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1 Additional Details on Sample and Key Variables

1.1 Hospital Cohort

For our hospital electronic health record dataset, we begin with 326,126 ED visits (indexed by i),
by 150,862 patients (indexed by j), over a five-and-a-half-year period from January 2010 through
May 2015. We exclude visits in which the patient died in the ED and thus before they could be
tested (0.07%); visits preceded by recent known heart attack or its treatment (e.g., catheterization,
stenting in the 30 days prior to ED visits), for whom testing may represent follow up of a known
problem, rather than diagnosis of a new one (0.2%); and patients with contraindications K = 1 to
invasive treatment for heart attack, due to general poor health (patients 80 years of age or older:
7.4%; those with poor-prognosis conditions diagnosed in the year prior, e.g., known metastatic
cancer, dementia, hospice or nursing home care, etc.: 16.6%).

1.2 Construction of Key Variables

A major but under-appreciated challenge in working with claims and electronic health record data
is accurate measurement of clinical tests and outcomes. A straightforward concept like ‘stress test’
or ‘cardiac catheterization’ is represented in a range of evolving procedure codes and test results.
There is no straightforward way to capture these: for example, widely cited papers on testing for
heart attack use partially non-overlapping sets of 20–30 codes to identify procedures (e.g., Sheffield
et al., 2013 vs. Schwartz et al., 2014 vs. Shreibati, Baker, and Hlatky, 2011). The most commonly
used procedure coding system (Current Procedural Terminology, adapted for use with Medicare
claims as the Healthcare Common Procedure Coding System) is modified every year, with significant
changes that, in our data, led to major discontinuities in testing rates for the same hospital over
time as codes and coding practices changed. To deal with this, we performed a comprehensive
search of the literature as well as these coding databases. We ultimately identified 59 distinct
codes for catheterization and 106 for stress test (detailed in Supplement: Billing Codes). Using our
national Medicare claims dataset for generalizability, we find that relative to those typically used
in the literature, these additional codes added 11% of tests and 5% of interventions.

Category Type Codes

Tests

Stress Test HCPCS 75559, 75560, 75561, 75562, 75563, 75564, 75571, 75572, 75573,
75574, 78402, 78403, 78404, 78407, 78411, 78412, 78414, 78415,
78418, 78419, 78420, 78422, 78424, 78428, 78435, 78451, 78452,
78453, 78454, 78459, 78460, 78461, 78462, 78463, 78464, 78465,
78466, 78467, 78468, 78469, 78470, 78471, 78472, 78473, 78474,
78475, 78476, 78477, 78478, 78479, 78480, 78481, 78483, 78484,
78485, 78486, 78487, 78489, 78491, 78492, 78494, 93015, 93016,
93017, 93018, 93024, 93350, 93351, 93352, 0144T, 0145T, 0146T,
0147T, 0148T, 0149T, 0151T, C8928, C8930, G0030, G0031,
G0032, G0033, G0034, G0035, G0036, G0037, G0038, G0039,
G0040, G0041, G0042, G0043, G0044, G0045, G0046, G0047,
G8961, G8962, G8963, G8964, G8965, G8966
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ICD-9 8941, 8942, 8943, 8944
Catheterization HCPCS 75523, 75524, 75527, 75528, 93452, 93453, 93454, 93455, 93456,

93457, 93458, 93459, 93460, 93461, 93462, 93508, 93510, 93511,
93514, 93524, 93526, 93527, 93528, 93529, 93539, 93540, 93541,
93542, 93543, 93545, 93546, 93547, 93548, 93549, 93550, 93551,
93552, 93553, 93555, 93556, 93563, 93564, 93565, 93566, 93567,
93568

ICD-9 3722, 3723, 24, 66, 3601, 3602, 3603, 3604, 3605, 3606, 3607, 3608,
3609

Revascularization

Stent HCPCS 92920, 92921, 92924, 92925, 92928, 92929, 92933, 92934, 92937,
92938, 92941, 92941, 92975, 92977, 92980, 92981, 92982, 92984,
92995, 92996, 92997, 92998, C9600, C9601, C9602, C9603, C9604,
C9605, C9605, C9606, G0290, G0291

ICD-9 3601, 3602, 3603, 3604, 3605, 3606, 3607, 3608, 3609, 0066
Thrombolysis HCPCS J3101, J2997, J2995, J2993

ICD-9 991
CABG HCPCS 33510, 33511, 33512, 33513, 33514, 33516, 33517, 33518, 33519,

33520, 33521, 33522, 33523, 33525, 33528, 33530, 33533, 33534,
33535, 33536, 33560, 33570, 33572, 33575, 35500, 35600, 93351,
4110F, S2205, S2206, S2207, S2208, S2209

ICD-9 3610, 3611, 3612, 3613, 3614, 3615, 3616, 3617, 3618, 3619

Adverse events
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Heart attack ICD-9 410, 4100, 41000, 41001, 41002, 41003, 41004, 41005, 41006, 41007,
41008, 41009, 41010, 41011, 41012, 41013, 41014, 41015, 41016,
41017, 41018, 41019, 41020, 41021, 41022, 41023, 41024, 41025,
41026, 41027, 41028, 41029, 41030, 41031, 41032, 41033, 41034,
41035, 41036, 41037, 41038, 41039, 41040, 41041, 41042, 41043,
41044, 41045, 41046, 41047, 41048, 41049, 41050, 41051, 41052,
41053, 41054, 41055, 41056, 41057, 41058, 41059, 41060, 41061,
41062, 41063, 41064, 41065, 41066, 41067, 41068, 41069, 41070,
41071, 41072, 41073, 41074, 41075, 41076, 41077, 41078, 41079,
41080, 41081, 41082, 41083, 41084, 41085, 41086, 41087, 41088,
41089, 41090, 41091, 41092, 41093, 41094, 41095, 41096, 41097,
41098, 41099, 411, 4110, 4111, 41100, 41101, 41102, 41103, 41104,
41105, 41106, 41107, 41108, 41109, 41110, 41111, 41112, 41113,
41114, 41115, 41116, 41117, 41118, 41119, 41120, 41121, 41122,
41123, 41124, 41125, 41126, 41127, 41128, 41129, 41130, 41131,
41132, 41133, 41134, 41135, 41136, 41137, 41138, 41139, 41140,
41141, 41142, 41143, 41144, 41145, 41146, 41147, 41148, 41149,
41150, 41151, 41152, 41153, 41154, 41155, 41156, 41157, 41158,
41159, 41160, 41161, 41162, 41163, 41164, 41165, 41166, 41167,
41168, 41169, 41170, 41171, 41172, 41173, 41174, 41175, 41176,
41177, 41178, 41179, 41180, 41181, 41182, 41183, 41184, 41185,
41186, 41187, 41188, 41189, 41190, 41191, 41192, 41193, 41194,
41195, 41196, 41197, 41198, 41199

Cardiac arrest HCPCS 92950
ICD-9 4275, 4274, 42741, 42742, 78551

Table A.1: ICD-9 and HCPCS for testing, revascularization, and adverse events.

1.3 Key Assumptions

Time Window We use a 10-day window after visits to determine if a given patient is tested
and treated. We chose this based on guidelines for testing, which range from, e.g., 72 hours in
Amsterdam et al. (2014) to 1-2 weeks in Brown et al. (2018). Practically, in our sample, most tests
(81%) are done either during the ED visit or in the 72 hours after (often after an overnight stay
in the Observation Unit from the ED visit). The longer window accounts for the minority of tests
and treatments done largely in the course of an expedited outpatient referral to a primary care
provider or a cardiologist.

Testing By ‘testing for heart attack’ we mean testing for an acute blockage obstructing blood
flow through one or more coronary arteries. We group two types of test for blockage together to
define testing Tij = 1: stress testing and catheterization. We do so because, practically, the basic
intent of both tests is to diagnose these blockages. But there are also important nuances of these
two testing types relevant to our subsequent analyses, that we delve into here.

First and most straightforward is catheterization, an invasive procedure that is both the defini-
tive test, and also the means by which treatment in the form of stenting is delivered. Catheterization
can either be done as the initial test, or the physician can choose to start with a stress test: a set of
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non-invasive procedures like putting the patient on a treadmill with electrocardiographic monitor-
ing to look for signs of blockage, or radiological studies that visually quantify potential blockages.
Importantly, while stress tests can suggest blockages, they cannot confirm or treat them. So if
the physician chooses to first perform a stress test, it functions only as a first, lower-cost step to
screen out negatives. If positive, the patient must proceed to catheterization for confirmation and
definitive treatment.

The costs and benefits of these two categories of
tests are different. Because it is an invasive proce-
dure, the cost of catheterization is high. Financial
costs total nearly $30,000, and there is a small but
measurable set of procedural risks (most catastroph-
ically, stroke). The benefit, of course, comes in the
form of treatment for heart attack, if the catheteriza-
tion identifies a blockage. Stress tests, because they
are non-invasive, have lower costs: financial costs are
around $4,000, and the health costs are minimal. Of
course, if they come back positive, the patient will
go on to pay the costs of catheterization, as well
as the cost of the stress test. The benefit of stress
tests is thus also lower: because they are not perfect
(i.e., the probability they will be positive is less than
1), the joint probability of both a stress test and a
catheterization will be positive is less than the prob-
ability that catheterization alone would be positive. So while they lead to the same benefit when
both tests are positive, via delivery of treatment for heart attack, they are less likely to lead to
benefit on average. As a result of this calculus, summarized in the diagram above, it is intuitive and
efficient for physicians to begin with stress testing for lower-risk patients: their expected benefit—
the likelihood of testing positive, going on to catheterization, and receiving beneficial treatment—is
less than the cost of catheterization, but greater than the cost of the stress test. Higher-risk pa-
tients, on the other hand, should go straight to catheterization without incurring the additional
cost and likelihood of false negative from stress testing.

