
Technical Appendix

B Proofs

Notation

In our proofs, we often use a matrix notation in which a prior or posterior q is a vector in R|X| and
a signal structure p is an |S| × |X| matrix. px ∈ R|S| and ps ∈ R|X| refer to specific columns and
rows of this matrix. We use the notation ex ∈ R|X| and es ∈ R|X| to refer to basis vectors with a
one in the element corresponding to x ∈ X and s ∈ S respectively, and zero otherwise. We use the
notation ι to refer to a vector of ones (in both R|S| and R|X| contexts).

B.1 Proof of Lemma 1

Let p and p′ be information structures with signal alphabet S. First, we will show that mixture
feasibility and Blackwell monotonicity imply convexity. By mixture feasibility, letting pM denote
the mixture information structure and SM the signal alphabet,

C(pM , q;SM ) ≤ λC(p, q;S) + (1− λ)C(p′, q;S).

Consider the garbling Π : S × {1, 2} → S, which maps each (s, i) ∈ SM to s ∈ S. By Blackwell
monotonicity,

C(pM , q;SM ) ≥ C(ΠpM , q;S).

By construction,
eTs ΠpM = λeTs p+ (1− λ)eTs p

′,

and the result follows.
Now we show the other direction: that convexity and Blackwell monotonicity imply mixture

feasibility. Let p1 and p2 be information structures with signal alphabets S1 and S2. Because
the cost function satisfies Blackwell monotonicity, it is invariant to Markov congruent embeddings.
Define SM = (S1 ∪ S2) × {1, 2}. There exists an embedding Π1 : S1 → SM such that, for some
sM = (s, i) ∈ SM ,

eTsMΠ1p1 =


0 i = 2

0 s /∈ S1

eTs p1 otherwise

.

Define an embedding Π2 along similar lines,

eTsMΠ2p2 =


0 i = 1

0 s /∈ S2

eTs p2 otherwise,
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and note that these embeddings are left-invertible. It follows by Blackwell monotonicity in both
directions that

C(Π1p1, q;SM ) = C(p1, q;S1),

and likewise that
C(Π2p2, q;SM ) = C(p2, q;S2).

By convexity,

C(λΠ1p1 + (1− λ)Π2p2; q;SM ) ≤ λC(Π1p1, q;SM ) + (1− λ)C(Π2p2, q;SM ).

Observing that
λΠ1p1 + (1− λ)Π2p2 = pM

proves the result.

B.2 Proof of Theorem 1

To prove the theorem, we use Taylor’s theorem to approximate the cost function and its gradient
up to order ∆m (a second-order approximation for the cost function, first-order for the gradient).

We start by describing the local (second-order) properties of any information cost function satis-
fying our conditions. The condition requiring that Blackwell-dominant information structures cost
weakly more (Condition 3) is of particular importance. Recall Blackwell’s theorem:
Theorem. (Blackwell [1953]) The information structure {px}x∈X , with signal alphabet S, is more
informative, in the Blackwell sense, than {p′x}x∈X , with signal alphabet S′, if and only if there exists
a Markov transition matrix Π : S → S′ such that, for all s′ ∈ S′ and x ∈ X,

p′x = Πpx. (25)

This Markov transition matrix is known as the “garbling” matrix. Another way of interpreting
Condition 3 is that garbled signals are (weakly) less costly than the original signal.

There are certain kinds of garbling matrices that don’t actually garble the signals. These garbling
matrices have left inverses that are also Markov transition matrices. If we define an information
structure {px}x∈X , with signal alphabet S, and another information structure {p′x}x∈X , with signal
alphabet S′, using one of these left-invertible matrices, via equation (25), then {px}x∈X is more infor-
mative than {p′x}x∈X , but {p′x}x∈X is also more informative than {px}x∈X . These two information
structures are called “Blackwell-equivalent,” and it follows that the cost of these two information
structures must be equal, by Condition 3. The left-invertible Markov transition matrices associ-
ated with Blackwell-equivalent information structures are called Markov congruent embeddings by
Chentsov [1982]. Chentsov [1982] studied tensors and divergences that are invariant to Markov
congruent embeddings (we will say “invariant” for brevity).

Let Π be a Markov congruent embedding from P(S) to P(S′). By Condition 3, all information
cost functions satisfying our conditions are invariant to Markov congruent embeddings. It necessarily
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follows that, for any Markov congruent embedding Π, that

C({px}x∈X , q;S) = C({Πpx}x∈X , q;S′).

Using this invariance, and results from Chentsov [1982], we will describe the local structure of all
information cost functions satisfying our conditions.

The key results of Chentsov [1982] are expressed in terms of the Fisher information matrix. In
our context, the Fisher information matrix on the simplex is

g(r) = Diag(r)+ − ιιT ,

where Diag(r)+ is the pseudo-inverse of Diag(r) and ι is a vector of ones. Chentsov establishes the
following results:21

1. Any continuous function that is invariant over the probability simplex is equal to a constant.

2. Any continuous, invariant 1-form tensor field over the probability simplex is equal to zero.

3. Any continuous, invariant quadratic form tensor field over the probability simplex is propor-
tional to the Fisher information matrix.22

These results allow us to characterize the local properties of rational inattention cost functions, via
a Taylor expansion. Hold fixed the signal alphabet S, and consider an information structure

px(ε, ν) = r + ενx + νωx.

Here, r ∈ P(S) and νx ∈ R|S| satisfies ιT νx = 0 for all x, where ι is a vector of ones. We also
assume that, for all s ∈ S, eTs νx 6= 0 only if eTs r > 0. That is, νx is an element of the tangent space
of the probability simplex at r. The same properties hold true for ωx. As a result, for values of
the perturbation parameters ε and ν sufficiently close to zero, px ∈ P(S) for all x ∈ X. In other
words, the parameters ε and ν index a two-parameter family of perturbations of an uninformative
information structure (corresponding to ε = ν = 0), in which the perturbed information structures
will generally be informative; the νx and ωx specify two directions of perturbation. Each of the
perturbed information structures has the property that px is absolutely continuous with respect to
r.

By Condition 1, C({px(0, 0)}x∈X ; q;S) = 0. The first order term is

∂

∂ε
C({px(ε, ν)}x∈X , q;S)|ε=ν=0 =

∑
x∈X

Cx({r}x∈X , q;S) · νx,

21See Lemma 11.1, Lemma 11.2, and Theorem 11.1 in Chentsov [1982]. See also Proposition 3.19 of Ay et al. [2014],
who demonstrate how to extend the Chentsov results to infinite sets X and S.

22A 1-form tensor field on a probability simplex P is a function T : V × P → R, where V is the tangent space of
the simplex. Let Π : P → P ′ be a mapping from the simplex P to the simplex P ′, let V ′ be the tangent space of
the simplex P ′, and let dΠ : V → V ′ be the pushforward of the mapping Π. The tensor field is invariant under Π if
T (dΠv,Πp) = T (v, p) for all p ∈ P and v in the tangent space at p, and a similar definition holds for quadratic form
tensor fields.
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where Cx denotes the derivative with respect to px. This derivative, Cx({r}; q;S), forms a continuous
1-form tensor field over the probability simplex P(S). By the invariance of C(·), it also follows that
Cx is invariant, and therefore, by Chentsov’s results, it is equal to zero.

We repeat the argument for the second derivative terms. Those terms can be written as

∂

∂ν

∂

∂ε
C({px(ε, ν)}x∈X , q;S)|ε=ν=0 =

∑
x′∈X

∑
x∈X

ωTx′ · Cxx′({r}x∈X , q;S) · νx.

By the invariance of C(·), the quadratic form Cxx′(·) is invariant for all x, x′ ∈ X, and therefore
is proportional to the Fisher information matrix for all x, x′ ∈ X. We can define a matrix k(q)

consisting of the constants of proportionality associated with each x, x′ ∈ X. That is,

∂

∂ν

∂

∂ε
C({p(·|·; ε, ν)}, q)|ε=ν=0 =

∑
x′∈X

∑
x∈X

kx,x′(q)ω
T
x′g(r)νx,

where g(r) is the Fisher information matrix evaluated at the unconditional distribution of signals
r ∈ P(S). We note that the matrix-valued function k(q) can depend on the prior q, but cannot
depend on the unconditional distribution of signals, r; otherwise, invariance would not hold.

