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A.1 Details on the Capitalization Approach

A.1.1 Details on the IRS SOI

The IRS Statistics of Income (SOI) reports tax return variables aggregated to the zip code for
2004-2015 (and selected years before) and to the county for 1989-2015. Beginning in 2010 for the
county files and in all available years for zip code files, the data aggregate all returns filed by the
end of December of the filing year. Prior to 2010, the county files aggregate returns filed by the
end of September of the filing year, corresponding to about 95% to 98% of all returns filed in that
year. In particular, the county files before 2010 exclude some taxpayers who file form 4868, which
allows a six month extension of the filing deadline to October 15 of the filing year.1 To obtain a
consistent panel, we first convert the zip code files to a county basis using the HUD USPS crosswalk
file. We then implement the following algorithm: (i) for 2010 onward, use the county files; (ii) for
2004-2009, use the zip code files aggregated to the county level and adjusted by the ratio of 2010
dividends in the county file to 2010 dividends in the zip code aggregated file; (iii) for 1989-2003, use
the county file adjusted by the ratio of 2004 dividends as just calculated to 2004 dividends in the
county files. We implement the same adjustment for labor income. We exclude from the baseline
sample 74 counties in which the ratio of dividend income from the zip code files to dividend income
in the county files exceeds 2 between 2004 and 2009, as the importance of late filers in these counties
makes the extrapolation procedure less reliable for the period before 2004.2

1See https://web.archive.org/web/20171019013107/https://www.irs.gov/
statistics/soi-tax-stats-county-income-data-users-guide-and-record-layouts
and https://web.archive.org/web/20190111012726/https://www.irs.gov/statistics/
soi-tax-stats-individual-income-tax-statistics-zip-code-data-soi for data and docu-
mentation pertaining to the county and zip code files, respectively. For additional informa-
tion on the timing of tax filings, see https://web.archive.org/web/20190211151353/https:
//www.irs.gov/newsroom/2019-and-prior-year-filing-season-statistics .

2Anecdotally, the filing extension option is primarily used by high-income taxpayers who may need to
wait for additional information past the April 15 deadline (see e.g. Dale, Arden, “Late Tax Returns Common
for the Wealthy,” Wall Street Journal, March 29, 2013). Consistent with this, we find much less discrepancy
in labor income than dividend income reported in the zip code and county files before 2010. Our results
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Finally, since our benchmark analysis is at the quarterly frequency and the SOI income data is
yearly data, we linearly interpolate the SOI data to obtain a quarterly series. Because the cross-
sectional income distribution is persistent, measurement error arising from this procedure should
be small.

A.1.2 Dividend yield adjustment

This section describes the county-specific dividend yield adjustment used in the capitalization of
taxable county dividends. We start with the Barber and Odean (2000) data set, which contains a
random sample of accounts at a discount brokerage, observed over the period 1991-96. The data
contain monthly security-level information on financial assets held in the selected accounts. Graham
and Kumar (2006) compare these data with the 1992 and 1995 waves of the SCF and show that the
stock holdings of investors in the brokerage data are fairly representative of the overall population
of retail investors.

We keep taxable individual and jointly owned accounts and remove margin accounts. We merge
the monthly account positions data with the monthly CRSP stock price data and CRSP mutual
funds data obtained fromWRDS. Since our merge is based on CUSIP codes and mutual fund CUSIP
codes are sometimes missing, we use a Fund Name-CUSIP crosswalk developed by Terry Odean and
Lu Zheng. Additionally, we use an algorithm developed in Di Maggio et al. (forthcoming) based on
minimizing the smallest aggregate price distance between mutual fund prices in household portfolios
and in the CRSP fund-month data.3 We drop household-month observations for which the value of
total identified CRSP stocks and mutual funds is less than 95% of the value of the household’s equity
and mutual fund assets and also keep only identified CRSP stocks and mutual funds.4 Finally, to
be consistent with what we observe in the IRS-SOI data, we drop household-month observations
with a zero dividend yield. Such households tend to be younger, hold few securities (around two on
average), and hold only around 10% of total equity in the brokerage data.

We compute dividend yields by household and month using these data. Figure A.1 shows the
average dividend yield by age of the household head (left panel) and by stock wealth percentile
separately for different age bins (right panel), where household stock wealth is the total position
equity in all accounts. As the figure shows, dividend yields increase with age. Moreover, within age
bins, dividend yields have a weak relationship with wealth. These patterns motivate our focus on
age.

Table A.1 reports average dividend yields by age bin (weighted by wealth), separately for each
Census Region. A few features merit mention. First, dividend yield increases with age, consistent

change little if we do not exclude the 74 counties from the analysis. For example, the coefficient for total
payroll at the 7 quarter horizon changes from 2.18 to 2.27 (s.e.=0.67), and the coefficient for nontradable
payroll changes from 3.23 to 2.67 (s.e.=0.83).

3We are grateful to Marco Di Maggio, Amir Kermani, and Kaveh Majlesi for sharing their codes.
4We are able to match more than 95% of equity and mutual fund position-months. The main type of

equity assets that we cannot match are foreign stocks.
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Figure A.1: Dividend Yield by Age and Wealth
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Notes: The figures plot dividend yields by age and wealth quantile based on the Barber and Odean (2000)
data from a discount brokerage firm merged with data on CRSP stocks and mutual funds. Wealth denotes
the total position equity among all taxable accounts that a household has in the discount brokerage firm.

with the pattern shown in Figure A.1. Second, the age bin coefficients are precisely estimated and
the R2s are high. In column (5), which pools all geographic areas together, the five age bins explain
66% of the variation in dividend yield across households. Third, adding indicator variables for 10
wealth bins to the regression in column (6) has essentially no impact on the explanatory power of
the regression or on the relative age bin coefficients.5

We combine the coefficients shown in columns (1)-(4) of Table A.1 with the county-year specific
age structure from the Census Bureau and average wealth by age bin from the Survey of Consumer
Finances (interpolated between SCF waves) to construct the wealth-weighted average of the age bin
dividend yields in the county’s Census region. The resulting county-year yields account for time
series variation in a county’s age structure and in relative wealth of different age groups, but not
for changes in market dividend yields over time. Therefore, we scale these dividend yields so that
the average dividend yield in each year is equal to the dividend yield on the value-weighted CRSP
portfolio.6

We end this section with a discussion of (implied) dividend yields in the SCF and how those
compare to the dividend yield distribution in the Barber and Odean (2000) data. The SCF con-
tains information on taxable dividend income reported on tax returns together with self-reported
information on directly held stocks (and stock mutual funds). Therefore, it is tempting to use the
SCF data directly to compute dividend yields by demographic groups and use those for the divi-
dend yield adjustment or, even more directly, use the relationship between taxable dividend income
and total stock wealth in the SCF to impute total stock wealth directly from taxable dividends
rather than doing the two-step procedure that we perform here. Unfortunately, there is one key
difficulty in implementing this procedure with SCF data; in the SCF, stock wealth is reported for

5The age bin coefficients shift uniformly up by 0.37 to 0.38, reflecting the incorporation of average wealth.
6We also experimented with allowing the age-specific yields to vary with the CRSP yield, with almost no

impact on our results.
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Table A.1: Dividend Yields By Age

Region 1 Region 2 Region 3 Region 4 Pooled Pooled

(1) (2) (3) (4) (5) (6)
Right hand side variables:

Age <35 2.81∗∗ 2.21∗∗ 2.28∗∗ 2.51∗∗ 2.45∗∗ 2.83∗∗
(0.16) (0.19) (0.25) (0.18) (0.11) (0.15)

Age 35-44 2.48∗∗ 2.25∗∗ 2.43∗∗ 2.50∗∗ 2.43∗∗ 2.81∗∗
(0.11) (0.16) (0.18) (0.14) (0.08) (0.12)

Age 45-54 2.65∗∗ 2.27∗∗ 2.51∗∗ 2.50∗∗ 2.49∗∗ 2.86∗∗
(0.16) (0.09) (0.30) (0.08) (0.08) (0.13)

Age 55-64 3.00∗∗ 2.39∗∗ 2.40∗∗ 2.82∗∗ 2.69∗∗ 3.07∗∗
(0.11) (0.14) (0.20) (0.10) (0.08) (0.13)

Age 65+ 2.91∗∗ 2.73∗∗ 2.96∗∗ 3.27∗∗ 3.03∗∗ 3.40∗∗
(0.12) (0.12) (0.17) (0.11) (0.07) (0.12)

Wealth bins No No No No No Yes
R2 0.73 0.69 0.62 0.63 0.66 0.66
Individuals 1,965 1,586 2,192 3,556 9,299 9,299
Observations 73,486 60,987 83,112 133,149 350,734 350,734

Notes: The table reports the coefficients from a regression of the account dividend yield on the variables
indicated, at the account-month level. Standard errors in parentheses clustered by account. For readability,
all coefficients multiplied by 100.

the survey year (more specifically, at the time of the interview), while taxable dividend income is
based on the previous year’s tax return. This creates biases in any dividend yields computed as
the ratio of (previous year) dividend income to (current year) stock wealth. The bias is larger (in
magnitude) for participants that (dis-)save more (either actively or passively through capital gains
that the household does not respond to). Moreover, as we show in Figure A.2, a very large share
of respondent-wave observations (more than 45%) report zero dividend income and positive stock
wealth.7 A large share of those are respondents that establish direct holdings of stocks (or mutual
funds) some time between the end of the tax return year and the survey date. An analogous ex-
tensive margin adjustment may be taking place for respondents that report zero stock wealth and
positive dividend income for the previous year. In that case the implied dividend yield is infinite.

Even if one disregards these two groups and only considers respondents for which the implied
dividend yield is between zero and one, there is still substantial dispersion (and a possible bias)
in the implied dividend yields. Figure A.3 shows the median implied dividend yields and inter-
quartile ranges for 5 age groups for the 1992 and 1995 waves of the SCF and compares them against

7This is more than 2 times the account holders with zero dividend yield in the Barber and Odean (2000)
data.
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Figure A.2: SCF Implied Dividend Yield Categories
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Notes: The figure shows the distribution of implied dividend yields in the SCF based on a comparison of
the reported dividend income from tax returns against reported directly held stock market wealth.

the median dividend yields and inter-quartile ranges of (positive) dividend yields in the Barber
and Odean (2000) data. Clearly the dividend yields in Barber and Odean (2000) are much more
compressed around their median values compared to the SCF dividend yields. Moreover, the SCF
dividend yields (conditional on being between zero and one) tend to be much higher than the Barber
and Odean (2000) dividend yields.8 Given these issues, we conclude that the SCF implied dividend
yields cannot reliably be used for stock wealth imputation.

A.1.3 Non-taxable stock wealth adjustment

The SOI data exclude dividends held in non-taxable accounts (e.g. defined contribution retirement
accounts). In this section, we describe how we adjust for non-taxable stock wealth to arrive at the
stock market wealth variable we use in our empirical analysis.

We begin by plotting in Figure A.4 the distribution of household holdings of corporate equity
between taxable (directly held and non-IRA mutual fund) and non-taxable accounts using data from
the Financial Accounts of the United States. Roughly 2/3 of corporate equity owned by households
is held in taxable accounts.9

We next use data from the SCF to examine the relationship between total stock market wealth
and stock market wealth held in taxable accounts in the cross-section of U.S. households. We pool
all waves from 1992 to 2016, consistent with the sample period for our benchmark analysis. We

8This is also reflected in the mean dividend yields (not shown) in the SCF, which are substantially higher
than the medians, while in Barber and Odean (2000) the two are comparable.

9Non-taxable retirement accounts here include only defined contribution accounts and exclude equity
holdings of defined benefit plans. This definition accords with our empirical analysis since fluctuations in
the market value of assets of defined benefit plans do not directly affect the future pension income of plan
participants. The data plotted in Figure A.4 also include non-profit organizations, which hold about 10% of
directly held equity and mutual fund shares.
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Figure A.3: Dividend yield distributions by age group in the SCF and Barber and Odean
(2000) data for 1992 (left) and 1995 (right)
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Notes: Dots denote median values and bars show the inter-quartile range. The figures plot the distribution
of implied dividend yields in the SCF (for dividend yields that are in (0, 1)) and dividend yields in the Barber
and Odean (2000) data from a discount brokerage firm (for positive dividend yields) by age group for 1992
and 1995.

Figure A.4: Household Stock Market Wealth in the FAUS
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Notes: The figure reports household equity wealth as reported in the Financial Accounts of the United States.
We define stock market wealth as total equity wealth (table B.101.e line 14, code LM153064475Q) less the
market value of S-corporations (table L.223 line 31, code LM883164133Q) and similarly define directly held
stock market wealth as directly held equity wealth (table B.101.e line 15, code LM153064105Q) less the
market value of S-corporations. Taxable mutual funds are total mutual fund holdings of equity shares (table
B.101.e line 21, code LM653064155Q) less equity held in IRAs, where we compute the latter by assuming the
same equity share of IRAs as of all mutual funds, IRA mutual fund equity = IRA mutual funds at market
value (table L.227 line 16, code LM653131573Q) × total equities held in mutual funds /total value of mutual
funds (table B.101.e line 21, code LM653064155Q + table B.101.e line 12, code LM654022055Q). Non-taxable
accounts include equities held through life insurance companies (table B.101.e line 17, code LM543064153Q),
in defined contribution accounts of private pension funds (table B.101.e line 18, code LM573064175Q), federal
government retirement funds (table B.101.e line 19, code LM343064125Q), and state and local government
retirement funds (table B.101.e line 20, code LM223064213Q), and through mutual funds in IRAs.
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Table A.2: Summary Statistics (values are in 2016 dollars).

Variable Mean Std. Dev. Min Max
total stock wealth 119,402 1,144,358 0 9.87× 108

taxable stock wealth 65,428 1,001,526 0 9.84× 108

use the definition for stock-market wealth used in the Fed Bulletins.10 Following the Fed Bulletin
definition of stock-market wealth, we define taxable stock wealth as the sum of direct holdings of
stocks, stock mutual funds and other mutual funds, and 1/2 of the value of combination mutual
funds. All variables are expressed in constant 2016 dollars. Table A.2 reports summary statistics
for total stock wealth and taxable stock wealth.

Table A.3 reports the coefficients from regressions of total stock wealth on taxable stock wealth.
There is a positive constant term, indicating that nontaxable stock market wealth is more evenly
distributed than taxable wealth. The coefficient on taxable stock wealth is between 1.08 and 1.09
and the R2 is around 0.91. Therefore, total stock wealth and taxable stock wealth vary almost
one-for-one.

The high R2 from these regressions suggests that we can use the relationship between total
stock wealth, taxable stock wealth, and demographics in the SCF to account for non-taxable stock
wealth at the county level. Specifically, we again use all waves of the SCF from 1992 to 2016.
For each survey wave, we use a specification as in Column (2) of Table A.3. We then interpolate
these coefficient estimates for years in which no survey took place. Finally, we use the estimate of
(real) taxable stock wealth from capitalizing taxable dividend income and county-level demographic
information on population shares in different age bins and the college share (interpolated at yearly
frequency from the decadal census and also extrapolated past 2010) to arrive at real total stock
wealth for each county and year.

A.1.4 Non-public companies.

