
at the 10%, 5%, and 1% levels, respectively; significant results at 5% level or better in boldface. 

 Triple Difference Results 

Education Subsamples 
Main 

Specification 
ATT x Pop 

weights 
with Linear State 

Trends 
State-Level w. 
pop. weights 

State-Level 
unweighted 

  (1) (2) (3) (4) (5) 

All Amenable 0.014 -0.001 0.014 0.007 0.007 
(0.009) (0.011) (0.009) (0.009) (0.010) 

Elementary School 0.066 0.129* 0.045 0.045 0.062 
(0.048) (0.068) (0.046) (0.031) (0.040) 

High School Incomplete -0.011 -0.015 0.004 -0.023 -0.039 
(0.036) (0.031) (0.036) (0.031) (0.035) 

High School Complete 0.010 -0.001 0.023 0.005 -0.017 
(0.014) (0.021) (0.019) (0.013) (0.023) 

Some College 0.013 0.011 0.031* 0.011 0.005 
(0.011) (0.018) (0.017) (0.013) (0.023) 

Weights Pop ATT x Pop Pop Pop No 
Covariates Yes Yes Yes Yes Yes 
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Table A-10: Triple-Difference Estimates by Cause of Death (ages 55-64):  Different 

Specifications 

Table 5 in the text shows DD and triple-difference estimates for different causes of death, from county-level 
regressions, with county and year FE and population weights, of ln[(amenable mortality/100,000 persons)+1] over 
2009-2016 on full-expansion dummy (=1 for Full-Expansion States in expansion years; 0 otherwise), and covariates. 
Third difference is ages 55-64 versus ages 65-74. This table provides triple difference results for principal 
coefficients of interest, from regressions in which we vary this specification as follows:  using 
ATT*population weights; adding linear state trends; and running regressions at state- instead of county-level, 
with and without population weights. Standard errors use state clusters.  *, **, *** indicates statistical significance 
at the 10%, 5%, and 1% levels, respectively; significant results at 5% level or better in boldface. 

 Triple Difference Results 

Cause of Death 
Main 

Specification 
ATT x Pop 

weights 
with Linear State 

Trends 
State-Level w. 
pop. weights 

State-Level 
unweighted 

  (1) (2) (3) (4) (5) 

Amenable -0.004 -0.013 -0.003 -0.009 -0.015 

(0.008) (0.012) (0.008) (0.010) (0.011) 

Non-Amenable -0.006 -0.008 -0.006 -0.006 -0.005 
(0.012) (0.017) (0.012) (0.012) (0.012) 

Cancer -0.004 -0.017 -0.004 -0.006 -0.001 
(0.009) (0.011) (0.008) (0.010) (0.011) 

Diabetes -0.007 -0.034 -0.005 -0.016 0.018 
(0.020) (0.025) (0.020) (0.016) (0.030) 

Cardiovascular 0.006 -0.005 0.007 -0.002 -0.022 

(0.010) (0.016) (0.010) (0.011) (0.016) 

Respiratory -0.010 0.003 -0.009 -0.013 -0.023 
(0.023) (0.035) (0.022) (0.016) (0.026) 

HIV -0.051 -0.022 -0.051 -0.030 0.112 
(0.060) (0.078) (0.060) (0.058) (0.112) 

Weights Pop Att x Pop Pop Pop No 
Covariates Yes Yes Yes Yes Yes 
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Table A-11: Triple Difference Estimates:  Counties with high-vs-low Baseline Health 

Uninsurance and Poverty Levels:  Different Specifications 

Table 6 in the text shows DD and triple-difference estimates for high-vs-low pre-ACA uninsurance and high-vs-low 
poverty counties, from county-level regressions, with county and year FE and population weights, of ln[(amenable 
mortality/100,000 persons)+1] over 2009-2016 on full-expansion dummy (=1 for Full-Expansion States in expansion 
years; 0 otherwise), and covariates. Third difference is ages 55-64 versus ages 65-74. This table provides triple 
difference results for principal coefficients of interest, from regressions in which we vary this specification 
as follows:  using ATT*population weights; and comparing all non-elderly adults (ages 18-64) to all elderly 
(age 65+).  Standard errors use state clusters.  *, **, *** indicates statistical significance at the 10%, 5%, and 1% 
levels, respectively; significant results at 5% level or better in boldface. 

 Triple Difference Results 

Subsamples 

Main Specification   ATT x Pop Weights  Age 18-64 vs. 65+  

Unins. Poverty  Unins. Poverty Unins. Poverty 

(1) (2)  (3) (4) (5) (6) 

All Amenable 0.003 0.000  -0.023 -0.018 0.004 0.012 
(0.020) (0.013)  (0.025) (0.016) (0.014) (0.012) 

Male -0.020 -0.024  -0.045 -0.046** -0.025 -0.004 
(0.028) (0.018)  (0.038) (0.020) (0.017) (0.016) 

Female 0.050* 0.037***  0.024 0.025 0.054*** 0.034** 
(0.028) (0.014)  (0.036) (0.039) (0.020) (0.013) 

White (Not Hispanic) -0.017 -0.015  -0.053** -0.030*** -0.027* 0.002 
(0.018) (0.010)  (0.024) (0.010) (0.014) (0.011) 

Black (Not Hispanic) -0.001 -0.073*  0.393 -0.303 -0.004 -0.083*** 
(0.059) (0.040)  (0.365) (0.385) (0.038) (0.032) 

Other -0.083 -0.005  -0.354 -0.614 -0.057 0.060 
(0.137) (0.107)  (0.411) (0.512) (0.079) (0.074) 

Hispanic 0.279 0.082  0.369 -0.004 0.056 -0.002 
(0.267) (0.103)  (0.286) (0.175) (0.068) (0.044) 

Not Hispanic 0.003 -0.005  -0.028 -0.019 0.005 0.010 
(0.021) (0.015)  (0.030) (0.017) (0.018) (0.013) 

Weights Pop Pop  Att x Pop Att x Pop Pop Pop 
Covariates Yes Yes  Yes Yes Yes Yes 
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Table A-12: Synthetic Control Method:  Weights on Donor States 

Table shows the weights assigned to the Non-Expansion States (donor states)by the regular synthetic control method, 
used in text Figure 3. 

