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A Randomization Details

This study builds on the sample of 350 schools that participated in the 2013 to 2014
KiuFunza study (see Mbiti et al. (in press) for more details). In the 2013-14 study the
350 schools in the sample were randomly placed into one of four treatment groups: 70
schools received school grants, 70 schools received teacher incentives (using a single
threshold design), 70 schools received both grants and incentives, and 140 schools were
in the control group. In order to determine teacher awards, incentivized tests were
conducted in schools assigned to the incentives treatment or the combination treatment
(a total of 140 schools). To faciliate the computation of treatment effects on incentivized
tests, we also conducted these tests in 40 control schools.

We take the set of 180 schools where endline “incentivized” tests had been conducted
in 2014. Specifically, 70 schools from the incentive arm (labeled C1), 70 schools from the
combination arm (C2), and 40 schools from the control arm (C3). We use these tests as
the baseline data to implement the teacher incentive schemes in this study. This baseline
data is especially important for the Pay for Percentile incentive scheme as we have to
split students into groups, and properly seed each contest.

In each district, there were seven schools in C1 (teacher incentives), seven in C2 (combi-
nation), and four in C3 (the control group). We randomly assign schools from the previ-
ous treatment groups into two new treatments groups (Levels or Pay for Percentile) and
a control group. We stratify this randomization by district. However, in order to study
the long-term impacts of teacher incentives, we assign a higher proportion of schools
in C1 (which involved threshold teacher incentives) to Levels. Similarly, we assign a
higher proportion of schools in the control group from the previous experiment (C3) to
the control group of this experiment.

For this experiment, we stratify the random treatment assignment by district, previous
treatment, and an index of the overall learning level of students in each school.34 Table
A.1 summarizes the number of schools randomly allocated to each treatment arm based
on their assignment in the previous experiment. Each district has 18 schools, such that
there are six schools in each of the new treatment groups (Levels, Pay for Percentile, and
control). Because the study was carried out in 10 districts, overall there are 60 schools in
each new treatment group: 30 above the median in baseline learning and 30 below.

34We created an overall measure of student learning and categorized schools as above or below the
median.
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All regressions account for all three levels of stratification: district, previous treatment,
and an index of the overall learning level of students in each school.

Table A.1: Treatment allocation

KiuFunza II

Levels P4Pctile Control Total
KiuFunza I C1 40 20 10 70

C2 10 30 30 70
C3 10 10 20 40

Total 60 60 60 180
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B Theoretical Framework

We present a set of simple models to clarify the potential behavioral responses of teach-
ers and schools in our interventions. We first characterize equilibrium effort levels of
teachers in both incentive systems, and then impose some additional assumptions and
use numerical methods to obtain a set of qualitative predictions about the distribution
of teacher effort across students of varying baseline learning levels.

B.1 Basic Setup

In our simple setup, there are different types of students (indexed by l). Students may
vary by initial level of learning or by socio-demographic characteristics. Further, each
classroom of students is taught by a single teacher, indexed by j. We assume student
learning levels (or test scores) at endline is determined by the following process:

al
j = al

j(t−1) + γlel
j + vl

j

where al
j is the learning level of a student of type l taught by teacher j, and al

j(t−1) is the

student’s baseline level of learning.35 γl captures the productivity of teacher effort (el
j)

and is assumed to be constant across teachers. In other words, we assume teachers are
equally capable.36 vl

j is an idiosyncratic random shock to student learning. We assume
that effort is costly, and that the cost function, cl(el

j), is twice differentiable and convex
such that c′l(·) > 0, and c′′l (·) > 0.

A social planner would choose teacher effort to maximize the total expected value of
student learning, net of the total costs of teacher effort as follows:

∑
j

∑
l

E(al
j(t−1) + γlel

j + vl
j)− cl(el

j)

The first order conditions for this problem are:

γl = c′l(e
l
j) (2)

for all l and all j. To keep the model simple, we assume teachers are risk-neutral and
abstract from multi-tasking concerns. To keep notation simple, we assume all teach-

35We assume al
j(t−1) is an adequate summary statistic for all previous inputs, including past teacher

effort.
36Barlevy and Neal (2012) also impose this assumption in their basic setup.
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ers have identical ability (or productivity); however, this can easily be relaxed without
altering the results presented below.

B.1.1 Pay for Percentile

In the Pay for Percentile design there are L rank-order tournaments based on student
performance, where L is the number of student types or the number of groupings, such
that students in the same group are similar to each other. Under this incentive scheme,
teachers maximize their expected payoffs, net of costs, from each rank-order tournament.
The teacher’s maximization problem becomes:

∑
l

(
∑
k 6=j

(
πP(al

j > al
k)
)
− cl(el

j)

)
,

where π is the payoff per percentile. The first order conditions for the teacher’s prob-
lem are:

∑
k 6=j

πγl f l(γl(el
j − el

k)) = c′l(e
l
j)

for all l, where f l is the density function of εl
j,k = vl

j − vl
k.

In a symmetric equilibrium, then

(N − 1)πγl f l(0) = c′l(e
l) (3)

where N is the number of teachers. Without loss of generality, if the cost function
is the same across groups (i.e., c′l(x) = c′(x)), but the productivity of effort varies (γl),
then the teacher will exert higher effort where he or she is more productive (since the
cost function is convex). Pay for percentile can lead to an efficient outcome, as shown
by Barlevy and Neal (2012), if the social planner’s objective is to maximize total learning
and the payoff is π = 1

(N−1) f l(0) .

