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A Beyond CES

In this appendix, we show how to generalize the results in the paper beyond nested-CES
functional forms.

A.1 Generalizing Sections 4 and 5 and Appendix B

In a similar vein to Baqaee and Farhi (2017a), we can extend the results in Sections 4 and
5 to arbitrary neoclassical production functions simply by replacing the input-output co-
variance operator with the input-output substitution operator instead.

For a producer k with cost function Ck, the Allen-Uzawa elasticity of substitution be-
tween inputs x and y is

θk(x, y) =
Ckd2Ck/(dpxdpy)

(dCk/dpx)(dCk/dpy)
=

εk(x, y)
Ωky

,

where εk(x, y) is the elasticity of the demand by producer k for input x with respect to the
price py of input y, and Ω̃ky is the expenditure share in cost of input y. We also use this
definition for final demand aggregators.

The input-output substitution operator for producer k is defined as

Φk(Ψ(i), Ψ(j)) = − ∑
x,y∈N+F

Ω̃kx[δxy + Ω̃ky(θk(x, y)− 1)]ΨxiΨyj,

=
1
2

EΩ(k)

(
(θk(x, y)− 1)(Ψi(x)−Ψi(y))(Ψj(x)−Ψj(y))

)
,

where δxy is the Kronecker delta, Ψi(x) = Ψxi and Ψj(x) = Ψxj, and the expectation on the
second line is over x and y.

In the CES case with elasticity θk, all the cross Allen-Uzawa elasticities are identical
with θk(x, y) = θk if x , y, and the own Allen-Uzawa elasticities are given by θk(x, x) =

−θk(1− Ω̃kx)/Ω̃kx. It is easy to verify that when Ck has a CES form we recover the input-
output covariance operator:

Φk(Ψ(i), Ψ(j)) = (θk − 1)CovΩ̃(k)(Ψ(i), Ψ(j)).

Even outside the CES case, the input-output substitution operator shares many proper-
ties with the input-output covariance operator. For example, it is immediate to verify, that:
Φk(Ψ(i), Ψ(j)) is bilinear in Ψ(i) and Ψ(j); Φk(Ψ(i), Ψ(j)) is symmetric in Ψ(i) and Ψ(j); and
Φk(Ψ(i), Ψ(j)) = 0 whenever Ψ(i) or Ψ(j) is a constant.

47



All the structural results in the paper can be extended to general non-CES economies
by simply replacing terms of the form (θk − 1)CovΩ̃(k)(Ψ(i), Ψ(j)) by Φk(Ψ(i), Ψ(j)).

For example, when generalized beyond nested CES functional forms, Theorem 3 be-
comes the following.

Theorem 7. For a vector of perturbations to productivity d log A and wedges d log µ, the
change in the price of a good or factor i ∈ N + F is the same as (8). The change in the sales
share of a good or factor i ∈ N + F is

d log λi = ∑
k∈N+F

(
1{i=k} −

λk
λi

Ψki

)
d log µk + ∑

k∈N

λk
λi

µ−1
k Φk(Ψ(i), d log p)

+ ∑
g∈F∗

∑
c∈C

λWc
i − λi

λi
ΦcgΛg d log Λg,

where d log p is the (N + F)× 1 vector of price changes in (8). The change in wedge income
accruing to household c (represented by a fictitious factor) is the same as (10).

B Differential Exact-Hat Algebra

We can conduct global comparative statics by viewing Theorem 3 as a system of differential
equations that can be solved by iterative means (e.g. Euler’s method or Runge-Kutta). The
endogenous terms in Equations (8) and (9) depend only on HAIO and Leontief matrices
(Ω̃, Ω, Ψ̃, Ψ). However, a similar logic to (9) can be used to derive changes in these matrices.
In particular, the change in the HAIO matrix Ω̃ is

dΩ̃ij = (1− θi)CovΩ̃(i)

(
d log p, I(j)

)
,

where I(j) is the jth column of the identity matrix. The change in the Leontief inverse is

dΨ̃ij = ∑
k∈N

Ψ̃ik(1− θi)CovΩ̃(k)

(
d log p, Ψ̃(j)

)
.

Similarly, changes in Ω are
dΩij = µ−1

i dΩ̃ij − d log µi

and changes in Ψ are

dΨij = ∑
k∈N

Ψikµ−1
k (1− θk)CovΩ̃(k)(d log p, Ψ(j))−∑

k
Ψik(Ψkj − 1{k=j})d log µk.
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As explained in Appendix H, this means that we can conduct global comparative statics by
repeatedly solving a (C + F)× (C + F) linear system and cumulating the results, instead
of solving a system of (C + N + F)× (C + N + F) nonlinear equations. A similar approach
is sometimes used in the CGE literature, for example Dixon et al. (1982), to solve high-
dimensional models because exact-hat algebra is computationally impracticable for large
models.1 For the quantitative model in Section 7, the differential approach is more than ten
times faster than using state-of-the-art nonlinear solvers to perform exact hat-algebra.

There are two scenarios where the differential equations approach is especially useful.
The first is for large models with strong nonlinearities (e.g. low elasticities of substitution).
In these cases, repeatedly solving the smaller linear system may be more computationally
feasible than solving the larger highly nonlinear system.

Secondly, the differential approach is also useful outside of the nested-CES case where
closed-form expressions for the demand system are not available, but estimates of the elas-
ticity of substitution are available at different points of the cost function. In this case, the
non-parametric version of Theorem 3 (Theorem 7 in Appendix A) can be used to feed es-
timates of the elasticity of substitution directly into the differential equation to compute
global comparative statics without specifying a closed-form expression for production or
cost functions.2

C Numerical Accuracy and Efficiency

We provide flexible Matlab code, detailed in Appendix H, that loglinearizes arbitrary gen-
eral equilibrium models of the type studied in this paper and computes local comparative
statics. In this section, we investigate the accuracy and computational efficiency of this
approach.

Accuracy of Loglinearization. Figure 6 displays the numerical accuracy of the first-order
approximation for universal iceberg and tariff shocks of different sizes. Note that this Fig-
ure 6 is not relevant for differential exact-hat algebra (as performed in Section 7) because
once we iterate on the first-order approximation, it becomes exact. The left and right pan-
els show the root-mean-squared-error in log welfare, using the benchmark model, using
dollar-weighting and country-weighting. As expected, the error is larger for bigger shocks,

1In the CGE literature, supply and demand relationships are log-linearized and then integrated numeri-
cally by Euler’s method.

2An additional reason why the differential equations approach can be useful is because some statistics,
like real GDP, are defined in terms of path integrals. Hence, the differential equation approach must be used
because the change in real GDP, in general, will depend on the path of integration. See Hulten (1973) for
more information.
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and the dollar-weighted error is smaller since nonlinearities are smaller for larger countries
and less open countries.

0 2 4 6 8 10 12 14 16 18 20
0.00

0.01

0.01

0.02

Shock intensity

R
M

SE
(w

ei
gh

te
d)

Iceberg trade cost
Tariff

0 2 4 6 8 10 12 14 16 18 20
0.00

0.01

0.01

0.02

0.02

0.03

0.03

Shock intensity

R
M

SE
(u

nw
ei

gh
te

d)

Iceberg trade cost
Tariff

Figure 6: Error of the first-order approximation for a universal shock to trade barriers.

Computational Efficiency. By repeated iteration on the loglinear solution, the code can
also compute exact nonlinear responses to shocks. We refer to this way of solving the non-
linear model as “differential exact hat-algebra.” We compare the computational efficiency
of differential exact hat-algebra with exact hat-algebra using Matlab’s built-in fmincon non-
linear solver as well as a state-of-the-art industrial numerical solver Artelys Knitro. We pro-
vide the nonlinear solvers with analytical expressions of the Jacobian, which significantly
boosts their performance. Figure 7 shows how long each solver takes to solve the model for
a 60% universal increase in iceberg shocks using the benchmark elasticities. On the x-axis
we vary the number of variables by varying the number of countries in descending order
of country GDP. For example, when there are two countries, we only have the US and an
aggregate composite “rest-of-the-world” country.3 We increase the number of variables by
disaggregating the rest-of-the-world. Figure 7 shows that differential exact hat-algebra is
much faster than fmincon and even Knitro, especially as the number of countries increases.4

An additional virtue of the differential exact-hat algebra over standard exact-hat al-
gebra is that when the model becomes highly nonlinear, for example when intersectoral
elasticities of susbtitution are close to zero, nonlinear solvers take longer and when the do-
mestic elasticities of substitution (θ0, θ1, θ2, θ3, θ4) are lowered to below 0.2, fmincon and
Knitro fail to find a solution at all. On the other hand, differential exact hat-algebra always

3Each additional country increases the number of variables by 34 — four factor and thirty goods prices.
4For example, the computer we used cannot solve the factor-specific version of the model using exact-hat

algebra due to insufficient memory.
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Figure 7: Time taken to solve the nonlinear model for a 60% universal iceberg shock as a
function of the number of countries.

works regardless of the elasticities of substitution. This is particularly useful for large-scale
applications where strong complementarities are important. For example, this algorithm
is used by Bachmann et al. (2022) to study how an embargo of Russian goods would af-
fect Germany in the short-run. This application would not have been numerically feasible
using the nonlinear solvers mentioned here.

D Data Appendix

To conduct the counterfactual exercises in Section 7, we use the World Input-Output Database
(Timmer et al., 2015). We use the 2013 release of the data for the final year which has no-
missing data — that is 2008. We use the 2013 release because it has more detailed informa-
tion on the factor usage by industry. We aggregate the 35 industries in the database to get
30 industries to eliminate missing values, and zero domestic production shares, from the
data. In Table 1, we list our aggregation scheme, as well as the elasticity of substitution,
based on Caliendo and Parro (2015) and taken from Costinot and Rodriguez-Clare (2014)
associated with each industry. We calibrate the model to match the input-output tables and
the socio-economic accounts tables in terms of expenditure shares in steady-state (before
the shock).

For the growth accounting exercise in Section 7.1, we use both the 2013 and the 2016
release of the WIOD data. When we combine this data, we are able to cover a larger number
of years. We compute our growth accounting decompositions for each release of the data
separately, and then paste the resulting decompositions together starting with the year of
overlap. To construct the consumer price index and the GDP deflator for each country, we
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use the final consumption weights or GDP weights of each country in each year to sum up
the log price changes of each good. To arrive at the price of each good, we use the gross
output prices from the socio-economic accounts tables which are reported at the (country
of origin, industry) level into US dollars using the contemporaneous exchange rate, and
then take log differences. This means that we assume that the log-change in the price of
each good at the (origin, destination, industry of supply, industry of use) level is the same
as (origin, industry of supply) level. If there are differential (changing) transportation costs
over time, then this assumption is violated.