We begin by considering perturbations that preserve the support of the signal structure. As a
result, this theorem should be interpreted as applying to “frequent but not very informative” signals,
as opposed to “rare but informative” signals. We will discuss the latter type of signals shortly. Note
that the pseudo-inverse of the Fisher information matrix is

g+(q) = Diag(q)− qqT .

Lemma 11. Suppose that a sequence of information structures pm, with signal alphabet S, is de-
scribed by the equation

pm,s,x = ∆α(s)
m rs + ∆

1
2 (1+α(s))
m νs,x + o(∆

1
2 (1+α(s))
m ),

where, for all s ∈ S, x ∈ X, and ∆m ≥ 0, pm,x,s 6= 0 ⇒ rs > 0, α(s) ∈ [0, 1), and
∑
x∈X vs,x = 0.

Let C(·) be an information cost function that satisfies Conditions 1-4.
There exists a matrix valued function k(q) such that

C(pm; q;S) =
1

2
∆m

∑
x′∈X

∑
x∈X

kx,x′(q)ν
T
x′g(r)νx + o(∆m).

For all q, the matrix-valued function k(q) is continuous, positive semi-definite and symmetric, and
satisfies vT k(q)v = 0 for any vector z ∈ R|X| that is constant in the support of q.

If in addition the cost function satisfies Condition 5, then there exists a constant mg > 0 such
that the difference between k(q) and the pseudo-inverse of the Fisher information matrix, g+(q),
multiplied by that constant, is positive semi-definite: k(q) � mgg

+(q).

Proof. See the appendix, section B.3.
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In the case of the mutual-information cost function, the matrix k(q) is itself the pseudo-inverse
of the Fisher information matrix.

Several authors (Caplin and Dean [2015], Kamenica and Gentzkow [2011]) have observed that it
is easier to study rational inattention problems by considering the space of posteriors, conditional
on receiving each signal, rather than space of signals. We can redefine the cost function using
the posteriors and unconditional signal probabilities, rather than the prior and the conditional
probabilities of signals. The corollary below expresses the results of Lemma 11 in terms of posterior
beliefs.

Corollary 4. Under the assumptions of Lemma 11, the posterior beliefs can be written, for any
s ∈ S such that rs > 0, as

qs,x(pm, q) = qx + ∆
1
2 (1−α(s))
m qx

νs,x −
∑
x′∈X qx′νs,x′

rs
+ o(∆

1
2 (1−α(s))
m ).

The cost function can be written as

C(pm, q;S) =
1

2

∑
s∈S:rs>0

πs(pm, q)(qs,x(pm, q)− q)T k̄(q)(qs,x(pm, q)− q) + o(∆m),

where k̄(q) = Diag(q)+k(q)Diag(q)+.

Proof. See the appendix, section B.4.

There are, in effect, two ways for a signal to be contain a small amount of information, and
different costs associated with these different types of signals. The results of Lemma 11 characterize,
for any rational inattention cost function satisfying our conditions, the cost of receiving frequently,
but relatively uninformative, signals. We next consider the cost of receiving a rare but informative
signal.

Lemma 12. Under the assumptions of Lemma 11, define the signal structure

p̂m = pm + ∆mω,

where pm is a signal structure of the type described in Lemma 11, with
∑
s∈S ωx = 0 for all x ∈ X

and with ωs,x ≥ 0 for all s ∈ S such that pm,s,x = 0.
The cost of this information structure can be written in the form

C(p̂m; q;S) =
1

2

∑
s∈S:rs>0

πs(p̂m, q)(qs,x(p̂m, q)− q)T k̄(q)(qs,x(p̂m, q)− q)

+
∑

s∈S:rs=0

πs(p̂m, q)D
∗(qs,x(p̂m, q)||q) + o(∆m), (26)

where the divergence D∗ is finite, convex in its first argument, and twice-differentiable in its first
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argument for q′ sufficiently close to q, with

∂2D∗(r||q)
∂ri∂rj

|r=q = k̄(q). (27)

Proof. See the appendix, section B.5.

The divergence D∗ represents the cost of acquiring an infrequent, but potentially informative,
signal. Naturally, if the signal is in fact not very informative, this cost must be closely related to
the costs of other uninformative signals, which gives rise to the condition on the Hessian of the
divergence. Note that the lemma demonstrates that the cost is additive with respect to the other
signals being received (at least up to order ∆). The result follows from the directional differentiability
of the cost function with respect to signals that occur with zero probability and the continuity of
that directional derivative (Condition 4) and invariance.

To conclude the proof, observe that by assumption,

πs(pm, q)||qs(pm, q)− q||2X ≤ B∆m

for all m ∈ N and s ∈ S. Consequently, for all convergent subsequences of m (denote them by n),
either

lim
n→∞

πs(pn, q)

∆
α(s)
n

≤ B

for some α(s) ∈ [0, 1), or πs(pn, q) = O(∆n).
In the first case, we must have

||qs(pn, q)− q||2X = O(∆1−α(s)
n ).

In this case, it follows by Taylor’s theorem that

1

2
(qs,x(pm, q)− q)T k̄(q)(qs,x(pm, q)− q) = D∗(qs(pm, q)||q) + o(∆1−α(s)

m ).

Defining

rs = lim
n→∞

πs(pn, q)

∆
α(s)
n

and
vs,x = lim

n→∞

qs,x(pm, q)− qx
qxπs(pn, q)

∆
− 1

2 (1+α(s))
n ,

we can apply Lemma 11.
In the second case, defining

ωs,x = lim
n→∞

qs,x(pn, q)

qx∆n
πs(pn, q)

allows us to apply Lemma 12. It follows that, for all convergent subsequences (therefore by bound-
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edness for all m),
C(pm; q;S) =

∑
s∈S

πs(pm, q)D
∗(qs(pm, q)||q) + o(∆m).

The claimed properties of the divergence and its Hessian follow from the two lemmas.

B.3 Proof of Lemma 11

Consider a Taylor expansion of C(pm, q;S) around the value of

rm,s = ∆α(s)
m rs.

We have
pm,s,x − rm,s = ∆

1
2 (1+α(s))
m νs,x + o(∆

1
2 (1+α(s))
m ),

and therefore by Taylor’s theorem we have

C(pm, q;S) =
1

2

∑
x′∈X

∑
x∈X

kx,x′(q)(pm,x − rm)T g(rm)(pm,x − rm) + o(
∑
s∈S
|pm,x,s − rm,s|2).

By construction,
o(
∑
s∈S
|pm,x,s − rm,s|2) = o(∆m).

Observing that ∑
x∈X

vs,x = 0,

that pm,s,x − rm,s 6= 0 if and only if rm,s > 0, and using the definition

g(rm) = Diag(rm)+ − ιιT ,

we have
(pm,x − rm)T g(rm)(pm,x − rm) = ∆(1+α(s))

m νTxDiag(rm)+νx + o(∆m),

which is
(pm,x − rm)T g(rm)(pm,x − rm) = ∆mν

T
xDiag(r)+νx + o(∆m).

It therefore follows that

C(pm; q;S) =
1

2
∆m

∑
x′∈X

∑
x∈X

kx,x′(q)ν
T
x′g(r)νx + o(∆m).

We next demonstrate the claimed properties of k(q). First, k(q) is symmetric and continuous
in q, by the symmetry of partial derivatives and the assumption of continuous second derivatives
(Condition 4).