One remaining source of measurement error in our capitalization approach arises because dividend
income reported on form 1040 includes dividends paid by private C-corporations. Such income
accrues to owners of closely-held corporations and is highly concentrated at the top of the wealth
distribution. Figure A.5 uses data from the Financial Accounts of the United States to plot the
market value of equity issued by privately held C-corporations as a share of total equity issued
by domestic C-corporations.11 This share never exceeds 7% of total equity, indicating that as a

10The precise definition is available here: https://www.federalreserve.gov/econres/files/
bulletin.macro.txt. Stock-market wealth appears as "financial assets invested in stock".

11Since 2015, table L.223 of the Financial Accounts of the United States has reported equity issued by
domestic corporations separately by whether the corporation’s equity is publicly traded, with the series
extended back to 1996 using historical data. While obtaining market values of privately held corporations
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Table A.3: Total stock wealth and taxable stock wealth

(1) (2)

Taxable stock wealth 1.09∗∗ 1.08∗∗
(0.01) (0.01)

Age < 25 -12933.06∗∗
(1225.68)

Age 25-34 -22996.77∗∗
(1097.07)

Age 35-44 -2788.01∗
(1236.89)

Age 45-54 29412.54∗∗
(1790.46)

Age 55-64 64398.51∗∗
(2894.11)

Age 65+ 34482.50∗∗
(2164.56)

College degree 102265.11∗∗
(2869.13)

Constant 48221.15∗∗
(943.52)

R2 0.91 0.91
Observations 44,633 44,497

Notes: The table reports coefficient estimates from regressing (real) total stock wealth on (real) taxable
stock wealth, and household head demographics in the SCF using the pooled 1992-2016 waves. Robust
standard errors in parenthesis. * denotes significance at the 5% level, and ** denotes significance at the 1%
level.

practical matter dividend income from non-public C-corporations is small. Moreover, as described
in Appendix A.1 our baseline sample excludes a small number of counties with a substantial share
of dividend income reported by late filers who disproportionately own closely-held corporations.
Therefore, non-public C-corporation wealth does not appear to meaningfully affect our results.

A.1.5 Return heterogeneity

Similar to the dividend yield adjustment we also compute a county-specific stock market return. The
systematic differences in dividend yields across households with different age that are the basis for
our dividend yield adjustment in Appendix A.1.2 imply possible systematic differences in portfolio

necessarily requires some imputations (Ogden et al., 2016), we believe the results to be the best estimate of
this split available and unlikely to be too far off.
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Figure A.5: Equity of Privately Held C-Corporations
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Notes: The figure reports the market value of equity of privately held C-corporations as a share of total
(privately held plus publicly-traded) equity of domestic C-corporations as reported in the Financial Accounts
of the United States table L.223 lines 29 and 32.

return characteristics across these same age groups. For example, it is well-known that stocks with
higher dividend yields tend to be value stocks with a different return distribution than the stock
market. Specifically, those stocks tend to have market betas below one. In that case the portfolio
betas of households living in counties with predominantly older households will be lower than those
of households living in counties with predominantly younger households. In this section we first
present evidence using the Barber and Odean (2000) data set that there is indeed a systematic
(although quite small) relation between portfolio betas and age. Second, as with the dividend yield
adjustment from Appendix A.1.2 we use this relationship and county demographic information to
construct a county-specific beta and compute a county-specific stock market return.

We use the household portfolio data described in Appendix A.1.2 and construct value-weighted
portfolios by age group (for the same 5 age groups as in Appendix A.1.2).12 We then construct
monthly returns for these portfolios by computing the weighted one-month return on the underlying
CRSP assets.13 Using these monthly returns we estimate portfolio betas using the return on the
CRSP value weighted index as the return on the market portfolio and the 3-month T-Bill yield as
the risk free rate. Figure A.6 (left panel) plots the estimated portfolio betas together with a 95%
confidence intervals. As the Figure shows there is a negative (albeit small in magnitude) relationship
between beta and age with younger households having portfolios with higher beta (and beta above
one) compared to older households.

12One difference relative to the sample we use in Appendix A.1.2 is that we also include household-month
observations that have zero dividends. The reason for keeping these households in this case is that we want to
construct a county-level stock market return that will be applied to county-level stock market wealth, which
also includes the stock wealth of households that hold only non-dividend paying stocks in their portfolios.

13Household positions are recorded at the beginning of a month, so similar to Barber and Odean (2000)
we implicitly assume that each household holds the assets in their portfolio for the duration of the month.
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Figure A.6: Portfolio Beta by Age and Wealth
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Notes: The figures plot the portfolio betas by age and wealth quantile based on the Barber and Odean
(2000) data from a discount brokerage firm merged with data on CRSP stocks and mutual funds. Wealth
denotes the total position equity among all taxable accounts that a household has in the discount brokerage
firm.

We next use this relationship to construct a county-specific beta and from it a county-specific
stock market return. Specifically, as with the dividend-yield adjustment, we combine the estimated
betas shown in the left panel of Figure A.6 with the county-year specific age structure from the
Census Bureau and average wealth by age bin from the Survey of Consumer Finances (interpolated
between SCF waves) to construct the wealth-weighted average of the age bin portfolio betas for each
county and year. Finally, we scale these betas so that the average beta in each year is equal to one
(that is, we assume that on average counties hold the market portfolio). We then multiply CRSP
total stock return by these county-year specific betas to arrive at a county-specific stock-market
return.

A.2 Summary Statistics

Table A.4 reports the mean and standard deviation of the 8 quarter change in the labor market
variables. It also reports the standard deviation after removing county-specific means and state-
quarter means, with the latter being the variation used in the main analysis.

A.3 County demographic characteristics and stock wealth

To more clearly illustrate that our empirical strategy does not depend on stock wealth to labor
income being randomly assigned across counties, we correlate the (time-averaged) county level
value of stock wealth to labor income with a number of county level demographics. Specifically,
we use time-averaged data from the 1990, 2000 and 2010 US Census to compute the county level
shares of individuals 25 years and older with bachelor degree or higher, median age of the resident
population, share of retired workers receiving social security benefits, share of females, and share

10



Table A.4: Summary Statistics

Variable Source Mean SD
Within
county
SD

Within
county
and
state-
quarter
SD

Obs.

Quarterly total return on market CRSP 0.019 0.067 94
Capitalized dividends/labor income IRS SOI 2.316 1.177 0.628 0.309 269 057
Log empl., 8Q change QCEW 0.025 0.053 0.047 0.032 272 942
Log payroll, 8Q change QCEW 0.084 0.077 0.072 0.048 272 942
Log nontradable empl., 8Q change QCEW 0.031 0.069 0.064 0.054 269 774
Log nontradable payroll, 8Q change QCEW 0.081 0.089 0.084 0.064 269 774
Log tradable empl., 8Q change QCEW −0.018 0.130 0.123 0.106 258 856
Log tradable payroll, 8Q change QCEW 0.045 0.158 0.151 0.128 258 856
Notes: The table reports summary statistics. Within county standard deviation refers to the standard

deviation after removing county-specific means. Within county and state-quarter standard deviation refers
to the standard deviation after partialling out county and state-quarter fixed effects. All statistics weighted
by 2010 population.

of the resident population identifying themselves as white.14 Table A.5 reports the coefficient
estimates from population weighted regressions of stock wealth to labor income on each demographic
characteristics as well as a regression including all demographic characteristics (last column). All
regressions include state fixed effects. Unsurprisingly, the share of retired workers and share with
college degree are robustly positively related with the average stock wealth to labor income ratio in
a county. The share of females and white is negatively related with stock wealth to labor income
although the effects are smaller. Median age does not co-move with stock wealth to income after
controlling for the other demographic characteristics.

A.4 Coefficients on control variables

This appendix reproduces the baseline results in Table 1 including the coefficients on the main
control variables.

A.5 Responses by Category in the Consumer Expenditure Survey

This appendix describes our analysis of consumption responses by category using the interview
module of the Consumer Expenditure Survey (CE). The CE interviews sampled households for up
to four consecutive quarters about all expenditures over the prior three months on a detailed set

14For the college share we use the American Community Survey rather than the 2010 US Census.
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Table A.5: County demographics regressions

(1) (2) (3) (4) (5) (6)

Bachelor degree or higher (%) 0.06∗∗ 0.09∗∗
(0.01) (0.01)

Median age 0.10∗ −0.04∗
(0.04) (0.02)

Retired (%) 0.12∗∗ 0.31∗∗
(0.04) (0.03)

Female (%) 0.19∗∗ −0.06∗
(0.04) (0.03)

White (%) −0.00 −0.02∗∗
(0.00) (0.00)

Population weighted Yes Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes Yes Yes
R2 0.31 0.21 0.22 0.18 0.15 0.54
Observations 3,141 3,141 3,141 3,141 3,141 3,141

Notes: The table reports coefficients and standard errors from regressing time-averaged total stock wealth
by labor income on county demographics. Standard errors in parentheses are clustered by state. * denotes
significance at the 5% level, and ** denotes significance at the 1% level.

of categories. While the survey does not ask directly about stock holdings, in the last interview
it records information on security holdings. Dynan and Maki (2001) and Dynan (2010) use this
information and the short panel structure of the survey to separately relate consumption growth of
security holders and non-security holders to the change in the stock market. We follow the analysis
in Dynan and Maki (2001) as closely as possible and extend it by measuring the response of retail
and restaurant spending separately.15

The specification in Dynan and Maki (2001) is:

∆ lnCi,t =

3∑
j=0

βj∆ lnWt−j + Γ′Xi,t + εi,t,

where ∆ lnCi,t is the log change in consumption expenditure by household i between the second and
fifth CE interviews,16 ∆ lnWt−j is the log change in the Wilshire 5000 between the recall periods

15The Dynan and Maki (2001) sample covers the period 1983-1998. Dynan (2010) finds negligible con-
sumption responses when extending the sample through 2008, possibly reflecting the deterioration in the
quality of the CE sample in the more recent years and the difficulty in recruiting high income and high net
worth individuals to participate. Since our purpose is to compare the responses of different categories of
consumption, we restrict to periods when the data can capture an overall response.

16The first CE interview introduces the household to the survey but does not collect consumption infor-
mation. Therefore, the span between the second and fifth interviews is the longest span available.
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Table A.6: Baseline Results

All Non-traded Traded

Emp. W&S Emp. W&S Emp. W&S

(1) (2) (3) (4) (5) (6)
Right hand side variables:

Sa,t−1Ra,t−1,t 0.77∗ 2.18∗∗ 2.02∗ 3.24∗∗ −0.11 0.71
(0.36) (0.63) (0.80) (1.01) (0.64) (0.74)

Bartik predicted employment 0.86∗∗ 1.46∗∗ 0.59∗∗ 0.84∗∗ 1.66∗∗ 2.11∗∗
(0.08) (0.14) (0.10) (0.10) (0.19) (0.25)

Labor income interaction −1.11+ −2.65∗∗ 0.96 −0.92 1.70 1.92
(0.62) (0.87) (0.99) (1.19) (1.92) (2.12)

Business income interaction 1.08+ 2.53∗∗ −1.26 0.58 −1.63 −1.90
(0.61) (0.83) (0.99) (1.17) (1.89) (2.05)

Bond return interaction −0.07 −0.14 3.58+ 2.80 0.20 −0.51
(0.82) (1.39) (1.87) (2.32) (1.20) (1.81)

House price interaction −1.55 5.45 −8.33∗ 2.29 −9.91 −4.88
(3.28) (4.40) (4.14) (5.25) (6.32) (6.87)

Horizon h Q7 Q7 Q7 Q7 Q7 Q7
Pop. weighted Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes
State × time FE Yes Yes Yes Yes Yes Yes
Shock lags Yes Yes Yes Yes Yes Yes
R2 0.66 0.64 0.39 0.48 0.35 0.36
Counties 2,901 2,901 2,896 2,896 2,877 2,877
Periods 92 92 92 92 92 92
Observations 265,837 265,837 263,210 263,210 252,928 252,928

Notes: The table reports coefficients and standard errors from estimating Eq. (1) for h = 7. Columns
(1) and (2) include all covered employment and payroll; columns (3) and (4) include employment and
payroll in NAICS 44-45 (retail trade) and 72 (accommodation and food services); columns (5) and (6)
include employment and payroll in NAICS 11 (agriculture, forestry, fishing and hunting), NAICS 21 (mining,
quarrying, and oil and gas extraction), and NAICS 31-33 (manufacturing). The shock occurs in period 0
and is an increase in stock market wealth equivalent to 1% of annual labor income. For readability, the
table reports coefficients in basis points. Standard errors in parentheses and double-clustered by county and
quarter. * denotes significance at the 5% level, and ** denotes significance at the 1% level.

covered by the second and fifth interviews (j = 0) or over consecutive, non-overlapping 9 month
periods preceding the second interview (j = 1, 2, 3), and Xi,t contains monthly categorical variables
to absorb seasonal patterns in consumption, taste shifters (age, age2, family size), socioeconomic
variables (race, high school completion, college completion), labor earnings growth between the
second and fifth interviews, and year categorical variables. Thus, this specification attempts to
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Table A.7: Consumption Responses in the Consumer Expenditure Survey

Non-durable goods and services Retail and restaurants

SH Other SH Other
(1) (2) (3) (4)

Right hand side variables:

Stock return 0.369∗∗ −0.015 0.198 −0.038
(0.133) (0.048) (0.277) (0.100)

Lag 1 0.385∗ 0.074 0.519+ 0.121
(0.151) (0.053) (0.312) (0.109)

Lag 2 0.252+ 0.050 0.447 0.065
(0.134) (0.047) (0.278) (0.097)

Lag 3 0.039 0.038 0.104 0.135+

(0.103) (0.037) (0.220) (0.077)
Sum of coefficients 1.044 0.146 1.268 0.283
R2 0.02 0.01 0.02 0.01
Observations 4,086 28,329 4,026 28,376

Notes: The estimating equation is: ∆ lnCi,t =
∑3
j=0 βj∆ lnWt−j + Γ′Xi,t + εi,t, where ∆ lnCi,t is the

log change in consumption expenditure by household i between the second and fifth CE interviews in the
consumption category indicated in the table header and ∆ lnWt−j is the log change in the Wilshire 5000
between the recall periods covered by the second and fifth interviews (j = 0) or over consecutive, non-
overlapping 9 month periods preceding the second interview (j = 1, 2, 3). All regressions include controls for
calendar month and year of the final interview, age, age2, family size, race, high school completion, college
completion, and labor earnings growth between the second and fifth interviews. The sample is 1983-1998.
Columns marked SH include households with more than $10,000 of securities.

address the causal identification challenge by controlling directly for contemporaneous labor income
growth and including year categorical variables, the latter which isolate variation in recent stock
performance for households interviewed during different months of the same calendar year. Following
Mankiw and Zeldes (1991), the specification is estimated separately for households above and below
a cutoff value for total securities holdings.

Table A.7 reports the results. The left panel contains our replication of table 2 in Dynan and
Maki (2001) and Dynan (2010). We find very similar results to those papers. Notably, expenditure
on nondurable goods and services rises on impact for households categorized as stock holders and
continues to rise over the next 18 months following a positive stock return. This sluggish response
accords with the sluggish adjustment of labor market variables in our main analysis. Summing over
the contemporaneous and lag coefficients, the total elasticity of expenditure to increases in stock
market wealth is about 1. In contrast, total expenditure by non-stock holders does not increase.

The right panel replaces the consumption measure with purchases of non-durable and durable
goods from retail stores and purchases at restaurants. These categories provide the closest corre-
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spondence to all purchases made at stores in the retail or restaurant sectors.17 The cumulative
consumption responses of purchases of goods from retail stores and at restaurants are very similar
to the responses of total non-durable goods and services, albeit estimated with less precision.