To arrive at the contemporaneous exchange rate, we use the measures of nominal GDP
in the socioeconomic accounts for each year (reported in local currency) to nominal GDP
in the world input-output database (reported in US dollars).
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WIOD Sector Aggregated sector Trade Elasticity
1 Agriculture, Hunting, Forestry and Fishing 1 8.11
2 Mining and Quarrying 2 15.72
3 Food, Beverages and Tobacco 3 2.55
4 Textiles and Textile Products 4 5.56
5 Leather, Leather and Footwear 4 5.56
6 Wood and Products of Wood and Cork 5 10.83
7 Pulp, Paper, Paper , Printing and Publishing 6 9.07
8 Coke, Refined Petroleum and Nuclear Fuel 7 51.08
9 Chemicals and Chemical Products 8 4.75
10 Rubber and Plastics 8 4.75
11 Other Non-Metallic Mineral 9 2.76
12 Basic Metals and Fabricated Metal 10 7.99
13 Machinery, Enc 11 1.52
14 Electrical and Optical Equipment 12 10.6
15 Transport Equipment 13 0.37
16 Manufacturing, Enc; Recycling 14 5
17 Electricity, Gas and Water Supply 15 5
18 Construction 16 5
19 Sale, Maintenance and Repair of Motor Vehicles... 17 5
20 Wholesale Trade and Commission Trade, ... 17 5
21 Retail Trade, Except of Motor Vehicles and... 18 5
22 Hotels and Restaurants 19 5
23 Inland Transport 20 5
24 Water Transport 21 5
25 Air Transport 22 5
26 Other Supporting and Auxiliary Transport.... 23 5
27 Post and Telecommunications 24 5
28 Financial Intermediation 25 5
29 Real Estate Activities 26 5
30 Renting of M&Req and Other Business Activities 27 5
31 Public Admin/Defence; Compulsory Social Security 28 5
32 Education 29 5
33 Health and Social Work 30 5
34 Other Community, Social and Personal Services 30 5
35 Private Households with Employed Persons 30 5

Table 1: The sectors in the 2013 release of the WIOD data, and the aggregated sectors in our
data.
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E Factor Demand System

Adao et al. (2017) show that trading economies can be represented as if only factors are
traded within and across borders, and households have preferences over factors directly.
Theorem 3 can be used to flesh out this representation by locally characterizing its associ-
ated reduced-form Marshallian demand for factors in terms of sufficient-statistic microeco-
nomic primitives. For example, in the absence of wedges, the expenditure share of house-
hold c on factor f under the “trade-in-factors” representation is given by Ψc f ; the elastici-
ties ∂ log Ψc f /∂ log Ai holding factor prices constant then characterize its Marshallian price
elasticities as well as its Marshallian elasticities with respect to iceberg trade shocks:

∂ log Ψc f

∂ log Ai
= ∑

k∈N

Ψck
Ψc f

(θk − 1)CovΩ(k)(Ψ( f ), Ψ(i)).

Similarly, by Theorem 3, we know that the elasticity of the factor income share of some
factor j with respect to the price of another factor i, holding fixed all other factor prices, is
given by

∂ log Λj

∂ log wi
= ∑

k∈N
(1− θk)

λk
Λj

CovΩ(k)(Ψ(i), Ψ(j)) + ∑
c∈C

(ΛWc
j /Λj − 1)ΦciΛi, (21)

recalling that for factors f ∈ F, we interchangeably write Λ f or λ f to refer to their Domar
weight. Figure 8 illustrates these elasticities of the factor demand system for a selection of
the countries using the benchmark calibration. The ijth element gives the elasticity of j’s
world income share with respect to the price of i (holding fixed all other factor prices). Each
country has four factors: capital, low, medium, and high skilled labor. Some interesting
patterns emerge:

1. There are dark blue columns corresponding to factors in major countries like China,
Germany, Britain, Japan, and the USA. For these factors, an increase in their price
strongly raises the share of world income going to the rest (low-skilled labor in these
countries does not obey this pattern).

2. There is a block-diagonal structure where an increase in domestic capital prices low-
ers both domestic labor and capital income shares. On the other hand, an increase in
labor prices often raises domestic labor income and lowers domestic capital’s share
of world income. This is despite the fact that at the micro-level, the elasticity of sub-
stitution among domestic factors is symmetric.
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Figure 8: The international factor demand system for a selection of countries
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The ijth element is the elasticity of factor j with respect to the price of factor i, holding fixed other factor
prices, given by equation (21).
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F Aggregation and Stability of the Trade Elasticity

In this section, we characterize trade elasticities at different levels of aggregation in terms of
microeconomic primitives. We also prove necessary and sufficient conditions for ensuring
that the trade elasticity is constant and stable. We also relate the instability of the trade
elasticity to the Cambridge Capital controversy — a mathematically similar issue that arose
in capital theory in the middle of the 20th century.

F.1 Aggregating and Disaggregating Trade Elasticities

We start by defining a class of aggregate elasticities. Consider two sets of producers I and
J. Let λI = ∑i∈I λi and λJ = ∑j∈J be the aggregate sales shares of producers in I and J, and
let χI

i = λi/λI and χJ
j = λj/λJ . Let k be another producer. We then define the following

aggregate elasticities capturing the bias towards I vs. J of a productivity shock to m as:

ε I J,m =
∂(λI/λJ)

∂ log Am
,

where the partial derivative indicates that we allow for this elasticity to be computed hold-
ing some things constant.

To shed light on trade elasticities, we proceed as follows. Consider a set of producers
S ⊆ Nc in a country c. Let J be denote a set of domestic producers that sell to producers
in S, and I denote a set of foreign producers that sell to producers in S. Without loss of
generality, using the flexibility of network relabeling, we assume that producers in I and J
are specialized in selling to producers in S so that they do not sell to producers outside of
S.

Consider an iceberg trade cost modeled as a negative productivity shock d log(1/Am)

to some producer m. We then define the trade elasticity as ε I J,k = ∂(λJ/λI)/∂ log(1/Am) =

∂(λI/λJ)/∂ log Am. As already mentioned, the partial derivative indicates that we allow
for this elasticity to be computed holding some things constant. There are therefore dif-
ferent trade elasticities, depending on exactly what is held constant. Different versions of
trade elasticities would be picked up by different versions of gravity equations regressions
with different sorts of fixed effects and at different levels of aggregation.

There are several possibilities for what to hold constant, ranging from the most partial
equilibrium to the most general equilibrium. At one extreme, we can hold constant the
prices of all inputs for all the producers in I and J and the relative sales shares of all the
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producers in S:

ε I J,m = ∑
s∈S

∑
i∈I

χI
i (θs− 1)

λs

λi
CovΩ(s)(I(i), Ω(m))−∑

s∈S
∑
j∈J

χJ
j (θs− 1)

λs

λj
CovΩ(s)(I(j), Ω(m)), (22)

where I(i) and I(j) are the ith and jth columns of the identity matrix. An intermediate
possibility is to hold constant the wages of all the factors in all countries:

ε I J,k = ∑
i∈I

χI
i Γik −∑

j∈J
χJ

j Γjk.

And at the other extreme, we can compute the full general equilibrium:

ε I J,m = ∑
i∈I

χI
i

(
Γim − ∑

g∈F
Γig

d log Λg

d log Am
+ ∑

g∈F
Ξig

d log Λg

d log Am

)

−∑
j∈J

χJ
j

(
Γjm − ∑

g∈F
Γjg

d log Λg

d log Am
+ ∑

g∈F
Ξjg

d log Λg

d log Am

)
,

d log Λ f / d log Am is given in Theorem 3.
The trade elasticity is a linear combination of microeconomic elasticities of substitution,

where the weights depend on the input-output structure. Except at the most microeco-
nomic level where there is a single producer s in S and in the most partial-equilibrium
setting where we recover εs − 1, this means that the aggregate trade elasticity is typically
an endogenous object, since the input-output structure is itself endogenous.5 Furthermore,
in the presence of input-output linkages, it is typically nonzero even for trade shocks that
are not directly affecting the sales of I to J, except in the most partial-equilibrium setting.

Example: Trade Elasticity in a Round-About World Economy

In many trade models, the trade elasticity, defined holding factor wages constant, is an
invariant structural parameter. As pointed out by Yi (2003), in models with intermediate
inputs, the trade elasticity can easily become an endogenous object. Consider the two-
country, two-good economy depicted in Figure 2. The representative household in each
country only consumes the domestic good, which is produced using domestic labor and
imports with a CES production function with elasticity of substitution θ. We consider the
imposition of a trade cost hitting imports by country 1 from country 2. For the sake of
illustration, we assume that the trade cost does not apply to the exports of country 1 to

5In Appendix F.3, we provide necessary and sufficient conditions for the trade elasticity to be constant in
the way.
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country 2.
The trade elasticity holding factor wages and foreign input prices constant is a constant

structural parameter, and given simply by

θ − 1.

However, echoing our discussion above, the trade elasticity holding factor wages constant
is different, and is given by

θ − 1
1−Ω21Ω12

,

where Ωij is the expenditure share of i on j, e.g. its intermediate input import share. As
the intermediate input shares increase, the trade elasticity becomes larger. Simple trade
models without intermediate goods are incapable of generating these kinds of patterns.

Of course, since the intermediate input shares Ωij are themselves endogenous (depend-
ing on the iceberg shock), this means that the trade elasticity varies with the iceberg shocks.
In particular, if θ > 1, then the trade elasticity increases (nonlinearly) as iceberg costs on
imports fall in all countries since intermediate input shares rise. 6

H1 H2

L1 L2

y2y1

Figure 9: The solid lines show the flow of goods. Green nodes are factors, purple nodes are
households, and white nodes are goods. The boundaries of each country are denoted by
dashed box.

F.2 Necessary and Sufficient Conditions for Constant Trade Elasticity

In this section, we study conditions under which the trade elasticity (holding fixed factor
prices) is constant. This trade elasticity between i and j with respect to shocks to k is defined
as

εij,k =
∂(λi/λj)

∂ log Ak
,

6In Appendix F.3, we show that there it is possible to generate “trade re-switching” examples where the
trade elasticity is non-monotonic with the trade cost (or even has the “wrong” sign) in otherwise perfectly
respectable economies. These examples are analogous to the “capital re-switching” examples at the center
the Cambridge Cambridge Capital controversy.
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holding fixed factor prices. We say that a good m is relevant for εij,k if

λmCovΩ(m)(Ψ(k), Ψ(i)/λi −Ψ(j)/λj) , 0.

If m is not relevant, we say that it is irrelevant. For instance, if some producer m is exposed
symmetrically to i and j through its inputs

Ωml(Ψli −Ψl j) = 0 (l ∈ N),

then εij,k is not a function of θm and m is irrelevant. Another example is if some producer
m , j is not exposed to k through its inputs

Ψmk = 0,

then εij,k is not a function of θm and m is irrelevant.

Corollary 6 (Constant Trade Elasticity). Consider two distinct goods i and j that are imported to
some country c. Then consider the following conditions:

(i) Both i and j are unconnected to one another in the production network: Ψij = Ψji = 0, and i
is not exposed to itself Ψii = 1.

(ii) The representative “world” household is irrelevant

Covχ

(
Ψ(i),

Ψ(i)

λi
−

Ψ(j)

λj

)
= 0,

which holds if both i and j are only used domestically, so that only household c is exposed to i
and j. That is, λ

Wh
i = λ

Wh
j = 0 for all h , c. This assumption holds automatically if i and j

are imports and domestic goods and there are no input-output linkages.