Now consider a particular sequence of information structures for which νs,x = φsvx, where
v ∈ R|X| and φ ∈ R|S|, with

∑
s∈S e

T
s φ = 0, and α(s) = 0 for all s ∈ S. Suppose that both v and φ
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are not zero. For this sequence of information structures,

C(pm, q;S) =
1

2
∆mḡv

T k(q)v + o(∆m),

where φT g(r)φ = ḡ > 0. Suppose the information structure is uninformative for all ∆m. This would
be the case if v is proportional to ι, or any vector constant in the support of q, because such a signal
structure has the same distribution of signals in each state in the support of q. Therefore, for such
a v,

vT k(q)v = 0

by Condition 1. Regardless of whether the information structure is informative, by Condition 1, we
must have

vT k(q)v ≥ 0,

implying that k(q) is positive semi-definite. If z and −z are in the tangent space of the simplex at
q, there exists an x, x′ eTx z 6= eTx′z with x, x′ in the support of q. Using z in the place of v above, by
Condition 1, we must have

zT k(q)z > 0.

Suppose now that the cost function satisfies Condition 5. Let v be as above, non-zero, and not
proportional to ι. We have

C(pm, q;S) =
1

2
∆mḡv

T k(q)v + o(∆m),

and therefore for the B defined in Condition 5 there exists a ∆B such that, for all ∆ < ∆B ,
C(p, q;S) < B. Therefore, we must have

C(pm, q;S) ≥ m

2

∑
s∈S

πs(p, q)||qs(pm, q)− q||2X .

By Bayes’ rule, for any signal that is received with positive probability,

qs(pm, q)− q =
(Diag(q)− qqT )pTm,s

qT pTm,s
.

By convention, qs = q for any s such that πs(p, q) = 0.
The support of qs is always a subset of the support of q, and therefore (by the equivalence of

norms),
C(pm, q;S) ≥ mg

2

∑
s∈S

πs(p, q)(qs(pm, q)− q)TDiag+(q)(qs(pm, q)− q)

for some constant mg > 0.
For sufficiently small ∆m, πs(p, q) > 0 if rs > 0, and therefore

C(pm, q;S) ≥ mg

2

∑
s∈S:rs>0

(pm,s(Diag(q)− qqT )Diag+(q)(Diag(q)− qqT )pTm,s)

πs(p, q)
,
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or, for the particular sequence defined by the vectors φ and v,

C(pm, q;S) ≥ mg

2
∆m

∑
s∈S:rs>0

(φs)
2 v

T (Diag(q)− qqT )Diag+(q)(Diag(q)− qqT )v

(rs)
+ o(∆).

Noting that ∑
s∈S:rs>0

(φs)
2

rs
= φT g(r)φ = ḡ,

and that
(Diag(q)− qqT )Diag+(q)(Diag(q)− qqT ) = g+(q),

we have
C(pm, q;S) ≥ mg

2
∆mḡv

T g+(q)v + o(∆m).

It follows that we must have
1

2
vT k(q)v ≥ mg

2
vT g+(q)v

for all v.

B.4 Proof of Corollary 4

Under the stated assumptions,

pm,s,x = ∆α(s)
m rs + ∆

1
2 (1+α(s))
m νs,x + o(∆

1
2 (1+α(s))
m ).

By Bayes’ rule, for any s ∈ S such that πs(pm, q) > 0,

qs(pm, q) =
Diag(q)pTm,s
qT pTm,s

.

It follows immediately that
lim

∆→0+
qs(pm, q) = Diag(q)

ιrs
rs

= q.

Next, using the notation vs ∈ R|X| to denote the vector of {vs,x}x∈X ,

∆
− 1

2 (1−α(s))
m (qs(pm, q)− q) =

∆
− 1

2 (1+α(s))
m

∆
−α(s)
m

(Diag(q)− qqT )pTs
πs(pm, q)

= Diag(q)
νs − ιqT νs + o(1)

∆
−α(s)
m πs(pm, q)

.

For any s such that rs > 0,

lim
∆→0+

∆
− 1

2 (1−α(s))
m (qs(pm, q)− q) = Diag(q)

νs − ιqT νs
rs

.

By Lemma 11,

53



C(pm, q;S) =
1

2
∆m

∑
x′∈X

∑
x∈X

kx,x′(q)ν
T
x′g(r)νx + o(∆m).

By the definition of the Fisher matrix, and the observation that ιT νx = 0 for all x ∈ X,

νTx′g(r)νx =
∑

s∈S:rs>0

rs
νx′,s
rs

νx,s
rs

.

Substituting in the result regarding the posterior,

C(pm, q;S) =
1

2

∑
s∈S:rs>0

πs(p, q)(qs(pm, q)− q)TDiag+(q)k(q)Diag+(q)(qs(pm, q)− q) + o(∆m),

which is the result, observing that qTDiag+(q) is constant in the support of q and applying
Lemma 11.

B.5 Proof of Corollary 12

By directional differentiability and the continuity of the directional derivatives, there exists a function

f(ω, r, q;S) = lim
m→∞

C(pm + ∆mω, q;S)− C(pm, q;S)

∆m
.

Observe that, if ωex is in the support of r for all x in the support of q, we must have f(ω, p̄, q;S) = 0,
by the results of Lemma 11. Relatedly, if ω and ω′ differ only with respect to the frequency of signals
in the support of r for all x in the support of q, we must have

f(ω, r, q;S) = f(ω′, r, q;S).

Assuming there are signals with πs(pm, q) = 0, we can write ω = ω1 + ω2 + . . ., where each ωi is
a perturbation that contains only one signal with πs(pm, q) = 0. Let N ≤ |S| denote the number of
these perturbations. We can define

fi(ωi, r, q;S) = lim
m→∞

C(pi−1,m + ∆ωi, q;S)− C(pi−1,m, q;S)

∆m
,

where pi−1,m = pm + ∆
∑i−1
j=1 ωi. By the assumption of the continuity of the directional derivatives,

fi(ωi, r, q;S) = f(ωi, r, q;S).

It follows that

f(ω, r, q;S) =
N∑
i=1

f(ωi, r, q;S).

By invariance, the function f(ωi, r, q;S) does not depend on r or S. By the argument above, it
is only a function of ωi,si ∈ R|X|, where si ∈ S is the unique signal in ωi with rsi = 0. By Bayes’

54



rule, if the prior q has full support,

ωi,si = (qTωi,si)Diag(q)+qsi ,

where qsi is the posterior associated with signal si. If not, by Condition 1, it is without loss of
generality to assume ωi,siex = r for all x not the support of q, and hence that this equation holds
for all q. By the homogeneity of the directional derivative, we can rewrite this as

f(ωi, r, q;S) = (qTωi,si)F (qsi , q).

By the requirement that the cost of an uninformative signal structure is zero, and everything
else is costly, we must have

F (q, q) = 0,

F (q′, q) > 0

for all q′ 6= q. Therefore, F is a divergence, which we write D∗(q′||q). The finiteness and continuity of
D∗(q′||q) is implied by the existence and continuity of the directional derivative. The approximation
of the cost function follows from this result and Corollary 4, observing that πsi(p̂m, q) = qTωi,si .

By invariance, there exists a Markov congruent embedding that splits each signal in S intoM > 1

distinct signals in S′. As M becomes arbitrarily large, the probability of each signal becomes small
— and in particular, can be of order ∆. It follows for all s ∈ S′ such that ||qs− q|| = O(∆

1
2 (1−α(s))
m )

(e.g. the signals described in Corollary 4), we must have

D∗(qs||q) =
1

2
∆(1−α(s))
m (qTs − q)k̄(q)(qs − q) + o(∆(1−α(s))

m ),

and therefore D∗(q′||q) must be twice differentiable in q′ evaluated at q.
Lastly, we prove that D∗ is convex in its first argument. By the convexity of C(p, q;S),

C(pm, q;S) ≥
∑
s∈S

πs(pm, q)D
∗(qs(pm, q)||q).

Therefore, for all signal structures p1
m and p2

m satisfying the conditions of the lemma and all λ ∈ (0, 1),
letting pm = λp1

m + (1− λ)p2
m, by convexity

λC(p1
m, q;S) + (1− λ)C(p2

m, q;S) ≥
∑
s∈S

πs(pm, q)D
∗(qs(pm, q)||q).