Our analysis accounts for these nuances in two ways. First, because physicians use both types
of test to answer the same question—does their patient have an acute coronary blockage—we group
them together in our definition of testing Tij . (By contrast, in other settings, largely outpatient
clinics, these tests may be done for a variety of reasons: to characterize a baseline for future
reference, to plan an elective surgery, etc.) Importantly, we allow the financial costs of testing to
vary in our cost-benefit analysis, and thus keep careful track of which type of test is done on which
patient. Overall, we identified 7,320 tested visits, and 242,343 untested visits (which are described
in more detail below). Of the tested, 4,876 had stress tests, and 3,080 had cardiac catheterization;
636 had both a stress test and subsequent catheterization, indicating a positive stress test.

Second, the existence of different testing strategies means there is more than one counterfactual
we might wish to consider in our analyses of testing decisions. For our main analyses, we consider
a specific counterfactual: eliminating (or adding) the specific kind of test the physician chose to do
in our dataset, in a patient with a given level of predicted risk. Other counterfactuals are also of
interest, for example, eliminating all stress tests, or all catheterizations. We might also be interested
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in counterfactuals where we replace all catheterizations with stress tests, and vice-versa. We explore
some of these in Appendix 3, where we first calculate the value of testing with catheterization or
stress test alone, to simulate a scenario where one type of test is eliminated (added). We cannot fully
simulate substitutions between testing types: for example, we do not know what stress tests would
have shown in catheterized patients. But we can calculate a conservative bound on substitution of
catheterization for stress tests, where we drop only negative stress tests (those that do not progress
to catheterization). This simulates a near-perfect strategy of replacing current stress tests with
catheterization.

Treatment By ‘treatment for heart attack,’ we mean invasive procedures performed to open
acute blockages in the coronary arteries. We group two types of treatments for blockage together
to define treatment Sij = 1: stenting (percutaneous intervention: PCI) and open-heart surgery
(coronary artery bypass grafting, CABG). We define treatment Sij = 1 if there is a procedure code
for stenting or open-heart surgery (CABG) in the 10-day window following the visit. Stenting is
far more common, while bypass surgery (CABG) is done in more severe cases.

We did not include intravenous thrombolysis. Previously the standard of care, this treatment
involves administration of a clot-busting drug (thrombolytic) that dissolves clots—but does so
everywhere in the body, not just in the heart. Thrombolysis is not performed at the hospital we
study (which has a catheterization facility on-site). In our analyses of Medicare data as well, we
decided not to include it for two reasons. First, for comparability to our hospital-based result, and
second because it is not captured nearly as reliably: it is the administration of a medication, not a
procedure (Kleindorfer Dawn et al., 2008). In addition, it is used for other purposes besides treating
heart attack (e.g., stroke). This means we would under-capture treatments at some hospitals
(especially smaller rural ones), which continue to use thrombolysis. While this practice fell out
of favor in the 1990s with the advent of stenting, not all hospitals have a catheterization facility.
And while growing evidence has pushed most hospitals to transfer patients to a hospital that does,
because it is superior to thrombolysis despite the delays induced by transport time (Widimský
et al., 2003), some remote hospitals will offer thrombolysis when transit times are particularly long.

Yield of Testing To define test yield Yij , we assume that a positive test always leads to treat-
ment and thus set Yij = Sij for the tested. The basis for this assumption is two-fold. First,
catheterization is physically required to deliver a stent to the location of a blockage—indeed, it
is the same physical procedure. The less common treatment option, open-heart surgery, likewise
requires prior catheteriztion, to determine eligibility for surgery, and to map out arterial anatomy
in preparation for surgery. Second, it would be ethically dubious for a cardiologist to subject a
patient to the risks of emergency catheterization unless she has already decided the patient would
benefit from treatment if a blockage is detected.

We address one potential problem with this assumption in the main text: if physicians over-
treat conditional on test results (e.g., because of moral hazard, or false-positive tests). This is not
a problem for our analyses in two ways. First, our estimates of over-testing are based on tests
that do not lead to treatment as low-value. If some tests that do lead to treatment are in fact
low-value, this could cause us to under-state the extent of over-testing. Practically, this means
that our estimates of over-testing are a lower bound. Second, in our cost-effectiveness analysis, we
use treatment effects from real-world trials that include these false positives. Because we do not
use test results to quantify under-testing in any way, instead relying on adverse event rates and a
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natural experiment, our estimates are unaffected by this bias.
Beyond over-treatment, we are not aware of evidence of other variation in treatment conditional

on these particular test results. Test results for catheterization are based on an objective measure
of blood flow through the coronary arteries, which either visualizes a blockage or does not; based
on these results, either a stent is placed in the blockage or not. So while there is ample evidence of
bias in testing decisions—for example, doctors are less likely to refer patients for testing for heart
attack when presented with vignettes accompanied by randomly assigned pictures of women and
minorities (Schulman et al., 1999)—bias in treatment, conditional on test results, is likely to be less
widespread (though not impossible). A physician would need to overrule the objective measures,
and clinical guidelines, to deviate. There is no clear reason to believe that there are widespread
types of biases that would allow testing, but discourage treatment in tested patients.

Finally, we might worry about correlation between the testing threshold and the treatment
decision. This is mitigated somewhat by the fact that the physician referring the patient for testing
(the emergency physician) and the physician performing the test and treatment procedure (the
cardiologist) are two different people.

Adverse Events Our measure of adverse events resulting from untreated (and undiagnosed)
heart attack is drawn from the clinical literature. Because effective treatment for heart attack
emerged only in the early 1980s, there is a large body of fairly recent research documenting the fate
of patients with untreated heart attack.1 Clinical trials of diagnostic and treatment interventions
for heart attack (e.g., CT-angiography to diagnose coronary disease, e.g., Litt et al. (2012); or
statins to treat high lipids, e.g., Ridker et al. (2008)) commonly use a basket of events derived from
this literature, ‘major adverse cardiac events,’ as their primary outcome. We replicate this in our
data, using methods similar to observational clinical studies (e.g., for decision rules: Than et al.
(2011), Poldervaart et al. (2017), and Sharp, Broder, and Sun (2018)) that have shown excellent
agreement with expert judgment after chart review (e.g., Wei et al. (2014)).

Specifically, we form an indicator Aij = 1 if we observe adverse events for patient i, over the 30
days after visit j when complications from heart attack peak, in any of three categories. First, the
blockage could worsen, prompting the patient to return for a delayed diagnosis of heart attack (some
of which lead to treatment, in which case we would observe S = 1; given the delay between onset
and diagnosis, however, treatment has been shown in clinical trials to be less valuable). To capture
these missed opportunities, the literature generally relies on diagnosis codes for heart attack. But
diagnosis codes are largely generated for billing purposes, meaning there are incentives to ‘up-
code’ visits to support increased reimbursement. To deal with this, we introduce an additional
criterion relative to the literature: when we see diagnostic codes for heart attack, we confirm them
by looking at quantitative results from a concurrent laboratory test, troponin, that measure the
extent of damage to heart muscle. This works as a check on spurious or erroneous coding, and
provides an objective way to confirm the nature and severity of heart attack. (Laboratory results
are not present in insurance claims data, so we do this only in the main hospital record dataset.)
Second, some patients experience cardiac arrest, from the arrythmias precipitated by heart attack.
We would see this in the form of diagnosis codes, or alternatively for procedure codes indicating
cardiopulmonary resuscitation (CPR). Third, because arrythmia can strike suddenly, before the

1For example, trials comparing home vs. hospital management of heart attack in the late 1970s, which commonly
showed no benefit to in-hospital treatment, tracked a range of clinical outcomes in diagnosed but untreated patients
(Mather et al., 1976; Hill, Hampton, and Mitchell, 1978).
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patient can reach the hospital in time to be diagnosed or treated, the patient might simply drop
dead—often outside of the hospital. This normally poses a major problem for observational studies,
because out-of-hospital deaths are not recorded in hospital records. To deal with this, we link
hospital records to state Social Security data. Together, these data allow us to form Aij , our proxy
for blockage in the untested.

To use the rate of these adverse events as a measure of under-testing, we must compare it to
some upper bound. This seems complex, because even in a short time window after visit j, not all
adverse events in untreated patients result from heart attacks at the time of the visit: in temrs of
our model, we would like to know E[

Aij−µ
ζ ], but do not observe µ or ζ. So we instead pin down

the adverse event threshold in terms of the total adverse event rate in untreated patients, including
the base rate. To do so, we draw on the clinical decision rule literature, in particular those used to
allocate tests for heart attack.

Several studies define a maximum allowable rate of adverse events in untested, and thus un-
treated, patients. An additional advantage of using these studies is that they are widely accepted
by clinicians. Fortunately, such bounds are common in the clinical literature on decision rules, in
particular those that seek to help doctors test for heart attack (e.g., TIMI: Antman et al. (2000),
GRACE: Tang, Wong, and Herbison (2007), HEART: Backus et al. (2010) and subsequent val-
idation studies, e.g., Than et al. (2011), Poldervaart et al. (2017), and Sharp, Broder, and Sun
(2018)), as well as studies of new diagnostic technologies (e.g., CT-angiography: Litt et al. (2012))
or guidelines for preventative treatment (e.g., with statins: Ridker et al. (2008)) of heart attack.
All these studies share the need to define a maximum allowable rate of adverse events in untested
(and thus untreated) patients.

Practically, if a group of patients is ex post found to have an adverse event rate of over some
bound, the recommendation is that this group should have been tested. This line of research guides
routine testing and management decisions in clinics and hospitals, and underlies recommendations
from professional societies. It thus gives us objective thresholds for levels of risk that would mandate
testing (inclusive of the base rate of adverse events µ): 2% over the 30-day window after visits.2 We
do not assume this threshold is socially or physiologically optimal, only that it represents current
physician understanding of who should be tested.