B.1.2 Levels

In our Levels incentive scheme, teachers earn bonuses whenever a student’s test score is
above a pre-specified learning threshold. As each subject has multiple thresholds t, we
can specify teacher j’s maximization problem as:

∑
l

(
∑

t

(
Cl

j P(al
j > Tt)

Πt

∑l ∑n Cl
nP
(
al

n > Tt
))− cl(el

j)

)
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where Tt is the learning needed to unlock threshold t payment, Πt is the total amount
of money available for threshold t, and Cl

n is the number of students of type l in teacher
n’s class.

Assuming the number of teachers (N) is large, then the effect each teacher has on the
overall pass rates is negligible. In particular, we assume it is zero (i.e., teacher’s ignore
the effect of their effort on the overall pass rate). Thus, the first order conditions for the
teacher’s maximization problem become:

∑
t

Cl
jγ

lhl(Tt − al
j(t−1) − γlel

j)
Πt

∑l ∑n Cl
nP
(

vl
n > Tt − al

n(t−1) − γlel
n

) = c′l(e
l
j) (4)

for all l, where hl is the density function of vl
j. Although we assume that each individ-

ual teacher’s effort does not affect the overall pass rate, we cannot ignore this effect in
equilibrium. Thus, we can characterize our symmetric equilibrium as:

∑
t

Cl
jγ

lhl(Tt − al
j(t−1) − γlel)

Πt

∑l NCl
nP
(

vl > Tt − al
(t−1) − γlel

) = c′l(e
l) (5)

for all l.

B.1.3 Numerical Simulation Set-up

We simulate the equilibrium responses by teachers to both types of incentives in order
to better understand teacher behavioral responses to the two treatments in our study.
We assume that the teacher’s cost function is quadratic (i.e., c(e) = e2), and the shock to
student learning follows a standard normal distribution (i.e., vi ∼ N(0, 1)). We further
assume that there are 1,000 teachers, each with their own classroom. Within each class,
we assume that student baseline learning levels are uniformly distributed from -4 to 4,
in 0.5 intervals. As a result each classroom has 17 students with one student at each
(discrete) baseline learning level.37 We set the reward per student in both schemes at
$1. Therefore, in the Pay for Percentile scheme the reward per contest won is $ 2

99 (see
Section B.1.1) and in the Levels the total reward is $1 per student. In the multiple
threshold scenario the reward is held constant and split evenly across all thresholds.
For simplicity, we assume that there are three proficiency thresholds. We first compute
the optimal teacher response assuming a single proficiency threshold and then vary the
threshold value from -1 to 1. We then compute the multiple threshold case.

37In Appendix B.2 we show that our qualitative results are robust to a normal distribution of student
baseline learning levels.
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B.1.4 Levels Equilibrium

We first simulate equilibrium behavior under the Levels scheme in Figure B.1 below.
Using the parameter values and functional forms discussed above, we simulate an in-
dividual teacher’s best response curve and plot it against the best response of all other
teachers using a wide range of initial parameter values. In our simulations we do not
observe any non-quasi-concave objective functions for any given ability level. Further,
since the curves are smooth, there is no indication that they would violate Brouwer’s
fixed point theorem. As Figure B.1 shows, in the context of our of simulations, there is
only one (rational expectations) equilibrium characterized by Equation 5.

Figure B.1: Teacher i′s Best Response curve to other teacher’s effort level
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Note: An example of a set of best response curves for a given initial parameter values. We assume all teachers are
giving the same value of effort for all thresholds except one (but the effort may be different across thresholds). In the
x-axis we show the level of effort exerted by all except i in the threshold of interest. In the y-axis we plot teachers i
effort level in that thresholds. The black line shows the best response of teacher i to the effort level of other teachers.
Therefore, we have a symmetric equilibrium when the black line crosses the red line.
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Our simulations also show that the choice of proficiency thresholds is important de-
sign decision. If the thresholds are too far apart then teachers may not exert any effort
on students who are in between thresholds. This concern can be ameliorated by setting
thresholds sufficiently close together as shown below in Figure B.2.

Figure B.2: Threshold Distance and Teacher effort
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Note: Assuming a two threshold design, this figure shows the effect of increasing the distance between two thresholds
on teacher effort. The distance varies from 0, to 2 (thresholds at -1 and 1), 4 (thresholds at -2 and 2), and 6 (thresholds
at -3 and 3).

As the equilibrium behavior for teachers under Pay for Percentile was described in
detail in Barlevy and Neal (2012), we refer our readers to consult their findings for
additional insights.
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B.1.5 A Comparison of Optimal Teacher Effort

We compute equilibrium teacher responses under two different stylized scenarios (or
assumptions about the productivity of teacher effort in the production function) to il-
lustrate how changes in these assumptions can alter equilibrium responses. The goal of
this exercise is to highlight the impact of the production function specification on the
distribution of learning gains in both our treatments.