Overall, these results provide support for our measure of local expenditure and of the homoth-
eticity assumption we use to structural interpret our estimates. This conclusion holds even if one
questions the causal identification of the Dynan and Maki (2001) framework, in which case one can
interpret the relative responses across categories as reflective of general demand shocks rather than
the stock market in particular.

B Model Details

In this appendix, we present the full model. In Section B.1, we describe the environment and define
the equilibrium. For completeness, we repeat the key equations shown in the main text. In Section
B.2, we provide a general characterization of equilibrium. In Section B.3, we provide a closed form
solution for a benchmark case in which areas have the same stock wealth. In Section B.4, we log-
linearize the equilibrium around the common-wealth benchmark and provide closed form solutions
for the log-linearized equilibrium with heterogeneous stock wealth. In Section B.5, we use our results
to characterize the cross-sectional effects of shocks to stock valuations. In Section B.6, we establish
the robustness of the benchmark calibration of the model that we present in the main text. In
Section B.7, we analyze the aggregate effects of shocks to stock valuations (when monetary policy
is passive) and compare the results with our earlier results on the cross-sectional effects. Finally, we
consider two extensions of the baseline model. In Section B.8, we extend the model to incorporate
uncertainty, and we show that our results are robust to obtaining the stock price fluctuations from
alternative sources such as changes in households’ risk aversion or perceived risk. In Section B.9, we
extend the model to consider more general levels for the EIS parameter and discuss how it would
affect our analysis.

B.1 Environment and Definition of Equilibrium

Basic Setup and Interpretation. There are two factors of production: capital and labor.
There is a continuum of measure one of areas (counties) denoted by subscript a. Areas are identical
except for their initial ownership of capital.

There are two periods t ∈ {0, 1}. We view period 1 as “the long run” over which wages are
flexible and all factors are mobile across the areas. In the long run, outcomes will be determined by
productivity. In contrast, period 0 corresponds to “the short run” over which wages are somewhat

17Because we include durable goods, the categories in the right panel are not a strict subset of the categories
in the left panel. We have experimented with excluding durable goods from the basket and obtain similar
results.

15



sticky and labor is not mobile. In this case, outcomes will be determined by aggregate demand.
Hence, we interpret a period in the model as corresponding to several years.

Our focus is to understand how fluctuations in stock wealth affect cross-sectional and aggregate
outcomes in the short run. To this end, we will generate endogenous changes in the price of cap-
ital in period 0 from exogenous changes to the productivity of capital in period 1. We interpret
these changes as capturing stock price fluctuations due to a “time-varying risk premium.” We vali-
date the risk premium interpretation in Section B.8, where we introduce uncertainty about capital
productivity in period 1.

Goods and Production Technologies. In every period t, there is a composite tradable good
that can be consumed everywhere. For each area a, there is also a corresponding nontradable good
that can only be produced and consumed in area a. Labor and capital are perfectly mobile across
the production technologies described below (but labor is not mobile across areas in period 0 as
we will describe later). We assume production firms are competitive and not subject to nominal
rigidities (we will assume nominal rigidities in the labor market).

The nontradable good in area a can be produced according to a standard Cobb-Douglas tech-
nology,

Y N
a,t =

(
KN
a,t/α

N
)αN (

LNa,t/
(
1− αN

))1−αN . (B.1)

Here, LNa,t,KN
a,t denotes the amount of area a labor and capital used to produce the nontradable

good. The term 1− αN captures the share of labor in the nontradable sector.
The tradable good can be produced in two ways. First, it can be produced as a composite of

tradable inputs across areas, where each input is produced according to a standard Cobb-Douglas
technology:

Y T
t =

(∫
a

(
Y T
a,t

) ε−1
ε da

) ε
ε−1

(B.2)

where Y T
a,t =

(
KT
a,t/α

T
)αT (

LTa,t/
(
1− αT

))1−αT .

Here, LTa,t,KT
a,t denotes the amount of area a labor and capital used to produce the tradable good.

The term 1−αT captures the share of labor in the tradable sector. The parameter, ε > 0, captures
the elasticity of substitution across tradable inputs. When ε > 1 (resp. ε < 1), tradable inputs are
gross substitutes (resp. gross complements).

Second, the tradable good can also be produced by another technology that uses only capital.
This technology is linear,

Ỹ T
t = D1−αT

t K̃T
t . (B.3)

Here, K̃T
t denotes the aggregate capital employed in the capital-only technology, and Ỹ T

t denotes
the tradables produced via this technology (we use the tilde notation to distinguish them from KT

t

and Y T
t ). The term, D1−αT

t , captures the capital productivity in period t. The normalizing power
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1−αT ensures that we obtain relatively simple expressions. As we will verify below, the rental rate
(and thus, the price) of capital will depend on the productivity in the capital-only sector, Dt.

Capital Supply. In each period t, capital supply is exogenous,

Kt = K ≡ 1 for each t ∈ {0, 1} . (B.4)

To simplify the notation, we normalize the exogenous capital supply to one. Capital is perfectly
mobile across areas in both periods (so its location is not important).

Financial Assets. There are two financial assets. First, there is a claim to capital (which we
view as corresponding to the stock market). We let Q0 denote the nominal cum-dividend price of
capital in period 0. Recall that the supply of capital is normalized to one and its nominal rental
rate is denoted by Rt. Thus, Q0−R0 denotes the nominal ex-dividend price at the end of period 0.

Second, there is also a risk-free asset in zero net supply. We let Rf denote the nominal gross
risk-free interest rate.

Heterogeneous Ownership of Capital. Households in different areas start with zero units
of the risk-free asset but they can differ in their endowments of capital. Specifically, we let 1 + xa,t

denote the share of aggregate capital held by investors in area a in period t. The initial shares,
{1 + xa,0}a, are exogenous and can be heterogeneous. The common-wealth benchmark corresponds
to the special case with xa,0 = 0 for each a.

Nominal Prices. We let Wa,t and PNa,t denote, respectively, the nominal wage per unit of labor
and the nominal price of the nontradable good in period t and area a. Likewise, we let Rt and P Tt
denote, respectively, the (nominal) rental rate of capital and the (nominal) price of the tradable
good in period t.

Note that our assumption that labor is mobile across areas in period 1 implies that the nominal
wage in period 1 is also the same across areas. We assume monetary policy stabilizes the nominal
long-run wage at a constant level, that is:

Wa,1 = W for each a. (B.5)

Households’ Optimization Decisions. The representative household in each area separates
its consumption and labor choices as follows. At the beginning of period 0, the household splits into
a consumer and a continuum of workers. The consumer makers consumption-saving decisions and
the workers choose labor supply. At the end of the period the household recombines and makes a
portfolio decision to allocate savings between capital (stock wealth) and the risk-free asset.18

18Without loss of generality, we allow the consumer to make the portfolio decision as well.

17



We choose to model consumption and labor decisions separately for two reasons. First, assuming
workers choose labor according to Greenwood et al. (1988) (GHH) preferences allows us to ignore
the wealth effects of labor supply. Second, we can endow consumers with standard time-separable
preferences. In addition to simplifying the subsequent expressions, this setup accords with the fact
that workers hold relatively little stock market wealth. At the same time, we sidestep some conse-
quences of GHH preferences, such as leading to unplausibly large fiscal and monetary multipliers
(Auclert and Rognlie, 2017)

Consumption-Saving and Portfolio Choice Problem. The household in area a divides
its consumption Ca,t between the tradable good, CTa,t, and the nontradable good, CNa,t, according to
the intra-period preferences:

Ca,t =
(
CNa,t/η

)η (
CTa,t/ (1− η)

)1−η . (B.6)

With this normalization, the ideal price index is given by,

Pa,t ≡
(
PNa,t

)η (
P Tt
)1−η

. (B.7)

Households can be thought of as choosing the consumption aggregator Ca,t at these prices. They
then distribute their spending optimally across the two sectors. The optimal expenditure on each
sector satisfies,

PNa,tC
N
a,t = ηPa,tCa,t and P Ta,tC

T
a,t = (1− η)Pa,tCa,t. (B.8)

The household in area a chooses how much to consume and save and how to allocate savings
across capital and the risk-free asset. The consumer’s problem can then be written as,

max
Ca,0,1+xa,1

logCa,0 + δ logCa,1 (B.9)

Pa,0Ca,0 + Sa,0 = Wa,0La,0 + (1 + xa,0)Q0,

Sa,0 = Sfa,0 + (1 + xa,1) (Q0 −R0)

Pa,1Ca,1 = WL1 + (1 + xa,1)R1 + Sfa,0R
f .

Here, 1 + xa,1 denotes the units of capital that the household purchases. This purchase costs
(1 + xa,1) (Q0 −R0) units of the consumption good in period 0. Households invest the rest of their
savings, Sfa,0 = Sa,0 − (1 + xa,1) (Q0 −R0), in the risk-free asset.

Labor Supply Problem. In period 1, the labor supply is exogenous (and constant across
areas), that is:

La,1 = L1 for each a. (B.10)

In period 0, the labor supply is endogenous. For the purpose of endogenizing the labor supply,
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we work with a GHH functional form for the intraperiod preferences between consumption and
labor that eliminates the wealth effects on the labor supply. These effects seem counterfactual for
business cycle analysis in general (Galí (2011)). In our context, they are likely to be insignificant
also because stock wealth is a relatively small fraction of total household wealth (including human
capital wealth).

Specifically, in each area the representative household consists of a continuum of workers denoted
by ν ∈ [0, 1]. The workers provide specialized labor services. They set their individual wages and
labor supply to maximize the intra-period utility function:

log

(
Ca,0 − χ

∫ 1

0

(La,0 (ν))1+ϕ

1 + ϕ
dν

)
. (B.11)

Here, Ca,0 denotes the composite of nontradable and tradable goods as in the main model and
La,0 (ν) denotes the labor supply by worker ν who specializes in providing a particular type of
labor service. The parameter, ϕ, captures the inverse Frisch elasticity of the labor supply; and the
parameter, χ, captures the disutility form labor. The intraperiod budget constraint is given by:

Pa,0Ca,0 + Sa,0 =

∫ 1

0
Wa,0 (ν)La,0 (ν) dν + (1 + xa,0)Q0. (B.12)

Here, Pa,0 denotes the ideal price index over nontradable and tradable goods.
In each area a, there is also an intermediate firm that produces the labor services in the area

by combining specific labor inputs from each worker type according to the aggregator:

La,0 =

(∫ 1

0
La,0 (ν)

εw−1
εw dν

) εw
εw−1

.

This leads to the labor demand equation:

La,0 (ν) =

(
Wa,0 (ν)

Wa,0

)−εw
La,0 (B.13)

where Wa,0 =

(∫ 1

0
Wa,0 (ν)1−εw dν

)1/(1−εw)

. (B.14)

Here, La,0 denotes the aggregate equilibrium labor provided by the intermediate firm, which is the
same as the labor supply in the main text.

In period 0, a fraction of the workers in an area, λw, reset their wages to maximize the intra-
period utility function in (B.11) subject to the labor demand equation in (B.13) and the budget
constraints in (B.12). The remaining fraction, 1− λw, have preset wages given by W (which is the
same as the long-run wage level for simplicity).

The wage level in an area is determined according to the ideal price index (B.14). This index
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also ensures: ∫ 1

0
Wa,0 (ν)La,0 (ν) dν = Wa,0La,0.

Substituting this into Eq. (B.12), we obtain the budget constraint in problem (B.9) stated earlier.

Optimal Wage Setting and the Wage Phillips Curve. First consider the flexible workers
that reset their wages in period 0. These workers optimally choose

(
W flex
a,0 , Lflexa,0

)
that satisfy:

W flex
a,0 ≡ Pa,0

εw
εw − 1

MRSa,0 (B.15)

where MRSa,0 = χ
(
Lflexa,0

)ϕ
and Lflexa,0 =

(
W flex
a,0

Wa,0

)−εw
La,0

In particular, workers set a real (inflation-adjusted) wage that is a constant markup over their
marginal rate of substitution between labor and consumption (MRS). The functional form in (B.11)

ensures that the MRS depends on the level of labor supply but not on the level of consumption.
Note that W flex

a,0 appears on both side of Eq. (B.15). Solving for the fixed point, we further
obtain:

(
W flex
a,0

)1+ϕεw
=

εw
εw − 1

χPa,0W
εwϕ
a,0 Lϕa,0. (B.16)

Next consider the sticky workers. These workers have preset wages, W , and they provide the
labor services demanded at these wages.

Next we use (B.14) to obtain an expression for the aggregate wage level:

Wa,0 =

(
λw

(
W flex
a,0

)1−εw
+ (1− λw)W

1−εw
)1/(1−εw)

=

(
λw

(
εw

εw − 1
χW εwϕ

a,0 Pa,0L
ϕ
a,0

)(1−εw)/(1+ϕεw)

+ (1− λw)W
1−εw

)1/(1−εw)

. (B.17)

Here, the first line substitutes the wages of flexible and sticky workers. The second line substitutes
the optimal wage for flexible workers from Eq. (B.16). As we show in Section B.4 below, log-
linearizing Eq. (B.17) leads to Eq. (5) in the main text. Eq. (B.17) illustrates that greater
employment in an area, La,0, creates wage pressure. The amount of pressure depends positively on
the fraction of flexible workers, λw, and negatively on the labor supply elasticity, 1/ϕ, as well as on
the elasticity of substitution across labor types, εw. An increase in the local price index, Pa,0, also
creates wage pressure.

It is also instructive to consider the special case in which wages are fully flexible, λw = 1. In
this case, all workers set the same wage, which implies W flex

a,0 = Wa,0. Using this observation Eq.
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(B.17) becomes:
Wa,0

Pa,0
=

εw
εw − 1

χLϕa,0. (B.18)

Hence, the frictionless labor supply in each area a is described by a neoclassical intratemporal
optimality condition. In particular, real wage is a constant markup over the MRS between labor
and consumption.

Market Clearing Conditions. The market clearing condition for nontradable goods and the
tradable good can be written as, respectively,

Y N
a,t = CNa,t (B.19)

Y T
t + Ỹ T

t =

∫
a
CTa,1da. (B.20)

Here, Y N
a,t, Y

T
t , Ỹ

T
t are given by Eqs. (B.1−B.3).

Labor and capital market clearing conditions for period 0 can be written as,

La,0 = LNa,0 + LTa,0 for each a (B.21)

K = 1 =

∫
a

(
KN
a,0 +KT

a,0 + K̃a,0

)
da. (B.22)

The analogous conditions for period 1 can be written as,

L1 =

∫
a

(
LNa,1 + LTa,1

)
da (B.23)

K = 1 =

∫
a

(
KN
a,1 +KT

a,1 + K̃a,1

)
da. (B.24)

Note that there is a single market clearing condition for capital because capital is mobile in either
period. Likewise, there is a single market clearing condition for labor in period 1. In contrast, there
is a separate market clearing condition in each area for labor in period 0.

Finally, the asset market clearing condition can be written as,∫
a
xa,1da = 0. (B.25)

Monetary Policy and Equilibrium. To close the model, it remains to specify how the
monetary policy sets the nominal interest rate, Rf . For most of the analysis, we assume that
the monetary policy sets Rf to ensure aggregate employment is “on average” equal to frictionless
employment.