Non-Expansion States Synthetic Control Weights 

Alabama 0 
Florida 0.123 
Georgia 0 
Idaho 0 
Kansas 0 
Louisiana 0 
Maine 0.038 
Mississippi 0 
Missouri 0.411 
Nebraska 0 
North Carolina 0 
Oklahoma 0 
South Carolina 0 
South Dakota 0 
Tennessee 0 
Texas 0.023 
Utah 0.041 
Virginia 0.272 
Wyoming 0.091 
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Figure A-1.  Time Trends in Amenable Mortality for Persons Aged 18-64 
Figure shows amenable mortality rate for persons age 18-64 for Full-Expansion, Substantial Expansion, Mild 
Expansion, and Non-Expansion States, over 1999-2016, using county population weights.  State groups are defined 
in Table 1. Dashed vertical line separate pre-expansion from expansion period. 
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Figure A-2.  Synthetic Control Results for Near-Elderly Amenable Mortality  
Synthetic control results for ln((amenable mortality/100,000 persons)+1) for Full-Expansion States (treated as a single 
treated unit) versus synthetic control drawn from Non-Expansion States, over 1999-2016.  Covariates for constructing 
donor pool are same as in Figure 2, plus uninsurance rate in 2013.  The y-axis shows ln((amenable mortality/100,000 
persons)+1) for Full-Expansion States, combined into single treated unit (using population weights), and their 
synthetic control.  Vertical dotted line separates pre-expansion from expansion period.   
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Figure A-3.  Generalized Synthetic Control Method (gsynth) 

Synthetic control results, using Xu’s (2017) generalized synthetic control (gsynth) method, for ln(amenable 
mortality/100,000 + 1) for Full-Expansion States versus synthetic control for each state over 1999-2015.  The donor 
pool consists of every non-expansion state’s 55 to 64 year-old death rate as well as every state’s untreated 65 to 74 
year old population. This design is intended to crudely approximate triple-difference results.  States are equally 
weighted. Covariates for constructing synthetic control are same as in the specifications with covariates in Table 2 of 
the text.  The y-axis shows coefficient on Full-Expansion dummy.  Vertical bars around point estimates show 95% 
CIs.  Dashed vertical line separates pre-expansion from expansion period.  

 



Figure A-4. Age Discontinuity Leads-and-Lags Results, Separately for Full-Expansion and 

No-Expansion States  

Graphs from leads-and-lags regressions of ln((amenable mortality/100,000 persons)+1) for 55-64 versus 65-74 age 
groups in Full-Expansion (Panel A) and No-Expansion States (Panel B), over 2004-2016. Covariates are listed in 
paper.  Regressions include county and year FE, and county-population weights.  y-axis shows coefficients on lead 
and lag dummies; vertical bars show 95% confidence intervals (CIs) around coefficients, using standard errors 
clustered on state.  Coefficient for year -3 is set to zero. 

Panel B. Amenable Mortality in Full-Expansion-States 

 

Panel B. Amenable Mortality in No Expansion-States 
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Figure A-5.  Triple Difference Leads-and-Lags Graphs: Demographic Groups  

Graphs from leads and lags regressions of triple differences for indicated subsamples, of ln((amenable 
mortality/100,000 persons)+1) for persons aged 55-74, in Full-Expansion States versus No-Expansion States, over 
2004-2016; the third difference is age 55-64 versus age 65-74.  Covariates are same as in Figure 2.  Regressions 
include county and year FE, and county-population weights.  y-axis shows coefficients on lead and lag dummies; 
vertical bars show 95% CIs around coefficients, using standard errors clustered on state.  Coefficient for year -3 is set 
to zero. 



Figure A-6.  Triple Difference Leads-and-Lags Graphs:  By Education Level  

Graphs show leads and lags regressions of triple differences for indicated subsamples, of ln((amenable 
mortality/100,000 persons)+1) for persons aged 45+, in Full-Expansion States versus No-Expansion States, over 2004-
2016; the third difference is age 45-64 versus age 65+.  Covariates are same as in Figure 2.  Regressions include 
county and year FE, and county-population weights.  y-axis shows coefficients on lead and lag dummies; vertical bars 
show 95% CIs around coefficients, using standard errors clustered on state.  Coefficient for year -3 is set to zero. 

 
 

  



20 
 

Figure A-7.  Triple Difference Leads-and-Lags Graphs:  By Causes of Death 

Graphs show triple difference leads and lags regressions of ln[(mortality/100,000 persons)+1] among persons with 
indicated primary cause of death, aged 55-74, in Full-Expansion States versus No-Expansion States, over 2004-2016; 
the third difference is age 55-64 versus age 65-74.  Covariates are listed in the paper.  Regressions include county and 
year FE, and county population weights.  Y-axis shows coefficients on leads and lags dummies; vertical bars show 
95% CIs around coefficients, using standard errors clustered on state.  Coefficient for year -3 is set to zero.  Dashed 
vertical line separate pre-expansion from expansion period. 
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Figure A-8:  Leads and Lags Graphs for High-vs-Low Uninsurance and Poverty 

Graphs show leads and lags regressions of triple differences for high versus low uninsurance and high vs. low poverty 
counties, of ln((amenable mortality/100,000 persons)+1+ for persons aged 55-64, in Full-Expansion States versus No-
Expansion States, over 2004-2016.  High (low) uninsurance counties are those with highest (lowest) uninsurance rates 
in 2013 containing 20% of U.S. population, and similarly for high (low) poverty counties.  Covariates are same as in 
Figure 2.  Regressions include county and year FE, and county-population weights.  y-axis shows coefficients on lead 
and lag dummies; vertical bars show 95% CIs around coefficients, using standard errors clustered on state.  Coefficient 
for year -3 is set to zero. 

Panel A.  High-Uninsurance vs. Low-Uninsurance Counties 

 
Panel B.  High-Poverty vs. Low-Poverty Counties
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Figure A-9.  DiD and Triple Difference Leads-and-Lags Results: Amenable Mortality, with 

ATT x Population Weights  

Graphs from leads and lags regressions of ln[(amenable mortality/100,000 persons)+1] for Full-Expansion States 
versus control group of Non-Expansion States, over 2004-2016.  Covariates are listed in paper.  Regressions include 
county and year FE, and ATT x Population weights.  Y-axis shows coefficients on lead and lag dummies; vertical bars 
show 95% confidence intervals (CIs) around coefficients, using standard errors clustered on state.  Coefficient for year 
-3 is set to zero.  Dashed vertical line separate pre-expansion from expansion period. 

Panel A. Amenable Mortality for Ages 55-64 

 

Panel B.  Amenable Mortality for Ages 65-74 
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Panel C.  Triple difference.  Leads and lags graphs for amenable mortality for persons age 55-64 in Full-
Expansion States, relative to (i) persons age 65-74 in Full-Expansion States, and (ii) persons age 55-64 in 
Non-Expansion States. 
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Figure A-10.  DiD and Triple Difference Leads-and-Lags Results for Total Mortality  

Graphs from leads and lags regressions of ln[(all mortality/100,000 persons)+1] for Full-Expansion States versus 
control group of Non-Expansion States, over 2004-2016.  Covariates are listed in paper.  Regressions include county 
and year FE, and county-population weights.  Y-axis shows coefficients on lead and lag dummies; vertical bars show 
95% confidence intervals (CIs) around coefficients, using standard errors clustered on state.  Coefficient for year -3 
is set to zero.  Dashed vertical line separate pre-expansion from expansion period. 

Panel A. All Mortality for Ages 55-64 

 

Panel B.  All Mortality for Ages 65-74 
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Panel C.  Triple difference.  Leads and lags graphs for all mortality for persons age 55-64 in Full-
Expansion States, relative to (i) persons age 65-74 in Full-Expansion States, and (ii) persons age 55-64 in 
Non-Expansion States. 
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Figure A-11.  DiD and Triple Difference Leads-and-Lags Results for Non-Amenable 

Mortality  

Graphs from leads and lags regressions of ln[(non-amenable mortality/100,000 persons)+1] for Full-Expansion States 
versus control group of Non-Expansion States, over 2004-2016.  Covariates are listed in paper.  Regressions include 
county and year FE, and county-population weights.  Y-axis shows coefficients on lead and lag dummies; vertical bars 
show 95% confidence intervals (CIs) around coefficients, using standard errors clustered on state.  Coefficient for year 
-3 is set to zero.  Dashed vertical line separate pre-expansion from expansion period. 