Our numerical approach allows us to explore how teachers focus their efforts on stu-
dents of different learning levels under both types of systems. Following the baseline
model described in Barlevy and Neal (2012), we first assume that the productivity of
teacher effort (γ) is constant and equal to one, regardless of a student’s initial learning
level. We then solve the model numerically. Figures B.3a and B.3b show the optimal
teacher responses for different levels of student initial learning. Under the Pay for Per-
centile scheme, the optimal response would result in teachers exerting equal levels of
effort with all of their students, regardless of their initial learning level. In contrast, the
multiple threshold levels scheme would result in a bell-shaped effort curve, where teach-
ers would focus on students near the threshold and exert minimal effort with students
in the tails (see solid line graph in B.3b). Thus, our numerical exercise suggests that if
teacher productivity is invariant to the initial level of student learning, then the Pay for
Percentile scheme will better serve students at the tails of the distribution.
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Figure B.3: Incentive design and optimal effort with constant productivity of teacher
effort
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(a) Pay for Percentile - γ constant across ini-
tial levels of learning. The total effort ex-
erted by teachers is 3.39.
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(b) Levels - γ constant across initial levels of
learning. The total effort exerted by teach-
ers is 1.55 under the -1 threshold, 1.88 un-
der the 0 threshold, 2.37 under the 1 thresh-
old, and 1.97 under the mutiple threshold.

We relax the assumption of constant productivity of teacher effort and allow it to vary
with initial learning levels of students. For simplicity, we specify a linear relationship
between teacher productivity (γl) and student learning levels (al) such that γl = 1 +

0.25al
(t−1).

38 Figures B.4a and B.4b show the numerical solutions of optimal teacher
effort for different initial levels of student learning. In the Pay for Percentile system,
focusing on better prepared students increases the likelihood of winning the rank-order
contest (among that group of students), while the marginal unit of effort applied to the
least prepared students will have a relatively smaller effect on the likelihood of winning
the rank-order tournament among that group of students. Thus, in equilibrium, teachers
will focus more on better prepared students and will not have an incentive to deviate
from this strategy, given the structure and payoffs of the tournament. In contrast, the
Levels scheme would yield a similar but slightly skewed bell-shaped curve compared to
the baseline constant productivity case.

Our numerical exercise suggests that testing for equality of treatment effects across

38Given the uniform distribution of students across initial levels of learning, γl = 1 + 0.25al
(t−1) yields

the same average cost as assuming γl is constant and equal to 1.
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the distribution of student baseline test scores in the Pay for Percentile arm allows us to
better understand the specification of teacher effort in the education production function.

Figure B.4: Incentive design and optimal effort when the productivity of teacher effort
is correlated with the initial level of student learning
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(a) Pay for Percentile - γ increases with ini-
tial levels of learning. The total effort ex-
erted by teachers is 3.39.
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(b) Levels - γ increases with initial levels of
learning. The total effort exerted by teach-
ers is 1.12 under the -1 threshold, 1.73 un-
der the 0 threshold, 2.53 under the 1 thresh-
old, and 1.88 under the mutiple threshold.

B.2 Robustness of Simulation Results

In this section we vary one of the central assumptions in our numerical simulations of
the effort exerted by teachers in equilibrium discussed in Section B.1.5. In particular, we
change the assumption that students are uniformly distributed across baseline test scores
(recall that we had assumed student baseline learning levels to be uniformly distributed
from -4 to 4, in 0.5 intervals). Instead, we assume that student baseline learning levels
are roughly distributed normally around zero, such that most students are near zero
and almost no students are in the tails.39 Figures B.5 and B.6 show the optimal effort of
teachers across both incentive schemes.

As can be seen in the figures below, teacher responses are equal in the pay for per-
centile scheme (P4Pctile) regardless of the distribution of baseline student learning. This

39In reality, we assume a binomial distribution centered around zero.

53



result is unsurprising given the equilibrium condition in Equation 3. On the other hand,
for the proficiency scheme (Levels) the optimal teacher effort changes when the distri-
bution of baseline test scores changes (see Equation 5). However, qualitatively the result
is the same as with a uniform distribution of baseline test scores.

Figure B.5: Incentive design and optimal effort with constant productivity of teacher
effort
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(a) P4Pctile - γ constant across initial levels
of learning
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(b) Levels - γ constant across initial levels
of learning
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Figure B.6: Incentive design and optimal effort when the productivity of teacher effort
is correlated with the initial level of student learning
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(a) P4Pctile - γ increases with initial levels
of learning
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(b) Levels - γ increases with initial levels of
learning
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C Test Design

The tests used in this evaluation were developed by Tanzanian education professionals.
The tests were based on the Tanzanian curriculum and followed a similar test develop-
ment process as the Uwezo annual learning assessment — a nationwide learning assess-
ment used to measure learning in Tanzania.40 Two types of tests were developed by the
test-developers: a non-incentivized (or low-stakes) test that was used for research pur-
poses and an incentivized (or high-stakes) test that was used to by Twaweza to determine
teacher bonuses. Both tests followed the testing procedures and protocols established in
Mbiti et al. (in press).