Taking the limit as m→∞, we must have

lim
m→∞

λ
∑
s∈S

πs(p
1
m, q)D

∗(qs(p
1
m, q)||q)+

lim
m→∞

(1− λ)
∑
s∈S

πs(p
2
m, q)D

∗(qs(p
2
m, q)||q) ≥ lim

m→∞

∑
s∈S

πs(pm, q)D
∗(qs(pm, q)||q).
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For any q1, q2 ∈ P(X) absolutely continuous with respect to q, define

p1
m = r + ∆mω

1,

p2
m = r + ∆mω

2,

where ω1 and ω2 are both non-zero only for some s ∈ S with rs = 0, and satisfy q1 = qs(p
1
m, q),

q2 = qs(p
2
m, q), and πs(p1

m, q) = πs(p
2
m, q) (which can be achieved by Bayes’ rule). It follows that

qs(pm, q) = λq1 + (1− λ)q2,

and therefore that D∗ is convex in its first argument.

B.6 Proof of Theorem 2

We begin by describing three lemmas that we will employ to prove the convergence result. Our first
lemma shows that the dual discrete time value function W (qt, λ; ∆) is well-behaved:

Lemma 13. If λ ∈ (0, κc−ρ) and β = 1, or if β < 1, for all ∆ ≤ 1 the value function W (qt, λ; ∆) is
bounded above on qt ∈ P(X) by a constant W̄ , bounded below by zero, and is convex in q. Moreover,
for all ∆ ≤ 1,

κ− λcρ − ln(β)W̄ > 0.

Proof. See the appendix, section B.7.

Our next lemma shows that, because of the curvature (ρ) that we impose, the DM will choose,
under any optimal policy, to gather only a small amount of information in each time period, as the
length of each time period shrinks.

Lemma 14. Let n ∈ N denote a sequence such that ∆n ≤ 1 and limn→∞∆n = 0. Under the
assumptions of Lemma 13, any associated sequence of optimal policies p∗t,n satisfies, for all elements
of the sequence,

C(p∗t,n, qt,n;S) ≤ (
θ

λ
)

1
ρ−1 ∆n,

where θ = λ(ρκ−λc
ρ−ln(β)W̄
λ(ρ−1) )

ρ−1
ρ and W̄ is the upper bound of Lemma 13.

Proof. See appendix, section B.8.

Our next lemma discuss the convergence of an arbitrary sequence of stochastic processes for
beliefs (denoted qt,m) and of stopping times (denoted τm) to their continuous-time limits, under
the assumption that the policies generating them satisfy the bound in Lemma 14 and a bound on
expected stopping times. This lemma applies to a sequence of optimal policies, but also to sequences
of sub-optimal policies. The lemma describes the convergence of the beliefs process to a martingale,
which is not necessarily a diffusion (it may have jumps, or even be a semi-martingale that is not a
jump-diffusion).
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Lemma 15. Let ∆m, m ∈ N, denote a sequence such that limm→∞∆m = 0. Let pm(q) denote a
sequence of Markov policies satisfying the bound in Lemma 14. Let qt,m denote the stochastic process
for the DM’s beliefs at time t, under such a policy, and let τm be a sequence of stopping policies such
that E0[τm] ≤ τ̄ .

There exists a sub-sequence n ∈ N and a probability space such that:

1. The beliefs qt,n and the stopping time τn converge almost surely to a martingale qt and a
stopping time τ .

2. The martingale qt can be represented in terms of its semi-martingale characteristics,

Bt = −
ˆ t

0

(

ˆ
R|X|\{0}

ψs(z)zdz)dAs

Ct =

ˆ t

0

Diag(qs−)σsσ
T
s Diag(qs−)dAs

νt(z) = dAtψt(x),

where σs is an |X| × |X| matrix-valued predictable stochastic process, satisfying qTs−σs = ~0, ψs
is a measure on R|X| \{0} such that qs−+z ∈ P(X) and qs−+z � qs− for all z in the support
of ψs, and dAs is the increment of a weakly increasing process.

3. For all stopping times T ,

Et[

ˆ T

t

βs−t{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}dAs] ≤

(
θ

λ
)

1
ρ−1

1− βT−t

− ln(β)
.

4. The limit of the cumulative information cost is bounded below,

lim
n→∞

E0[∆1−ρ
n

τn∆−1
n −1∑
j=0

β∆njC(pn(q∆nj,n), q∆nj,n;S)ρ] ≥

Et[

ˆ τ

0

βs{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρ(dAs

ds
)ρds].

Proof. See the appendix, section B.9.

Having described these three lemmas (all proven below), we now proceed to the main proof.
Assume that λ ∈ (0, κc−ρ) if β = 1, λ > 0 if β < 1. Under this assumption, lemmas 13, 14, and 15
apply.

Let m index a sequence of Markov optimal policies, p∗m(q), and of stopping times τ∗m. Let
q∗t,n denote the associated process for beliefs. By the uniform boundedness and convexity of the
family of value functions W (q, λ; ∆m), a uniformly convergent sub-sequence exists. Rockafellar
[1970] Theorem 10.9 demonstrates that a uniformly convergent sub-sequence exists on the relative
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interior of the simplex, and Rockafellar [1970] Theorem 10.3 demonstrates that there is a unique
extension to a convex and continuous function on the boundary of the simplex. Therefore, by Lemma
13, that proving the discrete time value function converges to the stated continuous time limit also
proves that the continuous time limit is bounded and convex.

Pass to this sub-sequence, which (for simplicity) we also index by m, and let W (q, λ) denote its
limit. Let W+(q, λ) denote the continuous time problem defined in Definition 1. We will prove that
W (q, λ) = W+(q, λ).

By Lemmas 13 and 14, the sequence of optimal policies and stopping time satisfies the conditions
of Lemma 15. It follows by that lemma that

lim
n→∞

E0[

ˆ τ∗n

0

β∆nb∆−1
n tc∆1−ρ

n C(p∗n(q∗t,n), q∗t,n;S)ρdt] ≥

Et[

ˆ τ

0

βs{1

2
tr[σ∗sσ

∗T
s k(q∗s−)]+

ˆ
R|X|\{0}

ψ∗s (z)D∗(qs− + z||qs−)dz}ρ}ρ(dA
∗
s

ds
)ρds],

where q∗s is the limiting stochastic process and σ∗s , ψ∗s , dA∗s are associated with the characteristics of
the martingale q∗s .

We also have, by weak convergence,

lim
n→∞

E0[βτn û(qτ∗n,n)−∆n
1− βτ∗n
1− β∆n

(κ− λcρ))] = E0[βτ
∗
û(qτ∗)−

1

− ln(β)
(1− βτ

∗
)(κ− λcρ))].

Recall also the bound, for any stopping time T measurable with respect filtration generated by q∗s ,

Et[

ˆ T

t

βs{1

2
tr[σ∗sσ

∗T
s k(qs−)] +

ˆ
R|X|\{0}

ψ∗s (z)D∗(q∗s− + z||q∗s−)dz}dA∗s] ≤

(
θ

λ
)

1
ρ−1Et[

1− β(T−t)

− ln(β)
].

It follows that
W (q, λ) ≤W+(q, λ)

for all q ∈ P(X), where

W+(qt, λ) = sup
{σs,ψs,dAs,τ}

Et[β
(τ∗−t)û(qτ∗)−

1

− ln(β)
(1− β(τ∗−t))(κ− λcρ)]−

− λ

ρ
Et[

ˆ τ

t

β(s−t){1

2
tr[σsσ

T
s k(qs)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρ(dAs

ds
)ρds],

subject to the constraints, for all stopping times T measurable with respect filtration generated by
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q∗s ,

Et[

ˆ T

t

β(s−t){1

2
tr[σsσ

T
s k(qt)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}dAs] ≤

(
θ

λ
)

1
ρ−1Et[

1− β(T−t)

− ln(β)
].

and the evolution of beliefs as implied by the characteristics derived from σs, ψs, dAs. Observe, by
the arguments in the proof of Lemma 13, that W+(q, λ) is bounded, and convex in q, and satisfies
κ− λcρ − ln(β)W+(qt, λ) > 0.