Panel A. Non-Amenable Mortality for Ages 55-64 

   

Panel B.  Non-Amenable Mortality for Ages 65-74 
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Panel C.  Triple difference.  Leads and lags graphs for non-amenable mortality for persons age 55-64 in 
Full-Expansion States, relative to (i) persons age 65-74 in Full-Expansion States, and (ii) persons age 55-
64 in Non-Expansion States. 
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Figure A-12.  Triple Difference Leads-and-Lags Graphs: Demographic Groups, with ATT 

x Population Weights 

Graphs from leads and lags regressions of triple differences for indicated subsamples, of ln[(amenable 
mortality/100,000 persons)+1] for persons aged 55-74, in Full-Expansion States versus No-Expansion States, over 
2004-2016; the third difference is age 55-64 versus age 65-74.  Covariates are listed in the paper.  Regressions include 
county and year FE, and Att x Pop weights.  Y-axis shows coefficients on lead and lag dummies; vertical bars show 
95% CIs around coefficients, using standard errors clustered on state.  Coefficient for year -3 is set to zero.  Dashed 
vertical line separate pre-expansion from expansion period. 
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Figure A-13.  Triple Difference Leads-and-Lags Graphs:  By Education Level, with ATT x 

Population Weights 

Graphs show leads and lags regressions of triple differences for indicated subsamples, of ln[(amenable 
mortality/100,000 persons)+1] for persons aged 45+, in Full-Expansion States versus No-Expansion States, over 2004-
2016; the third difference is age 45-64 versus age 65+.  Covariates are listed in the paper.  Regressions include county 
and year FE, and ATT x Population weights.  y-axis shows coefficients on lead and lag dummies; vertical bars show 
95% CIs around coefficients, using standard errors clustered on state.  Coefficient for year -3 is set to zero.  Dashed 
vertical line separate pre-expansion from expansion period. 

 

  



30 
 

Figure A-14.  Triple Difference Leads-and-Lags Graphs:  By Causes of Death, ATT x 

Population Weights 

Graphs show triple difference leads and lags regressions of ln[(mortality/100,000 persons)+1] among persons with 
indicated primary cause of death, aged 55-74, in Full-Expansion States versus No-Expansion States, over 2004-2016; 
the third difference is age 55-64 versus age 65-74.  Covariates are listed in the paper.  Regressions include county and 
year FE, and ATT x population weights.  Y-axis shows coefficients on leads and lags dummies; vertical bars show 
95% CIs around coefficients, using standard errors clustered on state.  Coefficient for year -3 is set to zero.  Dashed 
vertical line separate pre-expansion from expansion period. 
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Figure A-15:  Leads and Lags Graphs for High-vs-Low Uninsurance and Poverty, ATT x 

Pop weights 

Graphs show leads and lags regressions of triple differences for high versus low uninsurance and high vs. low poverty 
counties, of ln[(amenable mortality/100,000 persons)+1] for persons aged 55-64, in Full-Expansion States versus No-
Expansion States, over 2004-2016.  High (low) uninsurance counties are those with highest (lowest) uninsurance rates 
in 2013 containing 20% of U.S. population, and similarly for high (low) poverty counties. Covariates are listed in the 
paper. Regressions include county and year FE, and ATT x Pop weights.  Y-axis shows coefficients on lead and lag 
dummies; vertical bars show 95% CIs around coefficients, using standard errors clustered on state.  Coefficient for 
year -3 is set to zero.  Dashed vertical line separate pre-expansion from expansion period. 

Panel A.  High-Uninsurance vs. Low-Uninsurance Counties 

 
Panel B.  High-Poverty vs. Low-Poverty Counties 
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Figure A-16:  Leads and Lags Graphs for High-vs-Low Uninsurance and Poverty, 18-64 

years 

Graphs show leads and lags regressions of triple differences for high versus low uninsurance and high vs. low poverty 
counties, of ln[(amenable mortality/100,000 persons)+1] for persons aged 18-64, in Full-Expansion States versus No-
Expansion States, over 2004-2016.  High (low) uninsurance counties are those with highest (lowest) uninsurance rates 
in 2013 containing 20% of U.S. population, and similarly for high (low) poverty counties. Covariates are listed in the 
paper. Regressions include county and year FE, and county population weights.  Y-axis shows coefficients on lead 
and lag dummies; vertical bars show 95% CIs around coefficients, using standard errors clustered on state.  Coefficient 
for year -3 is set to zero.  Dashed vertical line separate pre-expansion from expansion period. 

Panel A.  High-Uninsurance vs. Low-Uninsurance Counties 

 

Panel B.  High-Poverty vs. Low-Poverty Counties 
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Figure A-17.  DiD Leads-and-Lags Results for Ages 18-64, Amenable Mortality 

Graphs from DiD leads and lags regressions of ln[(amenable mortality/100,000 persons)+1] for Full-Expansion States 
versus control group of Non-Expansion States, over 2004-2016.  Covariates are listed in paper.  Regressions include 
county and year FE, and county population weights.  Y-axis shows coefficients on lead and lag dummies; vertical bars 
show 95% confidence intervals (CIs) around coefficients, using standard errors clustered on state.  Coefficient for year 
-3 is set to zero.  Dashed vertical line separate pre-expansion from expansion period. 
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Figure A-18.  Power Analyses for Full Sample: State Level DD and Triple Differences 

Power curves for simulated Medicaid expansion as of January 1, 2012, applied to persons aged 55-64 during pre-
treatment period (2007-2013).  Graphs show power (likelihood of detecting a statistically significant effect on 
amenable mortality, at the indicated confidence levels, for two-tailed test), given imposed “true” population average 
effect.  Curves are based on 1,000 replications of the DD (top graph) and triple difference (bottom graph) regression 
models used in Table 2, with covariates.  In each draw, we select 20 pseudo-treated states at random from the combined 
set of 41 treated and control states, and remove a fraction of the observed deaths at random from the treated states, 
where the fraction reflects an imposed treatment effect (for the entire population), and we vary the imposed treatment 
effect from 0-5% in increments of 0.1%.  Curves for α = .10/.05/.01/.001 correspond to 90%/95%/99%/99.9% 
confidence levels, respectively.  Dashed vertical line indicates minimum detectable effect at 95% confidence level, 
with 80% power, for full sample (Full MDE). 
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Figure A-19. Power Analysis for Women:  DD and Triple Differences 

Power curves for simulated Medicaid expansion as of January 1, 2012, applied to females aged 55-64 during pre-
treatment period (2007-2013).  Graphs show power (likelihood of detecting a statistically significant effect on 
amenable mortality, at the indicated confidence levels, for two-tailed test), given imposed “true” population average 
effect.  Curves are based on 1,000 replications of the DD (top graph) and triple difference (bottom graph) regression 
models used in Table 2, with covariates.  In each draw, we select 20 pseudo-treated states at random from the combined 
set of 41 treated and control states, and remove a fraction of the observed deaths at random from the treated states, 
where the fraction reflects an imposed treatment effect (for the entire population), and we vary the imposed treatment 
effect from 0-5% in increments of 0.1%.  Curves for α = .10/.05/.01/.001 correspond to 90%/95%/99%/99.9% 
confidence levels, respectively.  Dashed vertical lines indicate minimum detectable effects at 95% confidence level, 
with 80% power, for full sample (Full MDE) and for women (Fem MDE). 
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Figure A-20. Power Analysis for Non-Hispanic Whites:  DD and Triple Differences 