C.1 Non-Incentivized test

The non-incentivized (or low-stakes) test was administered on sample of 30 students in
each school (10 students each from Grades 1 through 3). To test for spillovers an addi-
tional 10 students from Grade 4 were also tested. Sampled students are then followed
over the course of the two-year study, except Grade 4 students who were not followed
into Grade 5. These non-incentivized tests were only used for research purposes. In
order to prevent confusion in schools, these non-incentivized tests were conducted by
a separate team to prevent confusion with the intervention team (or the incentivized
tests). Given the low levels of learning in Tanzania, we conducted one-on-one tests in
which a test enumerator sits with the student and guides her/him through a large font
test booklet. This improved data quality and also enabled us to capture a wide range of
skills in the event the student was not literate. Students are asked to read and answer
the test questions to the administrator who records the number of correctly read or an-
swered test items. For the numeracy questions and the spelling questions students were
allowed to use pencil and paper. In order to avoid ceiling and floor effects, we requested
the test-developers to include “easy”, “medium”, and “hard” items.

Since this study was built on the RCT by Mbiti et al. (in press), we used the endline
tests that were administered in 2014 for that study as the baseline for this study. The
material covered by our tests in Kiswahili and English included reading syllables, read-
ing words, and a reading comprehension. In math, the tests covered simple counting,
number recognition, inequalities of number (i.e., which is greater), addition, subtraction,
multiplication, and division.

During both endline tests (in 2015 and 2016), we tested students based on the grade

40More information is available at https://www.twaweza.org/go/uwezo
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we expected them to be enrolled. Both of these tests were grade specific tests designed
to measure the main competencies outlined in the curriculum. The content of the tests
is summarized in in Table C.1. The number of items of each test varied. In the first
year the Kiswahili and English tests included 27 items for grade 1, 20 items for grade 2,
and 9 items for grade 3. In the second year, the number of items was reduced mainly
by dropping items that required students to write (or spell). For math, there were 34
items for grade 1, 24 items for grade 2, and 24 items for grade 3. In the second year, the
number of items on the grade 1 math test was reduced. However, we added a number
of easier items to the grade 3 test, and left the length of the grade 2 test unchanged.

We standardize test scores using the mean and standard deviation of the control group
to compute Z-scores. We also scale the test scores using Item Response Theory (IRT)
methods so that all students are on the same scale. The IRT scaling allows us to convert
the estimated treatment effects (measured in SDs) to equivalent years of schooling.

C.2 Incentivized test

The incentivized (or high-stakes) tests were used to determine teacher bonuses. These
tests were taken by all students in grades 1, 2, and 3. Although there are no bonuses
in the control schools, we administer the same type of “incentivized tests” in control
schools so that we could compute treatment effects using the incentivized test data. A
number of measures were introduced to enhance test security. First, to prevent test-
taking by non-target grade candidates, students could only be tested if their name had
been listed and their photo taken at baseline. Second, there were ten versions of the
tests to prevent copying and leakage; each student was assigned a randomly generated
number from a table to identify the test version, with the choice of the number based on
day of the week and the first letter of the student’s name. Finally, tests were handled,
administered, and scored by Twaweza without any teacher involvement. Several checks
were done ex-post by Twaweza to ensure there was not any cheating on the high-stakes
test.

C.3 Comparability of tests

Both types of tests followed the same test-development framework. As a result, the sub-
ject order, question type, and phrasing was similar across both tests. The main difference
is the incentivized test is shorter (about 15 mins per student) and uses a variety of stop-
ping rules to reduce testing time. The non-incentivized test took about 40 minutes and
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covered more skills. It also included more questions to avoid bottom- and top-coding.
The specific skills tested are outlined in Table C.1.

Although the content between the two types of test is similar, there are a number of im-
portant differences in the administration of the tests. The non-incentivized tests included
an “other subject” module to measure potential spillover effects. Non-incentivized tests
were administered by taking sampled students out of their classroom during a regular
school day. In contrast, the incentivized tests were more “official” as all students in
Grades 1-3 were tested on a prearranged test day. On the test day, students in other
grades would sometimes be sent home to avoid distractions. Extra-curricular activities
were also canceled during the Twaweza test. In addition, most schools used the incen-
tivized test as the end of year test. This also likely encouraged students in the control
group to exert effort on the test.
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Table C.1: Comparison of low-Stakes and high-Stakes test content

Low- Stakes High-stakes

Year 1 Year 2 Both Years

Kiswahili Kiswahili Kiswahili

Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3
Syllables + - - + + + + - -
Words + + - + + + + + -
Sentences + + - + + + + + -
Writing words + + + - - - - - -
Reading one paragraph - + + - + + - + -
Reading comprehension - - + - - + - - +

English English English

Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3

Letters + - - + + + + - -
Words + + - + + + + + -
Sentences + + - + + + + + -
Writing words + + + - - - - - -
Reading One paragraph - + + - + + - + -
Reading Comprehension - - + - - + - - +

Math Math Math

Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3 Grade 1 Grade 2 Grade 3

Counting + - - + + + + - -
Number identification + - - + + + + - -
Inequality of numbers + + - + + + + + -
Addition + + + + + + + + +
Subtraction + + + + + + + + +
Multiplication - + + - + + - + +
Division - - + - - + - - +

The Table summarizes the test content for each subject across different grades and data collection rounds. Both high-stakes and low-stakes tests were developed using the same
test-development framework as the Uwezo national assessments. The main difference between the high-stakes and low-stakes test is the high-stakes test is designed to measure
proficiency so the test has a variety of stopping rules to reduce testing time.
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D Additional Tables

D.1 Properly seeded contests

Table D.1: Effect on test scores (without grade 1)

(1) (2) (3) (4) (5) (6)