Also note that, for W+, it is without loss of generality to set dAs = ds. Scaling dAs up and
scaling σsσTs and ψs down, or vice versa, does not change the constraint, and setting dAs = 0 is
clearly sub-optimal by the result that κ−λcρ− ln(β)W+(qt, λ) > 0. Note also that there is a version
of the optimal policies which satisfy the constraint everywhere:

1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz ≤ (

θ

λ
)

1
ρ−1 .

Next, observe that increasing σsσTs by a quantity εzzT results in a first order condition, anywhere
W+ is twice-differentiable, of

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z′′)D∗(qs− + z′′||qs−)dz′′}ρ−1 1

2
tr[zzT k(qs−)] ≥

1

2
zTW+

qq(qs−)z,

with equality if the diffusion terms are non-zero in that direction. Note that the bound that the
optimal policies satisfy implies that W+

qq(qs−), interpreted in a distributional sense, is finite and
hence that W+ is differentiable.

Similarly, for any z such that ψ+
s (z) > 0, the first-order condition requires that

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z′′)D∗(qs− + z′′||qs−)dz′′}ρ−1D∗(qs− + z||qs−) =

W+(qs− + x, λ)−W+(qs− , λ)− xT ·W+
q (qs− , λ), (28)

where the differentiability of W+ in the continuation region follows from the envelope theorem.
Combining these two first order conditions, consider a perturbation that decreases σsσTs by εzzT

and increases ψs(νz) and ψs(−νz) by 1
2
ε
ν2 . The first-order conditions for this perturbation is

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z′′)D∗(qs− + z′′||qs−)dz′′}ρ−1×

{ 1

2ν2
D∗(qs− + νz||qs−) +

1

2ν2
D∗(qs− − νz||qs−)− 1

2
tr[zzT k(qs−)]} =

1

2ν2
(W+(qs− + νz, λ) +W+(qs− − νz, λ)− 2W+(qs− , λ))− 1

2
zTW+

qq(qs−)z.
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In the limit as ν → 0+, this equation is always satisfied, and therefore it is without loss of generality
to suppose that the diffusion term is zero.

Lastly, if there exists an z, z′ with ψ+
s (z) > 0 and ψ+

s (z′) > 0, an alternative policy that sets
ψ̃+
s (z) = ψ+

s (z) +
D∗(qs−+z′||qs− )

D∗(qs−+z||qs− ) ψ
+
s (z′) and ψ̃+

s (z′) = 0 generates the same cost, and changes utility
by

D∗(qs− + z′||qs−)

D∗(qs− + z||qs−)
(W+(qs− + z, λ)−W+(qs− , λ)− zT ·W+

q (qs− , λ))ψ+
s (z′)−

(W+(qs− + z′, λ)−W+(qs− , λ)− z′T ·W+
q (qs− , λ))ψ+

s (z′) = 0.

It follows that it is without loss of generality to assume that ψ+
s (z) > 0 for at most one value of

z. Recalling that the optimal policies are Markov, let σ+(qs) denote the optimal policy for the
diffusion, let ψ̄+(q) denote the optimal jump intensity, and let z+(q) denote the Markov optimal
jump direction. Any semi-martingale with these characteristics generates a law that is identical to
the jump-diffusion process described in Lemma 15.

Noting thatW+(q, λ) ≥W (q, λ), it follows that if there exists a sequence of policies that converge
to the stochastic process q+

t , characterized by σ+, ψ̄+, z+, and whose cumulative information costs
∆−1
n C(·) converge to the total information costs in definition 1, then such a sequence of policies

achieves, in the limit, at least as much utility as any other sequence of policies. It would then be
the case that there must be sequence of optimal policies that converges a.s. (as in Lemma 15) to
some optimal policy of W+ (not necessarily the policies that generate q+

t ). Note also by the result
above that it is without loss of generality to suppose σ+ = 0.

We can rewrite our controls in terms of the jump destination, q+(qs) = qs+z+(qs). To construct
such a sequence of convergent policies, consider the “constant control” described in chapter 13.2 of
Kushner and Dupuis [2013] (“constant controls”, in this context, being a constant q+, ψ̄+

t pair over
the interval [t, t + ∆n), switching to ψt = 0 after the first jump). By theorem 2.3 of that chapter,
there exists a sequence of constant controls that converge (weakly) to the optimal policies of W+.
Moreover, these controls result, of the intervals [t, t+ ∆n), in a two-point distribution, with support
on q+(qt) and qt − ψ̄+

t (q+(qt)− qt)∆n for the left limit of the process at time t+ ∆n.
Define the constant

θ+ =
Et[
´ τ
t
β(s−t)ψ̄+

s (qs−)D∗(qs− + z+(qs−)||qs−)ds]

Et[
1−β(τ−t)

− ln(β) ]
.

Now consider a modification of these constant control policies, which scale the intensity ψ̄+
t by the

quantity αn(qt), so that, for the modified policy,

∆nC(·) = θ+.
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By the first-order condition with respect to ψ̄t, and the Bellman equation,

κ− λcρ − ln(β)W+(qt, λ) = λ(1− 1

ρ
)(ψ̄+

t (qt−)D∗(qt− + z+(qt−)||qt−))ρ.

By the convexity of C(·),

C(·) ≥ αn(qt)ψ̄
+
t (qt−)D∗(qt− + z+(qt−)||qt−).

Observe that the lower bound on the value function that

κ− λcρ − ln(β)W+(qt, λ) > 0

for all qt. It follows that

αn(qt) ∈ [0,
θ+

κ− λcρ − ln(β)W
],

where W = minq∈P(X)W
+(q, λ), and that

lim
n→∞

αn(qt) = 1.

Therefore, by this uniform bound, the modified policies converge weakly to the same limit as the
constant control policies, and hence to an optimal policy ofW+. Moreover, by construction, the costs
converge, and hence the dual value function W+ is achievable and therefore W (q, λ) = W+(q, λ).

We next demonstrate equality of the primal and dual. The associated Bellman equation for the
dual value function W+, in the continuation region, is

− ln(β)W+(qs, λ) = max
σs,ψs

E[dW+(qs, λ)]− (κ− λcρ)ds

− λ

ρ
{1

2
tr[σsσ

T
s k(qs)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρ.

Consider a perturbation which scales σ+
s σ

+T
s and ψ+

s be some constant (1 + ε). Note that such
a perturbation would also scale E[dW+] by (1 + ε), and that at least one of σ+

s and ψ+
s must be

non-zero by the assumption that − ln(β)W+(qs, λ) + κ− λcρ > 0. The first order condition for this
perturbation is

− ln(β)W+(qs, λ) + (κ− λcρ) +
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)]+

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ =

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ,

61



which must hold at the optimal policies for this problem. We can rewrite the Bellman equation as

− ln(β)W+(qs, λ)ds+ (κ− λcρ)ds =

E[dW+(qs, λ)]− λ

ρ
(ρ
rW+(qs, λ) + (κ− λcρ)

λ(ρ− 1)
)ds,

or
(− ln(β)W+(qs, λ) + (κ− λcρ)) ρ

ρ− 1
= E[dW+(qs, λ)].

Solving this equation,

W+(qs, λ) = Es[β
ρ
ρ−1 (τ∗−s)û(qτ∗)−

ρ

ρ− 1
(κ− λcρ)

ˆ τ∗

s

β
ρ
ρ−1 (l−s)dl].

Define λ∗ by

Es[β
ρ
ρ−1 (τ∗−s)û(qτ∗)−

ρ

ρ− 1
(κ− λ∗cρ)

ˆ τ∗

s

β
ρ
ρ−1 (l−s)dl] =

E0[β(τ∗−s)û(qτ∗)− κ
ˆ τ∗

s

β(l−s)dl].

We can rewrite this as

(
1

ρ− 1
κ− ρ

ρ− 1
λ∗cρ)E0[

ˆ τ∗

s

β
ρ
ρ−1 (l−s)dl] =

E0[β
ρ
ρ−1 (τ∗−s)û(qτ∗)− κ

ˆ τ∗

s

β
ρ
ρ−1 (l−s)dl]−

E0[β(τ∗−s)û(qτ∗)− κ
ˆ τ∗

0

β(l−s)dl].