Specifically, we define L0 as the frictionless labor supply that would obtain when all areas have
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common wealth. It is the solution to the frictionless labor supply equation [cf. (B.18)]:

W0

P0
=

εw
εw − 1

χL
ϕ
0 , (B.26)

where W0 = W0,a and P0 = P0,a denote the common wage and price level across areas. Below, we
characterize P0 in terms of W0 and the remaining parameters and provide a closed form solution
for L0. We assume monetary policy sets Rf to ensure:∫

a
La,0da = L0. (B.27)

We can then define the equilibrium as follows.

Definition 1. Given a distribution of ownership of capital, {xa,0}a (that sum to zero across areas),
an equilibrium is a collection of cross-sectional and aggregate allocations together with (nominal)
factor prices,

(
{Wa,t}a , Rt

)
, goods prices,

({
PNa,t

}
a
, P Tt

)
, the asset price, Q0, and the interest rate,

Rf , such that:
(i) Competitive firms maximize according to the production technologies described in (B.1−B.3).
(ii) Households choose their consumption and portfolios optimally [cf. problem (B.9)].
(ii) Capital supply is exogenous in both periods and given by (B.4). Labor supply and nominal

wages in period 1 are exogenous and given by Eqs. (B.10) and (B.5). Labor supply and nominal
wages in period 0 are endogenous and satisfy Eq. (B.17).

(iv) Monetary policy sets the interest rate Rf to ensure Eq. (B.27) with L0 that solves Eq.
(B.26).

(v) Goods, factors, and asset markets clear [cf. Eqs. (B.19−B.25)].

B.2 General Characterization of Equilibrium

We next provide a general characterization of equilibrium. We start by establishing the properties
on the supply side that apply in both periods. We then use these properties to characterize the
equilibrium in period 1. We then establish properties on the demand side and characterize the equi-
librium in period 0. Throughout, we focus on an equilibrium in which the capital-only technology
is used in equilibrium, K̃t ≥ 0. Later in the appendix, we will ensure this by making appropriate
parametric assumptions on Dt.

Supply Side. The price of nontradable good in an area is equal to the unit production cost [cf.
(B.1)]

PNa,t = (Wa,t)
1−αN Rα

N

t . (B.28)

22



Likewise, the price of the composite tradable good is equal to its unit production cost according to
both the standard and the linear technology [cf. (B.2) and (B.3)]

P Tt =

(∫
a

(
P Ta,t

)1−ε
da

)1/(1−ε)
= Rt/D

1−αT
t , (B.29)

where P Ta,t = (Wa,t)
1−αT Rα

T

t . (B.30)

Here, we define P Ta,t as the unit cost of producing the tradable input in area a.
Using Eq. (B.29), we also obtain an expression for the rental rate in terms of wages and the

parameter Dt,

R1−αT
t = D1−αT

t

(∫
a
W

(1−αT )(1−ε)
a,t da

)1/(1−ε)
. (B.31)

Hence, the rental rate of capital is determined by the productivity of the linear technology together
with wages in each area (that determine the price of the tradable good). This also implies that,
given the wages in each area, we can uniquely calculate all other prices. The following lemma
formalizes these results, and characterizes the prices when wages are equated across areas.

Lemma 1. Given a collection of strictly positive nominal wages, {Wa,t}a and capital productivity,
Dt, Eq. (B.31) uniquely determines the rental rate of capital, Rt. Eqs. (B.28−B.30) determine
the remaining prices, PNa,t, P Ta,t, P Tt , and Eq. (B.7) determines the price of the final good in terms
of these prices, Pa,t =

(
PNa,t

)η (
P Tt
)1−η. If Wa,t ≡Wt for each a, then

Rt = DtWt

PNa,t = DαN

t Wt

P Tt = P Ta,t = DαT

t Wt

Pa,t = Dα
t Wt.

Here, recall that α = ηαN + (1− η)αT denotes the weighted-average share of capital across the
two sectors [cf. (7)].

We next characterize the demand for labor in the nontradable and tradable sectors. Note that
the Cobb-Douglas production function in (B.1) implies,

Wa,tL
N
a,t =

(
1− αN

)
PNa,tY

N
a,t, (B.32)

where PNa,tY
N
a,t = PNa,tC

N
a,t.

Here, the second line substitutes the market clearing condition (B.19). Hence, the demand for
nontradable labor in an area is determined by the demand for nontradable goods in the area.

Likewise, the Cobb-Douglas production function in (B.2) implies,

Wa,tL
T
a,t =

(
1− αT

)
P Ta,tY

T
a,t.
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That is, the demand for tradable labor in an area is determined by the demand for tradable inputs
from the area. To characterize this further, note that the CES production function in (B.2) implies,

P Ta,tY
T
a,t =

(
P Ta,t

P Tt

)1−ε

P Tt Y
T
t .

So the demand for tradable inputs in an area depends on the demand for the tradable good in
the aggregate (that uses the standard technology) as well as the local unit cost. Combining these
expressions, and using Eq. (B.20), we further obtain,

Wa,tL
T
a,t =

(
1− αT

)(P Ta,t
P Tt

)1−ε

P Tt Y
T
t , (B.33)

where P Tt Y
T
t =

∫
a
P Tt C

T
a,tda− P Tt Ỹ T

t and P Tt Ỹ
T
t = RtK̃

T
t .

Here, the second line captures that the demand for tradables that uses the standard technology is
determined by the total demand for tradables net of the production via the capital-only technology.
The following lemma summarizes this discussion. It also characterizes Eq. (B.33) further by solving
for the amount of production in the tradable sector via the capital-only technology, P Tt Ỹ T

t = RtK̃
T
t .

Lemma 2. The demand for nontradable labor is given by Eq. (B.32). The demand for tradable
labor is given by Eq. (B.33). In equilibrium, the amount of capital employed in the capital-only
technology satisfies,

RtK̃
T
t =

1− α
1− αT

Rt −
α

1− αT

∫
a
Wa,tLa,tda. (B.34)

Therefore, Eq. (B.33) can be further solved as,

Wa,tL
T
a,t =

(
P Ta,t

P Tt

)1−ε [(
1− αT

) ∫
a
P Tt C

T
a,tda− (1− α)Rt + α

∫
a
Wa,tLa,tda

]
. (B.35)

Proof. To establish Eq. (B.35), note that the analogue of Eqs. (B.32) and (B.33) also apply for
capital. In particular, after aggregating across areas, we have,

Rt

∫
a
KN
a,tda = αN

∫
a
PNa,tC

N
a,tda

Rt

∫
a
KT
a,tda = αT

(∫
a
P Tt C

T
a,tda−RtK̃T

t

)
.

Here, the second line uses P Tt =
(∫

a

(
P Ta,t

)1−ε
da
)1/(1−ε)

. Adding these equations, and using the
market clearing condition for capital in (B.22) and (B.24), we obtain,

Rt

(
1− K̃T

t

)
= αN

∫
a
PNa,tC

N
a,tda+ αT

(∫
a
P Tt C

T
a,tda−RtK̃T

t

)
.

24



Using Eq. (B.8), we can express the right hand side in terms of aggregate consumption expenditure,

Rt

(
1− K̃T

t

)
= α

∫
a
Pa,tCa,tda− αTRtK̃T

t , (B.36)

where recall that α = αNη + αT (1− η) [cf. (7)].
Next note that, in equilibrium, aggregate consumption expenditure is equal to aggregate income,∫

a
Pa,tCa,tda =

∫
a
Wa,tLa,tda+Rt.

Substituting this into Eq. (B.36), we solve for the production of tradables via capital-only technol-
ogy as,

RtK̃
T
t =

1− α
1− αT

Rt −
α

1− αT

∫
a
Wa,tLa,tda.

This establishes Eq. (B.34). Substituting this expression into Eq. (B.33), we obtain Eq. (B.35),
completing the proof.

Equilibrium in Period 1 (Long Run). Our analysis so far enables us to characterize the
equilibrium in period 1. Since labor is mobile across areas, the wages are equated across areas,
Wa,1 ≡W for each a. Then, using Lemma 1, we obtain,

R1 = D1W . (B.37)

Thus, the nominal rental rate of capital is determined by the productivity of capital, D1, together
with the the long-run nominal wage level, W .

We can also explicitly solve for the aggregate consumption in nontradables and tradables, as
well as the allocation of factors to these sectors. We skip these steps since they are not necessary
for our analysis.

Average Labor Supply in Period 0 (Short Run). We can also utilize the analysis so far
to solve Eq. (B.26). Recall that this equation corresponds to the frictionless labor supply when all
areas have common stock wealth. It describes the average labor supply L0 that monetary policy
targets with an arbitrary distribution of stock wealth [cf. (B.38)].

When areas have common wealth, wages are equated across areas, Wa,0 = W0 for each a. Using
Lemma 1, we also obtain P0 = Dα

0W0. Substituting these expressions into (B.26), we obtain:

W0

P0
=

1

Dα
0

=
εw

εw − 1
χL

ϕ
0 . (B.38)

Note that, given the other parameters, there is a unique solution to Eq. (B.38) that describes the
frictionless labor supply L0. We next turn to the demand side and characterize the rest of the
equilibrium in period 0.
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Asset Prices in Period 0 (Short Run). Next consider households’ portfolio decision in
period 0. Since there is no risk in capital (for simplicity), problem (B.9) implies households take a
non-zero position on capital if and only if its price satisfies,

Q0 = R0 +
R1

Rf

= R0 +
D1W

Rf
. (B.39)

Here, the second line substitutes for the future rental rate of capital from Eq. (B.37). Hence, a
standard asset pricing condition applies to capital. In particular, households’ stock wealth depends
on (among other things) the productivity of capital and the interest rate, Rf .

Demand Side in Period 0 (Short Run). We next consider the households’ consumption-
savings decision in period 0. We define the households’ human capital wealth in an area as,

Ha,0 = Wa,0La,0 +
WL1

Rf
. (B.40)

We can then rewrite the households’ budget constraints in (B.9) as a lifetime budget constraint,

Pa,0Ca,0 + Pa,1Ca,1 = Ha,0 + (1 + xa,0)Q0.

Combining this with log utility, we obtain the optimality condition,

Pa,0Ca,0 =
1

1 + δ
(Ha,0 + (1 + xa,0)Q0) . (B.41)

That is, households spend a constant fraction of their lifetime wealth, where the latter is a com-
bination of their human capital and stock wealth. Combining this with Eq. (B.8), we further
obtain,

PNa,0C
N
a,0 =

η

1 + δ
(Ha,0 + (1 + xa,0)Q0) , (B.42)

P T0 C
T
a,0 =

1− η
1 + δ

(Ha,0 + (1 + xa,0)Q0) . (B.43)

We next combine Eq. (B.42) with Eq. (B.32) from Lemma 2 to obtain,

Wa,0L
N
a,0 =

(
1− αN

)
η

1 + δ
(Ha,0 + (1 + xa,0)Q0) . (B.44)

Thus, nontradable labor demand is determined by the local nontradable demand, which is equal
to local wealth multiplied by the share of wealth spent (1/ (1 + δ)) multiplied by the share of
nontradables (η) multiplied by the share of labor in the nontradable sector (1− αN ).
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Likewise, we combine Eq. (B.43) with Eq. (B.35) from Lemma 2 to obtain,

Wa,0L
T
a,0 =

(
P Ta,0

P T0

)1−ε{(
1− αT

)
(1− η)

1 + δ
(H0 +Q0)− (1− α)R0 + α

∫
a
Wa,0La,0da

}
. (B.45)

Here, we define the aggregate human capital wealth as, H0 =
∫
aHa,0da. Hence, tradable labor

demand is determined by aggregate demand for the tradable good, which depends on the aggregate
wealth and similar coefficients as above.

After summing Eqs. (B.44) and (B.45), we obtain an expression for the total labor demand in
an area as follows,

Wa,0La,0 =

(
1− αN

)
η

1 + δ
(Ha,0 + (1 + xa,0)Q0) (B.46)

+

(
P Ta,0

P T0

)1−ε{(
1− αT

)
(1− η)

1 + δ
(H0 +Q0)− (1− α)R0 + α

∫
a
Wa,0La,0da

}
.

After substituting Ha,0 from Eq. (B.40), we can also write the labor demand equation as follows,

Wa,0La,0 =

(
1− αN

)
η

1 + δ

(
Wa,0La,0 +

WL1

Rf
+ (1 + xa,0)Q0

)
(B.47)

+

(
P Ta,0

P T0

)1−ε{(
1− αT

)
(1− η)

1 + δ

(∫
a
Wa,0La,0da+

WL1

Rf
+Q0

)
− (1− α)R0 + α

∫
a
Wa,0La,0da

}
.

The first line illustrates the local labor demand due to local spending on the nontradable good. The
second line illustrates the local labor demand due to aggregate spending on the tradable good.

Next recall from Lemma 1 that the prices, P Ta,0, P T0 , R0 are implicit functions of wages, {Wa,0}a.
Therefore, Eq. (B.47) is a collection of |I| equations in 2 |I| + 1 unknowns, {La,0,Wa,0}a∈I and
Rf . Recall also that we have Eq. (B.17) that relates wages to the labor and the price level in each
area. This provides |I| additional equations in {La,0,Wa,0}a∈I . The monetary policy rule in (B.38)

provides the remaining equation, where L0 is given by Eq. (B.38). The equilibrium is characterized
as the solution to these 2 |I|+ 1 equations.

B.3 Benchmark Equilibrium with Common Stock Wealth

We next characterize the equilibrium further in special cases of interest. In this section, we focus on
a benchmark case in which areas have common wealth, xa,0 = 0 for each a, and provide a closed form
solution. In the next section, we log-linearize the equilibrium around this benchmark and provide
a closed-form solution for the log-linearized equilibrium. Throughout, we assume the productivity
in the capital-only technology satisfies:

Assumption D. D0 = α
1−αL0 and D1 ≥ α

1−αL1.
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To understand the role of this assumption, note that the common-wealth benchmark features
identical wages across areas as well as identical and frictionless employment (in either period),
Wa,t = Wt and La,t = Lt. Using this observation, together with Lemmas 1 and 2, we obtain
DtK̃

T
t = 1−α

1−αTDt − α
1−αT Lt. Therefore, the inequality Dt ≥ α

1−αLt ensures that firms use the
capital-only technology in equilibrium, K̃T

t ≥ 0. In period 0, we assume that the inequality holds
as equality, which implies that firms are indifferent to use this technology and, moreover, K̃T

0 = 0.
Thus, Assumption D ensures that the production in period 0 is homothetic across sectors despite the
presence of the capital-only technology in the tradable sector—this homotheticity will be important
for some of our results. This assumption also simplifies the expressions, e.g., it ensures that the
share of labor is equal to its sector-weighted average share in the Cobb-Douglas technologies, 1−α.

Recall also that L0 is endogenous and corresponds to the solution to Eq. (B.38). Given the other
parameters, there is a unique level of D0, L0 that satisfy Assumption D along with this equation.

To characterize the equilibrium in period 0 further, note that the areas are symmetric. Therefore,
we drop the area subscript and denote the allocations with, W0, P0, L0, R0, H0.

Substituting common wages, prices, and labor into Eq. (B.17) and using Eq. (B.26), we further
obtain W0 = W flex

0 = W . Intuitively, since monetary policy targets the frictionless labor supply,
the flexible-wage members of the household set the same wage level as the sticky-wage members.
Therefore, the equilibrium wage level is the same as the sticky wage level, W (which we take as
equal to the long-run wage level). Using Lemma 1, we also obtain, R0 = D0W and P0 = Dα

0W .
Substituting these observations into the labor demand Eq. (B.46), we obtain,

WL0 =
1− α
1 + δ

(H0 +Q0)− (1− α)D0W + αWL0.