Year 1 Year 2

Math Kiswahili Combined Math Kiswahili Combined

Panel A: Non-incentivized
Levels (α1) .061 .04 .058 .11∗∗ .13∗∗ .14∗∗∗

(.047) (.055) (.051) (.05) (.054) (.05)
P4Pctile (α2) .0013 -.051 -.029 .1∗∗ .088∗ .11∗∗

(.045) (.051) (.047) (.045) (.052) (.048)
N. of obs. 3,120 3,120 3,120 3,163 3,163 3,163
α3 = α2 − α1 -.06 -.091∗ -.087∗ -.0089 -.039 -.034
p-value (H0 : α3 = 0) .18 .084 .065 .87 .46 .51

Panel B: Incentivized
Levels (β1) .13∗∗∗ .12∗∗ .18∗∗∗ .17∗∗∗ .14∗∗ .22∗∗∗

(.05) (.054) (.068) (.051) (.055) (.069)
P4Pctile (β2) .079∗ .034 .08 .09∗∗ .063 .11∗

(.045) (.048) (.06) (.045) (.045) (.059)
N. of obs. 30,206 30,206 30,206 32,956 32,956 32,956
β3 = β2 − β1 -.054 -.09 -.1 -.083∗ -.073 -.11
p-value (H0 : β3 = 0) 0.26 0.10 0.11 0.097 0.19 0.11

Panel C: Incentivized – Non-incentivized
β1 − α1 .06 .07 .11 .055 .0048 .066
p-value(β1 − α1 = 0) .23 .15 .067 .26 .93 .28
β2 − α2 .074 .078 .1 -.01 -.024 .0004
p-value(β2 − α2 = 0) .15 .11 .089 .83 .6 .99
β3 − α3 .014 .0078 -.0057 -.065 -.029 -.066
p-value( β3 − α3 = 0) .79 .88 .92 .19 .64 .31

Results from estimating Equation 1 for different subjects at both follow-ups. Panel A
uses data from the non-incentivized test taken by a sample of students. Control vari-
ables include student characteristics (age, gender, grade and lag test scores) and school
characteristics (PTR, Infrastructure PCA index, a PCA index of how close the school is to
different facilities, and an indicator for whether the school is single shift or not). Panel
B uses data from the incentivized test taken by all students. Control variables include
student characteristics (gender and grade) and school characteristics (PTR, Infrastructure
PCA index, a PCA index of how close the school is to different facilities, and an indicator
for whether the school is single shift or not). Panel C tests the difference between the
treatment estimates in panels A and B. Standard errors, clustered at the school level, are
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D.2 Results for English

Table D.2: Effect on English test scores

(1) (2)
Year 1 Year 2

English English

Panel A: Non-incentivized
English English

Levels (α1) .019 .11
(.087) (.085)

P4Pctile (α2) -.03 .19∗∗

(.077) (.081)
N. of obs. 1,532 1,533
α3 = α2 − α1 -.048 .078
p-value (H0 : α3 = 0) .53 .31

Panel B: Incentivized
Levels (β1) .28∗∗∗ .28∗∗∗

(.066) (.069)
P4Pctile (β2) .16∗∗∗ .23∗∗∗

(.057) (.055)
N. of obs. 46,018 15,458
α3 = α2 − α1 -.12∗ -.047
p-value (H0 : α3 = 0) .079 .53

Panel C: Incentivized – Non-incentivized
β1 − α1 .14 .15
p-value(β1 − α1 = 0) .15 .14
β2 − α2 .18 .043
p-value(β2 − α2 = 0) .031 .63
β3 − α3 .043 -.11
p-value( β3 − α3 = 0) .62 .29

Results from estimating Equation 1 for different sub-
jects at both follow-ups. Panel A uses data from
the non-incentivized test taken by a sample of stu-
dents. Control variables include student character-
istics (age, gender, grade and lag test scores) and
school characteristics (PTR, Infrastructure PCA in-
dex, a PCA index of how close the school is to dif-
ferent facilities, and an indicator for whether the
school is single shift or not). Panel B uses data from
the incentivized test taken by all students. Control
variables include student characteristics (gender and
grade) and school characteristics (PTR, Infrastruc-
ture PCA index, a PCA index of how close the school
is to different facilities, and an indicator for whether
the school is single shift or not). Panel C tests the
difference between the treatment estimates in pan-
els A and B. Standard errors, clustered at the school
level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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D.3 Balance in Teacher Turnover

Table D.3: Teacher turnover

(1) (2)
Still teaching incentivized

grades/subjects

Yr 1 Yr 2

Levels (α1) .066 .065
(.043) (.04)

P4Pctile (α2) .054 .088∗∗

(.036) (.034)
N. of obs. 882 882
Mean control .73 .59
α3 = α2 − α1 -.013 .022
p-value (H0 : α3 = 0) .75 .56

Proportion of teachers of math, English or
Kiswahili in grades 1, 2, and 3 who were teach-
ing at the beginning of 2015 and still teaching
those subjects (in the same school) at the end of
2015 (Column 1) and 2016 (Column 2). Standard
errors, clustered at the school level, are in paren-
theses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D.4 Pass Rates