(iii) For every relevant producer l, the elasticity of substitution θl = θ.

The trade elasticity of i relative to j with respect to iceberg shocks to i is constant, and equal to

εij,i = (θ − 1).

if, and only if, (i)-(iii) hold.

The conditions set out in the example above, while seemingly stringent, actually rep-
resent a generalization of the conditions that hold in gravity models with constant trade
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elasticities. Those models oftentimes either assume away the production network, or as-
sume that traded goods always enter via the same CES aggregator.

A noteworthy special case is when i and j are made directly from factors, without any
intermediate inputs. Then, we have the following

Corollary 7. (Network Irrelevance) If some good i and j are only made from domestic factors, then

∑
m∈C,N

λmCovΩ(m)(Ψ(i), Ψ(j)/λi −Ψ(i)/λi) = 1.

Hence, if all microeconomic elasticities of substitution θm are equal to the same value θm = θ then
εij,j = θ.

Suppose that i is domestic goods and j are foreign imports, both of which are made
only from factors (no intermediate inputs are permitted). Then a shock to j is equivalent
to an iceberg shock to transportation costs. In this case, the trade elasticity of imports j
into the country producing i with respect to iceberg trade costs is a convex combination of
the underlying microelasticities. Of course, whenever all micro-elasticities of substitution
are the same, the weights (which have to add up to one) become irrelevant, and this is the
situation in most benchmark trade models with constant trade elasticities. Specifically, this
highlights the fact that having common elasticities is not enough to deliver a constant trade
elasticity (holding fixed factor prices) in the presence of input-output linkages as shown in
the round-about example in the previous section.

F.3 Trade Reswitching

Yi (2003) shows that the trade elasticity can be nonlinear due to vertical specialization,
where the trade elasticity can increase as trade barriers are lowered. Building on this in-
sight, we can also show that, at least in principle, the trade elasticity can even have the
“wrong sign” due to these nonlinearities. This relates to a parallel set of paradoxes in cap-
ital theory.

To see how this can happen, imagine there are two ways of producing a given good: the
first technique uses a domestic supply chain and the other technique uses a global value
chain. Whenever the good is domestically produced, the iceberg costs of transporting the
good are, at most, incurred once — when the finished good is shipped to the destination.
However, when the good is made via a global value chain, the iceberg costs are incurred
as many times as the good is shipped across borders. As a function of the iceberg cost
parameter τ, the difference in the price of these two goods (holding factor prices fixed) is a
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polynomial of the form
Bnτn − B1τ, (23)

where Bn and B1 are some coefficients and n is the number of times the border is crossed.
The nonlinearity in τ, whereby the iceberg cost’s effects are compounded by crossing the
border, drives the sensitivity of trade volume to trade barriers in Yi (2003). The benefits
from using a global value chain are compounded if the good has to cross the border many
times.

However, this discussion indicates the behavior of the trade elasticity can, in principle,
be much more complicated. In fact, an interesting connection can be made between the
behavior of the trade elasticity and the (closed-economy) reswitching debates of the 1950s
and 60s. Specifically, equation (23) is just one special case. In general, the cost difference
between producing goods using supply chains of different lengths is a polynomial in τ –
and this polynomial can, in principle, have more than one root. This means that the trade
elasticity can be non-monotonic as a function of the trade costs, in fact, it can even have the
“wrong” sign, where the volume of trade decreases as the iceberg costs fall. This mirrors
the apparent paradoxes in capital theory where the relationship between the capital stock
and the return on capital can be non-monotonic, and an increase in the interest rate can
cause the capital stock to increase.

To see this in the trade context, imagine two perfectly substitutable goods, one of which
is produced by using 10 units of foreign labor, the other is produced by shipping 1 unit of
foreign labor to the home country, back to the foreign country, and then back to the home
country and combining it with 10 units of domestic labor. If we normalize both foreign and
domestic wages to be unity, then the costs of producing the first good is 10(1+ τ), whereas
the cost of producing the second good is (1 + τ)3 + 10, where τ is the iceberg trade cost.
When τ = 0, the first good dominates and goods are only shipped once across borders.
When τ is sufficiently high, the cost of crossing the border is high enough that the first
good again dominates. However, when τ has an intermediate value, then it can become
worthwhile to produce the second good, which causes goods to be shipped across borders
many times, thereby inflating the volume of trade.

Such examples are extreme, but they illustrate the point that in the presence of input-
output networks, the trade elasticity even in partial equilibrium (holding factor prices
constant) can behave quite unlike any microeconomic demand elasticity, sloping upwards
when, at the microeconomic level, every demand curve slopes downwards.
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Non-Symmetry and Non-Triviality of Trade Elasticities

Another interesting subtlety of Equation (22) is that the aggregate trade elasticities are non-
symmetric. That is, in general εij,l , ε ji,l. Furthermore, unlike the standard gravity equa-
tion, Equation (22) shows that the cross-trade elasticities are, in general, nonzero. Hence,
changes in trade costs between k and l can affect the volume of trade between i and j holding
fixed relative factor prices and incomes. This is due to the presence of global value chains,
which transmit shocks in one part of the economy to another independently of the usual
general equilibrium effects (which work through the price of factors).

G Partial Equilibrium Counterpart to Theorem 4

Proposition 1. For a small open economy operating in a perfectly competitive world market, the
introduction of import tariffs reduces the welfare of that country’s representative household by

∆W ≈ 1
2 ∑

i
λi∆ log yi∆ log µi,

where µi is the ith gross tariff (no tariff is µi = 1), yi is the quantity of the ith import, and λi is the
corresponding Domar weight.

Proof. To prove this, let e(p)W be the expenditure function of the household. We have
e(p)W = p · q + ∑i(µi − 1)piyi. Differentiate this once to get c · d p + e(p)d W = q ·
d p + d q · p + ∑i d µi piyi + ∑i(µi − 1)d(piyi). Theorem 2 implies that this can be sim-
plified to e(p)d W = (q − c) · d p + ∑i d µi piyi + ∑i(µi − 1)d(piyi) = ∑i(µi − 1)d(piyi),
where the left-hand side is the equivalent variation. Now differentiate this again, and eval-
uate at µi = 1 to get ∑i pi d yi. Hence the second-order Taylor approximation, at µ = 1, is
1
2 ∑i d µi pi d yi =

1
2 ∑i d log µi piyi d log yi, and our normalization implies piyi is equal to its

Domar weight. �

H Computational Appendix

This appendix describes our computational procedure, as well as the Matlab code in our
replication files. Before running the code, customize your folder directory in the code ac-
cordingly.

Writing nested-CES economies in standard-form is useful for intuition, but it is compu-
tationally inefficient since it greatly expands the size of the input-output matrix. Therefore,
for computational efficiency, we instead use the generalization in Appendix A to directly
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linearize the nested-CES production functions without first putting them into standard
form.

Overview

First, we provide an overview of the different files before providing an in depth description
of each.

1. main load data.m: First part of main code that calculates expenditure shares from
data.

2. main dlogW.m: Second part of the main code that loads inputs and calls functions to
iterate.

3. AES func.m: Function that calculates Allen-Uzawa elasticities of substitution.

4. Nested CES linear final.m: Function that solves the system of linear equations de-
scribed in Theorem 3.

5. Nested CES linear result final.m: Function that calculates derivatives that are used
to derive welfare changes or iterate for large shocks.

While 1. and 3. are specific to our quantitative application, 2., 4. and 5. are general
purpose functions that can be used to derive comparative statics and solve any model in
the class we study. We now describe each part of the code in some detail.

1. Main code that loads data

Code: main load data.m

Data input:

1. Number of countries (C), Number of sectors in each country (N), Number of factors
in each country (F)

2. Trade elasticity when a country imports or buys domestic product (trade_elast: N
by 1 vector)

3. Input-output matrix across country and sectors (Omega_tilde: CN by CN matrix,
(i, j) element: expenditure share of sector i on sector j)

4. Household expenditure share on heterogenous goods (beta: CN by C matrix, (i, c)
element: expenditure share of household c on sector i)
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5. Value-added share (alpha: CN by 1 vector, (i, 1) element: value-added share of sector
i), Primary Factor share (alpha_VA: CN by F matrix, (i, f ) element: expenditure share
of sector i on factor f out of factor usage)

6. A ratio of GNE of each country to world GNE (GNE_weights: C by 1 vector)

7. (Optional) If economy has initial tariff,

(a) Tariff matrix when household (column) buys goods (row) – Tariff_cons_matrix_new:
CN by C matrix ((i, c) element: tariff rate of household c, destination, on sector
i, origin)

(b) Tariff matrix when a sector (row) buys goods (column) –Tariff_matrix_new:
CN by CN matrix ((i, j) element: tariff rate of sector i, destination, on sector j,
origin)

User input:

1. If the economy does not have initial tariff, initial_tariff_index= 1. Otherwise, if
the economy has initial tariff, =2.

Outputs:

1. data, shock struct

From the inputs, the code automatically calculates input shares (beta_s, beta_disagg,
Omega_s, Omega_disagg, Omega_total_C, Omega_total_N) and the input-output matrix
(Omega_total_tilde, Omega_total). These variables are used to calculate Allen-Uzawa
elasticities of substitution and solve system of linear equations.

2. Main code that loads inputs and calls functions

Code: main dlogW.m

Data input:

1. data, shock struct from main load data.m

64



User input:

1. Elasticity of substitution parameters for nested CES structure: Elasticity of substitu-
tion (1) across Consumption (sigma), (2) across Composite Value-added and Interme-
diates (theta), (3) across Primary Factors (gamma), and (4) across Intermediate Inputs
(epsilon)

2. If the economy gets universal iceberg trade cost shock, shock_index = 1. Otherwise,
if the economy gets universal tariff shock, = 2.

3. When intensity of shock is x%, intensity = x.

4. When shock is discretized by x/y% and model cumulates the effect of shocks y times,
ngrid = y.

5. Ownership structure

(a) Ownership structure of factor (Phi_F: C by CF matrix, (c, f ) element: Factor
income share of factor f owned by household c)

(b) Ownership structure of tariff revenue (Phi_T: C+CN by CN+CF by C 3-D ma-
trix, (i, j, c) element: Tariff revenue share owned by household c when house-
hold/sector i buys from sector/factor j)

6. (Optional) Technical details about how to customize iceberg trade cost shock matrix
dlogτ and tariff shock matrix dlogt are described in Nested CES linear final.m

Output:

1. dlogW (C by ngrid matrix) collects change in real income of each country for each
iteration of discretized shocks

2. dlogW_sum (C by 1 vector) shows change in real income of each country from lin-
earized system by summing up dlogW

3. dlogW_world (1 by ngrid vector) is change in real income of world for each iteration
of discretized shocks

4. dlogR (C by ngrid matrix) collects reallocation terms of each country for each itera-
tion of discretized shocks

5. dlogR_sum (C by 1 vector) shows reallocation terms of each country from linearized
system by summing up dlogR
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6. dlogY_2nd shows change in world GDP to a 2nd order

3. Allen-Uzawa Elasticity of Substitution (AES)

This code computes Allen-Uzawa elasticities of substitution for each sector. These are then
used following Appendix A.