After rearranging terms, we obtain,

WL0 =
1

1 + δ
(H0 +Q0)−D0W .

Rearranging further, we obtain,

(H0 +Q0) /W = (1 + δ)
(
L0 +D0

)
. (B.48)

This expression says that the aggregate wealth (in real terms) must be a constant multiple of the
supply-determined output level.

Next note that, after substituting the wages and the rental rate into Eqs. (B.40) and (B.39),
human capital and stock wealth are given by, respectively,

H0/W = L0 +
L1

Rf,∗
, (B.49)

Q0/W = D0 +
D1

Rf,∗
. (B.50)
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Combining the last three expressions, we can solve for “rstar” as,

Rf,∗ =
1

δ

L1 +D1

L0 +D0

. (B.51)

Intuitively, monetary policy adjusts the interest rate (“rstar”) so that aggregate wealth is at an
appropriate level to ensure the implied amount of spending clears the goods market at the supply-
determined output level. As expected, greater impatience (low δ) or greater expected growth of
capital income (high D1 relative to D0) or expected growth of labor income (high L1 relative to L0)
translates into a greater interest rate in equilibrium. We can also solve for the equilibrium levels of
human capital and stock wealth as,

H0/W = L0 + δ
(
L0 +D0

) L1

L1 +D1

(B.52)

Q0/W = D0 + δ
(
L0 +D0

) D1

L1 +D1

(B.53)

These expressions are intuitive. For instance, an increase in D1 increases stock prices as well as
the risk-free rate, and it leaves total wealth unchanged. Intuitively, an increase in D1 exerts upward
pressure on aggregate wealth and increases aggregate demand. The interest rate increases to ensure
output is at its supply determined level. This mitigates the rise in the stock price somewhat but it
does not completely undo it, since some of the interest rate response is absorbed by human capital
wealth. (The last point is the difference from Caballero and Simsek (forthcoming): here, “time-
varying risk premium” translates into actual price movements because we have two different types
of wealth and the “risk premium” varies only for one type of wealth.)

Next consider the determination of tradable and nontradable employment. Substituting Wa,0 =

W and xa,0 = 0 into Eqs. (B.44) and (B.45), we solve for aggregate nontradable and tradable
employment as, respectively,

LN0 =

(
1− αN

)
η

1 + δ
(H0 +Q0) /W

LT0 =

(
1− αT

)
(1− η)

1 + δ
(H0 +Q0) /W − (1− α)D0 + αL0.

Combining this with Eq. (B.48), we further obtain,

LN0 =
(
1− αN

)
η
(
L0 +D0

)
LT0 =

(
1− αT

)
(1− η)

(
L0 +D0

)
− (1− α)D0 + αL0

Finally, substituting D0 = α
1−αL0 from Assumption D, we can further simplify these expressions as
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follows,

LN0 =
1− αN

1− α
ηL0, (B.54)

LT0 =
1− αT

1− α
(1− η)L0.

Hence, the labor employed in the nontradable and tradable sectors is determined by the share of
the corresponding good in household spending, with an adjustment for the differences in the share
of labor across the two sectors.

Proposition 1. Consider the model with Assumption D when areas have common stock wealth,
xa,0 = 0 for each a. In equilibrium, all areas have identical allocations and prices. In period 0, labor
is equal to its frictionless level, L0 = L0, that solves Eq. (B.38), and nominal wages and prices
are given by W0 = W and P0 = Dα

0W . The nominal interest rate is given by Eq. (B.51); human
capital and stock wealth are given by Eqs. (B.52) and (B.53); the shares of labor employed in the
nontradable and tradable sectors is given by Eq. (B.54). In particular, an increase in D1 decreases
increases the interest rate and the price of capital but do not affect the labor market outcomes in
period 0.

B.4 Log-linearized Equilibrium with Heterogeneous Stock Wealth

We next consider the case with a more general distribution of stock wealth, {xa,0}a, that satisfies∫
a xa,0da = 0. In this case, we log-linearize the equilibrium conditions around the common-wealth
benchmark (for a fixed level of D1), and we characterize the log-linearized equilibrium. To this
end, we define the log-deviations of the local equilibrium variables around the common-wealth
benchmark: y = log

(
Y/Y b

)
, where Y ∈

{
La,0, L

N
a,0, L

T
a,0,Wa,0, Pa,0, P

T
a,0, Ha,0

}
a
. We also define the

log-deviations of the endogenous aggregate variables: y = log
(
Y/Y b

)
, where Y ∈

{
P Tt , Rt, Qt, R

f
}
.

The following lemma simplifies the analysis (proof omitted).

Lemma 3. Consider the log-linearized equilibrium conditions around the common-wealth benchmark.
The solution to these equations satisfies

∫
a la,0da =

∫
awa,0da = 0 and pTt = rt = q0 = rf = 0. In

particular, the log-linearized equilibrium outcomes for the aggregate variables are the same as their
counterparts in the common-wealth benchmark.

We next log-linearize the equilibrium conditions and characterize the log-linearized equilibrium
outcomes for each area a. We start by Eqs. (B.28) , (B.30) and (B.7) that characterize the other
prices in terms of nominal wages in an area. Log-linearizing Eqs. (B.28) and (B.30) we obtain,

pNa,0 =
(
1− αN

)
wa,0 (B.55)

pTa,0 =
(
1− αT

)
wa,0.
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Log-linearizing Eq. (B.7), we further obtain:

pa,0 = ηpNa,0 = η
(
1− αN

)
wa,0. (B.56)

Next, we log-linearize the labor supply equation (B.17) to obtain:

wa,0 =
λw

1 + ϕεw
(pa,0 + ϕεwwa,0 + ϕla,0) .

After rearranging terms and simplifying, we obtain Eq. (5) from the main text:

wa,0 = λ (pa,0 + ϕla,0) , where λ =
λw

1 + (1− λw)ϕεw
. (B.57)

Note that we derive the wage flexibility parameter, λ, in terms of the more structural parameters,
λw, ϕ, εw. As expected, wage flexibility is greater when a greater fraction of members adjust wages
(greater λw), labor supply is more inelastic (greater ϕ), labor types are less substitutable (smaller
εw).

Note also that, combining Eqs. (B.56) and (B.57), we obtain the simplified labor supply equa-
tion:

wa,0 = κla,0, where κ =
λϕ

1− λη (1− αN )
. (B.58)

As expected, the wage adjustment parameter, κ, depends on the wage flexibility parameter, λ, and
the inverse elasticity of the labor supply, ϕ. It also depends on the share of nontradable sector and
the share of labor in the nontradable sector, η, 1 − αN . These parameters capture the extent to
which a change in local wages translate into local inflation, which creates further wage pressure.

Next, we log-linearize the labor demand equation (B.47) to obtain,

(wa,0 + la,0)WL0 =

(
1− αN

)
η

1 + δ

(
(wa,0 + la,0)WL0 + xa,0Q0

)
(B.59)

− (ε− 1)
(
1− αT

)
wa,0WLT0 .

Here, the second line substitutes pTa,0 =
(
1− αT

)
wa,0 from Eq. (B.55). It also observes that the

term in the set brackets in (B.47) is common across areas and is equal to WLT0 at the common-
wealth benchmark (the aggregate expendiure on tradable labor).

After rearranging terms, we further obtain the simplified labor demand equation:

(wa,0 + la,0)WL0 = M

((
1− αN

)
η

1 + δ
xa,0Q0 − (ε− 1)

(
1− αT

)
wa,0WLT0

)
, (B.60)

whereM =
1

1− (1− αN ) η/ (1 + δ)

Here, we defined the parameter,M, which captures the local Keynesian multiplier effects.
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For each area a, Eqs. (B.60) and (B.58) represent 2 equations in 2 unknowns, (wa,0, la,0). Hence,
these equations characterize the local labor market outcomes in the log-linearized equilibrium.

Solving these equations, we also obtain the following closed-form characterization,

wa,0 + la,0 =
1 + κ

1 + κζ
M
(
1− αN

)
η

1 + δ

xa,0Q0

WL0

(B.61)

la,0 =
1

1 + κ
(wa,0 + la,0) (B.62)

wa,0 =
κ

1 + κ
(wa,0 + la,0) , (B.63)

where ζ = 1 + (ε− 1)
(
1− αT

) LT0
L0

M

= 1 + (ε− 1)

(
1− αT

)2
1− α

(1− η)M.

Here, the last line defines the parameter, ζ, and the last line substitutes LT0
L0

= 1 − η [cf. Eq.
(B.54)]. Eq. (B.61) illustrates that the local spending on nontradables affects the local labor bill.
Eqs. (B.62) and (B.63) illustrate that this also affects employment and wages according to the
wage flexibility parameter, κ.

The term, 1+κ
1+κζ , in Eq. (B.61) captures the effect that works through exports. In particular,

an increase in local spending increases local wages, which generates an adjustment of local exports.
As expected, this adjustment is stronger when wages are more flexible (higher κ). The adjustment
is also stronger when tradable inputs are more substitutable across regions (higher ε, which leads
to higher ζ). In fact, when tradable inputs are gross substitutes (ε > 1, which leads to ζ > 1),
the export adjustment dampens the direct spending effect on the labor bill. When tradable inputs
are gross complements (ε < 1, which leads to ζ < 1), the export adjustment amplifies the direct
spending effect.

Finally, consider the effect on local labor employed in nontradable and tradable sectors. First
consider the tradable sector. Log-linearizing Eq. (B.45) and following the same steps that we use
in deriving the second line in (B.59), we obtain

wa,0 + lTa,0 = − (ε− 1)
(
1− αT

)
wa,0

= − (ε− 1)
(
1− αT

) κ

1 + κζ
M
(
1− αN

)
η

1 + δ

xa,0Q0

WL0

. (B.64)

Here, the second line uses Eqs. (B.63) and (B.61). These expressions illustrate that the export
adjustment described above affects the tradable labor bill. While the effect of stock wealth on the
tradable labor bill is ambiguous (as it depends on whether ε > 1 or ε < 1), we show that the effect
on tradable employment is always (weakly) negative, dlTa,0/dxa,0 ≤ 0. Intuitively, the increase in
local wages always generate some substitution of labor away from the area. On the other hand,
labor bill can increase or decrease depending on the strength of the income effect relative to this
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substitution effect.
Next consider the nontradable sector. Log-linearizing Eq. (B.47) (after substituting for Ha,0

from Eq. (B.40)), and simplifying the expression as before, we obtain an expression for the labor
bill in the nontradable sector,

wa,0 + lNa,0 =
1

WL
N
0

(
1− αN

)
η

1 + δ

(
(wa,0 + la,0)WL0 + xa,0Q0

)
=

1

WL
N
0

(
1− αN

)
η

1 + δ

((
wa,0 + lNa,0

)
WL

N
0 +

(
wa,0 + lTa,0

)
WL

T
0 + xa,0Q0

)
=

1

WL
N
0

M
(
1− αN

)
η

1 + δ

((
wa,0 + lTa,0

)
WL

T
0 + xa,0Q0

)
=

1
1−αN
1−α ηWL0

M
(
1− αN

)
η

1 + δ

((
wa,0 + lTa,0

) 1− αT

1− α
(1− η)WL0 + xa,0Q0

)
= M 1

1 + δ

(
(1− α)

xa,0Q0

WL0

+
(
1− αT

)
(1− η)

(
wa,0 + lTa,0

))
(B.65)

Here, the second line separates the expression for the total labor bill into the labor bill for nontrad-
able and tradable sectors. The third line accounts for the multiplier effects through the nontradable
labor bill. The fourth line uses Eq. (B.54) to substitute for LN0 /L0 and L

T
0 /L0. The last line

simplifies and rearranges terms.
Eq. (B.65) illustrates that greater stock wealth affects the nontradable labor bill due to a direct

and an indirect effect. The direct effect is positive as it is driven by the impact of greater local
wealth on local spending. There is also an indirect effect due to the impact of the stock wealth on the
tradable labor bill (which in turn affects local labor income). The indirect effect has an ambiguous
sign because stock wealth can decrease or increase the tradable labor bill depending on ε (cf. Eq.
(B.64)). Nonetheless, we show that the direct effect always dominates. Specifically, regardless of
ε, we have d

(
wa,0 + lNa,0

)
/dxa,0 > 0, dlNa,0/dxa,0 > 0: that is, greater stock wealth increases the

nontradable labor bill as well as nontradable employment. The following result summarizes this
discussion.

Proposition 2. Consider the model with Assumption D when areas have an arbitrary distribution
of stock wealth, {xa,0}a, that satisfies

∫
a xa,0da = 0. In the log-linearized equilibrium, local labor and

wages in a given area,(la,0, wa,0), are characterized as the solution to Eqs. (B.60) and (B.58). The
solution is given by Eqs. (B.62) and (B.63). Local labor bill in nontradables and tradable sectors are
given by Eqs. (B.64) and (B.65). In particular, local employment and wages satisfy the following
comparative statics with respect to stock wealth:

dla,0/dxa,0 > 0, dwa,0/dxa,0 ≥ 0 and d (la,0 + wa,0) /dxa,0 > 0.

Moreover, regardless of ε, employment and the labor bill in nontradable and tradable sectors satisfy
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the following comparative statics:

d
(
lNa,0 + wa,0

)
/dxa,0 > 0, dlNa,0/dxa,0 > 0 and dlTa,0/dxa,0 ≤ 0.

Proof. Most of the proof is presented earlier. It remains to establish the comparative statics for
the tradable employment, the nontradable employment and the nontradable labor bill.

First consider the tradable employment. Note that the first line of the expression in (B.64)

implies
lTa,0 = −

(
1 + (ε− 1)

(
1− αT

))
wa,0. (B.66)

Since (ε− 1)
(
1− αT

)
> −1 (because ε > 0) and dwa,0/dxa,0 ≥ 0 (cf. Eq. (B.63)), this implies the

comparative statics for the tradable employment, dlTa,0/dxa,0 ≤ 0.
Next consider the nontradable employment. Note that La,0 = LTa,0 + LNa,0. Log-linearizing this

expression, we obtain,
lNa,0L

N
a,0 = la,0L0 − lTa,0LTa,0.

Differentiating this expression with respect to xa,0 and using dla,0/dxa,0 > 0 and dlTa,0/dxa,0 ≤ 0,
we obtain the comparative statics for the nontradable employment, dlNa,0/dxa,0 > 0. Combining
this with dwa,0/dxa,0 ≥ 0, we further obtain the comparative statics for the nontradable labor bill,
d
(
lNa,0 + wa,0

)
/dxa,0 > 0.

B.5 Comparative Statics of Local Labor Market Outcomes

We next combine our results to investigate the impact of a change in aggregate stock wealth (over
time) on local labor market outcomes. Specifically, consider the comparative statics of an increase
in capital productivity from some Dold

1 to Dnew
1 > Dold

1 .
First consider the effect on the common-wealth benchmark. By Proposition 1, the equilibrium

price of capital increases from Qold1 to Qnew1 > Qold1 . The labor market outcomes remain unchanged:
in particular, L0 = L0,W0 = W,LN0 /L0 = 1−αN

1−α η and LT0 /L0 = 1−αT
1−α (1− η).

Next consider the effect when areas have heterogeneous wealth. We use the notation ∆X =

Xnew−Xold for the comparative statics on variableX. Consider the effect on labor market outcomes,
for instance, the (log of the) local labor bill log (Wa,0La,0). Note that we have:

log (Wa,0La,0) ' log
(
WL0

)
+ wa,0 + la,0.