While these bounds implicitly take account of the base rate of adverse events (i.e., that Pr(Aij =
1|Bij = 0) > 0), they do not account for two other factors that affect measurement of Aij . First,
as laid out in our model above, not all adverse events resulting from untreated heart attack will
manifest in the first 30 days after heart attack (i.e., Pr(Aij = 1|Bij = 1, Sij = 0) < 1). So in some
analyses we consider longer-term outcomes, where we measure adverse event over the entire year
after visits. While this is more complete, even this measure will not capture downstream rates of
heart failure or delayed arrythmias, which persist over the lifetime of patients affected. Finally,
apart from mortality, which we ascertain using Social Security data, all other events are only
measured if the patient returns to the same health system we study for care. If the patient instead
returns to the hospital across the street—in our setting, for example, there is an large tertiary care
hospital 2 blocks away from the large tertiary care hospital we study, that is unaffiliated—we will
not observe it. On net, these issues mean we take our measured Aij to be a lower bound on the
true number of adverse events in the population we study.

Finally, we ascertain mortality by linking EHR data to Social Security Death Index data. This

2As another point of comparison, surveys of emergency doctors ask about their willingness to accept a heart attack
miss rate. These find a tolerance of up to 1% for heart attacks in the ER (Than et al., 2013).
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is important because otherwise, we would only see mortality if the patient died in-hospital, and in
particular at a hospital that forms part of the same health system we study for care. Linkage was
performed via patient Social Security number, so may under-capture deaths in patients without
SSNs.
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2 Cost-effectiveness Analysis

2.1 Approach and Parameters

Our cost effectiveness analysis accounts for the costs of testing cT and treatment cS . We separately
calculate the direct cost of both non-invasive tests like stress tests, cN and invasive catheterization
cI , as well as the health costs due to testing.

We use a set of parameters listed in Table A.2 to calculate cost per quality adjusted life year.
The direct costs of testing and treatment are fairly straightforward to measure, using standardized
Medicare fee schedules.3 For the health costs of testing, we focus on the risk of stroke during
catheterization, based on the literature studying the individual complications of testing (in health
care dollars and quality of life). We considered including several other costs, but decided not to:
(i) we do not know of any credible estimates for the health costs of exposure to radiation, or (ii)
whether the association between sudden death and treadmill testing is causal or simply reflects
confounding; and we did not include costs of arterial pseudoaneurysm because of a combination of
low rates and very low disability weights and direct costs identified on literature review.

The benefits, in terms of quality adjusted life years, are less straightforward to quantify. Our
strategy follows the general approach laid out by Tan, Kuo, and Goodwin, 2013, and begins by
estimating the life expectancy using a Cox proportional-hazard model. The model incorporates
age, sex, and a variety of comorbidities which we are able to determine using patient history from
EHR data. We take life expectancy to be the number of months after which the survival rate is
approximatley 50%. Using this model, we are able to estimate expected life-years remaining for all
the patients in our sample. From this we use standard assumptions regarding the probability of fatal
vs. non-fatal heart attack to arrive at years lost due to heart attack. This number combines both
death and disability, the latter captured using a standard discount rate that reflects the sequelae
of heart attack—angina pectoris, heart failure, etc.

We then use estimates from the literature to estimate the fraction of these losses that would
be averted by timely treatment, to arrive at a treatment effect at the individual level expressed in
life years. To do so, we focus on randomized trial evidence describing the benefits of treatment of
heart attack, reviewed extensively in Amsterdam et al., 2014. This review provides estimates from
a range of randomized trials testing treatments for non-ST-elevation ACS (as opposed to the more
severe ST-ACS); we chose this since we imagine most of the patients who undergoing testing have
the less severe form of heart attack (of note, treatment effects are larger for ST-ACS). From this
range, we chose the estimate from Bavry et al., 2006 as our primary estimate. This study is a meta-
analysis of trials where patients with non-ST-ACS were randomized to either (i) early and universal
treatment with stenting (typically within 2-3 days), vs. (ii) an “as needed” approach where patients
were observed and treated medically (i.e., with medications, e.g., aspirin, statins, etc.) unless they
deteriorated. We view this choice as quite conservative: this study compared interventions of the
kind we study (i.e., stenting) to a counterfactual of watchful waiting with ongoing drug treatments,
all in patients diagnosed with heart attacks, while the counterfactual in our study was no diagnosis
and no treatment. We thus also show the range of possible treatment effects from the other studies
in Amsterdam et al., 2014, which end up being both above and below the estimate of 0.25 for
mortality at two years from Bavry et al., 2006. Of note, the upper bound is from a study by Mills
et al., 2011, which quantifies the mortality benefit of a more sensitive diagnostic test in the ED; of

3Rates calculated from our sample would be affected by sample restrictions, and would not be standardized for
labor and material costs across regions, so we opted to use published rates.
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Table A.2: Cost-Effectiveness Parameters and References

Value Notes & References
Costs

CMS, 2016a; CMS, 2016b; Sun et al., 2014;
Rydman et al., 1998; Eisenberg et al., 2005

Non-invasive testing1 $4000
Catheterization $28,000
Stenting $15,000
CABG $20,000

Risks
Stroke risk 0.0044 Hamon et al., 2008
Stroke disability weight 0.266 Hong and Saver, 2009
Lifetime direct cost of stroke 2 $170,000 Taylor et al., 1996

Heart attack
p(fatal) 0.2 Mahoney et al., 2002
p(nonfatal) 0.8
Nonfatal disability weight 0.125

Life expectancy with heart disease Peeters et al., 2002
Treatment effect

Lower bound 0.20
Amsterdam et al., 2014; Bavry et al., 2006;
Mills et al., 2011

Most likely 0.25
Upper bound 0.30

1 Rates by Medicare Severity Diagnosis Related Groups calculated using the national adjusted full update with
standardized labor, non-labor and capital amounts. Testing cost reflects direct costs (ranging from $400 for treadmill
testing to $2,000 for imaging), physician services ($500) and facility fees (ranging from $1,000 for observation care
to $2,000 for inpatient stays, with the latter more common). 2 Includes only medical care; does not include lost
productivity.

all the studies reviewed, this is perhaps closest to the counterfactual we attempt to study here. In
the main text, we use 0.2 and 0.3 as our treatment effect lower and upper bounds, respectively. In
Figure A.1, we provide analogous results using more relaxed bounds: 0.1 and 0.5.

2.2 Comparison of Clinical Guidelines for Testing Based on Adverse Events to
Cost-Effectiveness Measures

In the main text, we discuss two different thresholds for determining whether or not a patient
should be tested for heart attack: the 2% miss-rate guideline for the untested, and the $150K
cost-effectiveness threshold in the tested. Here, we use observed adverse outcome rates in the
untested and observed cost-effectiveness of tests to relate these two metrics. Specifically, we divide
the sample into ventiles of predicted risk, with ventile cutoffs determined in the tested. Then, for
each ventile bin, we calculate the adverse event rate in the untested and the yield in the tested. In
Figure A.2, we plot these rates as points, along with a best fit line. We then add a vertical line
at x = 0.120, which is the yield rate associated with 150K cost-effectiveness. Finally, we add a
horizontal line where the first two lines intersect: y = 0.032. We interpret this as the acceptable
miss rate implied by the $150K cost-effectiveness target. Indeed, it is statistically indistinguishable
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Figure A.1: Cost-Effectiveness with 10-50% Treatment Effect Bounds

from the 2% adverse outcome rate from heart attack testing guidelines.

3 Counterfactual Testing Policies: Stress Testing vs. Catheteri-
zation

In the main text, we treat the two kinds of tests doctors can do—stress tests and catheterization—as
one testing decision. We do so for simplicity, and because both types of test are aimed at diagnosing
the same underlying coronary blockage. However, the costs and benefits of these two categories of
tests are different. This means there is more than one counterfactual we might wish to consider in
our analyses of testing decisions. Our main analyses consider a specific counterfactual: eliminating
(or adding) the specific kind of test the physician chose to do in our dataset, in a patient with a
given level of predicted risk.

Here we present results for other counterfactuals of interest, for example, eliminating all stress
tests. Table A.3 shows that, irrespective of risk, the value of stress testing is extremely low. This
supports prior literature, which has argued that these tests are sufficiently low value that they
should be eliminated completely; we find that there are no groups, even the highest-risk groups,
in whom these tests (as physicians currently use them) are cost-effective. By contrast, Table A.4
shows that the value of catheterization is very low in the lowest-risk quintiles, but is cost effective
for the highest-risk three quintiles. Finally, while we cannot fully simulate substitutions between
testing types—for example, we do not know what stress tests would have shown in catheterized
patients—we can calculate a conservative bound on substitution of catheterization for stress tests.
Table A.5 shows a counterfactual policy in which we drop only negative stress tests (those that do
not progress to catheterization). This simulates a near-perfect strategy of replacing current stress
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Figure A.2: Cost-Effectiveness in the Tested vs. Adverse Event Rate in the Untested

tests with catheterization. This strategy has similar cost-effectiveness to catheterization, albeit
slightly lower (since a positive stress tests necessarily progresses to catheterization).