Power curves for simulated Medicaid expansion as of January 1, 2012, applied to non-Hispanic whites aged 55-64 
during pre-treatment period (2007-2013).  Graphs show power (likelihood of detecting a statistically significant effect 
on amenable mortality, at the indicated confidence levels, for two-tailed test), given imposed “true” population average 
effect.  Curves are based on 1,000 replications of the DD (top graph) and triple difference (bottom graph) regression 
models used in Table 2, with covariates.  In each draw, we select 20 pseudo-treated states at random from the combined 
set of 41 treated and control states, and remove a fraction of the observed deaths at random from the treated states, 
where the fraction reflects an imposed treatment effect (for the entire population), and we vary the imposed treatment 
effect from 0-5% in increments of 0.1%.  Curves for α = .10/.05/.01/.001 correspond to 90%/95%/99%/99.9% 
confidence levels, respectively.  Dashed vertical lines indicate minimum detectable effects at 95% confidence level, 
with 80% power, for full sample (Full MDE) and for non-Hispanic whites (White MDE). 
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Figure A-21.  Power Analysis for Non-Hispanic Blacks:  DD and Triple Differences 

Power curves for simulated Medicaid expansion as of January 1, 2012, applied to non-Hispanic blacks aged 55-64 
during pre-treatment period (2007-2013).  Graphs show power (likelihood of detecting a statistically significant effect 
on amenable mortality, at the indicated confidence levels, for two-tailed test), given imposed “true” population average 
effect.  Curves are based on 1,000 replications of the DD (top graph) and triple difference (bottom graph) regression 
models used in Table 2, with covariates.  In each draw, we select 20 pseudo-treated states at random from the combined 
set of 41 treated and control states, and remove a fraction of the observed deaths at random from the treated states, 
where the fraction reflects an imposed treatment effect (for the entire population), and we vary the imposed treatment 
effect from 0-5% in increments of 0.1%.  Curves for α = .10/.05/.01/.001 correspond to 90%/95%/99%/99.9% 
confidence levels, respectively.  Dashed vertical lines indicate minimum detectable effects at 95% confidence level, 
with 80% power, for full sample (Full MDE) and for non-Hispanic blacks (Black MDE). 
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Figure A-22. Power Analysis for Hispanics:  DD and Triple Differences 

Power curves for simulated Medicaid expansion as of January 1, 2012, applied to non-white, non-black Hispanics 
aged 55-64 during pre-treatment period (2007-2013).  Graphs show power (likelihood of detecting a statistically 
significant effect on amenable mortality, at the indicated confidence levels, for two-tailed test), given imposed “true” 
population average effect.  Curves are based on 1,000 replications of the DD (top graph) and triple difference (bottom 
graph) regression models used in Table 2, with covariates.  In each draw, we select 20 pseudo-treated states at random 
from the combined set of 41 treated and control states, and remove a fraction of the observed deaths at random from 
the treated states, where the fraction reflects an imposed treatment effect (for the entire population), and we vary the 
imposed treatment effect from 0-5% in increments of 0.1%.  Curves for α = .10/.05/.01/.001 correspond to 
90%/95%/99%/99.9% confidence levels, respectively.  Dashed vertical line indicates minimum detectable effect at 
95% confidence level, with 80% power for full sample (Full MDE) and for Hispanics (Hispanic MDE). 
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Figure A-23. Power Analysis for Low Education Subsample:  DD Design 

Power curves for simulated Medicaid expansion as of January 1, 2012, applied to those without a high school 
education aged 45-64 during pre-treatment period (2007-2013).  Demographic data on education is available only for 
broad age groups (the best available was ages 45-64) so we present only DD and not triple difference results.  Graphs 
show power (likelihood of detecting a statistically significant effect on amenable mortality, at the indicated confidence 
levels, for two-tailed test), given imposed “true” population average effect.  Curves are based on 1,000 replications of 
the DD regression model used in Table 2, with covariates.  In each draw, we select 20 pseudo-treated states at random 
from the combined set of 41 treated and control states, and remove a fraction of the observed deaths at random from 
the treated states, where the fraction reflects an imposed treatment effect (for the entire population), and we vary the 
imposed treatment effect from 0-5% in increments of 0.1%.  Curves for α = .10/.05/.01/.001 correspond to 
90%/95%/99%/99.9% confidence levels, respectively.  Dashed vertical lines indicates minimum detectable effect at 
95% confidence level, with 80% power for full sample (Full MDE) and for low-education subsample (Low Educ. 
MDE). 
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Figure A-24. Uninsurance Rate by Single Year of Age 

Source: Authors’ calculations from American Community Survey 2009, 2013 and 2015  
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Figure A-25. Difference in Uninsurance Rate from 2012 to 2016 by Expansion Status 
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Figure A-26. Changes in mortality by single year of age 

Mean health care amenable death rate per 100,000 by single year of age are reported for both expansion and non-
expansion states before and after expansion. Difference across time (pre-2014 to post-2014 for non-expansion states; 
and pre-expansion to post-expansion in expansion states) illustrate that the death rate of each single year of age in 
expansion states have reduced relative to each analogous group in non-expansion states. The differences across age 
groups (55-64 v 65-74) illustrate that this improvement was not limited to those eligible for Medicaid. That is, the 
improvement occurred for Medicare enrollees as well. Thus even with disaggregated data by age, we do not find 
conclusive evidence of a Medicaid expansion impact on the mortality rate for the near elderly (55-64). 

Source: Author calculations from restricted access mortality files.  
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Example Simulated Power Analysis from Black, 
Hollingsworth, Nunes, and Simon (2019) 

Alex Hollingsworth 
3 January 2019 

This is an example of the type of simulated power analysis done in Black et al. (2019). This example 
is done with publicly available data. You can find the code, data, and output for this example hosted 
on Alex’s GitHub page https://github.com/hollina/health_insurance_and_mortality. 

This set-up is designed to mimic a typical DiD setting. Here we will compare 23 randomly chosen 
treated states to 18 randomly chosen control states. We will impose a series of treatment effects that 
gradually increase in magnitude and report whether or not these imposed treatment effects are 
detectable. We will vary the set of randomly chosen treated states. We will calculate the minimum 
detectable effect size at various power and significance levels. We will also explore a measure of 
believability, which is based upon Gelman and Carlin (2014) measures of sign and magnitude error. 

In this simple design we used 5 years of pre-expansion data and 3 years of post-expansion data. 
Both state and year fixed-effects are included. Regressions are weighted by state-population and 
standard errors will be clustered at the state-level. The dependent variable will be the natural log of 
the all-cause non-elderly mortality rate per 100,000. 

This code is simply an example of our simulated power analysis and is not an attempt to identify the 
impact of Medicaid expansion on mortality. Importantly, changing the research design (e.g. adding 
control variables, shifting to the county-level, changing the cause of death, using propensity score 
weights, or using a synthetic control estimator) will impact power. Our approach could be easily 
modified to accommodate any of these alternative research designs. Any improvements to the 
research design will very likely increase power and decrease the minimum detectable effect size. 