Code: AES func.m

Inputs:

1. Number of countries (C), Number of sectors in each country (N), Number of factors
in each country (F)

2. Elasticity of substitution parameters for nested CES structure: Elasticity of substitu-
tion (1) across Consumption (sigma), (2) across Composite Value-added and Interme-
diates (theta), (3) across Primary Factors (gamma),and (4) across Intermediate Inputs
(epsilon)

3. Trade elasticity when a country imports or buys domestic product (trade_elast: N
by 1 vector)

4. Value-added share (alpha: CN by 1 vector, (i, 1) element: value-added share of sector
i)

5. Input shares:

(a) bic(beta_s : C by N matrix, (c, i) element: How much household c consumes
sector i good)

(b) ωic
j (Omega_s: CN by N matrix, (ic, j) element: How much sector i in country c

uses sector j good)

(c) Ω̃0c
jm(Omega_total_C : C by CN matrix, (c, jm) element: How much household c

buys from sector j in country m)

(d) Ω̃ic
jm(Omega_total_N : CN by CN+CF matrix, (ic, jm) element: Hom much sector

i in country c buys from good/factor j in country m)

Outputs:

1. θ0c(ic′, jm) (AES_C_Mat: CN by CN by C 3-D matrix, (ic′, jm, c) element: AES of house-
hold in country c that substitutes good i in country c′ and good j in country m)
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2. θkc(ic′, jm) (AES_N_Mat: CN by CN+CF by CN 3-D matrix, (ic′, jm, kc) element: AES of
producer of sector k in country c that substitutes good i in country c′ and good/factor
j in country m)

3. θkc( f c, jm) (AES_F_Mat: CF by CN+CF by CN 3-D matrix, ( f c, jm, kc) element: AES of
producer of sector k in country c that substitutes factor f in country c and good j in
country m)

To describe how this code functions, we introduce the following notation.

Notation:

Let pkc
ic′ be the bilateral price when industry or household k in country c buys from industry

i in country c′. That is
pkc

ic′ = τkc
ic′ t

kc
ic′ pic′ ,

where τkc
ic′ is an iceberg cost on kc purchasing goods from ic′ and tkc

ic′ is a tariff on kc pur-
chasing goods from ic′, and where pic′ is the marginal cost of producer i in country c′.
Define

Ωic
jm =

pjmxic
jm

picyic
, Ω̃ic

jm =
tic

jm pjmxic
jm

picyic
,

where pjmxic
jm is expenditures of ic on jm not including the import tariff. Notice that every

row of Ω̃ic
jm should always sum up to 1. Also, assume that C is a set of countries, and Fc is

the factors owned by Household in country c. Then,
Households: The price of final consumption in country c

P0c =

(
∑

i
bic

(
P0c

i

)1−σ
) 1

1−σ

,

where bic = ∑m∈C Ω̃0c
im. The price of consumption good from industry i in country c

P0c
i =

(
∑

m∈C
δ0c

m

(
t0c
imτ0c

im pim

)1−θi

) 1
1−θi

,

where δ0c
m = Ω̃0c

im/
(
∑v∈C Ω̃0c

iv
)
.

Producers: The marginal cost of good i produced by country c

pic =
(

αicP1−θ
wic

+ (1− αic)P1−θ
Mic

) 1
1−θ
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where αic = ∑ f∈Fc Ω̃ic
f c. The price of value-added bundled used by producer i in country c

pwic =

(
∑
f∈Fc

αic
f w1−γ

f c

) 1
1−γ

,

where αic
f = Ω̃ic

f c/
(
∑d∈Fc Ω̃ic

dc
)

. The price of intermediate bundle used by producer i in
country c

pMic =

(
∑

j
ωic

j

(
qic

j

)1−ε
) 1

1−ε

,

where ωic
j =

(
∑m∈C Ω̃ic

jm

)
/(1 − αic). The price of intermediate bundle good j used by

producer i in country c

qic
j =

(
∑

m∈C
δic

jm

(
τic

jmtic
jm pjm

)1−θi

) 1
1−θi

,

where δic
jm = Ω̃ic

jm/
(
∑v∈C Ω̃ic

iv
)
.

Deriving Allen-Uzawa elasticities for nested-CES models is straightforward. To do so,
we proceed as follows:

Derivation:

(1) θ0c(ic′, jm) Household demand in country c for good i from c′ is

x0c
ic′ = Ω̃0c

ic′

(
p0c

ic′

P0c
i

)−θi
(

P0c
i

P0c

)−σ

Cc

Hence

θ0c(ic′, jm) =
1

Ω̃0c
jm

∂ log x0c
ic′

∂ log p0c
jm

= −θi

(
1(jm = ic′)− 1(j = i)δ0c

jm

)
Ω̃0c

jm
−

σ
(

1(j = i)δ0c
jm − Ω̃0c

jm

)
Ω̃0c

jm
.

This can be simplified as

θ0c(ic′, jm) =
θi

∑v∈C Ω̃0c
iv

+ σ

(
1− 1

∑v∈C Ω̃0c
iv

)
=

θi

bic
+ σ

(
1− 1

bic

)
when i = j & ic′ , jm,

θ0c(ic′, jm) = − θi

Ω̃0c
jm

+
θi

bic
+ σ

(
1− 1

bic

)
when ic′ = jm.
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Otherwise, θ0c(ic′, jm) = σ.

(2) θkc(ic′, jm) When k is not a household, demand by k in country c for good i from c′ is

xkc
ic′ = Ω̃kc

ic′

(
pkc

ic′

Pkc
i

)−θi
(

Pkc
i

Pkc
M

)−ε(
Pkc

M
pkc

)−θ

Ykc.

Hence

θkc(ic′, jm) =
1

Ω̃kc
jm

∂ log xkc
ic′

∂ log pkc
jm

= −θi

(
1(jm = ic′)− 1(j = i)δkc

jm

)
Ω̃kc

jm
−

ε
(

1(j = i)δkc
jm − 1(j < F)δkc

jmωkc
j

)
Ω̃kc

jm

−
θ
(

1(j < F)δkc
jmωkc

j − Ω̃kc
jm

)
Ω̃kc

jm
.

This can be simplified as

θkc(ic′, jm) =
θi

(1− αkc)ω
kc
j
+ ε

(
1

1− αkc
− 1

(1− αkc)ω
kc
j

)

+ θ

(
1− 1

1− αkc

)
when i = j ∈ N & ic′ , jm,

θkc(ic′, jm) = − θi

Ω̃kc
jm

+
θi

(1− αkc)ω
kc
j
+ ε

(
1

1− αkc
− 1

(1− αkc)ω
kc
j

)
+ θ

(
1− 1

1− αkc

)
when ic′ = jm,

θkc(ic′, jm) =
ε

1− αkc
+ θ

(
1− 1

1− αic

)
when i , j ∈ N,

and when j ∈ F, θkc(ic′, jm) = θ.

(3) θkc( f c, jm) Lastly, when k is not a household, demand by k in country c for factor f is

xkc
f c = Ω̃kc

f c

( p f c

pwkc

)−γ ( pwkc

pkc

)−θ

Ykc.

Hence,

θkc( f c, jm) =
1

Ω̃kc
jm

∂ log xkc
f c

∂ log pkc
jm

= −γ

(
1(jm = f c)− 1(jm ∈ Fc)αic

j

)
Ω̃kc

jm
− θ

(
1(jm ∈ Fc)αic

j − Ω̃kc
jm

)
Ω̃kc

jm
.
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Notice that θkc( f c, jm) = θ if j ∈ N. Also,

θkc( f c, jc) =
γ

∑g∈Fc Ω̃kc
gc

+ θ

(
1− 1

∑g∈Fc Ω̃kc
gc

)
=

γ

αkc
+ θ

(
1− 1

αkc

)
when j ∈ F & m = c,

θkc( f c, jc) = − γ

Ω̃kc
f c
+

γ

αkc
+ θ

(
1− 1

αkc

)
when f c = jm.

4. Solving system of linear equations

Code: Nested CES linear final.m

Input:

1. Number of countries (C), Number of sectors in each country (N), Number of factors
in each country (F)

2. Allen-Uzawa elasticities of substitution:

(a) θ0c(ic′, jm) (AES_C_Mat: CN by CN by C 3-D matrix)

(b) θkc(ic′, jm) (AES_N_Mat: CN by CN+CF by CN 3-D matrix)

(c) θkc( f c, jm) (AES_F_Mat CF by CN+CF by CN 3-D matrix)

3. Input-output matrix and Leontief inverse

(a) Ω̃ic
jm (Omega_total_tilde: C+CN+CF by C+CN+CF matrix) : Standard form of

Cost-based IO matrix

(b) Ωic
jm (Omega_total: C+CN+CF by C+CN+CF matrix) : Standard form of Revenue-

based IO matrix

(c) Ψ̃ic
jm (Psi_total_tilde) : Leontief inverse of Ω̃ic

jm

(d) Ψic
jm (Psi_total) : Leontief inverse of Ωic

jm

4. Initial sales share λCN (lambda_CN: C+CN by 1 vector) and factor income ΛF (lambda_F:
CF by 1 vector)

5. Ownership structure of factor (Phi_F: C by CF matrix) and tariff revenue (Phi_T:
C+CN by CN by C 3-D matrix) defined in main dlogW.m

6. (Optional) If economy has initial tariff, initial tariff matrix (init_t: C+CN by CN
matrix) defined in main load data.m
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Current version of code simulates universal iceberg trade cost or tariff shock. If the user
wants to specify the shocks, customize

1. universal iceberg trade cost shock matrix (dlogtau: C+CN by CN+CF matrix, (i, j)
element: log change in iceberg trade cost when household/sector i buys from sec-
tor/factor j) or

2. tariff shock matrix (dlogt: C+CN by CN+CF matrix, (i, j) element: log change in
tariff when household/sector i buys from sector/factor j).

Output:

Let dΛF be the vector of changes in the sales of primary factors and

dΛF,c′,∗ = ∑
ic

∑
jm

Φc′,ic,jmΩic
jm(t

ic
jm − 1)dλic

be the change in wedge-revenues of household c′ due to changes in sales shares, where
Φc′,ic,jm is the share of tax revenues on ic’s purchases of jm that go to household c′. The
linear system in Theorem 3 can be written as:[

dΛF

dΛF∗

]
= A

[
dΛF

dΛF∗

]
+ B

This code outputs:

1. A (C+CF by C+CF matrix) and B (C+CF by 1 vector).

Using these outputs, the code inverts the system and solves for dΛF(dlambda_F) and dΛF∗

(dlambda_F_star), which are used to obtain derivatives calculated by
Nested CES linear result final.m. It updates Ω̃ and other variables which are used in the
next iteration.