Table A.3: Yield, Frequency, and Cost-Effectiveness of Stress Testing

Yield Rate Initial Stress Test Rate Cost Effectiveness ($)
(SE) (SE) (Lower-Uppper Bound)

Risk Quintile
1 0.007 0.011 –

(0.005) (0.001) –
2 0.007 0.014 922,497

(0.005) (0.001) (745,691-1,209,205)
3 0.011 0.035 805,446

(0.006) (0.002) (649,409-1,060,183)
4 0.024 0.051 1,575,410

(0.011) (0.003) (1,205,093-2,274,279)
5 0.053 0.161 465,476

(0.018) (0.012) (374,829-613,953)
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Table A.4: Yield, Frequency, and Cost-Effectiveness of Catheterization

Yield Rate Initial Stress Test Rate Cost Effectiveness ($)
(SE) (SE) (Lower-Uppper Bound)

Risk Quintile
1 0.055 0.002 646,351

(0.031) (0) (505,405-896,313)
2 0.139 0.004 223,991

(0.039) (0) (180,863-294,128)
3 0.238 0.013 132,517

(0.043) (0.001) (108,728-169,632)
4 0.372 0.038 89,606

(0.039) (0.003) (74,010-113,530)
5 0.674 0.24 40,253

(0.031) (0.014) (33,409-50,622)
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Table A.5: Yield, Frequency, and Cost-Effectiveness of Substituting Catheterization for Stress
Testing

Yield Rate Initial Stress Test Rate Cost Effectiveness ($)
(SE) (SE) (Lower-Uppper Bound)

Risk Quintile
1 0.056 0.002 885,816

(0.027) (0) (677,765-1,278,171)
2 0.138 0.005 234,344

(0.036) (0) (189,251-307,650)
3 0.212 0.016 155,356

(0.038) (0.001) (127,163-199,612)
4 0.326 0.045 103,017

(0.035) (0.003) (84,975-130,786)
5 0.598 0.275 44,268

(0.031) (0.015) (36,727-55,707)
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4 Modeling Approach and Hyperparameters

Most risk prediction tools for heart attack in the medical literature use a handful of clinical variables
as predictors, for example, elements of the medical history, certain laboratory studies, or interpreted
features of the electrocardiogram (e.g., TIMI, GRACE, or HEART scores). As noted above, claims
or electronic health records, by contrast, contain a vast set of other potential predictors that are
increasingly being used as inputs to machine learning models in medicine.4 Building on this work,
we design a machine learning algorithm to accurately predict risk out-of-sample using a wealth of
EHR data.

4.1 Predictors

To form the inputs to our predictive model, we begin by transforming the discrete person-date
data described above (e.g., a cholesterol value of 200mg/dL, or a hospitalization for heart failure,
on a given day before the ED visit) into summary statistics (counts, averages, standard deviations,
etc.) over discrete time periods (i.e., 0–1 months, 1–12 months, and 12–24 months prior to a visit).
For diagnosis and procedure codes, as well as medications, we additionally take advantage of the
fact that these codes are nested in categories: we aggregate them into clinically meaningful ‘super-
variables,’ by collapsing at the level of hierarchical taxonomies defined by the Agency for Healthcare
Research and Quality’s Clinical Classification Software (with minor modifications, available on our
online code repository), and the ATC classification for medications.5 This results in one variable
for each time period, describing occurrences over short, medium, and long windows before a given
visit, and for each semantically grouped diagnosis, procedure, or medication group. We dropped
variables missing in over 99% of the training set, leaving a vector Xij of 16,381 predictors for visit
j by patient i.

We were very careful to form these variables so that the information they contain was uni-
formly available to the physician at the time of the decision. This is harder than it seems: for
example, sometimes physician notes are dated on the day of the ED visit, but are completed by the
physician days or even weeks later—after information on the results of testing become available.
The data available during the course of the ED visit, like the results of laboratory testing or the
electrocardiogram, are likewise ‘downstream’ from the decision making process we aim to assess:
only patients suspected of a heart problem will have certain test results present—but we wish to
create predictions irrespective of whether the physician suspected a heart problem. So we stop
incorporating any information from the EHR starting the moment the patient arrives at the ED
triage desk. Later, we will use some data from the ED visit itself to infer the physician’s level of
suspicion for heart attack, but we do not include any of these data into the predictive model.

4Rajkomar, Dean, and Kohane (2019) provide a helpful review of recent work. Notable examples include Ghassemi
et al. (2014), Rajkomar et al. (2018), and Henry et al. (2015), who use these tools to predict clinical outcomes, and
Miotto et al. (2016) who predict a variety of future diagnoses. We are necessarily brief in our description of machine
learning methods; see Mullainathan and Spiess (2017) or Athey and Imbens (2019) for a more thorough overview
with references.

5As an example, the occurrence of a low-level diagnosis or procedure code (e.g., E018.2: Injury from activities
involving string instrument playing) 100 days before a patient’s visit would be aggregated into a broader clinically
meaningful categories (e.g., E000-E999: External Causes Of Injury) over a specific time period (i.e., 31–365 days
prior to visit).
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4.2 Training Procedure

Our goal is to form estimator m̂(·), on the basis of observed covariates Xij . Our dataset gives us
two ways to proxy our (unobserved) quantity of interest, whether or not a patient has a blockage: a
positive test result leading to treatment Sij when Tij = 1, and an adverse event Aij when Tij = 0.

Because machine learning models over-fit to the data on which they are trained, we ensure
that our predictions are valid out-of-sample by randomly splitting the sample into a training set
for model development, and a hold-out set for model validation. If patient i has more than one
ED visit j in our sample, we can have several observations on the same patient. Because these
visits happen at different times, both the outcome of the visit (e.g., was the patient tested) and the
background variables we observe about the patient (e.g., their most recent blood pressure) vary—
but of course they are not independent. Practically, we handle this by splitting our dataset at the
patient level, rather than the observation level, so that all visits from a given patient are assigned
exclusively to either the training or hold-out set. We also split out a small 5% ‘ensembling set’
from the training set (and distinct from the hold-out set), which we use to calibrate our ensemble.
This means observations (and patients) fall into three mutually exclusive sets: training (70%),
ensembling (5%), and hold-out (25%). The estimator is trained on the first two sets, and all results
are shown exclusively in the hold-out (except where noted explicitly).

In the training set, we form four individual estimators, two in the tested and two in the untested,
that will later be combined into an ‘ensemble’ estimator m̂(X). First, in the tested patients, we fit
two distinct machine learning models, gradient boosted trees and LASSO, both designed to handle
large sets of correlated predictors (Friedman, 2001) to predict treatment Sij = 1 using observed
covariates Xij . This results in two estimators that predict treatment in the tested, one gradient
boosted tree and one LASSO.6 In the untested patients, we fit two similar models to predict Aij = 1
using Xij . We do so because, as noted above, we would expect there to be signal for predicting
Bij in both treatment Sij when Tij = 1 and adverse event Aij when Tij = 0. So a model that was
useful for predicting one would have signal for predicting the other. This also let us take advantage
of the far larger sample size in the untested.

To tune the parameter set for both types of models, we first randomly divide our sample of
patients into five folds for cross-validation. The LASSO’s optimal value of lambda is determined
through cross-validation with R’s glmnet function. The loss function we minimize is AUC. The
selected lambdas for the yield and adverse event LASSOs are 0.0112 and 0.0053, respectively. The
hyperparameters for the gradient boosted trees are selected from large tuning grids. Table A.6
presents the tuning grid for the Yield model, and Table A.7 presents the grid for the adverse event
model. We tune with separate grids here because the number of observations in the yield model
is an order of magnitude smaller than the number of observations in the MACE model. By cross-
validating in the training set, we determined the optimal hyperparameter values (bolded) and fit
our gradient boosted models using these values.

Once these models are tuned, we use them to generate predictions (one for each model) in a 5%
ensembling set, separate from the training set. We then use logistic regression to ensemble these
predictions together, resulting in a calibrated final model of yield in the tested. Table A.8 presents
the results from our ensembling regression, which determines the final weights on the LASSO and
boosted trees (GBM) predictions to generate our final risk estimates. The output of this weighted
combination forms the final ensemble model m̂(X).

6A trivial way to see the benefit of machine learning methods here is that we have only 5,755 tested patients in
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Table A.6: Tuning Grid and Selected Parameters: Yield of Testing

Eta Max Tree Depth Observation Subsample Feature Subsample Min Child Weight

0.05 8 0.75 0.5 20
0.05 8 0.85 0.5 20
0.05 9 0.75 0.5 20
0.05 9 0.85 0.5 20

Table A.7: Tuning Grid and Selected Parameters: Adverse Events

Eta Max Tree Depth Observation Subsample Feature Subsample Min Child Weight

0.05 7 0.5 0.5 20
0.05 7 0.75 0.5 20
0.05 8 0.5 0.5 20
0.05 8 0.75 0.5 20
0.05 9 0.5 0.5 20
0.05 9 0.75 0.5 20

Table A.8: Sub-predictor Coefficients in Ensemble

Yield
Yield GBM 0.0966

(0.101)

Yield LASSO 1.5846∗∗∗

(0.393)

Adverse event GBM 0.334∗∗∗

(0.116)

Adverse event LASSO −0.954∗∗∗

(0.286)

Observations 404

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

our training set, and 16,381 predictors, so traditional functional forms are not possible.
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5 ‘Naive’ Estimates of Testing Yield

Prima facie, the fact that our statistical model identifies many apparently high-risk patients who
go untested raises the possibility of under-testing. The existence of over- and under-use in health
care has been raised in several recent papers. Most closely related, Abaluck et al. (2016) build
a structural model of risk for pulmonary embolism. They find that physicians vary in where
they set their risk thresholds for testing, leading some physicians to test marginal patients with
extremely low absolute risks. In addition to this clear evidence of over-testing, they also find that
physicians mis-weight observable factors correlated with high risk, such that high-risk patients are
often left untested. The implication is that, in a counterfactual world where these apparently high-
risk patients were tested, we would have found positive test results, and concluded that this was
under-testing. There is substantial support for this view in the medical literature on diagnostic
error, which traces back adverse health events and malpractice claims to physicians’ failure to test
high-risk patients (Kohn, Corrigan, and Donaldson, 2000; Graber, Franklin, and Gordon, 2005;
Newman-Toker et al., 2014; Singh, 2013).

But the evidence on under-testing from the literature, like our own findings so far, is at best
suggestive: a statistical model that disagrees with the physician’s decision to test or treat a given
patient. In order to convincingly document under-testing, though, a basic econometric problem
must be solved. We do not observe test results for untested patients. It is one thing to assert
under-testing on the basis of a structural model, thus relying on imputation of outcomes we do not
actually observe. It is quite another to show it empirically. This is particularly true in settings
where physicians have a considerable information advantage over the statistical model. Given the
wealth of private information they see and we do not, it is very possible physicians are leaving these
patients untested for good reason.