The right-hand side is weakly negative, and zero if β = 1. Consequently, λ∗ > 0, and λ∗ = κ
ρcρ <

κc−ρ if β = 1.
Consider a convergent sub-sequence of V (q0; ∆n) (which exists by the uniform boundedness and

convexity of the problem), and denote its limit V (q0) (again, we will index this sequence by n). By
the standard duality inequalities, for all λ,

V (q0; ∆n) ≤W (q0, λ; ∆n),

for all n, and therefore
V (q0) ≤W+(q0, λ

∗).

Consider the value function Ṽ (q0), which is the value function under the feasible optimal policies for
W+(q0, λ

∗). It follows that Ṽ (q0) = W (q0, λ
∗), and Ṽ (q0) ≤ V (q0), and therefore V (q0) = W (q0, λ

∗).
Note that every convergent sub-sequence of V (q0; ∆n) converges to the same function. It follows
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that

V (q0) = lim
∆→0+

V (q0; ∆).

= E0[βτ
∗
û(qτ∗)− κ

ˆ τ∗

0

βldl].

By the definition of λ∗ and the Bellman equation,

E0[

ˆ τ∗

0

βs
1

ρ
{1

2
tr[σ∗sσ

∗T
s k(qs−)] +

ˆ
R|X|\{0}

ψ∗s (z)D∗(qs− + z||qs−)dz}ρds] ≤

cρE0[

ˆ τ∗

0

βldl],

as required. It follows that the value function is the maximized over all policies satisfying the above
constraint (which is the limiting constraint, by the dominated convergence theorem), concluding the
proof.

B.7 Proof of Lemma 13

Write the value function in sequence-problem form, for the β < 1 case:

W (q0, λ; ∆) = max
{pj∆},τ

E0[βτ û(qτ )− κ∆
1− βτ

1− β∆
)]−

λE0[∆1−ρ
τ∆−1∑
j=0

βj∆{1

ρ
C({pj∆,x}x∈X , qj∆(·))ρ −∆ρcρ}],

Define

ū = max
a∈A,x∈X

u(a, x).

By the weak positivity of the cost function C(·), it follows that

W (q0, λ; ∆) ≤ ū+ ∆E0[
1− βτ

1− β∆
](λcρ − κ).

If λ ∈ [0, κc−ρ], the value function is bounded above by ū. If λ > κc−ρ,

W (q0, λ; ∆) ≤ ū+
∆

1− β∆
(λcρ − κ),

and
1− β∆ >

−∆ ln(β)

1−∆ ln(β)
,
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implying
∆

1− β∆
<

1− ln(β)

− ln(β)

for all ∆ ≤ 1. Therefore,

W̄ = ū+
1− ln(β)

− ln(β)
max{λcρ − κ, 0}.

It follows immediately that

κ− λcρ − ln(β)W̄ =

− ln(β)ū+ κ− λcρ κ ≥ λcρ

− ln(β)ū κ < λcρ,

and therefore
κ− λcρ − ln(β)W̄ > 0.

For the β = 1 case, by the assumption that λcρ ≤ κ, W (q0, λ; ∆) ≤ ū = W̄ , and the result holds
immediately.

There is a smallest possible decision utility which is strictly positive, and because stopping now
and deciding is always feasible,

W (q0, λ; ∆) ≥ 0.

We can define the “state-specific” value function, W (qt, λ; ∆, x) , which is the value function
conditional on the true state being x. The state-specific value function has a recursive representation,
in the region in which the DM continues to gather information:

W (qt, λ; ∆, x) = −κ∆ + λ∆1−ρ(∆ρcρ − 1

ρ
C(·)ρ) +

β∆
∑

s∈S: eTs ptex>0

(eTs p
∗
t ex)W (q∗t+∆,s, λ; ∆, x).

In this equation, we take the optimal information structure as given. Note that, by construction,
wherever the DM does not choose to stop, the expected value of the state-specific value functions is
equal to the value function. ∑

x∈X
qt,xW (qt, λ; ∆, x) = W (qt, λ; ∆).

By the optimality of the policies, we have

W (qt, λ; ∆) ≥
∑
x∈X

qt,xW (q′, λ; ∆, x),

for any q′ in P(X). Suppose not; then the DM could simply adopt the information structure
associated with beliefs q′ and achieve higher utility, contradicting the optimality of the policy.
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The convexity of the value function follows from the observation that

W (αq + (1− α)q′, λ; ∆) = α
∑
x∈X

qxW (αq + (1− α)q′, λ; ∆, x) +

(1− α)
∑
x∈X

q′xW (αq + (1− α)q′, λ; ∆, x),

and using the inequality above,

W (αq + (1− α)q′, λ; ∆) ≤ αW (q, λ; ∆) + (1− α)W (q′, λ; ∆).

B.8 Proof of Lemma 14

Consider an alternative policy that mixes (in the sense of Condition 2) the optimal signal structure
and an uninformative signal, with probabilities 1− a and a, respectively. We must have

−β∆n

∑
s∈S

(eTs r
∗
t,n)(W (q∗t,n,s, λ; ∆n)−W (qt,n, λ; ∆n))−

λ∆1−ρ
n C(p∗t,n, qt,n)ρ−1 ∂C(pt,n(a), qt,n)

∂a
|a=0+ ≤ 0,

which is the first-order condition at the optimal policy in the direction of adding a little bit of the
uninformative signal (decreasing a). By the convexity of C(·) and Condition 1,

C(p∗t,n, qt,n) +
∂C(pt,n(a), qt,n)

∂a
|a=0+ ≤ 0,

and therefore we must have

β∆n

∑
s∈S

(eTs r
∗
t,n)(W (q∗t,n,s, λ; ∆n)−W (qt,n, λ; ∆n)) ≥ λ∆1−ρ

n C(p∗t,n, qt,n)ρ.

Applying the Bellman equation in the continuation region,

(1− β∆n)W (qt,n, λ; ∆n) + (κ− λcρ)∆n +
λ

ρ
∆1−ρ
n C(p∗t,n, qt,n)ρ ≥ λ∆1−ρ

n C(p∗t,n, qt,n)ρ.

Therefore,

λ(1− 1

ρ
)∆−ρn C(p∗t,n, qt,n)ρ ≤ (κ− λcρ) +

(1− β∆n)

∆n
W (qt,n, λ; ∆n).

If β = 1, then

C(p∗t,n, qt,n) ≤ ∆n(
θ

λ
)

1
ρ−1 ,

for the constant θ = λ(ρ κ−λc
ρ

λ(ρ−1) )
ρ−1
ρ > 0.

If β < 1, note that
(1− β∆n)

∆n
< − ln(β).
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Let W̄ denote the upper bound on W (qt,n, λ; ∆n), which exists by Lemma 13. We have

C(p∗t,n, qt,n) ≤ ∆n(
θ

λ
)

1
ρ−1 ,

where
θ = λ(ρ

κ− λcρ − ln(β)W̄

λ(ρ− 1)
)
ρ−1
ρ .

The constant θ is positive by (13). Note that this generalizes the formula of the β = 1 case.

B.9 Proof of Lemma 15

We begin by discussing the convergence of stopping times. Let W̄ denote the upper bound on
W (qt,n, λ; ∆n), which exists by Lemma 13. Suppose that under an optimal policy,

lim
T→∞

Pr{τn < T} = 1− α < 1.

The value function at time T must be bounded above by

W (qT , λ; ∆) ≤ (1− α)W̄ ,

as the payoff conditional on never stopping is negative. Now consider an alternative policy that
follows the optimal policy until time T , and then stops. The difference in the initial value functions
is bounded above by the possibility of making the best possible decision under the optimal policy
vs. the worst possible decision under the alternative policy, with utility u > 0:

(1− α− Pr{τn < T})βT W̄ ≥ (1− Pr{τn < T})βTu.

This inequality cannot hold in the limit as T → ∞. Therefore, by the positivity of τn, the laws
of τn are tight, and therefore there exists a sub-sequence that converges in measure. Pass to this
sub-sequence (which we will also index by n), and let τ denote the limit of this sub-sequence.