Table D.4: Pass rates across all skill levels

(1) (2) (3) (4) (5) (6)
Year 1 Year 2

Math Kiswahili English Math Kiswahili English

Levels (β1) .0358∗∗ .0582∗∗∗ .0359∗∗∗ .0366∗∗∗ .0682∗∗∗ .0149∗∗

(.015) (.02) (.0092) (.013) (.016) (.006)
P4Pctile (β2) .0224∗ .00739 .0169∗∗ .0331∗∗∗ .0227 .0132∗∗

(.012) (.018) (.0075) (.012) (.017) (.0056)
N. of obs. 210,358 129,676 129,676 248,250 181,288 30,986
Control mean .58 .5 .041 .58 .5 .041
β3 = β2 − β1 -.013 -.051∗∗ -.019∗∗ -.0035 -.046∗∗∗ -.0018
p-value (H0 : β3 = 0) .36 .014 .043 .77 .0051 .8

The independent variable is whether a student acquired a given skills as evidenced by
performance on the incentivized test. Standard errors, clustered at the school level, are
in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.5: Pass rates using levels thresholds in Kiswahili

Syllables Words Sentences Paragraph Story Reading
Comprehension

(1) (2) (3) (4) (5) (6)

Panel A: Year 1
Levels (β1) .064∗∗ .059∗∗ .071∗∗∗ .075∗∗∗ .038 .024

(.026) (.024) (.023) (.022) (.024) (.026)
P4Pctile (β2) -.0057 .015 .011 .026 -.0099 -.0034

(.025) (.022) (.021) (.02) (.021) (.022)
N. of obs. 17,886 33,440 33,440 15,554 14,678 14,678
Control mean .4 .59 .5 .37 .52 .56
β3 = β2 − β1 -.069∗∗∗ -.044∗ -.06∗∗ -.049∗∗ -.048∗∗ -.027
p-value (H0 : β3 = 0) .0086 .081 .011 .017 .045 .27

Panel B: Year 2
Levels (β1) .09∗∗∗ .085∗∗∗ .08∗∗∗ .046∗∗ .0032 .053∗∗

(.021) (.02) (.018) (.019) (.026) (.021)
P4Pctile (β2) .047∗∗ .036∗ .032∗ -.0089 -.027 .012

(.023) (.02) (.019) (.02) (.022) (.019)
N. of obs. 26,746 44,262 44,262 17,516 15,493 33,009
Control mean .3 .6 .48 .43 .61 .56
β3 = β2 − β1 -.044∗∗ -.049∗∗∗ -.048∗∗∗ -.055∗∗∗ -.03 -.041∗

p-value (H0 : β3 = 0) .027 .0082 .0058 .0042 .22 .053

The independent variable is whether a student acquired a given skills as evidenced by perfor-
mance on the incentivized test. Standard errors, clustered at the school level, are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.6: Pass rates using levels thresholds in math

Counting Numbers Inequalities Addition Subtraction Multiplication Division
(1) (2) (3) (4) (5) (6) (7)

Panel A: Year 1
Levels (β1) .0034 .014 .03∗∗ .05∗∗ .043∗∗ .038∗∗ .035∗

(.0091) (.021) (.014) (.021) (.02) (.017) (.018)
P4Pctile (β2) .031∗∗∗ .031∗ .033∗∗∗ .018 .016 .023 .0095

(.0078) (.018) (.012) (.018) (.016) (.016) (.018)
N. of obs. 17,886 17,886 33,440 48,118 48,118 30,232 14,678
Control mean .93 .64 .74 .59 .5 .23 .22
β3 = β2 − β1 .028∗∗∗ .017 .0027 -.033 -.027 -.015 -.026
p-value (H0 : β3 = 0) .0012 .4 .85 .12 .16 .37 .17

Panel B: Year 2
Levels (β1) .000686 .0411∗∗ .0265∗∗ .0442∗∗ .0462∗∗ .0514∗∗∗ .0395∗∗

(.0078) (.019) (.011) (.019) (.019) (.014) (.017)
P4Pctile (β2) .0108 .0595∗∗∗ .0388∗∗∗ .0394∗∗ .026 .0254∗∗ .0223

(.0071) (.017) (.01) (.017) (.017) (.013) (.017)
N. of obs. 26,746 26,746 44,262 59,755 59,755 15,493 15,493
Control mean .94 .68 .79 .6 .56 .11 .18
β3 = β2 − β1 .01 .018 .012 -.0049 -.02 -.026 -.017
p-value (H0 : β3 = 0) .12 .31 .23 .78 .24 .11 .34

The independent variable is whether a student acquired a given skills as evidenced by performance on the
incentivized test. Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01
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Table D.7: Pass rates using levels thresholds in English

Syllables Words Sentences Paragraph Story Reading
Comprehension

(1) (2) (3) (4) (5) (6)

Panel A: Year 1
Levels (β1) .095∗∗∗ .05∗∗∗ .023∗∗∗ .015∗∗ .0079∗ .013∗

(.021) (.013) (.0087) (.0065) (.0046) (.0078)
P4Pctile (β2) .036∗∗ .028∗∗ .0041 .0073 .0079∗ .019∗∗∗

(.016) (.011) (.007) (.0055) (.0046) (.0064)
N. of obs. 17,886 33,440 33,440 15,554 14,678 14,678
Control mean .087 .075 .023 .007 .021 .036
β3 = β2 − β1 -.059∗∗∗ -.022∗ -.019∗∗ -.0073 -.00001 .0057
p-value (H0 : β3 = 0) .0034 .074 .043 .29 1 .44