5. Calculate derivatives

Code: Nested CES linear result final.m

Input:

All inputs used in Nested CES linear final.m are also used in this code. Additionally, it
requires
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1. GNE_weights (C by 1 vector): A ratio of GNE of each country to world GNE

2. dΛF(dlambda_F) and dΛF∗(dlambda_F_star) : Solutions from Nested CES linear final.m

Output:

1. dλ (dlambda_result: C+CN+CF by 1 vector): Change in sales shares;

2. dχ (dchi_std: C+CN+CF by 1 vector): Change in household income shares;

3. dlogP (dlogP_Vec: C+CN+CF by 1 vector): Change in either the price index (house-
hold), marginal cost (sector), or factor price;

4. dΩ̃ic
jm (dOmega_total_tilde: C+CN+CF by C+CN+CF matrix) : Change in Cost-

based IO matrix;

5. dΩic
jm (dOmega_total: C+CN+CF by C+CN+CF matrix) : Change in Revenue-based

IO matrix.

For each iteration, change in real income of country c is

d log Wc = d log χc − d log Pc

where d log Pc is change in price index of household c. Meanwhile, outputs are used to up-
date λ, χ, Ω, Ω̃, which are used as a simulated data with discretized shock in next iteration.

I Extension to Roy Models

Galle et al. (2017) combine a Roy-model of labor supply with an Eaton-Kortum model of
trade to study the effects of trade on different groups of workers in an economy. They
prove an extension to the Arkolakis et al. (2012) result that accounts for the distributional
consequences of trade shocks. In this section, we show how our framework can be adapted
for analyzing such models. We generalize our analysis to encompass Roy-models of the
labor market, and show how duality with the closed economy can then be used to study
the distributional consequences of trade.

Suppose that Hc denotes the set of households in country c. As in Galle et al. (2017),
households consume the same basket of goods, but supply labor in different ways. We
assume that each household type has a fixed endowment of labor Lh, which are assigned
to work in different industries according to the productivity of workers in that group and
the relative wage differences offered in different industries.
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As usual, let world GDP be the numeraire. Define Λh
f to be type h’s share of income

derived from earning wages f

Λh
f =

Φh f Λ f

χh
,

where χh = ∑k∈F ΦhkΛk. The Roy model of Galle et al. (2017) implies that

χh
χh

=

(
∑

f
Λ

h
f

(
w f

w f

)γh
) 1

γh Lh

Lh ,

where γh is the supply elasticity, variables with overlines are initial values, Lh is the stock
of labor h has been endowed with (since we analyze log changes, only shocks to the en-
dowment value are relevant). Galle et al. (2017) show that the above equations can be mi-
crofounded via a model where homogenous workers in each group type draw their ability
for each job from Frechet distributions, and choose to work in the job that offers them the
highest return. The Roy model generalizes the factor market, with γh = 1 representing the
case where labor cannot be moved across markets by h. If γh > 1 then h can take advantage
of wage differentials to redirect its labor supply and boost its income. When γ→ ∞, labor
mobility implies that all wages in the economy are equalized (and the model collapses to a
one-factor model).

Of course, due to the fact that factor shares Λh
f are endogenously respond to factor

prices, Theorem 3 can no longer be used to determine how these shares will change in
equilibrium. Therefore, we extend those propositions here.

Proposition 2. The response of the factor prices to a shock d log Ak is the solution to the following
system:

1. Product Market Equilibrium:

Λl
d log Λl
d log Ak

= ∑
j∈{H,N}

λj(1− θj)CovΩ(j)

(
Ψ(k) + ∑

f
Ψ( f )

d log w f

d log Ak
, Ψ(l)

)

+ ∑
h∈H

(λWh
l − λl)

(
∑
f∈Fc

Φh f Λ f
d log w f

d log Ak

)
.

2. Factor Market Equilibrium:

d log Λ f = ∑
h∈H

EΦ(h)

[
γh
(
EΛ(h)

(
d log w f − d log w

))
+
(
EΛ(h)(d log w)

)
+ (d log L)

]
.
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Given this, the welfare of the hth group is

d log Wh
d log Ak

= ∑
s∈F

(
Λh

s −ΛWh
s

)
d log ws + λ

Wh
k + d log Lh.

The product market equilibrium conditions are exactly the same as those in Theorem 3,
but now we have some additional equations from the supply-side of the factors (which are
no longer endowments). Letting γh = 1 for every h ∈ H recovers Theorem 3.

J Heterogenous Households Within Countries

To extend the model to allow for a set of heterogenous agents h ∈ Hc within country c ∈ C,
we proceed as follows. We denote by H the set of all households. Each household h in
country c maximizes a homogenous-of-degree-one demand aggregator

Ch =Wh({chi}i∈N),

subject to the budget constraint

∑
i∈N

pichi = ∑
f∈F

Φh f w f L f + Th,

where chi is the quantity of the good produced by producer i and consumed by the house-
hold, pi is the price of good i, Φh f is the fraction of factor f owned by household, w f is the
wage of factor f , and Th is an exogenous lump-sum transfer.

We define the following country aggregates: cci = ∑h∈Hc chi, Φc f = ∑h∈Hc Φh f , and
Tc = ∑h∈Hc Th. We also define the HAIO matrix at the household level as a (H + N + F)×
(H + N + F) matrix Ω and the Leontief inverse matrix as Ψ = (I −Ω)−1.

All the definitions in Section 2 remain the same. In addition, we introduce the corre-
sponding household-level definitions for a household h. First, the nominal output and the
nominal expenditure of the household are:

GDPh = ∑
f∈F

Φh f w f L f , GNEh = ∑
i∈N

pichi = ∑
f∈F

Φh f w f L f + Th,

where we think of the household as a set producers intermediating the uses by the different
producers of the different factor endowments of the household. Second, the changes in real
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output and real expenditure or welfare of the household are:

d log Yh = ∑
f∈F

χ
Yh
f d log L f , d log PYh = ∑

f∈F
χ

Yh
f d log w f ,

d log Wh = ∑
i∈N

χ
Wh
i d log chi, d log PWh = ∑

i∈N
χ

Wh
i d log pi,

with χ
Yh
f = Φh f w f L f /GDPh and χ

Wh
i = pichi/GNEh. Third, the exposure to a good or

factor k of the real expenditure and real output of household h is given by

λ
Wh
k = ∑

i∈N
χ

Wh
i Ψik, λ

Yh
k = ∑

f∈F
χ

Yh
f Ψ f k,

where recall that χ
Wh
i = pichi/GNEh and χ

Yh
f = Φh f w f L f /GDPh. The exposure in real

output to good or factor k has a direct connection to the sales of the producer:

λ
Yh
k = 1{k∈F}

Φhk pkyk
GDPh

,

where λ
Yh
k = 1{k∈F}Φhk(GDP/GDPh)λk the local Domar weight of k in household h and

where Φhk = 0 for k ∈ N to capture the fact that the household endowment of the goods
are zero. Fourth, the share of factor f in the income or expenditure of the household is
given by

Λh
f =

Φh f w f L f

GNEh
.

The results in Section 3 go through without modification. Theorems 1 and 2 can be
extended to the level of a household h by simply replacing the country index c by the
household index h.

The results in Section 4 go through except the term on the second line of (9) must be
replaced by

∑
h∈H

λ
Wh
i − λi

λi
Φh f Λ f ,

where we write λi and Λi interchangeably when i ∈ F is a factor.
The results in Section 5 go through with the following changes. Theorem 4 goes through

without modification, and extends to the household level where ∆ log Yh ≈ 0. Theorem
5 goes through with some minor modifications. The world Bergson-Samuelson welfare
function is now WBS = ∑h χW

h log Wh, changes in world welfare are measured as ∆ log δ,
where δ solves the equation WBS(W1, . . . , WH) = WBS(W1/δ, . . . , WH/δ), where Wh are
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the values at the initial efficient equilibrium. We use a similar definition for country level
welfare δc, and the same notation for household welfare δh. Changes in world welfare are
given up to the second order by

∆ log δ ≈ ∆ log W + CovχW
h

(
∆ log χW

h , ∆ log PWh

)
,

changes in country welfare are given up to the first order by

∆ log δc ≈ ∆ log Wc ≈ ∆ log χW
c − ∆ log PWc ,

and the change in country welfare up to the first order by

∆ log δh ≈ ∆ log Wh ≈ ∆ log χW
h − ∆ log PWh .

Theorems 6 goes through with some minor modifications. The final term on the last
line must be replaced by

1
2 ∑

l∈N
∑

c∈H
χW

c ∆ log χW
c ∆ log µl(λ

Wc
l − λl).
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K Proofs

Throughout the proofs, let χc be the share of total world income accruing to country c.

Proof of Theorem 1. Nominal GDP is equal to

PYcYc = ∑
i∈Nc

(1− 1/µi)piyi + ∑
f∈Fc

w f L f

Hence

d log PYc + d log Yc = ∑
i∈Nc

(1− 1/µi)λ
Yc
i d log

(
(1− 1/µi)λ

Yc
i

)
+ ∑

f∈Fc

ΛYc
f

(
d log w f + d log L f

)
d log Yc = ∑

i∈Nc

(1− 1/µi)λ
Yc
i d log

(
(1− 1/µi)λ

Yc
i

)
+ ∑

f∈Fc

ΛYc
f

(
d log w f + d log L f

)
− d log PYc .

The price of domestic goods is given by

d log pi = d log µi − d log Ai + ∑
j∈Nc

Ω̃ijd log pj + ∑
j<Nc

Ω̃ijd log pj,

which implies that

d log p = (I − Ω̃D)−1
(

d log µi − d log Ai + Ω̃F (d log Λ− d log L) + Ω̃Md log pM
)

,

where Ω̃D is the cost-based domestic IO table, Ω̃F are cost-based factor shares, and Ω̃M are
cost-based intermediate import shares, and d log pM represents the change in the price of
imported intermediate goods. Use the fact that

d log PYc = ∑
i∈Nc

ΩYc,id log pi − ∑
i∈N−Nc

ΛYc
i d log pi

= ∑
i∈Nc

λ̃Yc
i (d log µi − d log Ai) + ∑

f∈Fc

Λ̃Yc
f

(
d log Λ f − d log L f

)
+ ∑

i∈N−Nc

Λ̃Yc
i d log pi − ∑

i∈N−Nc

ΛYc
i d log pi.
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For an imported intermediate

d log pi = d log ΛYc
i − d log qi + d log GDP

Substitute this back to get

d log Yc = ∑
i∈Nc

(1− 1/µi)λ
Yc
i d log

(
(1− 1/µi)λ

Yc
i

)
+ ∑

f∈Fc

ΛYc
f

(
d log w f + d log L f

)
− ∑

i∈Nc

λ̃Yc
i (d log µi − d log Ai)− ∑

f∈Fc

Λ̃Yc
f

(
d log Λ f − d log L f

)
− ∑

i∈N−Nc

Λ̃Yc
i d log pi + ∑

i∈N−Nc

ΛYc
i d log pi

= ∑
f∈F∗c

ΛYc
f d log Λ f − ∑

i∈Nc

λ̃Yc
i (d log µi − d log Ai)− ∑

f∈Fc

Λ̃Yc
f

(
d log Λ f − d log L f

)
− ∑

i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

) (
d log ΛYc

i − d log qi + d log GDP
)

= ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

)
d log qi

+ ∑
f∈F∗c

ΛYc
f

(
d log ΛYc

f + d log GDPc

)
− ∑

i∈Nc

λ̃Yc
i d log µi − ∑

f∈Fc

Λ̃Yc
f

(
d log ΛYc

f + d log GDPc

)
− ∑

i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

) (
d log ΛYc

i + d log GDP
)

= ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

)
d log qi

− ∑
i∈Nc

λ̃Yc
i d log µi − ∑

f∈Fc

Λ̃Yc
f d log ΛYc

f − ∑
i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

) (
d log ΛYc

i

)
+

[
1−

(
∑
f∈Fc

Λ̃Yc
f

)
− ∑

i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

)]
d log GDPc

= ∑
i∈Nc

λ̃Yc
i d log Ai + ∑

f∈Fc

Λ̃Yc
f d log L f + ∑

i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

)
d log qi

− ∑
i∈Nc

λ̃Yc
i d log µi − ∑

f∈Fc

Λ̃Yc
f d log ΛYc

f − ∑
i∈N−Nc

(
Λ̃Yc

i −ΛYc
i

) (
d log ΛYc

i

)
.