Initial Set-up 
Here we will set-up the power analysis and choose various required parameters/options. 

First we clear the memory 

. clear all 

Choose the number of datasets we want to compose each estimate. For example, if we choose 2, 
then two sets of psuedo-treated states will be drawn and the power analysis will be conducted twice 
for each effect size; once for each set of pseudo-treated states and effect size pair. 

. local max_dataset_number  = 1000 

Pick the number of psuedo-post-expansion years 



. local number_post_years = 3 
 
. local last_year = 2013-`number_post_years'+1 

Set number of psuedo-pre-expansion years 

. local number_pre_years = 5 
 
. local first_year = `last_year'-`number_pre_years' 

Set effect size step and max value in percent terms (0-1) 

. local step_size = .0025 // Quarter of a percent 
 
. local end_value = .05 // End at 5% 

Create a local macro from the choices above 

. local step_macro  
 
. forvalues x = 0(`step_size')`end_value' { 
  2.     local step_macro `step_macro'  `x' 
  3. } 

Determine the length of the macro above, so percent complete can be displayed later 

. local num :  word count `step_macro' 
 
. local num = `num' 

Calculate the max number of rows so percent complete can be displayed later 

. local max_row = `max_dataset_number'*`num' 

Create excel sheet to store results from simulation. Note: I have $dropbox set via my profile.do to 
point to my Dropbox folder. 

. putexcel set 
"$dropbox/health_insurance_and_mortality/state_level_public_dat 
> a_example/output/power_simulation_results.xlsx", replace 

Initialize cells names in excel sheet 

. putexcel A1 = ("dependent_variable") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 



> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel B1 = ("controls") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel C1 = ("weight") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel D1 = ("treated_states") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel E1 = ("effect_size") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
. putexcel F1 = ("deaths_reduced_per_year") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel G1 = ("total_deaths_reduced") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
. putexcel H1 = ("coef") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel I1 = ("se") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 
 
. putexcel J1 = ("df") 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/output/power_simulation_results.xlsx saved 

Import and clean mortality data 
Import data extracted from CDC wonder. All cause mortality 0-64 by state and year. The data were 
gathered on 1 January 2019. 

. import delimited 
"$dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/data/Multiple Cause of Death, 1999-2017.txt" 
(8 vars, 1,077 obs) 

Drop total variables 



. drop if missing(year) 
(108 observations deleted) 

Drop unneeded variables from CDC Wonder 

. drop notes 

Drop years after expansion 

. drop if year>=2014 
(204 observations deleted) 

Drop if year before first desired year 

. drop if year<`first_year' 
(357 observations deleted) 

Change state name to be state postal code 

. replace state ="AL" if state=="Alabama" 
(8 real changes made) 
 
. replace state ="AK" if state=="Alaska" 
(8 real changes made) 
 
. replace state ="AZ" if state=="Arizona" 
(8 real changes made) 
 
. replace state ="AR" if state=="Arkansas" 
(8 real changes made) 
 
. replace state ="CA" if state=="California" 
(8 real changes made) 
 
. replace state ="CO" if state=="Colorado" 
(8 real changes made) 
 
. replace state ="CT" if state=="Connecticu " 
(0 real changes made) 
 
. replace state ="DE" if state=="Delaware" 
(8 real changes made) 
 
. replace state ="DC" if state=="District of Columbia" 
(8 real changes made) 
 
. replace state ="FL" if state=="Florida" 
(8 real changes made) 
 
. replace state ="GA" if state=="Georgia" 
(8 real changes made) 
 
. replace state ="HI" if state=="Hawaii" 
(8 real changes made) 



 
. replace state ="ID" if state=="Idaho" 
(8 real changes made) 
 
. replace state ="IL" if state=="Illinois" 
(8 real changes made) 
 
. replace state ="IN" if state=="Indiana" 
(8 real changes made) 
 
. replace state ="IA" if state=="Iowa" 
(8 real changes made) 
 
. replace state ="KS" if state=="Kansas" 
(8 real changes made) 
 
. replace state ="KY" if state=="Kentucky" 
(8 real changes made) 
 
. replace state ="LA" if state=="Louisiana" 
(8 real changes made) 
 
. replace state ="ME" if state=="Maine" 
(8 real changes made) 
 
. replace state ="MD" if state=="Maryland" 
(8 real changes made) 
 
. replace state ="MA" if state=="Massachusetts" 
(8 real changes made) 
 
. replace state ="MI" if state=="Michigan" 
(8 real changes made) 
 
. replace state ="MN" if state=="Minnesota" 
(8 real changes made) 
 
. replace state ="MS" if state=="Mississippi" 
(8 real changes made) 
 
. replace state ="MO" if state=="Missouri" 
(8 real changes made) 
 
. replace state ="MT" if state=="Montana" 
(8 real changes made) 
 
. replace state ="NE" if state=="Nebraska" 
(8 real changes made) 
 
. replace state ="NV" if state=="Nevada" 
(8 real changes made) 
 
. replace state ="NH" if state=="New Hampshire" 
(8 real changes made) 
 
. replace state ="NJ" if state=="New Jersey" 
(8 real changes made) 
 
. replace state ="NM" if state=="New Mexico" 
(8 real changes made) 
 
. replace state ="NY" if state=="New York" 
(8 real changes made) 
 



. replace state ="NC" if state=="North Carolina" 
(8 real changes made) 
 
. replace state ="ND" if state=="North Dakota" 
(8 real changes made) 
 
. replace state ="OH" if state=="Ohio" 
(8 real changes made) 
 
. replace state ="OK" if state=="Oklahoma" 
(8 real changes made) 
 
. replace state ="OR" if state=="Oregon" 
(8 real changes made) 
 
. replace state ="PA" if state=="Pennsylvania" 
(8 real changes made) 
 
. replace state ="RI" if state=="Rhode Island" 
(8 real changes made) 
 
. replace state ="SC" if state=="South Carolina" 
(8 real changes made) 
 
. replace state ="SD" if state=="South Dakota" 
(8 real changes made) 
 
. replace state ="TN" if state=="Tennessee" 
(8 real changes made) 
 
. replace state ="TX" if state=="Texas" 
(8 real changes made) 
 
. replace state ="UT" if state=="Utah" 
(8 real changes made) 
 
. replace state ="VT" if state=="Vermont" 
(8 real changes made) 
 
. replace state ="VA" if state=="Virginia" 
(8 real changes made) 
 
. replace state ="WA" if state=="Washington" 
(8 real changes made) 
 
. replace state ="WV" if state=="West Virginia" 
(8 real changes made) 
 
. replace state ="WI" if state=="Wisconsin" 
(8 real changes made) 
 
. replace state ="WY" if state=="Wyoming" 
(8 real changes made) 

Add expansion status to each state 

. gen expansion4=0 
 
. label define expansion4 0 "0. Non-expansion" 1 "1. Full expansion" /// 
>     2 "2. Mild expansion" 3 "3. Substantial expansion"  
 
. label values expansion4 expansion4 



. local full AZ AR CO IL IA KY MD NV NM NJ ND OH OR RI WV  WA 
 
. foreach x in `full' { 
  2.     replace expansion4=1 if state=="`x'" 
  3. }      
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
 