To illustrate the magnitude of this problem, we first calculate S̃, the yield the model would
predict in untested patients at a given level of predicted risk. We find that the untested as a whole
have a predicted yield of 4.6%. By comparison, the realized yield in the tested is 14.3%. However,
because of the far larger size of the untested set—the entire tested set would make up only 3.0% of
the untested set—there are many more patients with very high predicted risk in the untested. For
example, the model predicts that 2,797 untested patient-visits would have led to treatment, had
they been tested, while in the tested set, physicians actually found only 255 patient-visits that led
to treatment. This would imply that doctors are missing 91.6% of all heart attacks among patients
passing through the ED. These back-of-the-envelope calculations suggest that model predictions
may be missing important signals, and over-predicting risk.

5.1 Capturing Risk Information from Electrocardiograms

To show this more precisely, we turn to a subset of patients in whom we have the opportunity
to add an important source of physician private information: the electrocardiogram (ECG). The
ECG is a fundamental part of how physicians form their risk estimates on heart attack. Among
the 29.4% of patients with ECG results in the ED, the physician can observe an important source
of signal regarding the likelihood of blockage. So far, we have not included ECG data in our model,
for a specific reason: not all patients have an ECG, and whether they have an ECG is itself a
function of the physician’s risk prediction. So it would be problematic to rely on these data for
a general risk prediction function—it would not be applicable to all patients (i.e., we could not
generate predictions for the 70.6% without ECGs). For the purposes of quantifying the physician’s
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informational advantage, however, the ECG is very valuable. This is particularly true because
ECG data are rarely included in statistical risk models: even if they were available for all patients
in a cohort, they are housed in separate databases from standard EHR data and thus difficult
to access. Further, they consist of waveforms that cannot be accommodated easily in traditional
statistical risk models. So our results translate more broadly into a range of prediction models in
the literature that do not incorporate such important sources of signal available to physicians.

For those patients with ECG data available, we first explore how physicians appear to be using
obvious features of the ECG that are suspicious for heart attack, using the physician interpretation
entered into the electronic record to accompany the waveform. One caveat to consider is that the
formal interpretation we observe is entered not by the emergency physician most directly involved
in the diagnostic process in the ER, but rather by a cardiologist who enters the interpretation ex
post (for reasons related to hospital billing). So while these two interpretations are correlated,
in the sense that physicians all read ECGs in largely similar ways, we do not observe the precise
interpretation of the ECG as it is used in the emergency physician’s decision process. So we
observe how a cardiologist enters her interpretation of the ECG: as a brief, semi-structured free
text narrative, for example, “Normal sinus rhythm. Non-specific T-wave abnormalities in the
inferior leads.”

Using regular expression matching, we turn these interpretations into a vector of features, and
specifically focus on six important features of the ECG that arouse suspicion for heart attack. This
lets us form a vector of indicators indexing these six findings, as well an indicator for the cardiologist
interpreting the ECG as basically normal (i.e., no indication of heart attack or other problems).
We then run two parallel regressions exploring the relationship of these seven factors to both the
testing decision, and the yield of testing, conditional on predicted risk:

Tij = β0 + m̂(Xij)β1 + ECGFeaturesijβ3 + εij , (1)

Sij = γ0 + m̂(Xij)γ1 + ECGFeaturesijγ3 + εij . (2)

We find that, of the two features highly suspicious for heart attack, both are highly predictive of
testing—and both are additionally highly predictive of yield. The feature of ‘ST elevation,’ for
example, makes testing 3.4 times more likely (7.2 p.p., SE: 2.5), and nearly triples the likelihood
that testing will yield a positive result (24.7 p.p., SE: 6.9). Having an entirely normal ECG, by
contrast, makes testing 0.9 p.p. less likely (SE: 0.4), and reduces yield of testing by 2.1 p.p. (SE:
1.4). Full results are in Appendix Table A.9.

5.2 Incorporating ECG Waveform Data

While these individual features are clearly meaningful, both for the physician’s decision making
process and for the likelihood of blockage, we might wish to extract the maximum amount of risk
information from the high-dimensional ECG signal, independent of the physician’s interpretation.
The ECG consists of a 10-second waveform, sampled at 100 Hz. The waveform corresponds to a
record of the electrical depolarization of the heart.

To capture this directly, we build a new model of risk, m̂ECG(X), that incorporates the ECG
waveform, using a convolutional neural net. We use as inputs three waveforms from the ECG,
collected at three different points on the chest (leads II, V1, V5). We then feed this into a 34-
layer residual neural network, a variant of the standard convolutional neural network used for deep
learning, modeled on the architecture in Rajpurkar et al., 2017. The model is trained and applied
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Table A.9: Predicting Yield and Test with ECG Features

Test Yield

(1) (2)

Predicted Risk 1.085∗∗∗ 0.961∗∗∗

(0.045) (0.093)
Normal ECG −0.009∗∗ −0.021

(0.004) (0.014)
Highly Suspicious

ST Depression 0.080∗∗∗ 0.199∗∗∗

(0.030) (0.075)
ST Elevation 0.072∗∗∗ 0.247∗∗∗

(0.025) (0.069)
Nonspecific Findings

T-Wave Abnormality 0.041∗∗∗ −0.017
(0.007) (0.018)

T-Wave Inversion 0.033∗∗∗ 0.022
(0.013) (0.034)

Bundle Branch Block 0.032∗∗∗ 0.052
(0.012) (0.035)

Left Ventricular Hypertrophy 0.008 −0.085∗∗∗

(0.010) (0.023)

Observations 13,609 1,261
R2 0.098 0.223

∗p < .1,∗∗ p < .05,∗∗∗ p < .01

in the same way as our usual risk predictor, m̂(X), in the sense that it predicts yield of testing in
the tested. However, because our tested sample is very small relative to the usual samples needed
to train convolutional neural nets, we take two steps to improve model fitting. First, we pre-train
the model to predict the vector of cardiologist labels described above, on the full training set.
This initializes the model parameters to values that capture meaningful signals. We then create
a composite outcome, treatment in the tested set or adverse event in the untested set, that is
definable in the entire sample. We train the model to predict this outcome, using as inputs both
the risk predictions from our usual model m̂(Xij) (which we form via five-fold cross validation in
the training set), and the three-channel raw ECG signal. We include in the final (‘fully connected’)
layer a variable reflecting whether or not the patient is tested, which is incorporated into the final
model prediction. As with our usual model, the entire process happens in the training set, and the
model is then applied to generate risk predictions in the hold-out.

We then simply compare how much the addition of ECG risk information updates the orig-
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inal prediction, by subtracting m̂ECG(X) − m̂(Xij). Across the entire population, we find that
adding ECG information decreases risk for 97.6%, and increases it for 2.5%. In the highest-risk bin
of untested patients (0.21%) based on m̂(Xij), adding the ECG information decreases predicted
risk for 100%, resulting in 24.7% being dropped out of that highest-risk bin. It is revealing that
predicted risk on average falls. Even if ECGs resulted in better prediction, why is the average
prediction across the whole population changing so sizeably? The reason is intimately tied to the
physician’s information advantage. We are training models on the tested and (naively) extrapolat-
ing predictions to both tested and untested. If the physician is using unobservables to select who
is tested, then the untested are less risky—even conditional on observables—than the tested. So a
better predictor that uses these unobservables, will predict lower overall risk, which we see here.7

5.3 Physicians’ Marginal Patients and Risk Information from the ECG

Given the substantial amount of private information available to physicians in the ECG waveform,
an important question is whether our analysis of the risk of physicians’ marginal patients is robust
to the inclusion of this information. In other words, do physicians still draw their marginal patients
from across the risk distribution, even taking ECG information into account? Figure A.3 shows
that this is still the case. An important caveat is that we can only produce these predictions for
the subset of patients with ECG information available.

Figure A.3: Variation in Testing Rates by Predicted Risk, Incorporating ECG Waveform

7In other words, the ECG results in better matching of predictions to reality: since most patients are negative,
most patients are updated negatively, while the small number of positives are updated positively.
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6 Adverse Outcome Robustness Checks

6.1 Troponin Thresholds

To ensure that diagnosed adverse events like heart attack are not discretionary diagnoses or incen-
tivized ‘up-coding,’ we use the laboratory data present in electronic health records to confirm heart
attack, using a test called troponin. Troponin is a protein found in heart muscle that is released
into the blood stream if heart cells are damaged, where it is detectable and can indicate heart
attack. However, elevated troponin can also result from other causes. One may worry that tro-
ponin elevations, particular at lower levels, might be the result of these other causes (e.g., patients
with renal failure often have detectable troponin rates despite not having a heart attack). While
we believe this is unlikely, since our definition of adverse event also requires the physician to have
documented heart attack, in Figure A.4, we show adverse rates for progressively more stringent
thresholds (Tn ≥ 0.05, Tn ≥ 0.1, and Tn ≥ 0.5). Particularly at higher levels, troponin elevations
are more likely to represent true—and severe—heart attack. We find that, even if we restrict to
what would be a large amount of damage to heart muscle and very suspicious for heart attack,
high-risk patients still have diagnosed adverse events at high rates.

We also use the results of the troponin test to exclude patients in whom physicians may suspect
heart attack, on the basis of a positive test, even if they do not document heart attack in the record.
To provide some sense of the severity implied by different levels of troponin, and the ways in which
physicians use troponin to guide their testing decisions, Figure A.5 provides rates of key outcomes
(testing, yield, and AMI diagnosis) as a function of the troponin levels detected on the day of the
emergency visit (using the maximum, if more than one value was found).