The last line follows from the fact that

∑
f∈Fc

Λ̃Yc
f + ∑

i∈N−Nc

Λ̃Yc
i =

[
1 + ∑

i∈N−Nc

ΛYc
i

]
.

�
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Proof of Theorem 2. Note that welfare is given by

Wc =
∑ f∈F∗ Φc f w f L f + Tc

PWc
.

Hence, letting world GDP be the numeraire,

d log Wc = ∑
f

Λc
f
(
d log Λ f

)
+

dT
GNEc

−
(

Ω̃(Wc)

)′
d log p.

Use the fact that

d log pi = ∑
j∈N

Ψ̃ij d log Aj + ∑
f∈F

Ψ̃i f
(
d log Λ f − d log L f

)
to complete the proof. �

Proof of Theorem 3. For each good,

λi = ∑
c

ΩWc,iχc + ∑
i

Ωjiλj,

where χc is the share of total income accruing to country c and ΩWc,i is the share of income
household c spends on good i. This means

λi d log λi = ∑
c

χcΩWc,i d log ΩWc,i +∑
j

Ωjiλj d log Ωji +∑
j

Ωji d λj +∑
c

ΩWc,iχc d log χc.

Now, note that
d log ΩWc,i = (1− θc)

(
d log pi − d log Pyc

)
d log Ωji = (1− θj)

(
d log pi − d log Pj + d log µj

)
− d log µj

d log χc = ∑
f∈F∗c

Λ f

χc
d log Λ f + ∑

i∈c

λi

µi
d log µi.

d log pi = Ψ̃ (d log µ− d log A) + Ψ̃α̃ d log Λ.

d log Pyc = b′Ψ̃ (d log µ− d log A) + b′Ψ̃α̃ d log Λ.

For shock d log µk, we have

d log ΩWc,i = (1− θc)

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f −∑

j
ΩWc,j

(
Ψ̃jk + ∑

f
Ψj f d log Λ f

))
.
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d log Ωji = (1− θj)

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f − Ψ̃jk −∑

f
Ψj f d log Λ f

)
− θj d log µj.

Putting this altogether gives

d λl = ∑
i

∑
c
(1− θc)χcΩWc,i

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f −∑

j
ΩWc,j

(
Ψ̃jk + ∑

f
Ψj f d log Λ f

))
Ψil

+ ∑
i

∑
j
(1− θj)λjµ

−1
j Ω̃ji

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f − Ψ̃jk −∑

f
Ψj f d log Λ f

)
Ψil

− θkλk ∑
i

ΩkiΨil + ∑
c

χc ∑
i

ΩWc,iΨil d log χc.

Simplify this to

d λl = ∑
c
(1− θc)χc

[
∑

i
ΩWc,i

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f

)
Ψil

−
(

∑
i

ΩWc,i

(
Ψ̃jk + ∑

f
Ψj f d log Λ f

))(
∑

i
ΩWc,iΨil

)]

+ ∑
j
(1− θj)λjµ

−1
j ∑

i
Ω̃ji

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f

)
Ψil −

(
∑

i
Ω̃jiΨil

)(
Ψ̃jk + ∑

f
Ψj f d log Λ f

)
− θkλk (Ψkl − 1(l = k)) + ∑

c
χc ∑

i
ΩWc,iΨil d log χc.

Simplify this further to get

d λl = ∑
c
(1− θc)χcCovb(c)

(
Ψ̃(k) + ∑

f
Ψ̃( f ) d log Λ f , Ψ(l)

)

+ ∑
j
(1− θj)λjµ

−1
j ∑

i
Ω̃ji

(
Ψ̃ik + ∑

f
Ψ̃i f d log Λ f

)
Ψil

−
(

∑
i

Ω̃jiΨil

)(
∑

i
Ω̃jiΨ̃ik + ∑

i
Ω̃ji ∑

f
Ψi f d log Λ f

)
− θkλk (Ψkl − 1(l = k)) + ∑

c
χc ∑

i
ΩWc,iΨil d log χc,

Using the input-output covariance notation, write

d λl = ∑
c
(1− θc)χcCovΩ(Wc)

(
Ψ̃(k) + ∑

f
Ψ̃( f ) d log Λ f , Ψ(l)

)
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+ ∑
j
(1− θj)λjµ

−1
j CovΩ̃(j)

(
Ψ̃(k) + ∑

f
Ψ̃( f ) d log Λ f , Ψ(l)

)

− (1− θk)λk(Ψkl − 1(l = k))− θkλk (Ψkl − 1(l = k)) + ∑
c

χc ∑
i

ΩWc,iΨil d log χc,

This then simplifies to give from the fact that ∑i ΩWc,iΨil = λWc
l :

λl d log λl = ∑
j∈N,C

(1− θj)λjµ
−1
j Cov(Ψ̃(k) +

F

∑
f

d log Λ f , Ψ(l))

− λk (Ψkl − 1(k = l)) + ∑
c

χcλWc
l d log χc.

To complete the proof, note that

PycYc = ∑
f

w f L f + ∑
i∈Nc

(
1− 1

µi

)
piyi.

Hence,

d(PycYc) = ∑
f∈c

w f L f d log w f + ∑
i∈c

(
1− 1

µi

)
piyi d log(piyi) + ∑

i∈c

d
(

1− 1
µi

)
d log µi

piyi d log µi.

In other words, since PyY = 1, we have

d χc = ∑
f∈c

Λ f d log w f + ∑
i∈c

(
1− 1

µi

)
λi d log λi + ∑

i∈c

d
(

1− 1
µi

)
d log µi

λi d log µi.

Hence,

d log χc = ∑
f∈F∗c

Λ f

χc
d log Λ f + ∑

i∈c

λi

χc
d log µi.

�

Proof of Theorem 4. Proof of Part(1):
The expression for d2 log Y follows from applying part (2) to the whole world. The

equality of real GNE and real GDP at the world level completes the proof.
Proof of Part (2):
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Denote the set of imports into country c by Mc. Then, we can write:

d log Yc

d log µi
= ∑

f∈Fc

ΛYc
f

d log Λ f

d log µi
+ ∑

j

d λj

d log µi

(
1− 1

µj

)
PYcYc

+
λYc

i
µi
− d log PYc

d log µi
,

where

d log PYc

d log µi
= ∑

f∈Fc

Λ̃Yc
f

d log Λ f

d log µi
+ ∑

m∈Mc

λ̃Yc
m

d log pm

d log µi
− λ̃Yc

i − ∑
m∈Mc

ΛYc
m

d log pm

d log µi
,

and
λ̃Yc

i = ∑
j

ΩYc,jΨ̃ji.

Combining these expressions, we get

d log Yc

d log µi
= ∑

f∈Fc

(
ΛYc

f − Λ̃Yc
f

) d log Λ f

d log µi
+ ∑

m∈Mc

(
λYc

m − λ̃Yc
m

) d log pm

d log µi

+ ∑
j∈Nc

λYc
j

d log λj

d log µi

(
1− 1

µj

)
+

λYc
i

µi
− λ̃Yc

i .

At the efficient point,

d2 log Yc

d log µi d log µk
= ∑

f∈Fc

 d ΛYc
f

d log µi
−

d Λ̃Yc
f

d log µi

 d log Λ f

d log µk

+ ∑
m∈Mc

(
d λYc

m

d log µi
− d λ̃Yc

m

d log µi

)
d log pm

d log µk
−

d λ̃Yc
k

d log µi

+ λYc
k

(
d log λYc

k
d log µi

− δki

)
+

1
PYcYc

d λYc
i

d log µk
,

where δki is the a Kronecker delta.
Using Lemma 9,

d2 log Yc

d log µi d log µk
= − ∑

f∈Fc

λYc
i Ψi f

d log Λ f

d log µk
− ∑

m∈Mc

λYc
i Ψim

d log pm

d log µk
− λYc

i (Ψik − δik)

− λYc
k δik +

d λi

d log µk

1
PYcYc

,

= − ∑
f∈Fc

λYc
i Ψi f

d log Λ f

d log µk
− ∑

m∈Mc

λYc
i Ψim

d log pm

d log µk
− λYc

i Ψik
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+ λYc
i

(
d log pi

d log µk
+

d log yi

d log µk

)
,

= λYc
i

d log yi

d log µk
.

�

Lemma 8. Let χh be the income share of country h at the initial equilibrium. Then

d λj

d log µk
−∑

h
χh

d log λ̃
Wh
j

d log µk
= ∑

h

d χh
d log µi

λ
Wh
j − λi

(
Ψij − δij

)
.

Proof. Let µ be the diagonal matrix of µi and Iµk be a matrix of all zeros except µk for its kth
diagonal element. Then

χ′
d λ̃

d log µk
= χ′

dΩ̃(W)

d log µk
+ χ′

d λ̃

d log µk
µΩ + χ′λ̃Iµk Ω + χ′λ̃µ

d Ω
d log µk

,

where Ω̃(W) is a matrix whose cith element is household c’s expenditure share Ω̃Wc,i on
good i.

On the other hand,
λ = χ′Ω̃(W) + λΩ.

Form this, we have

d λ

d log µk
=

d χ′

d log µk
Ω̃(W) + χ′

dΩ̃(W)

d log µk
+ λ

d Ω
d log µk

+
d λ

d log µk
Ω.

Combining these two expressions(
d λ

d log µk
− χ′

d log λ̃

d log µk

)
=

(
d λ

d log µk
− χ′

d log λ̃

d log µk

)
Ω +

d χ

d log µk
Ω̃(W) − χ′λ̃(h) Iµk Ω.

Rearrange this to get(
d λ

d log µk
− χ′

d log λ̃

d log µk

)
=

d χ

d log µk
Ω̃(W)Ψ− χ′λ̃(h) Iµk(Ψ− I),

or (
d λ

d log µk
− χ′

d log λ̃

d log µk

)
=

d χ

d log µk
Ω̃(W)Ψ− λIµk(Ψ− I).

�
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Lemma 9. At the efficient steady-state

d λYc
j

d log µk
−

d λ̃Yc
j

d log µk
= −λYc

k

(
Ψkj − δkj

)
.

Proof. Start from the relations

λYc
j = χYc

j + ∑
i

λYc
i Ωij,

and
λ̃Yc

j = χYc
j + ∑

i
λ̃Yc

i µiΩij.