. local mild DE DC MA NY VT 
 
. foreach x in `mild' { 
  2.     replace expansion4=2 if state=="`x'" 
  3. } 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 
 
. local medium CA CT HI MN WI 
 
. foreach x in `medium' { 
  2.     replace expansion4=3 if state=="`x'" 
  3. } 
(8 real changes made) 
(0 real changes made) 
(8 real changes made) 
(8 real changes made) 
(8 real changes made) 

Account for mid-year expansions 

. replace expansion4=1 if state=="MI"  //MI expanded in April 2014 
(8 real changes made) 
 
. replace expansion4=1 if state=="NH"  //NH expanded in August 2014 
(8 real changes made) 
 
. replace expansion4=1 if state=="PA"  //PA expanded in Jan 2015 
(8 real changes made) 
 
. replace expansion4=1 if state=="IN"  //IN expanded in Feb 2015 
(8 real changes made) 
 
. replace expansion4=1 if state=="AK"  //AK expanded in Sept 2015 
(8 real changes made) 
 
. replace expansion4=1 if state=="MT"  //MT expanded in Jan 2016 



(8 real changes made) 
 
. replace expansion4=1 if state=="LA"  //LA expanded in July 2016 
(8 real changes made) 

Keep only full or non-expansion states 

. drop if expansion4==2 | expansion4==3 
(72 observations deleted) 

Store number of expansion states 

. distinct statecode  if expansion4==1  
 
           │        Observations 
           │      total   distinct 
───────────┼────────────────────── 
 statecode │        184         23 
 
. scalar number_expand = r(ndistinct)     

Save data to be called in power analysis 
Save temporary dataset to be called 

. compress 
  variable expansion4 was float now byte 
  variable population was double now long 
  variable state was str20 now str11 
  (5,376 bytes saved) 
 
. save 
"$dropbox/health_insurance_and_mortality/state_level_public_data_exampl 
> e/temp/temp_data.dta", replace 
(note: file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level 
> _public_data_example/temp/temp_data.dta not found) 
file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/temp/temp_data.dta saved 

Run simulated power analysis 
Start a timer to show how long this takes 

. timer on 1 

Set row number for excel sheet 



. local row =2  

Run a loop. Performing the power analysis once for each of the desired number of datasets. The 
following output is supressed for the html document even though it runs. This is to ensure the 
document is not too long. 

. forvalues dataset_number = 1(1)`max_dataset_number'    { 
  2.     // Display the dataset number 
.     qui di "`dataset_number'" 
.     // Open main dataset for analysis 
.     qui use 
"$dropbox/health_insurance_and_mortality/state_level_public_data 
> _example/temp/temp_data.dta", clear 
.     // Set seed for reproducibility. We want the seed to be the same within  
> a dataset.  
.     qui local rand_seed = 1234 + `dataset_number' 
  5.     qui set seed   `rand_seed' 
.     
//////////////////////////////////////////////////////////////////////// 
> ///////             
>     // Generate a random variable for each state, then the first N in rank 
w 
> ill be  
.     // considered expansion states. Where N is # of expansion states 
.     qui bysort statecode: gen random_variable = runiform() if _n==1 
  7.     qui bysort statecode: carryforward random_variable, replace 
.     // Rank the states 
.     qui egen rank = group(random_variable) 
.     // Given this random ordering of states, assign expansion status to the  
> # set above 
.     qui gen expansion = 0  
 10.     qui replace expansion=1 if rank <=number_expand 
.     // Do this same thing for the treatment variable 
.     qui gen treatment = 0  
 12.     qui replace treatment = 1 if expansion==1 & year>=`last_year'  
.     // Create Post variable 
.     qui gen post = 0 
 14.     qui replace post =1 if year>=`last_year'  
.     // Store basic data from regression in excel sheet 
.     qui putexcel A`row' = ("all_deaths") 
 16.     qui putexcel B`row' = ("no controls") 
 17.     qui putexcel C`row' = ("population") 
.     // Add list of states to excel sheet 
.     qui capture drop test 
 19.     qui gen test = "" 
.     qui levelsof state if treatment ==1, local(treated_states) 
 21.     foreach x in `treated_states' { 
 22.         qui replace test = test + ", " + "`x'" 
 23.     } 
.     qui local state_list `=test[1]' 
 25.     qui putexcel D`row' = ("`state_list'") 
.     // Generate a death rate with no effect 
.     qui gen death_rate = (deaths/population)*100000 
.     // Gen order variable  
.     qui gen order = _n 
.     
//////////////////////////////////////////////////////////////////////// 
> ///// 
>     // Create a reduced deaths variable by a given percentage using the 
bino 
> mial for each effect size 



.     qui local counter = 1 

.     foreach x in `step_macro' { 
 30.         qui gen reduced_deaths_`counter' = 0  
 31.         qui replace reduced_deaths_`counter' = rbinomial(deaths,`x') if 
t 
> reatment==1 
 32.         qui replace reduced_deaths_`counter'=0 if 
missing(reduced_deaths_ 
> `counter') 
.         qui gen deaths_`counter' = deaths - reduced_deaths_`counter' 
 34.         qui replace deaths_`counter'=0 if missing(deaths_`counter') 
.         qui gen death_rate_`counter'= 
ln((deaths_`counter'/population)*10000 
> 0+1) 
.         // Store the effect size in excel sheet 
.         qui putexcel E`row' = (`x') 
.         // Store the number of reduced deaths in excel sheet 
.         qui sum reduced_deaths_`counter' if year>=`last_year' 
 38.         qui putexcel F`row' = (`r(sum)'/`number_post_years') 
 39.         qui putexcel G`row' = (`r(sum)') 
.         // Move the row and counter one forward 
.         qui local counter = `counter' + 1  
 41.         qui local row = `row' + 1 
 42.     }     
.     // Move the row counter back to the top 
.     qui local row = `row' - `num'  
.     
//////////////////////////////////////////////////////////////////////// 
> ///// 
>     // Run regression of treatment on reduced deaths variable for each 
effec 
> t size 
.     // Reset the counter 
.     qui local counter = 1 
.     forvalues counter = 1(1)`num' { 
.         qui reghdfe death_rate_`counter' /// 
>             treatment /// 
>             i.post i.expansion /// 
>             [aweight=population] /// 
>             ,  absorb(statecode year)  vce(cluster statecode)  
.         // Store results 
.         qui putexcel H`row' =(_b[treatment]) 
 48.         qui putexcel I`row' = (_se[treatment]) 
 49.         qui putexcel J`row' =(`e(df_r)') 
.         // Display Percent Complete 
.         qui di 
"//////////////////////////////////////////////////////////// 
> ///////////" 
 51.         qui di "///////////////////////////Percent 
Complete////////////// 
> /////////////" 
 52.         qui di ((`row'-1)/`max_row')*100 
 53.         qui di 
"///////////////////////////////////////////////////////// 
> //////////////" 
.         qui local row = `row' + 1 
 55.         qui local counter = `counter' + 1 
 56.     } 
 57. } 

Stop timer 



. timer off 1 
 
. timer list 
   1:  79905.50 /        1 =   79905.5020 

Erase temporary dataset used for analysis 

. erase 
"$dropbox/health_insurance_and_mortality/state_level_public_data_examp 
> le/temp/temp_data.dta" 

Import and clean results from simulated power 
analysis 
Import simulation results 