Panel B: Year 2
Levels (β1) .0074 .022∗∗

(.0061) (.0086)
P4Pctile (β2) .012∗ .02∗∗

(.0068) (.0079)
N. of obs. 0 0 0 0 10,735 10,735
Control mean . . . . .017 .025
β3 = β2 − β1 .0048 -.0016
p-value (H0 : β3 = 0) .5 .88

The independent variable is whether a student acquired a given skills as evidenced by perfor-
mance on the incentivized test. Standard errors, clustered at the school level, are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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D.5 Effects on Test Takers and Lee Bounds on the Incentivized Test

Table D.8: Number of test takers, incentivized test

(1) (2)
Year 1 Year 2

Levels (α1) 0.02 0.05∗∗∗

(0.02) (0.01)

P4Pctile (α2) -0.00 0.03∗∗

(0.02) (0.01)

N. of obs. 540 540
Mean control group 0.78 0.83
α3 = α2 − α1 -0.02 -0.03∗∗

p-value(α3 = 0) 0.20 0.04

The independent variable is the proportion
of test takers (number of test takers divided
by the enrollment in each grade) of the in-
centivized exam. The unit of observation
is the school-grade level. Standard errors,
clustered at the school level, are in paren-
theses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table D.9: Lee bounds for the incentivized test

(1) (2) (3) (4)
Year 1 Year 2

Math Kiswahili Math Kiswahili

Levels (α1) 0.11∗∗ 0.13∗∗∗ 0.14∗∗∗ 0.18∗∗∗

(0.05) (0.05) (0.04) (0.05)

P4Pctile (α2) 0.07∗ 0.02 0.09∗∗ 0.09∗

(0.04) (0.04) (0.04) (0.05)

N. of obs. 48,077 48,077 59,680 59,680
α3 = α2 − α1 -0.047 -0.11∗∗ -0.044 -0.093∗∗

p-value(α3 = 0) 0.30 0.026 0.31 0.045

Lower 95% CI (α1) 0.00066 0.021 -0.023 0.027
Higher 95% CI (α1) 0.23 0.25 0.32 0.35

Lower 95% CI (α2) -0.012 -0.070 0.014 -0.0032
Higher 95% CI (α2) 0.14 0.10 0.17 0.17

Lower 95% CI (α3) -0.16 -0.24 -0.22 -0.27
Higher 95% CI (α3) 0.063 0.00099 0.11 0.057

The independent variable is the standardized test score for different sub-
jects. For each subject we present Lee (2009) bounds for all the treatment
estimates (i.e., trimming the left/right tail of the distribution in Levels
and P4Pctile schools so that the proportion of test takers is the same as
the number in control schools). Standard errors, clustered at the school
level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

D.6 National Assessments

We test the effect of both interventions on the Primary School Leaving Examination
(PSLE) taken by students in grade 7. We retrieved records for all schools in Tanzania
from the National Examinations Council of Tanzania (NECTA) website (https://necta
.go.tz/psle results) and then merged them with out data using a fuzzy merge based
on the school name, region, and district. We were able to match over 80% of schools in
our data.

The PSLE is a high-stakes test for students: their progression to secondary school is
related to the results of this test. Recent reforms publicized the rankings of schools based
on the results of these tests. Overall, we do not find any impact of our treatment on PSLE
test scores, pass rates, or the number of test takers (see Table D.10).41

41We do find that test scores decrease on the SNFA examination in 2015. However, this is not consistent
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Table D.10: Effect on national assessments (Grade 7 - PSLE)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Grade 7 PSLE 2015 Grade 7 PSLE 2016 Grade 7 PSLE 2017

Pass Score Test takers Pass Score Test takers Pass Score Test takers

Levels (α1) -0.02 -0.07 6.99 0.00 -0.05 4.02 0.03 0.10 7.00
(0.04) (0.08) (6.99) (0.03) (0.07) (7.56) (0.03) (0.06) (8.76)

P4Pctile (α2) -0.04 -0.07 -4.00 -0.02 -0.03 -2.29 -0.00 0.02 0.59
(0.03) (0.08) (6.48) (0.03) (0.06) (5.75) (0.03) (0.06) (7.08)

N. of obs. 11,616 11,616 165 10,031 10,031 155 12,070 12,070 155
N. of schools 167 167 165 158 158 155 158 158 155
Mean control group 0.71 2.98 55.3 0.67 2.83 52.4 0.69 2.86 61.9
α3 = α2 − α1 -0.020 -0.0043 -11.0 -0.029 0.016 -6.32 -0.032 -0.074 -6.41
p-value (H0 : α3 = 0) 0.63 0.96 0.10 0.42 0.84 0.39 0.30 0.23 0.47

Standard errors, clustered at the school level, are in parentheses.

with our higher-quality data on grade 4 students (see Table 5). We find an increase in test takers in 2016
(insignificant) and 2017 (significant) in the Levels treatment, which could be viewed as a positive effect of
the treatment. Results available upon request.
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D.7 Classroom observations

Table D.11: Classroom observations

(1) (2) (3)
Classroom Environment Teaching Sleeping

Levels (α1) -0.030 0.077 0.0013
(0.14) (0.14) (0.044)

P4Pctile (α2) 0.12 -0.064 -0.041
(0.12) (0.14) (0.034)