Differentiate both to get

d λYc
j

d log µk
−

d λ̃Yc
j

d log µk
= ∑

i

 d λYc
j

d log µk
−

d λ̃Yc
j

d log µk

Ωij − λYc
k Ωki.

Rearrange this to get the desired result. �

Proof of Corollary 5. Let χW
h be the elasticity of social welfare with respect to the consump-

tion of country h (i.e. log Pareto weight). Then

d log WBS

d log µk
= ∑

h∈H
χW

h
d log Wh
d log µk

= ∑
h

χW
h

(
d log χW

h
d log µk

−
d log Pcpi,h

d log µk

)
.

d log χW
h

d log µk
= ∑

f∈Fc

Λ f

χh

d log Λ f

d log µk
+ ∑

i∈Nh

d λi

d log µk

(1− 1
µi
)

χh
.

d log Pcpi,h

d log µk
= ∑

f∈F
Λ̃Wh

f
d log Λ f

d log µk
+ λ̃

Wh
k .

Hence, assuming the normalization PYY = 1 gives

d2 log WBS

d log µk d log µi
= ∑

h
χW

h

(
∑

f

d Λ f

d log µi

d log Λ f

d log µk

1
χW

h
+ ∑

f

Λ f

χW
h

d2 log Λ f

d log µi d log µk

−∑
f

Λ f

χW
h

d log Λ f

d log µk

d log χW
h

d log µi
+

d λk
d log µi

1
χW

h µk
− λk

χW
h µk

d log χW
h

d log µi
− λk

χW
h µk

δki

∑
i

d2 λj

d log µi d log µk

1− 1
µj

χh
+

d λi

d log µk

1
µiχ

W
h

+ ∑
j

d λj

d log µk

1− 1
µj

χW
h

d log χW
h

d log µi
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−∑
f

d Λ̃Wh
f

d log µi

d log Λ f

d log µk
−∑

f
Λ̃Wh

f
d2 log Λ f

d log µi d log µk
−

d λ̃
Wh
k

d log µi

 .

At the efficient point, this simplifies to

d2 log WBS

d log µk d log µi
= ∑

f

d log Λ f

d log µk

 d Λ f

d log µi
−∑

h
χW

h

d Λ̃Wh
f

d log µi


+

d λk
d log µi

−∑
h

χW
h

d λ̃
Wh
k

d log µi
−∑

f ,h
Λ f

d log Λ f

d log µk

d log χW
h

d log µi

− λk
d log χW

h
d log µi

− λkδki +
d λi

d log µk
.

By Lemma 8, at the efficient point,

d λj

d log µi
−∑

h
χW

h

d λ̃
Wh
j

d log µi
= ∑

h

d χW
h

d log µi
λ̃

Wh
j − λi

(
Ψij − δij

)
.

Whence, we can further simplify the previous expression to

d2 log WBS

d log µk d log µi
= ∑

f

d log Λ f

d log µk

(
∑
h

d χW
h

d log µi
Λ̃Wh

f − λiΨi f

)

+ ∑
h

d χh
d log µi

λ̃
Wh
k − λi(Ψik − δik)−∑

f ,h
Λ f

d log Λ f

d log µk

d log χh
d log µi

− λk
d log χh

d log µi − λkδki +
d λi

d log µk
,

= ∑
f

d log Λ f

d log µk

(
∑
h

d χh
d log µi

Λ̃Wh
f − λiΨi f

)

+ ∑
h

d χh
d log µi

λ̃
Wh
k − λiΨik −∑

f ,h
Λ f

d log Λ f

d log µk

d log χh
d log µi

− λk
d log χh

d log µi +
d λi

d log µk
,

and using d log λi = d log pi + d log yi,

= ∑
f

d log Λ f

d log µk

(
∑
h

d χh
d log µi

Λ̃Wh
f − λiΨi f

)
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+ ∑
h

d χh
d log µi

λ̃
Wh
k − λiΨik −∑

f ,h
Λ f

d log Λ f

d log µk

d log χh
d log µi

− λk
d log χh

d log µi + λi
d log pi

d log µk
+ λi

d log yi

d log µk
,

= ∑
f ,h

χh
d log χh
d log µi

Λ̃Wh
f

d log Λ f

d log µk
− λi ∑

f
Ψi f

d log Λ f

d log µk

+ ∑
h

χh
d log χh
d log µi

λ̃
Wh
k − λiΨik −∑

f ,h
Λ f

d log χh
d log µi

d log Λ f

d log µk

− λk
d log χh
d log µi

+ λi
d log yi

d log µk

+ λi

(
∑

f
Ψi f

d log Λ f

d log µk
+ Ψik

)
,

= ∑
f ,h

d log χh
d log µi

d log Λ f

d log µk

(
χhΛ̃Wh

f −Λ f

)
+ λi

d log yi

d log µk
+ ∑

h
χh

d log χh
d log µi

λ̃
Wh
k − λk

d log χh
d log µi

,

= λi
d log yi

d log µk
+ ∑

h
χh

d log χh
d log µi

(
Λ̃Wh

f
d log Λ f

d log µk
+ λ̃

Wh
k

)
−∑

f ,h

d log χh
d log µi

d log Λ f

d log µk
Λ f − λk ∑

h

d log χh
d log µi

,

= λi
d log yi

d log µk
+ ∑

h
χh

d log χh
d log µi

d log Pcpi,h

d log µk

−
(

∑
f

d log Λ f

d log µk
Λ f

)(
∑
h

d log χh
d log µi

)
− λk ∑

h

d log χh
d log µi

,

= λi
d log yi

d log µk
+ Covχ

(
d log χh
d log µi

,
d log Pcpi,h

d log µk

)
,

since

−∑
f

d log Λ f

d log µk
Λ f = −∑

f

d Λ f

d log µk
=

d
(

1−∑j λj(1− 1
µj
)
)

d log µk
= −λk

at the efficient point, and

∑
h

χh
d log χh
d log µi

= 0.
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Proof of Theorem 6. From Theorem 4, we have

L = −1
2 ∑

l
(d log µl)λld log yl.

With the maintained normalization PY = 1, we also have

d log yl = d log λl − d log pl,

d log pl = ∑
f

Ψl f d log Λ f + ∑
k

Ψlkd log µk,

where, from Theorem 3,

d log λl =∑
k
(δlk −

λk
λl

Ψkl)d log µk −∑
j

λj

λl
(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk −∑

g
Ψ(g)d log Λg, Ψ(l))

+
1
λl

∑
g∈F∗

∑
c

(
λWc

l − λl

)
ΦcgΛgd log Λg,

and

d log Λ f =−∑
k

λk
Ψk f

Λ f
d log µk −∑

j
λj(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk −∑

g
Ψ(g)d log Λg,

Ψ( f )

Λ f
)

+
1

Λ f
∑

g∈F∗
∑

c

(
ΛWc

i −Λ f

)
ΦcgΛgd log Λg.

We will now use these expressions to replace in formula for the second-order loss func-
tion. We get

L = −1
2 ∑

l
∑
k
(

δlk
λk
− Ψkl

λl
− Ψlk

λk
)λkλld log µkd log µl +

1
2 ∑

l
λld log µl ∑

f
Ψl f d log Λ f

+
1
2 ∑

l
∑

j
(d log µl)λj(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk −∑

g
Ψ(g)d log Λg, Ψ(l))

− 1
2 ∑

l
d log µl

(
∑
g

∑
c

(
λWc

l − λl

)
ΦcgΛgd log Λg

)

L = −1
2 ∑

l
∑
k
(

δlk
λk
− Ψkl

λl
− Ψlk

λk
)λkλld log µkd log µl +

1
2 ∑

l
λld log µl ∑

f
Ψl f d log Λ f
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+
1
2 ∑

l
∑

j
(d log µl)λj(θj − 1)CovΩ(j)(∑

k
Ψ(k)d log µk −∑

g
Ψ(g)d log Λg, Ψ(l))

− 1
2 ∑

l

(
∑

c

(
λWc

l − λl

)
χcd log χc

)
d log µl

We can rewrite this expression as

L = LI + LX + LH

where

LI =
1
2 ∑

k
∑

l
[
Ψkl − δkl

λl
+

Ψlk − δlk
λk

+
δkl
λl
− 1]λkλld log µkd log µl

+
1
2 ∑

k
∑

l
∑

j
d log µkd log µlλj(θj − 1)CovΩ(j)(Ψ(k), Ψ(l)),

LX =
1
2 ∑

l
∑

f
(

Ψl f

Λ f
− 1)λlΛ f d log µld log Λ f

− 1
2 ∑

l
∑
g

d log µld log Λg ∑
j

λj(θj − 1)CovΩ(j)(Ψ(g), Ψ(l)),

LH = −1
2 ∑

l

(
∑

c

(
λWc

l − λl

)
χcd log χc

)
d log µl,

where d log Λ is given by the usual expression.7 Finally, using Lemma 11, we can write

LI =
1
2 ∑

l
∑
k
(d log µl)(d log µk)∑

j
λjθjCovΩ(j)(Ψ(k), Ψ(l)).

and
LX = −1

2 ∑
l

∑
g

d log µld log Λg ∑
j

λjθjCovΩ(j)(Ψ(g), Ψ(l)).

7We have used the intermediate step

LX =
1
2 ∑

l
∑
k

λkλld log µkd log µl +
1
2 ∑

l
∑

f
d log µld log Λ f λlΨl f

− 1
2 ∑

l
∑
g

d log µld log Λg ∑
j

λj(θj − 1)CovΩ(j)(Ψ(g), Ψ(l)).
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Lemma 10. The following identity holds

∑
j

λj

(
Ψ̃jkΨjl −∑

m
ΩjmΨ̃mkΨml

)
= λ̃kλl.

Proof. Write Ω so that it contains all the producers, all the households, and all the factors
as well as a new row (indexed by 0) where Ω0i = χi if i ∈ C and 0 otherwise. then, letting
e0 be the standard basis vector corresponding to the 0th row, we can write

λ′ = e′0 + λ′Ω,

or equivalently
λ′(I −Ω) = e′0.

Let Xkl be the vector where Xkl
m = Ψ̃mkΨml. Then

∑
j

λj

(
Ψ̃jkΨjl −∑

m
ΩjmΨ̃mkΨml

)
= λ′(I −Ω)Xkl,

= e′0(I −Ω)−1(I −Ω)Xkl, = e′0Xkl = Ψ̃0kΨ0l = λ̃kλl.

�

Lemma 11. The following identity holds

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) = λlλk[

Ψ̃lk − δlk
λk

+
Ψkl − δkl

λl
+

δlk
λk
− λ̃k

λk
].