6.2 Excluding Same-day ECGs and Troponin Tests

As described in the main text, we may exclude patients with ECGs or troponin tests in the ER to
get a lower bound on the number of untested patients in whom physicians never suspected heart
attack. Looking at 30-day adverse outcomes in this restricted sample, we still find evidence of a
high rates of adverse events, well above the clinical threshold of 2%, for patients in the highest-
risk bins. We offer tabular results to supplement Figure 3 in the main text, both for the sample
excluding patients with ECGS (column (3)) and the sample excluding patients with troponin tests
in the ED (column (4)). These results are in Table A.10. As in the main text, the risk bins are
formed from quintiles of predicted risk in the tested for comparison.

6.3 Sensitivity Analysis: Patients with Alternative Diagnoses (Not Heart At-
tack)

Figure A.6 is an analogue to Figure 2 in the main text, but here we exclude patients who were
admitted to the hospital with uncertain diagnoses. The intuition here is that physicians might
suspect blockage—just not enough to document it explicitly. In this case, the physician has not
reached or documented another diagnosis (like pneumonia), but rather a symptom-based diagnosis
(like chest pain) that indicates she has not reached a conclusion on what is going on with the
patient. Of course, not all these patients will go on to have heart attack, but by excluding them we
are left with a population in whom the adverse event rate is unlikely to reflect private information.
The physician has explicitly reached the conclusion that something besides heart attack is going on.
So in these remaining patients, it seems unlikely that the physician has suspected them strongly of
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Figure A.4: Adverse Outcome Rates For Various Troponin Thresholds

(a) Troponin ≥ 0.05 (b) Troponin ≥ 0.1

(c) Troponin ≥ 0.5

heart attack, and also concluded that they are unsuitable for invasive testing or treatment. We also
include in this sample those patients who were sent home from the ER, in whom the physician felt
there was such a low risk of anything serious that they were not worth admitting to the hospital
for observation (again, not something physicians do when they suspect heart attack).

Despite this, we see very similar adverse event rates in this population to the main population:
a 5.66% rate of adverse events in the highest risk bin. This, in combination with our results in
patients who did not have an ECG done in the emergency department, is reassuring: the physician
is unlikely to have suspected heart attack, and thus even less likely to have ruled out treatment
because the patient could not tolerate it.
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Figure A.5: Outcomes for Patients Based on ED Troponin Tests

(a) Heart Attack Diagnosis in ER (b) Yield of Testing

(c) Test Rate
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Table A.10: Rates of Adverse Cardiac Events and Death

.

Adverse Event Rate Adverse Event Rate Adverse Event Rate
Mean Risk (All) (No ECG) (No Troponin)

(1) (2) (3) (4)
Risk Bin

1 0.019 0.008 0.004 0.007
(0) (0.001) (0.001) (0.001)

2 0.046 0.006 0.002 0.005
(0) (0.001) (0) (0.001)

3 0.084 0.011 0.004 0.009
(0) (0.001) (0.001) (0.001)

4 0.148 0.027 0.016 0.021
(0) (0.003) (0.003) (0.003)

5 0.316 0.059 0.042 0.063
(0.014) (0.013) (0.019) (0.017)

27



Figure A.6: Adverse Outcomes in Patients with Other Diagnoses Besides Heart Attack

(a) Any Adverse Event

(b) Diagnosed Heart Attack or Arrythmia (c) Death
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7 Natural Experiment: Additional Checks

7.1 Exclusion Restriction

In the main text, we claim that shift triage teams are a valid instrument for physician testing
decisions. One may be concerned that testing “quotas” could violate the exclusion restriction.
To test for this, we construct three new variables for each encounter: the number of tests in the
previous 12, 24, and 48 hours respectively. Then, we regress testing decision on risk, as well as
these variables. We find that recent testing volume is unrelated to a physician’s decision to test.

Table A.11

Test

(1) (2) (3)

Predicted Risk 0.546∗∗∗ 0.546∗∗∗ 0.546∗∗∗

(0.014) (0.014) (0.014)

Tests in Previous 12 Hrs 0.0002
(0.0002)

Tests in Previous 24 Hrs 0.0001
(0.0001)

Tests in Previous 48 Hrs −0.00002
(0.0001)

Observations 234,134 234,134 234,134
R2 0.046 0.046 0.046

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

7.2 Test Prediction and Balance on Yield

Appendix Table A.12 shows the results of four regressions. In Column (1), we regress the outcome of
testing on the shift’s (leave-one-out) testing rate (T̄−j), controlling for time fixed effects (year, week
of year, day of week, and hour of day) and patient risk. In Column (2), we add an interaction term
between the shift’s testing rate and predicted yield. These regressions test whether patients in high-
testing shifts are riskier on unobservables—in particular, if providers pick up on this unobservably
higher risk and test more as a result, patients in higher-testing shifts should have higher yield
than expected based on risk. In fact, there is no significant correlation between testing rate and
yield, either alone or in the interaction. While estimates are imprecise, they do argue against large
imbalance on unobservables.

In Column (3), we regress an individual’s testing dummy (Tij) on the shift’s (leave-one-out)
testing rate (T̄−j), controlling for time fixed effects (year, week of year, day of week, and hour of
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day) and patient risk. We find that a one-standard-deviation increase in shift testing rate (2.3
percentage points) increases individual testing probability by 0.19 percentage points (SE: 0.06), or
6.7% of the base test rate. In Column (4), we add an interaction between the shift’s testing rate
and predicted yield. We find a positive interaction term, implying that higher-testing shifts test
higher-risk patients significantly more than lower-risk patients. This mirrors the results in Figure
7.

Table A.12: Shift Test Rate and Yield, Test

Yield Test

(1) (2) (3) (4)

Predicted Risk 0.923∗∗∗ 0.912∗∗∗ 0.564∗∗∗ 0.515∗∗∗

(0.039) (0.061) (0.014) (0.023)

Shift Test Rate 0.308 0.248 0.082∗∗∗ −0.043
(0.222) (0.282) (0.028) (0.042)

Predicted Risk × Shift Test Rate 0.335 1.604∗∗∗

(1.488) (0.618)

Observations 4,241 4,241 123,289 123,289
R2 0.176 0.176 0.058 0.058

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

7.3 Random Effects Model of Shift Testing Rates

We calculate shift-level testing propensities via the following model:

Tij = β0 + Shiftjβ1 + m̂(Xij)β2 + TimeControlsjβ3 + εij . (3)

Each visit’s testing likelihood is modeled as a function of a vector of indicators indexing the partic-
ular triage shift she showed up in, modeled as a random effect. In addition, we control for a vector
of time variables for visit j, that captures differences in testing rate attributable to the mix of
patients showing up at a given time (i.e., fixed effects for year, week of year, day of week, and hour
of day), as well as patients’ predicted risk.8 We end up with 3, 951 random effects that measure
the testing propensity of each shift, and verify that the variance of these effects is non-zero (p =
0.0003) by running 1,000 bootstrap simulations.

8The model is fit on the full sample (train and test cohort, using out-of-sample, cross-validated risk predictions
for the train cohort) with the exclusions detailed above. A handful of observations for which we do not have a precise
start time are dropped, so we have N = 238,459.
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8 Replication of Results in National Medicare Claims

To ensure that our results are not specific to the single hospital we study, we turn to a nationally
representative 20% sample of Medicare claims data. We identified 20,059,154 emergency department
(ED) visits over a four-and-a-half-year period from January 2009 through June 2013 (we use the
last half year of 2013 as a follow-up period for included visits). We excluded non-fee-for-service
patients, since we do not observe their full claims history.

8.1 Sample

We apply similar exclusions to the same as we describe in the electronic health record sample
(except as noted in the main text): those who died in the ED, visits preceded by recent known
heart attack or its treatment, those whose general poor health might limit the benefit of testing
or treatment (80 years of age or older, poor-prognosis conditions, hospice or nursing home care,
etc.). Our final sample contains 4,246,642 visits: 189,290 visits in which patients were tested, and
4,057,352 in which they were not. Of the tested, 124,736 had stress tests, and 84,481 had cardiac
catheterization; 13,930 had both a stress test and subsequent catheterization. Among the tested,
we identified 24,126 who received stents. Summary statistics on demographics are shown in Table
A.13. As usual, we exclude untested patients who were diagnosed with conditions related to heart
attack on the day of or the day after their ER visit.

Table A.13: Medicare—Sample descriptive statistics.

Variable All Tested Untested

n Patients 1,556,477 150,616 1,508,267
n Visits 4,246,642 189,290 4,057,352

Demographics
Age, mean 63 68 63
Age, median [IQR] 66 [49,77] 70 [60,77] 66 [49,77]
Female (%) 0.593 0.554 0.594
White (%) 0.763 0.786 0.762
Black (%) 0.181 0.162 0.181
Hispanic (%) 0.028 0.023 0.028
Other (%) 0.029 0.030 0.028
Distance to hospital, median [IQR] 7 [2,16] 8 [3,17] 7 [2,16]

Eligibility
Aged in 0.440 0.555 0.435
Disability 0.541 0.426 0.547

Risk factors
Atherosclerosis (%) 0.562 0.723 0.556
Cholesterol (%) 0.662 0.800 0.656
Diabetes (%) 0.485 0.555 0.482
Hypertension (%) 0.813 0.901 0.810
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8.2 Main Results

Figure A.7 shows the realized yield of testing against bins of predicted risk, and the cost-effectiveness
of tests by risk bin. At a threshold of $150,000 per life year, 52.6% of tests can be flagged as wasteful.
Again, individuated risk predictions are key here: had we taken the typical approach of looking
only at average yield, we would have concluded that testing overall was somewhat cost-effective,
at $135,859 per life year. Panel (a) of Figure A.8 shows the rate of diagnosed adverse events and
death in the 30 days after visits, which increase in predicted risk. The highest-risk bins are well
above the 2% threshold: 3.8% have diagnosed heart attack or arrythmia, and an additional 1.5%
die.