Here, wa,0, la,0 are characterized by Proposition 2 as linear functions of capital ownership, xa,0; and
the approximation holds up to second-order terms in capital ownership, {xa,0}a. Note also that
the change of D1 does not affect log

(
WL0

)
. Therefore, the comparative statics in this case can be
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written as,

∆ log (Wa,0La,0) ' ∆ (wa,0 + la,0)

=
(
wnewa,0 + lnewa,0

)
−
(
wolda,0 + lolda,0

)
,

where the approximation holds up to second-order terms in {xa,0}a. Put differently, up to second-
order terms, the change of D1 affects the (log of the) local labor bill through its effect on the
log-linearized equilibrium variables.

Recall that the log-linearized equilibrium is characterized by Proposition 2. In particular, con-
sidering Eq. (B.61) for Dold

1 and Dnew
1 , we obtain:

wolda,0 + lolda,0 =
1 + κ

1 + κζ
M
(
1− αN

)
η

1 + δ

xa,0Q
old
0

WL0

,

wnewa,0 + lnewa,0 =
1 + κ

1 + κζ
M
(
1− αN

)
η

1 + δ

xa,0Q
new
0

WL0

.

These equations illustrate that the change of D1 affects the log-linearized equilibrium only through
its effect on the price of capital, Q0. Taking their difference, we obtain Eq. (11) in the main text
that describes ∆ (wa,0 + la,0).

Applying the same argument to Eqs. (B.62) , (B.65) , (B.64), we also obtain Eqs. (12) , (13) , (14)

in the main text that describe, respectively, ∆la,0,∆
(
wa,0 + lNa,0

)
,∆
(
wa,0 + lTa,0

)
. These equations

illustrate that an increase in local stock wealth due to a change in aggregate stock wealth has the
same impact on local labor market outcomes as an increase of stock wealth in the cross section that
we characterized earlier.

Comparative Statics of Local Consumption. We next derive the comparative statics of
local consumption that we use in Section 6 (see Eq. (19)). For simplicity, we focus on the case
ε = 1. Combining Eqs. (B.8) and (B.47), we obtain

Pa,0Ca,0 =
Wa,0L

N
a,0

(1− αN ) η
.

Log-linearizing this expression around the common-wealth benchmark, we obtain

(pa,0 + ca,0)P0C0 =
(
wa,0 + lNa,0

) WLN0
(1− αN ) η

= M 1

1 + δ
xa,0Q0
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Here, the second line uses the third line of Eq. (B.65) and observes that wa,0 + lTa,0 = 0 when ε = 1.
After rearraning terms, and considering the change from Dold

1 to Dnew
1 > Dold

1 , we obtain

∆ (pa,0 + ca,0) =M 1

1 + δ

xa,0∆Q0

P0C0
. (B.67)

After an appropriate change of variables, this equation gives Eq. (19) in the main text.

B.6 Details of the Calibration Exercise

This appendix provides the details of the calibration exercise in Section 6. We start by summarizing
the solution for the local labor market outcomes that we derived earlier. In particular, we use the
change of variables, 1

1+δ = ρT and write the differenced versions of Eqs. (B.61−B.65) as follows:

∆ (wa,0 + la,0)

SR
=

1 + κ

1 + κζ
M
(
1− αN

)
ηρ,

∆la,0
SR

=
1

1 + κ

∆ (wa,0 + la,0)

SR
(B.68)

∆wa,0
SR

=
κ

1 + κ

∆ (wa,0 + la,0)

SR

∆
(
wa,0 + lTa,0

)
SR

= − (ε− 1)
(
1− αT

) ∆wa,0
SR

∆
(
wa,0 + lNa,0

)
SR

= Mρ (1− α)

(
1− (ε− 1)

(
1− αT

)2
1− α

(1− η)T
∆wa,0
SR

)
(B.69)

where S =
xa,0Qa,0

WL0/T
, R =

∆Q0

Q0

andM =
1

1− (1− αN ) ηρT

and ζ = 1 + (ε− 1)

(
1− αT

)2
1− α

(1− η)M.

Our calibration relies on two model equations that determine the key parameters κ and ρ.
Specifically, we calibrate κ by using Eq. (B.68), which replicates Eq. (20) from the main text. We
calibrate ρ by using Eq. (B.69) which generalizes Eq. (16) from the main text. For reasons we
describe in the main text, we do not use the response of the tradable sector for calibration purposes
(see Footnote 38).

Note that combining Eq. (B.68) with the empirical coefficients for employment and the total
labor bill from Table 1 (for quarter 7), we obtain:

0.77% ≤ 1

1 + κ
2.18%

As we discuss in the main text, while the model makes predictions for total labor supply including
changes in hours per worker, in the data we only observe employment. A long literature dating to
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Okun (1962) finds an elasticity of total hours to employment of 1.5. Applying this adjustment and
using the coefficients for total employment and the total labor bill from Table 1 yields:

∆la,0
Sa,0R0

= 1.5× 0.77%

∆ (wa,0 + la,0)

Sa,0R0
= 2.18%.

Combining these with Eq. (20), we obtain:

κ = 0.9. (B.70)

Thus, a one percent change in labor is associated with a 0.9% change in wages at a horizon of two
years.

That leaves us with Eq. (B.69) to determine the stock wealth effect parameter, ρ. In the main
text, we focus on a baseline calibration that assumes unit elasticity for tradables, ε = 1, which
leads to a particularly straightforward analysis. In this appendix, we first provide the details of the
baseline calibration. We then show that this calibration is robust to considering a wider range for
the tradable elasticity parameter, ε ∈ [0.5, 1.5].

Throughout, we set the labor share parameters in the two sectors so that the weighted-average
share of labor is equal to the standard empirical estimates [cf. (7)]:

1− α =
2

3
.

To keep the calibration simple, we set the same labor share for the two sectors:

1− αL = 1− αN =
2

3
.

Eq. (B.69) (when ε = 1) shows that our analysis is robust to allowing for heterogeneous labor share
across the two sectors.

B.6.1 Details of the Baseline Calibration

Setting ε = 1 in Eq. (B.69) reduces to Eq. (16) in the main text,

∆
(
wa,0 + lNa,0

)
SR

=M (1− α) ρ.

Combining this expression with the empirical coefficient for the nontradable labor bill from Table
1 (for quarter 7), we obtain:

M (1− α) ρ = 3.23%. (B.71)
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We also require the local income multiplier to be consistent with empirical estimates from the
literature, which implies:

M=
1

1− (1− αN ) ρηT
= 1.5 (B.72)

With these assumptions, as we discussed in the main text, Eq. (B.71) determines the stock
wealth effect parameter independently of the other parameters such as κ, η,T. In particular, we
have:

ρ = 3.23%.

Combining this with Eq. (B.72) to match the multiplier, we also obtain:

ηT = 15.48.

Hence, our calibration of the multiplier determines the product of η and T.
The parameter, η, is difficult to calibrate precisely because there is no good measure of the trade

bill at the county level. Therefore, we allow for a wide range of possibilities:

η ∈
[
η, η
]
, where η = 0.5 and η = 0.8. (B.73)

Then, our calibration of the multiplier implies:

T = T (η) ≡ 15.48

η
, where T (η) = 19.35 and T

(
η
)

= 30.96.

In particular, for every choice of η, there exists a horizon parameter T that supports the calibration
of the multiplier in our model. Since our model is stylized in the time dimension (it has only two
periods), we do not interpret T literally but view it as a modeling device to calibrate the multiplier
M. In particular, we view the implied high levels of T as capturing reasons outside our model (such
as borrowing constraints) that would increase the income multiplier in practice.19

B.6.2 Robustness of the Baseline Calibration

Next consider the case with general ε. In this case, Eq. (B.69) is more complicated and given by:

∆
(
wa,0 + lNa,0

)
SR

=Mρ (1− α)

(
1− (ε− 1)

(
1− αT

)2
1− α

(1− η)T
∆wa,0
SR

)
.

In particular, the nontradable labor bill in this case also depends on the effect on local wages.
The intuition is that the change in local wages affects the tradable labor bill, which affects local

19The dependence ofM on T in our model can be understood by considering the intertemporal Keynesian
cross (see Auclert et al. (2018) for an exposition). When output is determined by aggregate demand, an
increase in future spending increases not only future income but also current income through a wealth effect.
In our environment, increasing T increases the time-length of period 0 over which output is determined by
aggregate demand. This leads to stronger multiplier effects.
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households’ income. This in turn affects local households’ spending and the nontradable labor bill.
Consistent with this intuition, the magnitude of this effect depends on the parameters ε, αT , η.20

Recall also that we have Eq. (B.68) that describes the change in wages as a function of the
change in the total labor bill:

∆wa,0
SR

=
κ

1 + κ

∆ (wa,0 + la,0)

SR
.

Substituting this expression into Eq. (B.69), and using the empirical coefficients for the nontradable
and the total labor bill from Table 1 (for quarter 7), we obtain the following generalization of Eq.
(B.71):

M (1− α) ρ

(
1− (ε− 1)

(
1− αT

)2
1− α

(1− η)T
κ

1 + κ
2.18%

)
= 3.23%. (B.74)

As this expression illustrates, the stock wealth effect parameter in this case is not determined
independently of the remaining parameters, κ, η,T. We have already established that κ = 0.9 [cf.
Eq. (B.70)]. We also assume 1−α = 1−αT = 2/3. We also assume η lies in the range (B.73) that
we described earlier. Recall also that we choose T to ensure Eq. (B.72) given all other parameters.
Hence, for any fixed ε, Eq. (B.74) describes ρ as a function of η, where η is required to lie in the
range (B.73).

Figure B.1 illustrates the possible values of ρ for ε = 0.5 (the left panel) and ε = 1.5 (the
right panel). As the figure illustrates the implied values for ρ remain close to their corresponding
levels from the baseline calibration with ε = 1. As expected, the largest deviations from the
benchmark obtain when the share of nontradables is small—as trade has the largest impact on
households’ incomes in this case. However, ρ lies within 5% of its corresponding level from the
baseline calibration even if we set η = 0.5.

The intuition for robustness can be understood as follows. As we described earlier, the additional
effects emerge from the adjustment of the tradable labor bill due to a change in local wages. As
long as wages do not change by much, the effect has a negligible effect on our baseline calibration.
As it turns out, the value of κ that we find given our calibration is such that the deviations from
the benchmark are relatively small. Put differently, our analysis suggests that wages in an area do
not change by much in response to stock wealth changes. Consequently, the tradable labor bill of
the area also does not change by much either even if ε is somewhat different than 1.

B.7 Aggregation When Monetary Policy is Passive

So far, we assumed the monetary policy changes the interest rate to neutralize the impact of stock
wealth changes on aggregate employment. In this appendix, we characterize the equilibrium under

20Less obviously, the magnitude also depends on the horizon parameter, T. This parameter enters the
equation for the same reason it enters the equation for the multiplier, M (see Footnote 19). As before,
the dependence of the equation on T can be thought of as capturing reasons outside our model (such as
households’ borrowing constraints) that would amplify the spending effect of any change in households’
incomes due to trade considerations.
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Figure B.1:
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Notes: Notes: The left panel (resp. the right panel) illustrates the implied ρ as a function of η given ε = 0.5
(resp. ε = 1.5), as we vary η over the range in (B.73). The red dashed lines illustrate the implied ρ for the
baseline calibration with ε = 1.

the alternative assumption that monetary policy leaves the interest rate unchanged in response to
stock price fluctuations. In Section 7 of the main text, we use this characterization together with our
calibration to describe how stock price fluctuations would affect aggregate labor market outcomes
if they were not countered by monetary policy.

The model is the same as in Section B.1 with the only difference that the monetary policy
keeps the nominal interest rate at a constant level, Rf = R

f . In particular, we continue to assume
monetary policy stabilizes the long-run nominal wage at the constant level, W . For simplicity, we
also focus attention on the common-wealth benchmark, xa,0 = 0. Consequently, the areas have
symmetric allocations that we denote by dropping the subscript a.

First note that the rental rate of capital is given by R0 = D0W0 [cf. Lemma 1]. Consequently,
the analogues of Eqs. (B.49) and (B.50) also apply in this setting. In particular, human capital
wealth is given by,

H0 = W0L0 +
WL1

R
f

(B.75)

and the stock wealth is given by,

Q0 = W0D0 +
WD1

R
f

. (B.76)

Next note that the labor demand Eq. (B.46) applies also in this case. Using xa,0 = 0 along
with the definition of α [cf. (7)], we obtain
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W0L0 =
1− α
1 + δ

(H0 +Q0)− (1− α)R0 + αW0L0.

Using R0 = W0D0 and the expressions for H0 from Eq. (B.75), we further obtain,

W0L0 =
1− α
1 + δ

(
W0L0 +

WL1

R
f

+Q0

)
− (1− α)W0D0 + αW0L0.

Simplifying further, we obtain,

W0L0 +W0D0 =
1

1 + δ

(
W0L0 +

WL1

R
f

+Q0

)
. (B.77)

This equation says that the total amount of spending in the aggregate (on capital and labor) depends
on the lifetime wealth multiplied by the propensity to spend out of wealth.

Next note that the labor supply equation (B.17) applies also in this case. Since areas have
common wealth, we can rewrite this equation as:

W 1−εw
0 = λw

(
εw

εw − 1
χP0W

εwϕ
0 Lϕ0

)(1−εw)/(1+ϕεw)

+ (1− λw)W
1−εw . (B.78)

Using Lemma 1, we also have:
P0 = W0D

α
0 . (B.79)

The equilibrium is characterized by Eqs. (B.76) , (B.77) , (B.78) , (B.79) in four variables,
(Q0,W0, L0, P0).

Next note that there exists a level of D1, denoted by D1, that ensures these equations are
satisfied with L0 = L0 and W0 = W , along with Q0 ≡ WD0 + WD1

R
f . To simplify the expressions

further, we next log-linearize the equations around the equilibrium with D1 = D1.

Log-linearized Aggregate Equilibrium. Log-linearizing the stock pricing Eq. (B.76), we
obtain,

q0Q0 = w0WD0 + d1
WD1

R
f

. (B.80)

Log-linearizing the labor demand Eq. (B.77), we obtain,

(w0 + l0)WL0 + w0WD0 =
1

1 + δ

(
(w0 + l0)WL0 + q0Q0

)
.

After substituting Eq. (B.80), and rearranging terms to account for the multiplier effects, we further
obtain,

(w0 + l0)WL0 + w0WD0 = M̃A 1

1 + δ
d1
WD1

R
f

, (B.81)
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where M̃A =
1

1− 1/ (1 + δ)
.

Log-linearizing the labor supply equation (B.78), we obtain:

w0 = λ (p0 + ϕl0) , where λ =
λw

1 + (1− λw)ϕεw
. (B.82)

Log-linearizing Eq. (B.79), we obtain:
p0 = w0. (B.83)

Combining the last two equations, we further obtain:

w0 = κAl0, where κA ≡
λϕ

1− λ
> κ =

λϕ

1− λη (1− αN )
. (B.84)

The log-linearized equilibrium is characterized by Eqs. (B.80) , (B.81) , (B.84) in three variables
(q0, w0, l0). Given these variables, we also characterize the price level as p0 = w0 [cf. (B.83)]. The
equations for (q0, w0, l0) can also be solved in closed form. We conjecture a linear solution:

q0Q0 = AQQ
A (B.85)

w0WL0 = AWQ
A

l0WL0 = ALQ
A,

where QA =
WD1d1

R
f

Here, QA denotes the log-linear approximation to the exogenous component of stock wealth (WD1

R
f ).