The beliefs qt,n are a family of R|X|-valued stochastic processes, with qt,n ∈ P(X) for all t ∈ [0,∞)

and n ∈ N. Construct them as RCLL processes by assuming that q∆nj+ε,n = q∆nj,n for all m,
ε ∈ [0,∆n), and j ∈ N. We next establish that the laws of qt,n are tight. By Condition 5 and Lemma
14,

m

2

∑
s∈S

(eTs pn(qt,n)qt,n)||qs,n(qt,n)− qt,n||22 ≤ C(pn(qt,n), qt,n;S) ≤ ∆n(
θ

λ
)

1
ρ−1 ,

where qs,n(q) is defined by pn(q) and Bayes’ rule. It follows that, for any ε > 0, there exists an Nε
such that, for all n > Nε,

P (||qt+∆n,n − qt,n|| > ε) ≤ Kε∆n,

for the constant Kε = 2m−1ε−2θ
1
ρ−1 . By Theorem 3.21 in chapter 6 of Jacod and Shiryaev [2013],

and the boundedness of qt,n, it follows that the laws of qt,n are tight. By Prokhorov’s theorem
(Theorem 3.9 in chapter 6 of Jacod and Shiryaev [2013]), it follows that there exists a convergent
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sub-sequence. Pass to this sub-sequence, and let qt denote the limiting stochastic process. By
Proposition 1.1 in chapter 9 of Jacod and Shiryaev [2013], qt is a martingale with respect to the
filtration it generates. By Skorohod’s representation theorem, there exists a probability space and
random variables (which we will also denote with qt,n and qt) such the convergence is almost sure.
We refer to this probability space and these random variables in what follows.

Note that, by Bayes’ rule, if eTx qt,n = 0 for some x ∈ X and time t, then eTx qs,n = 0 for all s > t.
By Proposition 2.9 and Corollary 2.38 in chapter 2 of Jacod and Shiryaev [2013], we can write the
“good” version of the martingale with characteristics

B = −
ˆ t

0

(

ˆ
R|X|\{0}

ψs(z)zdz)dAs

C =

ˆ t

0

ΣsdAs

ν = dAsψs(x).

Because beliefs remain in the simplex, ψs(z) has support only on z such that qs + z ∈ P(X) and
qs + z � qs. Relatedly, ιTΣs = 0, and Σs can be decomposed as Σs = D(qs−)σsσ

T
s D(qs−).

By the convexity of the cost function and Theorem 1,

C(pn(qt,n), qt,n;S) ≥
∑
s∈S

(eTs pn(qt,n)qt,n)D∗(qs,n(qt,n)||qt,n).

Defining the process, for arbitrary stopping time T ,

Ds,n = lim
ε→0+

D∗(qs−+ε,n||qs−,n)

and

Dt,T,n = Et[

ˆ T

t

β∆nb∆−1
n (s−t)cDs,nds] ≤ (

θ

λ
)

1
ρ−1 ∆nEt[

b∆−1
n (s−t)c∑
j=0

βj∆n ],

we have by Ito’s lemma, almost sure convergence, and the dominated convergence theorem,

Dt,T = lim
n→∞

Dt,T,n = Et[

ˆ T

t

βs−t{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}dAs].

Hence, for all such stopping times T ,

Et[

ˆ T

t

βs−t{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}dAs] ≤ (

θ

λ
)

1
ρ−1

1− βT−t

− ln(β)
.
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Note also by this argument that

lim
n→∞

E0[∆1−ρ
n

τn∆−1
n −1∑
j=0

β∆njC(pn(q∆nj,n), q∆nj,n;S)ρ]

= lim
n→∞

E0[

ˆ τn

0

β∆nb∆−1
n tc∆−ρn C(pn(qt,n), qt,n;S)ρdt]

≥ Et[
ˆ τ

0

βs{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρ(dAs

ds
)ρds]

B.10 Proof of Corollary 1

With β = 1, the associated Bellman equation for the candidate value function W+, in the continu-
ation region, is

0 = max
σs,ψs

E[dW+(qs, λ)]− (κ− λcρ)ds

− λ

ρ
{1

2
tr[σsσ

T
s k(qs)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρ.

Let σ+
s and ψ+

s denote optimal policies for this problem. Consider a perturbation which scales
σ+
s σ

+T
s and ψ+

s be some constant (1 + ε). Note that such a perturbation would also scale E[dW+]

by (1+ ε), and that at least one of σ+
s and ψ+

s must be non-zero by the assumption that κ−λcρ > 0.
The first order condition for this perturbation is

(κ− λcρ) +
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ =

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ,

which must hold at the optimal policies for this problem. It follows by the definition of θ in the
β = 1 case (see the proof of Lemma 14),

θ = λ(ρ
κ− λcρ

λ(ρ− 1)
)
ρ−1
ρ ,

that the constraint
1

2
tr[σsσ

T
s k(qs−)] + ψ̄sD

∗(qs− + zs||qs−) ≤ (
θ

λ
)

1
ρ−1

binds with equality everywhere, where we have used the result in the proof of Theorem 2 that it is
without loss of generality to suppose ψs(z) has support on at most one value of z, which we denote
zs.

Consequently, the Bellman equation can be rewritten as

max
σs,ψ̄s,zs

E[dW+(qs, λ)]− (κ− λcρ)ds− λ

ρ
(
θ

λ
)

ρ
ρ−1 ds
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subject to
1

2
tr[σsσ

T
s k(qs−)] + ψ̄sD

∗(qs− + zs||qs−) ≤ (
θ

λ
)

1
ρ−1 .

Defining

χ(λ) = (ρ
κ− λcρ

λ(ρ− 1)
)

1
ρ

and observing that

κ− λcρ +
λ

ρ
(
θ

λ
)

ρ
ρ−1 = κ− λcρ +

κ− λcρ

ρ− 1

= (κ− λcρ) ρ

ρ− 1
,

the result follows, noting from the proof of Theorem 2 that λ∗ = 1
ρκc
−ρ when β = 1, and therefore

χ(λ∗) = cρ
1
ρ .

B.11 Proof of Lemma 2

Consider a two-signal alphabet, s ∈ {s1, s2}, with πs1 = πs2 , and qs1 = (1 + ε)q′ − εq and qs2 =

(1− ε)q′ + εq. Applying the “chain rule” inequality,

D∗(q′||q) +
1

2
D∗(q′ + ε(q′ − q)||q′) +

1

2
D∗(q′ − ε(q′ − q)||q′)

≤ 1

2
D∗(q′ + ε(q′ − q)||q) +

1

2
D∗(q′ − ε(q′ − q)||q).

Dividing by ε2 and taking the limit as ε→ 0+,

(q′ − q)T · k̄(q′) · (q′ − q) ≤ d2

dε2
D∗(q′ + ε(q′ − q)||q)|ε=0.

Since this must hold for all q′ � q, it holds for q′ = q + t(q′′ − q), with some arbitrary q′′ � q and
t ∈ [0, 1]. Therefore,

d2

dt2
D∗(q + t(q′′ − q)||q)|t=0 ≥ (q′′ − q)T · k̄(q + t(q′′ − q)) · (q′′ − q).

Integrating,

D∗(q′′||q) ≥
ˆ 1

0

ˆ s

0

(q′′ − q)T · k̄(q + t(q′′ − q)) · (q′′ − q)dtds,

which is

D∗(q′′||q) ≥
ˆ 1

0

(1− t)(q′′ − q)T · k̄(q + t(q′′ − q)) · (q′′ − q)dt.

B.12 Proof of Theorem 3

Conjecture that λ ∈ (0, κc−ρ). Under this conjecture, lemmas 13, 14, 15, and 2 apply.
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Consider a possibly sub-optimal policy which sets ψs(z) = 0 for all z and satisfies the constraint.
The above FOC applies, and therefore we must have

tr[σ̃sσ̃
T
s (D(qs−)W+

qq(qs− , λ)D(qs−)− θk(qs−))] ≤ 0,

where W+
qq is understood in a distributional sense. It follows that, for all feasible z,

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) ≤

ˆ 1

0

ˆ s

0

zT k̄(qs− + lz)zdlds.