To translate this into an estimate of under-testing in the absence of a quasi-experiment like
shift-to-shift variation, we estimate a simple lower bound. Observe that the lowest rates of under-
testing would be if all adverse outcomes were concentrated (with p = 1) in an ex ante identifiable
set of people. In other words, a conservative estimate of under-testing is to consider only those
untested high-risk patients who go on to have realized adverse events, as those who would have
been likely to benefit from testing. To estimate the cost effectiveness of testing them, we simply
use the cost effectiveness implied by their ex ante risk (estimated in the tested). We can then
calculate, at different thresholds for cost effectiveness, the net amount of over- and under-testing
at a cost per life year valuation of $150,000. As noted above, we would drop the 52.6% of tests
doctors currently do, but we would also add back 17.9% (relative to the current number of tests)
for high-risk patients not currently tested. Importantly, even though this strategy would on net
reduce testing, a large fraction of the benefits of this reallocation comes from increasing testing for
the high-risk untested. For example, at $150,000 per life year, we would reduce testing by 34.7% on
net—but 42.8% of welfare gains come from remedying under-testing (i.e., $228.0 million in surplus
from life years saved), as opposed to reducing over-testing (i.e., $304.7 million saved from dropping
low-value tests). This fraction of benefits from increasing testing grows with the valuation of a life
year.

8.3 ‘Natural Experiment’: Weekday vs. Weekend Testing

In the main text, we use a natural experiment exploiting differences in shift-level testing propensities
to show that marginal tests come from the entire risk distribution. We replicate this finding in our
Medicare claims data, taking advantage of a ‘natural experiment’ in testing for heart attack that
takes place in hospitals across the US every weekend.

Consider the following two facts regarding common practices in cardiac testing. First, it is
expensive to maintain staffing of cardiac testing facilities, leading many hospitals to leave them
unstaffed on weekends (Krasuski et al., 1999). While testing is still available, if the doctor on
duty makes the decision to call in the team from home, it is widely assumed to require a higher
threshold for doing so. Second, patients who present to the ED with concerning symptoms on day
t are tested immediately to rule out obvious heart attack. If obvious problems are excluded, the
decision is made to proceed with cardiac stress testing or catheterization; but this is typically not
done on the same day. This is both since it takes time to arrange the test, and because of the
need to observe patients for stability: there is an elevated risk of sudden death if tests are done
on unstable patients, so patients are typically monitored overnight and undergo repeat laboratory
testing (troponin), and have stress tests or catheterizations on day t+ 1 (or later).

As a result of these two facts, we hypothesized that patients who come in on the day before
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Figure A.7: Medicare—Yield and Cost-Effectiveness of Testing in Tested Patients)

(a) Realized Yield of Testing
(b) Cost-Effectiveness of Testing

Notes: Realized yield of testing (a) and cost-effectiveness (b) of tests (y-axis) in the tested, by bin of predicted
risk (x-axis). Bins are deciles and ventiles of predicted risk. The cost-effectiveness line shows our preferred
specification, and the shaded interval shows sensitivity to a range of estimated treatment effects from the
literature.

a weekend day—i.e., Friday or Saturday—would be less likely to be tested. This strategy builds
on prior research showing differences in care for patients admitted on weekends vs weekdays (Bell
and Redelmeier, 2001), but has the additional advantage of straddling a weekend (Saturday) and
weekday (Friday), which reduces the risk of confounding by simply comparing weekend patients
to weekday patients. To reduce other sources of bias, we also wished to exclude patients who had
been transferred or referred to specialized hospitals from other facilities, for whom decision making
might be less sensitive to inconveniences related to in-hospital staffing. Practically, we restricted
our sample to hospitals with a catheterization laboratory on-site (using the American Hospital
Association annual survey data), and to patients whose home zip codes are within 10 miles of these
facilities, to zero in on patients presenting to hospitals near their home zip code that had on-site
testing facilities. In this sample, we find that patients are 18.3% less likely to be tested when their
index visit falls on Fridays and Saturdays than on Sundays through Thursdays (3.80% vs. 4.65%,
p < 0.001). Panel (a) of Figure A.10 shows that, conditional on geography (i.e., hospital referral
region) and year, these patients appear otherwise quite similar on observables. There are small
differences in some risk factors for heart disease: while some of these are statistically significant
after Bonferroni adjustment, they are substantively small, most on the order of < 0.01 SD units
and statistically insignificant. Finally, as a summary statistic, there is only a very small (0.01 SD)
difference in overall risk, measured by m̂(Xij), that is also statistically insignificant, meaning that
many small differences in individual variables largely balance out.

We first verify that the model predicts accurately in this setting: rates of realized yield in the
tested and adverse events in the untested are similar in both pre-weekend and pre-weekday patients.
We also verify the relationship between yield (among the tested) and adverse event rates (among
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Figure A.8: Medicare—Adverse Events in Untested Patients

Figure A.9: Adverse Events (30 Days After Visits)

Notes: (a) Rate of adverse events and death over the 30 days following visits (y-axis) among untested
patients, by bin of predicted risk (x-axis). (b) Rates of adverse events in the year after visits (y-axis),
excluding the first 30 days, for tested (yellow) vs. untested (gray) patients, by bin of predicted risk (x-axis).

the untested), in each percentile bin of m̂(Xij): this is monotonic and approximately linear in this
weekend vs. weekday population. This gives us some suggestive evidence that we are measuring
the same underlying latent risk, manifested differently depending on whether doctors decide to test
or not.

Finally, in this setting with limited influence of unobservables, we can more precisely answer
the question: when doctors reduce testing by 18.3%, where in the risk distribution do the marginal
patients come from? The results in Panel (b) of Figure A.10 echo the results from our EHR triage
shift analysis. We see that when doctors reduce testing on weekends, they drop marginal patients
from across the risk distribution, not just low-risk patients. For example, patients in the lowest-risk
quintile are 18.1% less likely to be tested on a weekend (2.08% vs 2.54%, p < 0.001); patients in the
highest-risk decile are 19.7% less likely to be tested (8.34% vs 10.40%, p < 0.001). This suggests
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that, when doctors cut back on testing, they do so fairly indiscriminately.

Figure A.10: Medicare—Weekend vs. Weekday Testing

(a) Balance on Observables, Weekend vs. Weekday
(b) Weekend vs. Weekday Test Rate by Predicted
Risk

Notes: (a) Balance checks for a ‘natural experiment,’ in which patients are tested at higher or lower rates
(conditional on geography and year), based on the day of the week they arrive. (b) Testing rates for weekday
vs. weekend ED patients. When doctors decrease testing on the weekend, they drop tests across the entire
risk distribution.
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9 Supplemental Analyses of Physician Behavior

9.1 Comparing Algorithm and Physician Testing Decisions

Many of our analyses take the model’s predicted risk as a stable object against which physicians’
predictions can be compared, whether to quantify the welfare losses from errors, or to establish
facts about physician behavior. One potential worry with this setup is that any discrepancies we
see between the physician and the model could simply be the consequence of comparing two noisy
signals to each other: even if these predictors were equally ‘good’ (e.g., the probability of blockage
conditional on the signal is the same, and the testing rule conditional on the signal is the same),
they will differ due to noise.9 At its extreme, two statistical models estimated on different data
would not agree perfectly with each other—there is just variation due to sampling.

To test whether this kind of effect alone could drive our results, we randomly split our train
set in half at the patient level. We then train two separate models, one on each half of the data.
Model training is otherwise similar to the process used to form our usual m̂(X): a LASSO and
then a gradient boosted tree to predict treatment in the tested, and then an ensemble in a separate
set to generate our final scores. Each of these models is used to generate two predictions in the
holdout set. This effectively gives us two noisily correlated predictors, of which we choose one
(arbitrarily) to play the role of the algorithm, m̂alg(Xij), and the other to play the role of the
physician, m̂md(Xij).

Figure A.11: Comparing test rates by risk for physician and algorithm testing decisions.

Then, in the hold-out set, we simulate algorithm m̂md(Xij)’s ‘testing decisions.’ Using the total

9It is worth noting that, even if this were the case, there would still be welfare gains from incorporating a second
noisy signal (e.g., algorithmic predictions) into decisions that are currently based on only one noisy signal (e.g.,
physicians’ risk predictors). In other words, if physicians are indeed noisy predictors of ground truth, when there is
a better (less noisy) predictor of ground truth, the physician would not be optimal.
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number of physician tests as a benchmark, we take the 1,834 patients with the highest risk scores
according to m̂md(Xij), and assign them to ‘simulated physician testing.’ Of course, we also know
which patients actual physicians assign to testing. So in Figure A.11, we compare the simulated
physician testing to actual physician testing, both with respect to the predictions of our simulated
algorithm, m̂alg(Xij). Exactly as we do in our usual analyses, we bin patients in the hold-out by
risk according to m̂alg(Xij): this is shown on the x-axis. We then show on the y-axis the cumulative
fraction of simulated tests and actual tests, by bin of predicted risk. We see that the simulated
physician appears to be far better than actual physicians at discerning high-risk patients from
low-risk. This indicates that our results do not simply reflect inevitable disagreement between two
predictors driven by noise: physicians appear to be leaving far more signal on the table than a
simulated physician, even when judged by a predictor with some inevitable disagreements driven
by noise.

9.2 Physician Boundedness

In the main text, we provide evidence that physicians use a simplified risk model to make decisions
about whom to test. In Figure 5 in the main text, we show how well LASSO models of varying
complexity are able to predict test and yield, using R-squared as our performance metric of choice.
Here, we provide results from several variations.