Hence, the coefficients AQ, AW , AL describe the effect of a one dollar increase in the exogenous
component of stock wealth on endogenous equilibrium outcomes.

To solve for these coefficients, we substitute the linear functional form in (B.85) into Eqs.
(B.80) , (B.81) , (B.84). We also use Assumption D to substitute D0 = α

1−αL0 and simplify the
expressions, to obtain the system of equations,

AQ =
α

1− α
AW + 1

AW = κAAL

AW +AL +
α

1− α
AW = M̃A 1

1 + δ
.

Using these equations, we obtain the closed-form solution for the effect on the aggregate labor bill,

AW +AL = MA 1− α
1 + δ

, (B.86)

whereMA = FAM̃A and FA =
1 + κA

1− α+ κA
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The effect on the aggregate employment and wages are given by

AL =
1

1 + κA
(AW +AL) , (B.87)

AW =
κA

1 + κA
(AW +AL) . (B.88)

Substituting the solutions in (B.86−B.88) into Eqs. (B.85), we obtain

w0 + l0 =MA 1− α
1 + δ

QA0
WL0

l0 =
1

1 + κA
(w0 + l0) .

Considering the equation for two different levels of future dividends, dold1 and dnew1 , and taking the
difference, we obtain Eqs. (22) and (23) in the main text.

Comparison with the Log-linearized Local Equilibrium. It is instructive to compare
the log-linearized labor supply equations (B.82) and (B.84) with their counterparts in the local
analysis. Note that Eq. (B.82) is the same as its local counterpart, Eq. (B.57). Hence, controlling
for prices as well as labor, the aggregate labor supply curve is the same as the local one. However,
Eq. (B.84) is different than its local counterpart, Eq. (B.58). This is because the impact of
aggregate nominal wages on the aggregate price level is greater than the impact of local wages on
the local price level: specifically, we have p0 = w0 as opposed to p0,a = w0,aη

(
1− αN

)
[cf. Eqs.

(B.83) and (B.56)]. Therefore, the real wage w − p responds locally but not in the aggregate. The
real wage response generates a neoclassical local labor supply response, with strength determined
by the magnitude of the Frish elasticity 1/φ, that does not extend to the aggregate level. Rewriting
the expressions for κ and κA to eliminate the wage stickiness parameter, λ, we obtain:

1

κ
=

1

ϕ

(
1− η

(
1− αN

))
+

1

κA
.

This expression illustrates that the local labor response, 1
κ , combines a neoclassical response to

higher real wages, 1
ϕ

(
1− η

(
1− αN

))
, that only occurs locally, and a term due to wage stickiness

that extends to the aggregate, 1
κA

.
It is also instructive to consider the intuition for the labor bill characterized in (B.86). Note

that 1/ (1 + δ) describes the effect of stock wealth on total spending. Multiplying this with 1 − α
gives the direct effect on the aggregate labor bill. This direct effect is amplified by two types of
multipliers. First, there is a standard aggregate spending multiplier captured by, M̃A = 1

1−1/(1+δ) >

1. Second, there is also a second multiplier, which we refer to as the factor-share multiplier, denoted
by FA = 1+κA

1−α+κA
> 1. The multiplier we use in the main text, MA = FAM̃A, is a composite of

the two multipliers. The factor-share multiplier is somewhat specific to our model. In particular,
it emerges from the assumption that labor is somewhat flexible but capital is not. These features
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(combined with the production technologies we work with) implies that labor absorbs a greater
fraction of demand-driven fluctuations in aggregate spending compared to capital. Consistent with
this intuition, the factor-share multiplier is decreasing in the degree of wage flexibility, κA, and it
approaches one in the limit with perfectly flexible wages, κA →∞.

Finally, we compare the aggregate effect in (B.86) with its local counterpart characterized earlier.
Specifically, recall that Eqs. (B.62) and (B.63) imply the effect of stock wealth on the local labor
bill is given by,

(la,0 + wa,0)WL0

xa,0Q0
=M 1 + κ

1 + κζ

(
1− αN

)
η

1 + δ
. (B.89)

Comparing this expression with Eq. (B.86) illustrates that the aggregate effect differs from the
local effect for three reasons. First, the direct spending effect is greater in the aggregate than at the
local level, 1−α

1+δ >
η(1−αN)

1+δ . Here, the inequality follows since 1−α = η
(
1− αN

)
+(1− η)

(
1− αT

)
.

Intuitively, spending on tradables increases the labor bill in the aggregate but not locally. Second,
the aggregate labor bill does not feature the export adjustment term, 1+κ

1+κζ , because this adjustment
is across areas. Third, the multiplier is greater in the aggregate than at the local level,MA >M.
In particular, the standard spending multiplier is greater at the aggregate level, M̃A >M, because
spending on tradables (as well as the mobile factor, capital) generates a multiplier effect in the
aggregate but not locally. The factor-share multiplier increases the aggregate multiplier further,
FA > 1.

Note also that, as long as ε ≥ 1, the aggregate effect is greater than the local effect. In this
case, ζ ≥ 1 and thus the export adjustment also dampens the local effect relative to the aggregate
effect. When ε < 1, the export adjustment tends to make the local effect greater than the aggregate
effect. However, all other effects (captured by η < 1 and MA > M) tend to make the aggregate
effect greater than the local effect.

B.8 Extending the Model to Incorporate Uncertainty

In this appendix, we generalize the baseline model to introduce uncertainty about capital produc-
tivity in period 1. We show that changes in households’ risk aversion or perceived risk generate
the same qualitative effects on the price of capital (as well as on “rstar”) as in our baseline model.
Moreover, conditional on a fixed amount of change in the price of capital, the model with uncer-
tainty features the same quantitative effects on local labor market outcomes. Therefore, this exercise
illustrates that our baseline analysis is robust to generating stock price fluctuations from alternative
channels than the change in expected stock payoffs that we consider in our baseline analysis.

The model is the same as in Section B.1 with two differences. First, an aggregate state s ∈ S is
realized at the beginning of period 1 with probability π (s) (with

∑
s∈S π (s) = 1). States determine

the productivity of the capital-only technology. We adopt the normalization,

D1 (s) = s, (B.90)
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so that the state is equal to the productivity of capital, and we assume that S is a finite subset
of R+. The baseline model is the special case in which S has a single element. We denote the
equilibrium allocations in period 1 as functions of s, e.g., Ca,1 (s) denotes the consumption in area
a and period 1 conditional on the aggregate state s.

Second, to analyze the effect of risk aversion, we also consider Epstein-Zin preferences that are
more general than time-separable log utility. Specifically, we replace the preferences in (3) with,

logCa,0 + δ logUa,1, (B.91)

where Ua,1 =
(
E
[
Ca,1 (s)1−γ

])1/(1−γ)
.

Here, Ua,1 captures the household’s (and particularly, the consumer’s) certainty-equivalent con-
sumption. The parameter γ captures her risk aversion. The baseline model is the special case with
γ = 1. Note that we still assume the elasticity of intertemporal substitution is equal to one. The
consumer chooses Ca,0, Sa,0, 1 + xa,1 to maximize (B.91) subject to the budget constraints:

Pa,0Ca,0 + Sa,0 = Wa,0La,0 + (1 + xa,0)Q0 (B.92)

Sa,0 = Sfa,0 + (1 + xa,1) (Q0 −R0)

Pa,1 (s)Ca,1 (s) = WLa,1 (s) + (1 + xa,1)R1 (s) + Sfa,0R
f .

In period 0, the budget constraint is the same as before. In period 1, there is a separate budget
constraint for each state. The rest of the equilibrium is unchanged.

General Characterization of Equilibrium with Uncertainty. Most of our analysis from
the baseline case applies also in this case. First consider the equilibrium in period 1. As before, we
haveWa,1 (s) ≡W and La,1 (s) = L1 for each a and s. Using Lemma 1, we also obtain the following
analogue of Eq. (B.37)

R1 (s) = D1 (s)W . (B.93)

Note also that aggregating the budget constraint across all areas, we obtain the aggregate budget
constraint: ∫

a
Pa,1 (s)Ca,1 (s) da = R1 (s) +WL1.

By Lemma 1, the price of the consumption good is the same across areas,

Pa,1 (s) = P1 (s) ≡ D1 (s)αW .

After substituting this expression and using (B.93), the aggregate budget constraint implies,∫
a
Ca,1 (s) da =

D1 (s) + L1

(D1 (s))α
. (B.94)
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In the common-wealth benchmark, the areas are identical so Eq. (B.94) provides a closed-form
solution for consumption.

Next consider the equilibrium in period 0. The following lemma characterizes the consumers’
optimal consumption and portfolio choice. To state the result let Ha,0 = Wa,0La,0 + WL1

Rf
denote

the human capital wealth in area a as in the baseline model.

Lemma 4. The optimal consumption for area a satisfies,

Pa,0Ca,0 =
1

1 + δ
[Ha,0 + (1 + xa,0)Q0] . (B.95)

Optimal portfolios in area a are such that the risk-free interest rate satisfies,

1/Rf = E [Ma,1 (s)] (B.96)

and the price of capital satisfies,

Q0 = R0 + E [Ma,1 (s)R1 (s)] , (B.97)

where Ma,1 (s) denotes the (nominal) stochastic discount factor for area a and is given by

Ma,1 (s) = δ
Pa,0Ca,0

Pa,1 (s)Ca,1 (s)

Ca,1 (s)1−γ

E
[
Ca,1 (s)1−γ

] . (B.98)

Eq. (B.41) illustrates that the consumption wealth effect remains unchanged in this case [cf.
Eq. (B.41)]. This is because we use Epstein-Zin preferences with an intertemporal elasticity of
substitution equal to one. Eqs. (B.96) and (B.97) illustrate that standard asset pricing conditions
apply in this setting. Specifically, the risk-free asset as well as capital are priced according to a
stochastic discount factor (SDF) that might be specific to the area. Eq. (B.98) characterizes the
SDF. When γ = 1, the SDF has a familiar form corresponding to time-separable log utility. We
relegate the proof of Lemma 4 to the end of this section.

Since the optimal consumption Eq. (B.95) remains unchanged (and the remaining features of
the model are also unchanged), the rest of the general characterization in Section B.2 also applies
in this case. We next characterize the equilibrium further in the common-wealth benchmark.

Common-wealth Benchmark with Uncertainty. Consider the benchmark case with
xa,0 = 0 for each a. We generalize Assumption D as follows.

Assumption DU. D0 = α
1−αL0 and D1 (s) ≥ α

1−αL1 for each s ∈ S.

As before, this assumption ensures that K̃T
0 = 0 and K̃T

1 (s) ≥ 0 for each s.
Note also that we still have La,0 = L0 where L0 corresponds to the solution to (B.38).
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Next note that, since areas are identical, we have Ca,1 (s) = C1 (s). We also have Wa,1 (s) = W .
By Lemma 1, this implies,

Pa,1 (s) = (D1 (s))αW. (B.99)

Combining these observations with Eq. (B.94), we obtain a closed-form solution for consumption,

C1 (s) =
D1 (s) + L1

(D1 (s))α
. (B.100)

Next note that we also have Wa,0 = W, and

Pa,0 = Dα
0W. (B.101)

Therefore, the analogous equation also applies in period 0,

C0 =
D0 + L0

Dα
0

. (B.102)

Substituting this into Eq. (B.95), and using (B.101), we obtain,

(
D0 + L0

)
W =

1

1 + δ
[Ha,0 +Q0] .

After rearranging the expression, we find that Eq. (B.48) also applies in this setting:

(H0 +Q0) /W = (1 + δ)
(
L0 +D0

)
. (B.103)

As before, the sum of capital and human capital wealth must be equal to a multiple of the frictionless
output level. This is necessary so that the implied wealth effect is sufficiently large to clear the goods
market.

Next note that, after substituting Eqs. (B.100) and (B.102) for consumption and Eqs. (B.99)

and (B.101) for goods prices, we obtain a closed-form solution for the stochastic discount factor in
(B.98),

M1 (s) = δ
D0 + L0

D1 (s) + L1

(
D1(s)+L1

(D1(s))α

)1−γ

E

[(
D1(s)+L1

(D1(s))α

)1−γ
] . (B.104)

Combining this expression with Eqs. (B.96) and (B.97), we also obtain closed-form solutions for
Rf,∗ (“rstar”) and Q0:

1/Rf,∗ = E [M1 (s)] (B.105)

Q0/W = D0 + E [M1 (s)D1 (s)] . (B.106)

Here, the second line substitutes R0 = D0W and R1 (s) = D1 (s)W . We can also calculate the
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human capital wealth as,

H0/W = L0 +
L1

Rf
= L0 + L1E [M1 (s)] . (B.107)

Note also that, when γ = 1, we have time-separable log utility and Eq. (B.104) reduces to the
more familiar form,M1 (s) = D0+L0

D1(s)+L1
. Using this expression, note that, when there is a single state,

Eqs. (B.105) (B.106), and (B.107) become identical to their counterparts in the earlier analysis [cf.
Eqs. (B.51) , (B.53), and (B.52)].

Since the aggregate wealth H0 +Q0 remains unchanged [cf. (B.103)], the rest of the character-
ization in Section B.3 remains unchanged. In particular, labor shares in nontradable and tradable
sectors are given by LN0 /L0 = 1−αN

1−α η and LT0 /L0 = 1−αT
1−α (1− η) [cf. Eq. (B.54)].

Recall that, in the baseline model without uncertainty, we generate fluctuations in Q0 as well as
R∗f from changes in D1. We next show that this aspect of the model also generalizes. In particular,
after summarizing the above discussion, the following proposition establishes that changes in risk
or risk aversion generate the same effects on asset prices as changes in future productivity in the
baseline model. To state the result, recall that we normalize D1 (s) = s so that the probability
distribution for states, π (s), is the same as the distribution for capital productivity.

Proposition 3. Consider the model with uncertainty with Assumption DU and the normalization
in (B.90) Suppose areas have common stock wealth, xa,0 = 0 for each a. In equilibrium, all areas
have identical allocations and prices. In period 0, labor is at its frictionless level, L0 = L0, and
nominal wages are at their expected level, W0 = W ; the stochastic discount factor is given by Eq.
(B.104); the nominal interest rate is given by Eq. (B.105); the human capital and stock wealth are
given by Eqs. (B.107) and (B.106); the shares of labor employed in the nontradable and tradable
sectors are given by Eq. (B.54).

Consider any one of the following changes:
(i) Suppose γ = 1 and the probability distribution,

(
πold (s)

)
s∈S, changes such that (πnew (s))s∈S

first-order stochastically dominates
(
πold (s)

)
s∈S.

(ii) Suppose γ = 1 and the probability distribution,
(
πold (s)

)
s∈S, changes such that

(
πold (s)

)
s∈S

is a mean-preserving spread of (πnew (s))s∈S.
(iii) Suppose (π (s))s remains unchanged but risk-aversion decreases, γnew < γold.
These changes increase Q0 and reduce R∗f in equilibrium but do not affect the labor market

outcomes in period 0.