Proof. We have

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) =

∑
j

λjµ
−1
j

[
∑
m

Ω̃jmΨ̃mkΨml −
(

∑
m

Ω̃jmΨ̃mk

)(
∑
m

Ω̃jmΨml

)]
,

or

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) =
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∑
j

λj ∑
m

ΩjmΨ̃mkΨml −∑
j

λjµ
−1
j

(
∑
m

Ω̃jmΨ̃mk

)(
∑
m

Ω̃jmΨml

)
,

or

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) =

∑
j

λj ∑
m

ΩjmΨ̃mkΨml −∑
j

λjΨ̃jkΨjl

+ ∑
j

λjΨ̃jkΨjl −∑
j

λjµ
−1
j

(
∑
m

Ω̃jmΨ̃mk

)(
∑
m

Ω̃jmΨml

)
,

or using, Lemma 10

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) = −λ̃kλl + ∑

j
λjΨ̃jkΨjl −∑

j
λj
(
Ψ̃jk − δjk

)
(Ψjl − δjl),

and finally

∑
j

λjµ
−1
j CovΩ̃(j)(Ψ̃(k), Ψ(l)) = λlλk[

Ψ̃lk − δlk
λk

+
Ψkl − δkl

λl
+

δlk
λk
− λ̃k

λk
].

�

Proposition 3 (Structural Output Loss). Starting at an efficient equilibrium in response to the
introduction of small tariffs or other distortions,

∆ log Y ≈ −1
2 ∑

l∈N
∑

k∈N
∆ log µk∆ log µl ∑

j∈N
λjθjCovΩ(j)(Ψ(k), Ψ(l))

− 1
2 ∑

l∈N
∑
g∈F

∆ log Λg∆ log µl ∑
j∈N

λjθjCovΩ(j)(Ψ(g), Ψ(l))

+
1
2 ∑

l∈N
∑
c∈C

χW
c ∆ log χW

c ∆ log µl(λ
Wc
l − λl).

Proof. The proof follows along the same lines as Theorem 6. �
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L Growth Accounting Results

Table 2: Decomposition of real GNE growth

GNE GDP ToT Technology Factoral ToT Transfers
AUS 0.665 0.526 0.134 0.619 0.041 0.006
AUT 0.213 0.315 0.000 0.402 -0.087 -0.102
BEL 0.285 0.252 0.038 0.431 -0.142 -0.004
BGR 0.322 -0.217 0.354 -0.145 0.282 0.185
BRA 0.549 0.532 0.049 0.538 0.043 -0.032
CAN 0.630 0.525 0.110 0.581 0.055 -0.005
CHN 1.780 1.810 0.159 1.583 0.386 -0.188
CYP 0.322 0.275 -0.046 0.261 -0.033 0.093
CZE 0.413 0.283 0.295 0.412 0.166 -0.166
DEU 0.160 0.306 -0.013 0.428 -0.135 -0.132
DNK 0.239 0.199 0.095 0.318 -0.024 -0.056
ESP 0.330 0.280 0.003 0.346 -0.063 0.047
EST 0.793 0.125 0.661 0.351 0.435 0.008
FIN 0.347 0.432 -0.121 0.386 -0.075 0.037
FRA 0.317 0.358 -0.079 0.374 -0.095 0.038
GBR 0.437 0.358 0.058 0.465 -0.049 0.021
GRC 0.165 0.130 -0.027 0.110 -0.006 0.062
HUN 0.326 0.278 0.141 0.308 0.111 -0.092
IDN 0.633 0.660 -0.006 0.684 -0.030 -0.020
IND 1.236 1.264 -0.043 1.169 0.053 0.015
IRL 0.503 0.575 0.290 0.482 0.383 -0.361
ITA 0.072 -0.008 0.082 0.182 -0.108 -0.002
JPN 0.034 0.104 -0.102 0.187 -0.185 0.032
KOR 0.590 0.834 -0.149 0.739 -0.054 -0.094
LTU 0.739 0.515 0.187 0.423 0.278 0.038
LUX 0.605 0.162 0.979 0.581 0.561 -0.537
LVA 0.728 0.095 0.404 0.263 0.235 0.230
MEX 0.640 0.526 0.090 0.537 0.079 0.023
MLT 0.432 0.464 0.124 0.345 0.243 -0.156
NLD 0.249 0.374 0.009 0.495 -0.112 -0.134
POL 0.746 0.779 -0.039 0.638 0.101 0.006
PRT 0.096 0.041 0.040 0.131 -0.051 0.016
ROU 0.698 0.397 0.189 0.277 0.308 0.112
RUS 0.721 0.583 0.315 0.632 0.267 -0.178
SVK 0.690 0.557 0.196 0.403 0.349 -0.063
SVN 0.339 0.391 0.015 0.398 0.009 -0.067
SWE 0.360 0.413 -0.014 0.443 -0.045 -0.039
TUR 0.849 0.986 -0.232 0.794 -0.040 0.096
TWN 0.502 1.066 -0.410 0.727 -0.070 -0.155
USA 0.431 0.391 -0.007 0.431 -0.046 0.047
ROW 0.753 0.655 0.084 0.639 0.101 0.014

The sample is 1996-2014. Each row decomposes the cumulative log change in real GNE
for each country. The first decomposition follows (7). Columns 2, 3 and 6 sum to col-
umn 1. The second decomposition follows (6). Columns 4, 5, and 6 sum to column 1.
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M Additional Examples

M.1 Example of an economy in standard form

We use a two-country example to show how to map a specific nested-CES model into
standard-form required by Theorem 3. Suppose there are n industries at home and foreign.
The utility function of home and foreign consumers is

W =
n

∏
i=1

(x0i)
Ω0i , W∗ =

n

∏
i=1

(x∗0i)
Ω0i ,

where x0i and x∗0i are home and foreign consumption of goods from industry i. The pro-
duction function of industry i (at home or foreign) is a Cobb-Douglas aggregate of inter-
mediates and the local factor

yi = LΩiL
ij

n

∏
i=1

x
Ωij
ij .

Suppose that the intermediate good xij is a CES combination of domestic and foreign va-
rieties of j, with initial home share Ωj and foreign share Ω∗j = 1 − Ωj, and elasticity of
substitution ε j + 1. Since the market share of home and foreign in industry j does not vary
by consumer i, this means there is no home-bias.

In standard-form, this economy has N = 3n producers: the first n are industries at
home, the second n are industries in foreign, and the last n are CES aggregates of domestic
and foreign varieties that every other industry buys. The HAIO matrix for this economy,
in standard-form, is (2 + 3n + 2)× (2 + 3n + 2):

Ω =



0 0 0
[

Ω0i

]n

i=1
0 0

0 0 0
[

Ω0i

]n

i=1
0 0

0 0 0
[

Ωij

]n

i,j=1

[
ΩiL

]n

i=1
0

0 0 0
[

Ωij

]n

i,j=1
0

[
ΩiL

]n

i=1

0

Ω1 · · · 0
. . .

0 Ωn

Ω∗1 · · · 0
. . .

0 Ω∗n

0 0 0

0 0 0 0 0 0



.

The first two rows and columns correspond to the households, the next 2n rows and
columns correspond to home industries and foreign industries respectively. The next n
rows and columns correspond to bundles of home and foreign varieties. The last two rows
and columns correspond to the home and foreign factor. The vector elasticities of substitu-
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tion θ for this economy is a vector with 2 + 3n elements θ = (1, · · · , 1, ε1 + 1, · · · , εn + 1),
where εi is the trade elasticity in industry i.

Now that we have written this economy in standard-form, we can use Theorem 3 to
study the change in home’s share of income following a productivity shock d log Aj to
some domestic producer j:

d log ΛL

d log Aj
=

λj

ΛL

ε jΩ∗j ΩjL

1 + ∑i εi
λiΩiL

ΛL

ΩiL
1−ΛL

Ω∗i
≥ 0,

which is positive as long as domestic and foreign varieties are substitutes ε j > 0 for every j.
The numerator captures the fact that a shock to j will increase demand for the home factor
if j uses the home factor ΩjL > 0. The denominator captures the fact that an increase in the
price of the home factor attenuates the increase in demand for the home factor by bidding
up the price of home goods.

The positive productivity shock to j will therefore shrink the market share of every other
domestic producer, a phenomenon known as Dutch disease. To see this, apply Theorem 3
to some domestic producer i , j to get

d log λi

d log Aj
= −εiΩ∗i

ΩiL

1−ΛL

d log ΛL

d log Aj
< 0.

In words, the shock to j boosts the price of the home factor, which makes i less competitive
in the world market if i relies on the home factor ΩiL > 0. Hence, if ε j > 0 for every j, a
domestic productivity shock to one sector will cause Dutch disease and shrink the market
share of other domestic producers by bidding up home wages.

M.2 More details on Example IV from Section 6

First, the forward propagation equations (8) from Theorem 3 imply that the change in the
price of each good is

d log p = ∑
k∈N

Ψ(k)d log µk +
Ψ(L)

ΛL
dΛL −

(1−Ψ(L))

1−ΛL

[
dΛL + ∑

i
λid log µi

]
.

The first-term captures the direct effect of the tariff on the price of each good, the second
term captures the effect of the change in the wage of domestic workers, and the last term
captures the effect of changes in the foreign wage. Here, we use the fact that the change
in the foreign wage relative to world GDP is the negative of the change in the home wage
and the tax revenues collected (the expression in square brackets).
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Substituting the expression for prices into the backward propagation equations from
Theorem 3 yields the following expression for the home factor’s change in aggregate in-
come:

dΛL =
−d log µL + ∑k∈N λk(1− θk)CovΩ(k)(Ψ(L), Ψ(M)d log µ + Ψ(L)

dΛR
1−ΛL

) + (ΛWL
L −ΛWL∗

L )dΛR

1− 1
ΛL(1−ΛL)

∑k∈N λk(1− θk)VarΩ(k)(Ψ(L))− (ΛW
L −ΛW∗

L )
,

(24)
where d log µL = ∑k λkΨkLd log µk and Ψ(M)d log µ = ∑k∈N Ψ(k)d log µk. The tariff rev-
enues are dΛR = ∑k λkd log µk. Each term in (24) is intuitive: the numerator is the effect
of the tax in partial equilibrium, holding fixed factor prices in terms of world GDP. The
denominator is the general equilibrium effect capturing the endogenous substitution and
income redistribution effects triggered by changes in factor prices — that is, the fixed point
depicted in Figure 1.

To understand the intuition, consider the numerator, which consists of three effects.
The first summand in the numerator is the direct incidence of the tax on the home labor,
taking into account supply chains. The second term, involving the covariance, is how the
tax causes substitution by changing relative prices of goods, and the covariance captures
whether or not goods whose relative prices rise tend to be reliant on home labor. The final
term in the numerator captures the fact that the tariff revenues, by redistributing income
between home and foreign, change demand for the domestic factor. The denominator then
accounts for the fact that the partial equilibrium change in factor prices result in additional
rounds of expenditure-switching due to substitution and income redistribution.

From home’s perspective, the ideal tariff, which raises home wages relative to foreign
wages, is one which is imposed on goods that do not directly or indirectly use the domestic
factor. For such goods, d log µL = 0. Furthermore, if substitution elasticities are greater
than one, θk ≥ 1, then the ideal tariff should be levied on goods which negatively correlate
with domestic factor usage, in which case CovΩ(k)(Ψ(L), Ψ(M)d log µ) < 0. In other words,
if a good is heavily exposed to the tax, then it should also be heavily exposed to foreign
(rather than domestic) labor.
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