N. of obs. 2,080 1,481 772
α3 = α2 − α1 .005 -.012 .13
p-value(α3 = 0) .25 .36 .27

The outcome here are index created taking the first component from a PCA
analysis of different items measured during classroom observations. The
outcome in Column 1 is an index that measures whether the classroom
’s environment is conductive to learning. It is composed of the following
measures: whether student’s work is display on the walls, whether there
are charts on the walls, and the number of charts in the wall. The outcome
in Column 2 is an index that measures teacher’s behavior during class time.
It is composed of the following measures: whether the teacher threatens
students, and whether the teacher hits students. Finally, the outcome in
Column 3 shows whether any students were sleeping during class time.
Standard errors, clustered at the school level, are in parentheses. ∗ p < 0.10,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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D.8 Additional Heterogeneity in Treatment Effects

Figure D.1: Math — non-incentivized
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Figure D.2: Math — incentivized
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Figure D.3: Kiswahili — non-incentivized
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Figure D.4: Kiswahili — incentivized
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Table D.12: Heterogeneity by student characteristics

(1) (2) (3) (4) (5) (6)
Math Swahili

Male Age Test(Yr0) Male Age Test(Yr0)

Levels*Covariate (α2) -0.022 0.014 0.034 0.017 -0.031∗ 0.015
(0.037) (0.014) (0.032) (0.051) (0.018) (0.029)

P4Pctile*Covariate (α1) 0.020 0.0076 0.068∗∗∗ -0.024 0.0066 0.030
(0.041) (0.015) (0.026) (0.051) (0.019) (0.030)

N. of obs. 9,650 9,650 9,650 9,650 9,650 9,650
α3 = α2 − α1 .042 -.006 .035 -.041 .038∗ .015
p-value (H0 : α3 = 0) .3 .69 .23 .42 .05 .62

Each column interacts the treatment effect with different student characteristics: sex
(columns 1, 4, and 7), age (columns 2, 5, and 8), and baseline test scores (columns
3, 6, and 9). Standard errors, clustered at the school level, are in parentheses. ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table D.13: Heterogeneity by school characteristics

(1) (2) (3) (4) (5) (6)
Math Swahili

Facilities PTR Fraction Weak Facilities PTR Fraction Weak

Levels*Covariate (α2) 0.035 -0.00031 -0.22 -0.023 -0.0010 -0.13
(0.022) (0.0015) (0.17) (0.026) (0.0014) (0.17)

P4Pctile*Covariate (α1) -0.022 -0.0026∗∗ -0.24 -0.028 -0.0017 -0.28∗

(0.026) (0.0011) (0.15) (0.030) (0.0014) (0.17)

N. of obs. 9,650 9,650 9,650 9,650 9,650 9,650
α3 = α2 − α1 -.057∗∗ -.0023 -.025 -.0048 -.00069 -.16
p-value (H0 : α3 = 0) .018 .18 .87 .87 .7 .37

Each column interacts the treatment effect with different school characteristics: a facilities index
(columns 1, 4, and 7), the pupil-teacher ratio (columns 2, 5, and 8), and the fraction of students that
are below the median student in the country (columns 3, 6, and 9). Standard errors, clustered at the
school level, are in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

D.9 Teacher Understanding

Since there is no comparable test for control group teachers, we cannot interact the treat-
ment variable with teacher understanding. Instead, we split each treatment group into
a high (above average) understanding group and a low (below average) understand-
ing group, and estimate the treatment effects for these sub-treatment groups relative
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to the entire control group (i.e., the control group is the omitted category). Within
each treatment arm, we test for differences between the high-understanding and low-
understanding groups to determine if better understanding leads to better student test
scores. As some teachers were not present when we conducted the teacher comprehen-
sion tests, we created an additional group for teachers with no test in both treatments.

Table D.14: Heterogeneity by teacher’s understanding

(1) (2) (3)

Math Swahili English

Levels (high-understanding) 0.032 0.075∗ 0.052
(0.044) (0.042) (0.060)

Levels (low-understanding) 0.073∗ 0.083∗∗ 0.074
(0.042) (0.037) (0.049)

P4Pctile (high-understanding) 0.0093 0.029 0.12∗∗

(0.035) (0.036) (0.051)

P4Pctile (low-understanding) 0.052 -0.0059 0.032
(0.043) (0.041) (0.052)

N. of obs. 9,650 9,650 6,314
Levels:High-Low -.042 -.0073 -.022
p-value (Levels:High-Low=0) .28 .84 .73
P4Pctile:High-Low -.042 .035 .089
p-value (P4Pctile:High-Low=0) .31 .41 .15
P4Pctile:High-Levels:High -.022 -.047 .069
p-value (P4Pctile:High-Levels:High=0) .63 .28 .3
P4Pctile:Low-Levels:Low -.022 -.088 -.042
p-value (P4Pctile:Low-Levels:Low=0) .67 .058 .5

The outcome variables are student test scores in math (Column 1),
Kiswahili (Column 2), and English (Column 3). Each regression
pools the data for both follow-ups. Teachers are classified as above
or below the median in each follow-up in treatment schools. Since
we do not have “understanding” questions for teachers in control
schools, all teachers in the control group are compared for teachers
above and below the median in treatment schools. Standard errors,
clustered at the school level, are in parentheses. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01
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