. import excel 
"$dropbox/health_insurance_and_mortality/state_level_public_dat 
> a_example/output/power_simulation_results.xlsx", sheet("Sheet1") firstrow 
cl 
> ear     

Calculate z-scores and p-values 

. gen z_score = abs(((coef - 0)/se)) 
 
. gen p_value =  2*ttail(df,z_score) 

Calculate indicator for power threshold for each observation 

. gen power_10 = 0 
 
. gen power_05 = 0 
 
. gen power_01 = 0 
 
. gen power_001 = 0 
. replace power_10 =  1 if p_value<= .1 
(12,536 real changes made) 
 
. replace power_05 =  1 if p_value<= .05 
(11,065 real changes made) 
 
. replace power_01 =  1 if p_value<= .01 
(8,209 real changes made) 
 
. replace power_001 = 1 if p_value<= .001 
(4,872 real changes made) 



Calculate a count variable 

. gen count = 1 

Make sign error 

. gen s_error_10 = 0 
 
. replace s_error_10 =1 if power_10==1 & coef>=0 
(174 real changes made) 
 
. gen s_error_05 = 0 
 
. replace s_error_05 =1 if power_05==1 & coef>=0 
(85 real changes made) 
 
. gen s_error_01 = 0 
 
. replace s_error_01 =1 if power_01==1 & coef>=0 
(17 real changes made) 
 
. gen s_error_001 = 0 
 
. replace s_error_001 =1 if power_001==1 & coef>=0 
(0 real changes made) 
. replace s_error_10 =. if effect_size==0 
(1,000 real changes made, 1,000 to missing) 
 
. replace s_error_05 =. if effect_size==0 
(1,000 real changes made, 1,000 to missing) 
 
. replace s_error_01 =. if effect_size==0 
(1,000 real changes made, 1,000 to missing) 
 
. replace s_error_001 =. if effect_size==0 
(1,000 real changes made, 1,000 to missing) 

Make magnitude error 

. gen m_error = abs(coef/effect_size) 
(1,000 missing values generated) 
 
. gen m_error_10 = m_error 
(1,000 missing values generated) 
 
. replace m_error_10 = . if power_10==0 
(6,628 real changes made, 6,628 to missing) 
 
. gen m_error_05 = m_error 
(1,000 missing values generated) 
 
. replace m_error_05 = . if power_05==0 
(8,030 real changes made, 8,030 to missing) 
 
. gen m_error_01 = m_error 
(1,000 missing values generated) 
 
. replace m_error_01 = . if power_01==0 



(10,820 real changes made, 10,820 to missing) 
 
. gen m_error_001 = m_error 
(1,000 missing values generated) 
 
. replace m_error_001 = . if power_001==0 
(14,130 real changes made, 14,130 to missing) 

Generate Beliveabilitiy 

. gen believe_10 = 0  
 
. replace  believe_10 = 1 if power_10 ==1 & s_error_10==0 & m_error_10<=2 
(11,081 real changes made) 
. gen believe_05 = 0  
 
. replace  believe_05 = 1 if power_05 ==1 & s_error_05==0 & m_error_05<=2 
(9,934 real changes made) 
. gen believe_01 = 0  
 
. replace  believe_01 = 1 if power_01 ==1 & s_error_01==0 & m_error_01<=2 
(7,502 real changes made) 
. gen believe_001 = 0  
 
. replace  believe_001 = 1 if power_001 ==1 & s_error_001==0 & m_error_001<=2 
(4,519 real changes made) 

Collapse by effect size to calculate power, % sign error, average magnitude error and % believable 

. collapse (sum) count *power_* *s_error_* *believe_* (mean) *m_error_*, 
by(ef 
> fect_size) 

Generate sign error ratio, rather than raw count 

. replace s_error_10 = (s_error_10/power_10)*100 
(5 real changes made) 
 
. replace s_error_05 = (s_error_05/power_05)*100 
(4 real changes made) 
 
. replace s_error_01 = (s_error_01/power_01)*100 
(2 real changes made) 
 
. replace s_error_001 = (s_error_001/power_001)*100 
(0 real changes made) 
. replace s_error_10 = . if effect_size==0 
(1 real change made, 1 to missing) 
 
. replace s_error_05 = . if effect_size==0 
(1 real change made, 1 to missing) 
 
. replace s_error_01 = . if effect_size==0 
(1 real change made, 1 to missing) 
 
. replace s_error_001 = . if effect_size==0 



(1 real change made, 1 to missing) 

Make power and believability out of 100 

. ds *power* *believe_* 
power_10     power_01     believe_10   believe_01 
power_05     power_001    believe_05   believe_001 
 
. foreach x in `r(varlist)' { 
  2.     replace `x' = (`x'/count)*100 
  3. } 
(20 real changes made) 
(20 real changes made) 
(20 real changes made) 
(20 real changes made) 
(16 real changes made) 
(15 real changes made) 
(14 real changes made) 
(13 real changes made) 

Make effect size 0-100 

. replace effect_size=effect_size*100 
(19 real changes made) 

Plot power curves 
First determine closest point where the power_05 hits 80% 

. gen distance_from_80 = (power_05-80)^2 
 
. sort distance_from_80 
 
. sum effect_size in 1 
 
    Variable │        Obs        Mean    Std. Dev.       Min        Max 
─────────────┼───────────────────────────────────────────────────────── 
 effect_size │          1           3           .          3          3 
 
. local mde=`r(mean)' 

Add label to graph with this MDE 

. capture drop mde_label 
 
. gen mde_label = "" 
(20 missing values generated) 
 
. set obs `=_N+1' 
number of observations (_N) was 20, now 21 
 
. replace mde_label = "MDE" in `=_N' 
variable mde_label was str1 now str3 



(1 real change made) 
 
. replace effect_size = `mde' in `=_N' 
(1 real change made) 
. capture drop full_power 
 
. gen full_power = 102.5 

Plot power curve 

. sort effect_size 
 
. twoway connected power_10 effect_size ,  lpattern("l") color(sea) 
msymbol(no 
> ne) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) /// 
>     || connected  power_05 effect_size ,  lpattern(".._") color(turquoise) 
m 
> symbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected  power_01 effect_size , lpattern("_") color(vermillion) 
msy 
> mbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected  power_001  effect_size ,  lpattern("l") color(black) 
msymb 
> ol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || scatter full_power effect_size , mlabel(mde_label) msymbol(none) 
mlab 
> pos(12) mlabsize(3.5) /// 
>         xline(`mde', lpattern(dash) lcolor(gs3) lwidth(.5) noextend) /// 
>         ytitle("Percent with Significant Treatment Effect", size(4)) /// 
>         xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly  
> Mortality)", size(4) ) /// 
>         xscale(r(0 5)) /// 
>         xlabel(, nogrid labsize(4)) /// 
>         ylabel(0 "0%" 20 "20%"  40 "40%" 60 "60%" 80 "80%" 100 "100%",gmax 
n 
> oticks labsize(4)) /// 
>         legend(order( 1 2 3 4) pos(6) col(4) /// 
>             label(1 "{&alpha} =.10") label(2 "{&alpha} =.05") /// 
>             label(3 "{&alpha} =.01") label(4 "{&alpha} =.001") size(4)) /// 
>             title("Simulated Power Analysis; DD, 0-64, All Cause Mortality"  
> " ", size(4))  
.     graph export 
"$dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/scripts/markdown/simulated_power_analysis.png",  replace 
width 
> (800) 
(file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_publi 
> c_data_example/scripts/markdown/simulated_power_analysis.png written in PNG  
> format) 