9.2.1 Robustness Checks

In Figure A.12, Panel (a) shows that our results are not specific to the particular metric we use to
explain variance: using a measure of discrimination, area under the curve (AUC) as our performance
metric, yields similar results. Panel (b) then shows that are results are not specific to a LASSO or
linear model: we replicate a similar result using a different model, this time the gradient boosted
model that also forms part of our full ensemble model. Instead of number of variables as our
measure of complexity, the x-axis now shows the number of boosting iterations of our model (each
iteration fits a new model, to the residual from the previous iteration; the iterations are ensembled
together at the end, so each iteration adds quite a bit of complexity). The trees used for this
model are set to a maximum depth of 5, similar to that used in our main model. This exercise has
similar results to the LASSO in terms of complexity: the best model to predict testing decisions is
less complex (k∗h: 7 iterations) than the best model to predict yield of testing (k∗r : 12 iterations),
indicating that physicians use a simplified risk model to make decisions even when the regularization
is accomplished with completely different machine learning infrastructure.

9.2.2 Replication: National Medicare Claims

We also replicate this exercise in our Medicare claims data. Panel (c) of Figure A.12 shows LASSO
performance (using AUC) for predicting the testing decision and patient risk (yield of testing),
based on model complexity. We find that k∗r = 299 variables, while k∗h = 21. Panel (d) reproduces
the result from Figure 7 in the main text, showing that although physicians may use a limited set
of variables in their risk model, they get the weights on these variables approximately correct.
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Figure A.12: Physician Boundedness: Additional Specifications

(a) Simple vs. Complex Models: AUC (b) Simple vs. Complex Models: Boosted Trees

(c) Medicare—Simple vs. Complex Models (d) Medicare—Testing Decision vs. Patient Risk

9.3 Physician Biases

9.3.1 Patient Demographics

As we saw in Table 6 of the main text, physicians tend to overweight risk information from patient
demographics. In Table A.14 below, we break this out into individual components of patient
demographic information: age, race (as reported by the patient), and gender. We find small but
significant relationships of certain demographics with testing: older patients and women appear to
be tested more than their risk, while self-reported Hispanic patients are under-tested.

9.3.2 Specific Symptom Salience

In Figure 6 of the main text, we saw that the risk weight physicians place on a symptom does not
always match the true risk weight. In particular, we noted that physicians generally overweight
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Table A.14: Testing and Patient Demographics

Test Yield

(1) (2)

Predicted Risk 0.809∗∗∗ 0.971∗∗∗

(0.060) (0.090)
Age 0.001∗∗∗ 0.002∗∗

(0.0001) (0.001)
Race: Black −0.003∗ −0.032

(0.002) (0.022)
Race: Hispanic −0.004∗∗ −0.013

(0.002) (0.024)
Female 0.008∗∗∗ −0.003

(0.002) (0.018)
Low Income 0.012 0.009

(0.008) (0.101)
Constant −0.050∗∗∗ −0.079∗

(0.004) (0.046)

Observations 61,135 1,765

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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“chest pain” as a symptom when making testing decisions. In Table A.15, we use the ten most
common symptoms in our data to predict physician test decisions and yield, controlling for risk.

9.3.3 Representativeness

In the main text, we show that physicians tend to overweight risk signal from symptoms repre-
sentative of heart attack. To determine which symptoms are ‘representative,’ we calculate both
the frequency of symptoms in those who are found to have heart attacks and the frequency in
the entire population. We calculate the representativeness, as the former rate divided by the lat-
ter. We consider any symptoms with a ratio greater than 1 (i.e., they are more frequent in those
with heart attack than in the overall population) as representative. In Table A.16, we show the
representativeness ratios for all symptoms that occur in the set of patients with an eventual yield.

9.3.4 Risk Scores Based on Subsets of Inputs: Correlation with Yield of Testing

In the main text, we show that physician testing decisions are driven in part by a few salient
variables. In particular, we saw that physicians tended to overweight risk signal from demographic
information, as well as symptoms, especially those representative of patients with heart attacks. In
Table A.18, we offer an analogue to Table 8 in the main text with yield as our outcome of interest
rather than test. As expected, we see that none of these subcategories of risk are significant in
predicting true yield on top of full measure of predicted risk.

9.3.5 Testing Errors: Role of Boundedness and Bias

We measure how much riskier (or less risky) a patient appears if only simple risk is accounted for,
by calculating m̂simple(Xij)) − (m̂(Xij). We then look at the distribution of this variable for both
low-risk tested patients (the ‘over-tested’) and high-risk untested patients (the ‘under-tested’). A
full 35.5% of the over-tested come from the top quintile, meaning their simple risk is much larger
than their actual risk (compared to 14.5% in the lowest quintile). Likewise, among the undertested,
74.2% come from the bottom quintile, meaning their simple risk is much smaller than their actual
risk (compared to 7.4% in the top quintile).
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Table A.15: Predicting Test and Yield with Individual Symptoms

Test Yield

(1) (2)

Predicted Risk 0.653∗∗∗ 1.010∗∗∗

(0.045) (0.085)

Abdominal Pain −0.005∗∗∗ −0.001
(0.001) (0.031)

Chest Pain 0.160∗∗∗ 0.028∗

(0.008) (0.016)

Shortness of Breath 0.074∗∗∗ 0.040∗

(0.007) (0.021)

Leg Pain −0.002 −0.075∗∗∗

(0.004) (0.017)

Foot Pain −0.007∗∗∗ 0.037
(0.002) (0.089)

Back Pain −0.010∗∗∗ 0.143
(0.001) (0.129)

Wrist/Hand Pain −0.018∗∗∗ 0.457
(0.001) (0.363)

Headache −0.005∗ 0.057
(0.002) (0.078)

Bleeding −0.005∗∗ 0.054
(0.002) (0.109)

Car Accident −0.015∗∗∗ 0.070
(0.002) (0.162)

Constant −0.014∗∗∗ −0.022∗

(0.002) (0.013)

Observations 61,965 1,784
R2 0.150 0.211

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A.16: Symptom Frequency and Representativeness for Heart Attack

Frequency (%) Representativeness

(1) (2)
Representative Symptoms

Referral: Suspected Heart Attack 0.04 184.80

Arrest 0.05 97.13

Referral for ECG 0.06 39.23

Chest Pain 6.93 9.33

Jaw Complaint 0.17 4.27

Chest Complaint (not pain) 0.73 2.82

Side Weakness 0.22 2.55

Shortness of Breath 3.44 2.18

High Blood Pressure 0.72 1.68

Non-representative Symptoms
Tachycardia 0.85 0.88

Arm Pain 1.53 0.86

Loss of Consciousness 1.45 0.84

Weakness 1.19 0.79

Nausea 1.67 0.34

Dizziness 2.35 0.32

Abdominal Pain 11.80 0.13

We undertake a similar analysis for patients whose risk comes disproportionately from repre-
sentative symptoms, i.e., large m̂represent(Xij)) − (m̂(Xij). An important caveat here is that the
representative risk is built only on nine indicator variables and thus does not have a wide range; as
a result, we are limited in this analysis. Nonetheless, results are shown in Figure A.14. Those in
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Table A.17: Symptoms Recorded at Triage for All 1,069 Treated Patients

Symptom Count Symptom Count

Chest pain 691 Hip, femur, or groin complaint 2
Referral: Suspected ACS 81 Fall 2
Short of breath 80 Headache 2
Cardiac arrest 54 Diarrhea 2
Referral for ECG 26 Referral: Suspected Stroke 2
Chest complaint (not pain) 22 Pneumonia 2
Abdominal pain 16 Leg swelling 2
Arm complaint 14 Sickle cell complaint 2
Elevated blood pressure 13 Mass 2
Loss of consciousness 13 Referral: Suspected Aortic Dissection 2
Weakness 10 Car accident 2
Dizziness 8 Pain (nonspecific) 1
Rapid heart beat 8 Referral: Abnormal labs 1
Weakness on one side 6 Fracture or dislocation 1
Nausea or vomiting 6 Pelvic complaint 1
Assault 5 Leg complaint 1
‘Evaluation’ 5 Penile or testicular complaint 1
Ear, nose, or throat complaint 4 Cellulitis 1
Foot or ankle complaint 4 Low blood pressure 1
Fever or chills 4 Anxiety 1
Unresponsive 4 Abdominal complaint (not pain) 1
Swelling 4 Overdose 1
Device complaint 4 Flank or side pain 1
Face complaint 3 GI bleeding 1
Shoulder complaint 3 Asthma 1
Elbow, wrist, or hand complaint 3 COPD 1
Back pain 3 Referral: Suspected pulmonary embolus 1
Altered mental status 3 Blood in urine 1
Cough 3 Wound or laceration 1
Numbness 3 Referral for neurological evaluation 1
Bleeding 2 Elevated blood sugar 1
Nose bleed 2 Atrial fibrillation 1
Neck complaint 2

the top quintile of representativeness risk (relative to true risk) make up 34.3% come of the low-risk
tested; while 99.4% of the high-risk untested come from the bottom quintile.
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Table A.18: Symptom-Based Risk Scores and Yield of Testing

Yield

(1) (2) (3) (4) (5)

Predicted Risk, Full 1.009∗∗∗ 0.946∗∗∗ 1.009∗∗∗ 0.960∗∗∗

(0.084) (0.118) (0.147) (0.124)

Predicted Risk, Subsets
All Symptoms 0.174 0.130 0.531

(0.154) (0.174) (0.328)
Representative −0.430

Symptoms (0.403)

Demographics 0.180
(0.229)

Prior Diagnoses −0.044
(0.159)

Prior Procedures −0.181
(0.190)

Prior Lab Results −0.101
and Vital Signs (0.179)

Physician Experience
Experience (years) −0.001

(0.001)
Experience × Risk 0.015

(0.009)

Constant −0.001 −0.017 0.004 −0.009
(0.009) (0.015) (0.045) (0.018)

Observations 1,783 1,783 1,783 1,783 1,608
R2 0.205 0.207 0.209 0.208 0.210

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure A.13: Distribution of Bias by Quintiles of Risk Simplicity

(a) High-Risk Untested

(b) Low Risk Tested
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Figure A.14: Distribution of Bias by Quintiles of Risk Representativeness

(a) High-Risk Untested

(b) Low Risk Tested
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