The first part is a generalization of the comparative statics exercise that we consider in the
baseline model. It shows that the price of capital increases also if households perceive greater
capital productivity in the first-order stochastic dominance sense. The second part shows that a
similar result obtains if households’ expected belief for capital productivity remains unchanged but
they perceive less risk in capital productivity. For analytical tractability, these two parts focus on
the case, γ = 1, which corresponds to time-separable log utility as in the baseline model. The last
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part considers the case with general γ, and shows that a similar result obtains also if households’
belief distribution remains unchanged but their risk aversion declines. We relegate the proof of
Proposition 3 to the end of this section.

Comparative Statics of Local Labor Market Outcomes with Uncertainty. Recall
that since the optimal consumption Eq. (B.95) remains unchanged, all equilibrium conditions for
period 0 derived in Section B.2 continue to apply conditional on Q0 and Rf . Therefore, the log-
linearized equilibrium conditions derived in Section B.4 also continue to apply conditional on Q0.
Moreover, as we show in Section B.5, the comparative statics in Proposition 3 affect these conditions
only through their effect on Q0. It follows that, conditional on generating the same change in the
price of capital, ∆Q0, the model with uncertainty features the same quantitative effects on local
labor market outcomes as in our our baseline model. Combining this result with the comparative
static results in Proposition 3, we conclude that our baseline analysis is robust to generating stock
price fluctuations from alternative sources such as changes in households’ risk aversion or perceived
risk about stock payoffs.

Proof of Lemma 4. To analyze the households’ problem, we consider the change of variables,

S̃a,0 = Sa,0 +
WL1

Rf
.

Note that La,1 (s) ≡ L1. Hence, S̃a,0 can be thought of as the households’ “effective savings” that
incorporates the present discounted value of her lifetime wealth. We also consider the change of
variables

ωa,1 ≡
(1 + xa,1) (Q0 −R0)

S̃a,0
.

Here, ωa,1 captures the fraction of households’ effective savings that she invests in capital (recall
that Q0−R0 denotes the ex-dividend price of capital). The remaining fraction, 1−ωa,1, is invested
in the risk-free asset. After substituting this notation into the budget constraints, the households’
problem can be equivalently written as,

max
S̃a,0,ωa,1

logCa,0 + δ logUa,1, (B.108)

where Ua,1 =
(
E
[
Ca,1 (s)1−γ

])1/(1−γ)

Pa,0Ca,0 + S̃a,0 = Wa,0La,0 +
WL1

Rf
+ (1 + xa,0)Q0

Pa,1 (s)Ca,1 (s) = S̃a,0

(
Rf + ωa,1

(
R1 (s)

Q0 −R0
−Rf

))

Here, R1(s)
Q0−R0

denotes the gross return on capital. When ωa,1 = 0, the household does not invest in
capital so her portfolio return is the gross risk-free rate, Rf . When ωa,1 = 1, the household invests

49



all of her savings in capital so her portfolio return is the gross return to capital, R1(s)
Q0−R0

.
Next consider the optimality condition for S̃a,0 in problem (B.108). This gives:

1

Pa,0Ca,0
= δE

[
Uγa,1Ca,1 (s)−γ

Ua,1

1

Pa,1 (s)

(
Rf + ωa,1

(
R1 (s)

Q0 −R0
−Rf

))]

= δE

[
Uγ−1
a,1 Ca,1 (s)−γ

Ca,1 (s)

S̃a,0

]

= δE

[
Uγ−1
a,1 U1−γ

a,1

1

S̃a,0

]
= δ

1

S̃a,0
.

Here, the second line uses the budget constraint in period 1 to substitute for the return in terms of
Ca,1 (s); the third line uses U1−γ

a,1 = E
[
Ca,1 (s)1−γ

]
(from the definition of the certainty-equivalent

return), and the last line simplifies the expression. Combining the resulting expression with the
budget constraint in period 1, we obtain,

Pa,0Ca,0 =
1

1 + δ

[
Wa,0La,0 +

WL1

Rf
+ (1 + xa,0)Q0

]
.

This establishes (B.95).
Next, to establish the asset pricing condition for the risk-free asset, consider the optimality

condition for Sfa,0 in the original version of the problem (as this corresponds to saving in the risk-
free asset). This gives:

1

Pa,0Ca,0
= E

 δ

Pa,1 (s)Ca,1 (s)γ E
[
Ca,1 (s)1−γ

]Rf
 . (B.109)

Rearranging terms and substituting Ma,1 (s) from Eq. (B.98), we obtain Eq. (B.96). Finally, to
establish the asset pricing condition for capital, consider the optimality condition for ωa,1 in problem
(B.108). This gives:

E

[
Ca,1 (s)−γ

Pa,1 (s)

(
R1 (s)

Q0 −R0
−Rf

)]
= 0.

Rearranging terms, we obtain,

Q0 = R0 +
1

RfE
[

1
Pa,1(s)Ca,1(s)γ

]E [ 1

Pa,1 (s)Ca,1 (s)γ
R1 (s)

]

= R0 + δE

 Pa,0Ca,0

Pa,1 (s)Ca,1 (s)γ E
[
Ca,1 (s)1−γ

]R1 (s)


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= R0 + E [M1 (s)R1 (s)] .

Here, the second line uses Eq. (B.109) to simplify the expression and the last line substitutes for
M1 (s) from Eq. (B.98). This establishes (B.97) and completes the proof of the lemma.

Proof of Proposition 3. It remains to establish the comparative statics exercises. Recall that
the aggregate wealth and human capital wealth satisfy [cf. Eqs. (B.48) and (B.107)],

(H0 +Q0) /W = (1 + δ)
(
L0 +D0

)
H0/W = L0 +

L1

Rf,∗
.

Note that the probability distribution, (π (s))s∈S , or the risk aversion, γ, affect these equations
only through their effect on Q0 and Rf . These equations imply that if Q0 increases in equilibrium,
then Rf,∗ must also increase. Specifically, the first equation implies that if Q0 increases then H0

decreases. The second equation implies that if H0 decreases then Rf,∗ increases. Therefore, it
suffices to establish the comparative statics exercises for the price of capital, Q0.

First consider the comparative statics exercises in parts (i) and (ii). After substituting γ = 1

and D1 (s) = s into Eqs. (B.106) and (B.104), we obtain the following expression for the price of
capital:

Q0 = D0 + δ
(
D0 + L0

)
E [f (s)] , (B.110)

where f (s) =
s

s+ L1

.

Here, the second line defines the function f : R+ → R+. Note that this function is strictly increasing
and strictly concave: that is, f ′ (s) > 0 and f ′′ (s) < 0 for s > 0. Combining this observation with
Eq. (B.110) proves the desired comparative statics. To establish (i), note that Enew [f (s)] ≥
Eold [f (s)] because f (s) is increasing in s, and πnew (s) first-order stochastically dominates πold (s).
To establish (ii), note that Enew [f (s)] ≥ Eold [f (s)] because f (s) is increasing and concave in s,
and πnew (s) second-order stochastically dominates πold (s) (which in turn follows because πold (s)

is a mean-preserving spread of πnew (s)).
Finally, consider the comparative statics exercise in part (iii). In this case, Eqs. (B.106) and

(B.104) imply,

Q0 = D0 + δ
(
D0 + L0

) E [f (s) g (s)1−γ
]

E
[
g (s)1−γ

] , (B.111)

where g (s) =
s+ L1

sα
.

Here, the second line defines the function g : R+ → R+. We first claim that this function is
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increasing in s over the relevant range. To see this, note that,

g′ (s) = s−α−1
(
(1− α) s− αL1

)
.

Assumption DU implies that s ≥ α
1−αL1, which in turn implies g′ (s) ≥ 0. Therefore, g (s) is

increasing in s over the range implied by Assumption DU.
Next note that Eq. (B.111) can be rewritten as

Q0 = D0 + δ
(
D0 + L0

)
E∗ [f (s)] ,

where E∗ [·] denotes the expectations under the endogenous probability distribution {π∗s}s∈S , defined
by,

π∗s =
πsg (s)1−γ∑
s̃∈S πs̃g (s̃)1−γ for each s ∈ S. (B.112)

Hence, using our result from part (i), it suffices to show that π∗,news (which corresponds to γnew <
γold) first-order stochastically dominates π∗,olds .

To establish the last claim, define the cumulative distribution function corresponding to the
endogenous probability distribution,

Π∗s (γ) =
∑
s̃≤s

π∗s̃ =

∑
s̃≤s πs̃g (s̃)1−γ∑
s̃∈S πs̃g (s̃)1−γ for each s ∈ S. (B.113)

We made the dependence of the distribution function on γ explicit. To prove the claim, it suffices
to show that dΠ∗s(γ)

dγ ≥ 0 for each s ∈ S (so that a decrease in γ decreases Π∗s (γ) for each s and thus
increases the distribution in the first-order stochastic dominance order). We have:

dΠ∗s (γ)

dγ
=

∑
s̃≤s πs̃g (s̃)1−γ∑
s̃∈S πs̃g (s̃)1−γ

(
−
∑

s̃≤s πs̃g (s̃)1−γ log g (s̃)∑
s̃≤s πs̃g (s̃)1−γ +

∑
s̃∈S πs̃g (s̃)1−γ log g (s̃)∑

s̃∈S πs̃g (s̃)1−γ

)

=

∑
s̃≤s πs̃g (s̃)1−γ∑
s̃∈S πs̃g (s̃)1−γ

−∑
s̃≤s

π∗s̃
Π∗s (γ)

log g (s̃) +
∑
s̃∈S

π∗s̃ log g (s̃)


=

∑
s̃≤s πs̃g (s̃)1−γ∑
s̃∈S πs̃g (s̃)1−γ (−E∗ [log g (s̃) |s̃ ≤ s] + E∗ [log g (s̃)]) .

Here, the second line substitutes the definition of the endogenous distribution and its cumulative
distribution from Eqs. (B.112) and (B.113). The last line substitutes the unconditional and con-
ditional expectations. It follows that dΠ∗s(γ)

dγ ≥ 0 for some s ∈ S if and only if the unconditional
expectation exceeds the conditional expectation, E∗ [log g (s̃)] ≥ E∗ [log g (s̃) | s̃ ≤ s]. This is true
because log g (s) is increasing in s (since g (s) is increasing), which implies that the conditional
expectation is increasing in s. This proves the claim and completes the proof of part (iii).
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B.9 Extending the Model for More General EIS

We next generalize the model to consider more general levels of EIS. For simplicity, suppose all
areas except for one have time-separable log utility (3) as in the baseline model. The remaining
area, denoted by a, has the following more general utility function,

u (Ca,0) + δu (Ca,1) where u (C) =
ε

ε− 1

(
C
ε−1
ε − 1

)
. (B.114)

We characterize the equilibrium in area a and illustrate how it depends on the EIS parameter, ε.
To simplify the analysis, we assume all other areas have equal wealth, xã,0 = 0 for each ã 6= a. Since
area a has zero mass, this ensures that the aggregate allocations and prices, as well as the allocations
and prices in each area ã 6= a, are described by the common-wealth benchmark characterized in
Section B.7.

To characterize the equilibrium in area a, first note that (after substituting the equilibrium price
for Q0) households’ budget constraints can be combined into a lifetime budget constraint,

Pa,0Ca,0 +
Pa,1Ca,1
Rf

= Ha,0 + (1 + xa,0)Q0.

Households in area a maximize (B.114) subject to this constraint. The optimality condition gives
the Euler equation,

Pa,1Ca,1 = δεRf
(
Rfr

)ε−1
Pa,0Ca,0

where Rfra = Rf
Pa,0
Pa,1

(B.115)

Here, Rfra denotes the real interest rate in area a. Substituting this into the budget constraint, we
obtain the following analogue of Eq. (6),

Pa,0Ca,0 =
1

1 + δε
(
Rfra

)ε−1 (Ha,0 + (1 + xa,0)Q0) ,. (B.116)

This expression illustrates that a similar relationship between wealth and consumption exists
once we replace the exogenous parameter, δ, with its counterpart, δε

(
Rfra

)ε−1
. When ε = 1, the

wealth-effect coefficient, 1

1+δε
(
Rfra

)ε−1 , does not depend on the real interest rate. In this case, which

we analyze in the main text, the income and substitution effects are exactly balanced so that we
have a pure wealth effect. When ε > 1, the wealth-effect coefficient is decreasing in the interest
rate. In this case, there is a net substitution effect so that greater interest rate increases savings
and reduces consumption. Conversely, when ε < 1, the wealth-effect coefficient is increasing in the
interest rate due to a net-income effect.

To characterize the rest of the equilibrium, note that much of the analysis in Section B.2 applies
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also in this case. In particular, after using xã,0 = 0 for each ã, the labor demand equation in area
a is given by the following analogue of Eq. (B.47):

Wa,0La,0 =

(
1− αN

)
η

1 + δε
(
Rfra

)ε−1

(
Wa,0La,0 +

WL1

Rf
+ (1 + xa,0)Q0

)
+

(
P Ta,0

P T0

)1−ε

WLT0

Here, recall that Rfra is given by Eq. (B.115) where Pa,t =
(
PNa,t

)η (
P Ta,t

)1−η and PNa,t, P Ta,t as well as
Pa,t are characterized by Lemma 1. Using xã,0 = 0, we also have,

Pa,t =

(
Wa,0

W

)η(1−αN)
Dα
t W and

P Ta,0

P T0
=

(
Wa,0

W

)1−αT

.

After substituting these expressions, we simplify the labor demand equation as follows,

Wa,0La,0 =

(
1− αN

)
η

1 + δε
(
Rfra

)ε−1

(
Wa,0La,0 +

WL1

Rf
+ (1 + xa,0)Q0

)
+

(
Wa,0

W

)(1−αT )(1−ε)
WLT0 ,

where Rfra = Rf
Dα

0

Dα
1

(
Wa,0

W

)η(1−αN)
.

The equilibrium in area a is characterized by solving this equation together with the labor supply
equation (B.17).

To make progress, consider the special case in which wages are perfectly sticky, λw = 0 (which
also leads to λ = 0). In this case, Wa,0 = W and the labor demand equation can be further
simplified as,

WLa,0 =

(
1− αN

)
η

1 + δε (Rfr)
ε−1

(
WLa,0 +

WL1

Rf
+ (1 + xa,0)Q0

)
+WLT0 , (B.117)

where Rfr = Rf
Dα

0

Dα
1

.

Here, Rfr denotes the aggregate real interest rate. This expression illustrates that the labor market
equilibrium in area a is characterized in similar fashion to the equilibrium in other areas. The main
difference concerns the wealth-effect coefficient, (1−αN)η

1+δε(Rfr)
ε−1 . The new coefficient illustrates that

the level of the real interest rate affects the labor bill.
Next note that the aggregate equilibrium is unchanged and characterized as in Appendix B.7.

In particular, the nominal interest rate is characterized by,

Rf =
1

δ

L1 +D1

L0 +D0

.
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Thus, the real interest rate is characterized by,

Rfr =
1

δ

L1 +D1

L0 +D0

Dα
0

Dα
1

.

Note that, we have:

dRfr

dD1
=

1

δ

Dα
0

L0 +D0

D−α−1
1

(
−αL1 + (1− α)D1

)
≥ 0,

where the inequality follows from Assumption D. Therefore, an increase in D1 increases not only the
nominal interest rate but also the real interest rate. Combining this observation with Eq. (B.117)

illustrates that a shock to D1 that changes the price of capital has two effects on the labor markets
in area a with high stock wealth, xa,0. First, it creates a wealth effect as in the earlier analysis.
Second, since it increases Rfr, it also creates a net substitution or income effect depending on
whether ε > 1 or ε < 1.
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