Simulated Power Analysis; DD, 0-64, All Cause Mortality  

Plot sign error 

. sum s_error_10 
 
    Variable │        Obs        Mean    Std. Dev.       Min        Max 
─────────────┼───────────────────────────────────────────────────────── 
  s_error_10 │         19     2.88117    7.122931          0   27.21893 
 
. gen  s_error_label= 62.5 
 
. twoway connected s_error_10 effect_size ,  lpattern("l") color(sea) 
msymbol( 
> none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) /// 
>     || connected s_error_05 effect_size  ,  lpattern(".._") 
color(turquoise) 
>  msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected s_error_01 effect_size  , lpattern("_") color(vermillion) 
m 
> symbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected s_error_001  effect_size  ,  lpattern("l") color(black) 
msy 
> mbol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || scatter s_error_label effect_size  , mlabel(mde_label) msymbol(none)  
>  mlabpos(12) mlabsize(4)  /// 
>     ytitle("Percent", size(4)) /// 
>         xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly  
> Mortality)", size(4)) /// 
>         legend(size(4) order(1 2 3 4) pos(6) col(4) label(1 "{&alpha} 
=.10") 



>  label(2 "{&alpha} =.05") label(3 "{&alpha} =.01") label(4 "{&alpha} 
=.001") 
> ) /// 
>         xscale(r(0 5)) /// 
>         xline(`mde', lpattern(dash) lcolor(grey) noextend) /// 
>         xlabel( , nogrid labsize(4)) /// 
>         ylabel(0 "0%" 20 "20%"  40 "40%" 60 "60%",gmax noticks labsize(4)) 
/ 
> // 
>         title("Likelihood of Significant Coefficient Having Wrong Sign" 
"DD, 
>  0-64, All Cause Mortality" " ", size(4)) 
(note:  named style grey not found in class color, default attributes used) 
.     graph export 
"$dropbox/health_insurance_and_mortality/state_level_public 
> _data_example/scripts/markdown/s_error.png", replace width(800) 
(file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_publi 
> c_data_example/scripts/markdown/s_error.png written in PNG format) 

Likelihood of Significant Coefficient Having Wrong Sign DD, 0-64, All Cause Mortality  

Plot magnitude error 

. sum m_error_001 
 
    Variable │        Obs        Mean    Std. Dev.       Min        Max 
─────────────┼───────────────────────────────────────────────────────── 
 m_error_001 │         19    2.851967    2.875496   1.114921   13.03762 
 
. gen  height= `r(max)'*1.05 



 
. twoway connected m_error_10 effect_size ,  lpattern("l") color(sea) 
msymbol( 
> none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) /// 
>     || connected m_error_05 effect_size ,  lpattern(".._") color(turquoise)  
> msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected m_error_01 effect_size , lpattern("_") color(vermillion) 
ms 
> ymbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected m_error_001  effect_size ,  lpattern("l") color(black) 
msym 
> bol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || scatter height effect_size , mlabel(mde_label) msymbol(none)  
mlabpos 
> (12) mlabsize(4)  /// 
>     ytitle("Mean abs(sig coef/imposed effect)", size(4)) /// 
>         xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly  
> Mortality)", size(4)) /// 
>         legend(size(4) order(1 2 3 4) pos(6) col(4) label(1 "{&alpha} 
=.10") 
>  label(2 "{&alpha} =.05") label(3 "{&alpha} =.01") label(4 "{&alpha} 
=.001") 
> ) /// 
>         xscale(r(0 5)) /// 
>         xline(`mde', lpattern(dash) lcolor(grey) noextend) /// 
>         xlabel(, nogrid labsize(4)) /// 
>         ylabel(, gmax noticks labsize(4)) /// 
>         title("Exaggeration Ratio; DD, 0-64, All Cause Mortality"  " ", 
size 
> (4)) 
(note:  named style grey not found in class color, default attributes used) 
.         graph export 
"$dropbox/health_insurance_and_mortality/state_level_pu 
> blic_data_example/scripts/markdown/m_error.png", replace width(800) 
(file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_publi 
> c_data_example/scripts/markdown/m_error.png written in PNG format) 



Exaggeration Ratio; DD, 0-64, All Cause Mortality  

Plot believability 

. twoway connected believe_10 effect_size ,  lpattern("l") color(sea) 
msymbol( 
> none) mlabcolor(sea) mlabel("") mlabsize(3) mlabpos(11) /// 
>     || connected believe_05 effect_size ,  lpattern(".._") color(turquoise)  
> msymbol(none) mlabcolor(turquoise) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected believe_01 effect_size , lpattern("_") color(vermillion) 
ms 
> ymbol(none) mlabcolor(vermillion) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || connected believe_001  effect_size ,  lpattern("l") color(black) 
msym 
> bol(none) mlabcolor(black) mlabel("") mlabsize(3) mlabpos(3) /// 
>     || scatter full_power effect_size , mlabel(mde_label) msymbol(none) 
mlab 
> pos(12) mlabsize(4)  /// 
>     xtitle("Imposed Population Effect (Percent Reduction in Non-Elderly 
Mort 
> ality)", size(4)) /// 
>         legend(size(4) order(1 2 3 4) pos(6) col(4) label(1 "{&alpha} 
=.10") 
>  label(2 "{&alpha} =.05") label(3 "{&alpha} =.01") label(4 "{&alpha} 
=.001") 
> ) /// 
>                 ytitle("Probability", size(4)) /// 
>         xscale(r(0 5)) /// 
>         xline(`mde', lpattern(dash) lcolor(grey) noextend) /// 
>         xlabel(, nogrid labsize(4)) /// 



>         ylabel(0 "0%" 20 "20%"  40 "40%" 60 "60%" 80 "80%" 100 "100%",gmax 
n 
> oticks labsize(4)) /// 
>         title("Likelihood of believable coefficient; DD, 0-64, All Cause 
Mor 
> tality" " ", size(4))  
(note:  named style grey not found in class color, default attributes used) 
.     graph export  
"$dropbox/health_insurance_and_mortality/state_level_publi 
> c_data_example/scripts/markdown/believable.png", replace width(800) 
(file 
/Users/hollinal/Dropbox/health_insurance_and_mortality/state_level_publi 
> c_data_example/scripts/markdown/believable.png written in PNG format) 

Likelihood of believable coefficient; DD, 0-64, All Cause Mortality  

Conclusion 
Using this simple example, we can see that for this simple research design the minimum mortality 
reduction that is believable, well-powered, and significant at the 5% level is around 3%. Changing 
the research design (e.g. adding control variables, shifting to the county-level, changing the cause of 
death) would certainly impact power. 

This simple research design is a DiD comparing 23 random treated states to 18 random control 
states. In this simple design we used 5 years of pre-expansion data and 3 years of post-expansion 
data. Both state and year fixed-effects were included. Regressions were weighted by state-
population and standard errors were clustered at the state-level. The dependent variable was the 
natural log of the all-cause non-elderly mortality rate per 100,000. 