By our assumption of gradual learning (definition 3), this implies that

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) ≤ θD∗(qs− + z||qs−).

Hence, it is without loss of generality to assume that ψ+
s (z) = 0 for all z. Note that, if there is a

strict preference for gradual learning, the above inequality is strict for all non-zero z. As a result,
in this case we must have ψ+

s (z) = 0 for all z. Note also that our control problem involves direct
control of the diffusion coefficients, and hence satisfies the standard requirements for the existence
and uniqueness of a strong solution to the resulting SDE (Pham [2009] sections 1.3 and 3.2).

B.13 Proof of Theorem 4

The associated Bellman equation, in the continuation region, is (letting W+(q, λ) denote the con-
tinuous time value function of Definition 1, generalized to allow multiple jumps)

0 = max
σs,ψs

E[dW+(qs, λ)] + ln(β)W+(qs− , λ)ds− (κ− λcρ)ds (29)

− λ

ρ
{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρds.

Let σ+
s and ψ+

s denote optimal policies for this problem. Suppose that the constraint does not bind,
and consider a perturbation which scales σ+

s σ
+T
s and ψ+

s be some constant (1 + ε). Note that such
a perturbation would also scale E[dW+] by (1 + ε), and that at least one of σ+

s and ψ+
s must be

non-zero by the assumption that − ln(β)W+(qs, λ) + κ− λcρ > 0. The first order condition for this
perturbation is

− ln(β)W+(qs− , λ) + (κ− λcρ) +
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)]+

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ =

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ,

which must hold at the optimal policies for this problem.
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Define
θ(qs−) = λ(

− ln(β)W+(qs− , λ) + (κ− λcρ)
λ(1− 1

ρ )
)
ρ−1
ρ

Observe by Lemma 13 that θ(qs−) > 0.
For any feasible z, define

θ̃(qs− , z) = min
α∈[0,1]

θ(qs− + αz)

and let α∗(qs− , z) denote the minimizer.
Consider a sub-optimal policy σ̃s which sets ψs(z) = 0 and satisfies

− ln(β)W+(qs− + α∗(qs− , z)z, λ) + (κ− λcρ) = λ(1− 1

ρ
){1

2
tr[σ+

s σ
+T
s k(qs−)]}ρ,

which is
1

2
tr[σ̃sσ̃

T
s k(qs−)] = (

θ̃(qs− , z)

λ
)

1
ρ−1 .

For such a policy, the Bellman equation must be an inequality,

1

2
tr[σ̃sσ̃

T
s (Diag(qs−)W+

qq(qs− , λ)Diag(qs−)]ds ≤

− ln(β)W+(qs− , λ)ds+ (κ− λcρ)ds+
λ

ρ
{1

2
tr[σ̃sσ̃

T
s k(qs−)]}ρds,

where W+
qq is understood in a distributional sense. We simplify this expression to

1

2
tr[σ̃sσ̃

T
s (Diag(qs−)W+

qq(qs− , λ)Diag(qs−)] ≤ − ln(β)[W+(qs− , λ)−W+(qs− + α∗(qs− , z)z, λ)]

+
θ̃(qs− , z)

2
tr[σ̃sσ̃

T
s k(qs−)].

This inequality must hold for all σ̃s with optimal scale. It follows that, integrating along a line
(which must lie in the continuation region) and using the positivity of the value function, that

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) ≤ θ̃(qs− , z)

ˆ 1

0

ˆ s

0

zT k̄(qs− + lz)zdlds

− 2 ln(β)

ˆ 1

0

ˆ t

0

W+(qs− + lz)dldt,

where W+
q (qs− , λ), the derivative, exists by Theorem 2.

By the strong preference for gradual learning and the upper bound on utility,

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ)− θ̃(qs− , z)D∗(qs− + z||qs−) ≤ (30)

− ln(β)ū||z||22 −m||z||2+δ
2 .
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If a jump is optimal, we must have (by the first-order condition)

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) =

λ{ψ+
s (z)D∗(qs− + z||qs−)}ρ−1D∗(qs− + z||qs−),

and
λ(1− ρ−1){ψ+

s (z)D∗(qs− + z||qs−)}ρ = − ln(β)W+(qs− , λ) + (κ− λcρ).

Therefore, by the monotone relationship between θ(qs−) and W+(qs− , λ),

λ{ψ+
s (x)D∗(qs− + z||qs−)}ρ−1 ≥ λ(

− ln(β)W+(qs− + α∗(qs− , z)z, λ) + (κ− λcρ)
λ(1− ρ−1)

)
ρ−1
ρ ,

which implies

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) ≥ θ̃(qs− , z)D∗(qs− + z||qs−).

Using equation (30) above,
m||z||δ2 ≤ − ln(β)ū,

which is
||z||2 ≤ (− ū ln(β)

m
)δ
−1

.

Now suppose that the jump reduces the value function,

W+(qs− + z, λ) ≤W+(qs− , λ).

Consider again a sub-optimal diffusion policy, but with (for all q)

− ln(β)W+(q, λ) + (κ− λcρ) = λ(1− 1

ρ
){1

2
tr[σ+

s σ
+T
s k(q)]}ρ,

which is
1

2
tr[σ̃sσ̃

T
s k(q)] = (

θ(q)

λ
)

1
ρ−1 .

The Bellman inequality in this case simplifies to

1

2
tr[σ̃sσ̃

T
s (Diag(q)W+

qq(q, λ)Diag(q)] ≤ θ(q)

2
tr[σ̃sσ̃

T
s k(q)].

Observe by Lemma 13 and Theorem 5 that W+ is the limit of a sequence of bounded and convex
functions, and hence convex. By the convexity of W+, for all α ∈ [0, 1),

W+(qs− + αz, λ) ≤W+(qs− , λ),
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and therefore (by the definition of θ(q)) θ(qs− + αz) < θ(qs−). Consequently, integrating, we have

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) ≤ θ(qs−)

ˆ 1

0

ˆ s

0

zT k̄(qs− + lz)zdlds,

and by the definition of a strong (and hence strict) preference for gradual learning,

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) < θ(qs−)D∗(qs− + x||qs−).

However, if a jump downwards is optimal, we must have (as argued above)

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) = θ(qs−)D∗(qs− + z||qs−),

and therefore downwards jumps are never optimal.

B.14 Proof of Lemma 3

Suppose the cost function satisfies a preference for discrete learning. Consider a two-signal alphabet,
s ∈ {s1, s2}, with πs1 = πs2 , and qs1 = (1 + ε)q′ − εq and qs2 = (1− ε)q′ + εq. Applying the “chain
rule” inequality,

D∗(q′||q) +
1

2
D∗(q′ + ε(q′ − q)||q′) +

1

2
D∗(q′ − ε(q′ − q)||q′)

≥ 1

2
D∗(q′ + ε(q′ − q)||q) +

1

2
D∗(q′ − ε(q′ − q)||q), (31)

strictly if the preference is strict and q′ 6= q. Dividing by ε2 and taking the limit as ε→ 0+,

(q′ − q)T · k̄(q′) · (q′ − q) ≥ d2

dε2
D∗(q′ + ε(q′ − q)||q)|ε=0.

Since this must hold for all q′ � q, it holds for q′ = q + t(q′′ − q), with some arbitrary q′′ � q and
t ∈ [0, 1]. Therefore,

d2

dt2
D∗(q + t(q′′ − q)||q)|ε=0 ≤ (q′′ − q)T · k̄(q + t(q′′ − q)) · (q′′ − q).

Integrating,

D∗(q′′||q) ≤
ˆ 1

0

ˆ s

0

(q′′ − q)T · k̄(q + t(q′′ − q)) · (q′′ − q)dtds,

which is

D∗(q′′||q) ≤
ˆ 1

0

(1− t)(q′′ − q)T · k̄(q + t(q′′ − q)) · (q′′ − q)dt.

It follows that equality in this equation must hold if the cost function satisfies both a preference for
discrete learning and a preference for gradual learning. Consequently, a strict preference for gradual
learning is incompatible with a preference for discrete learning. Moreover, in this case equation (31)
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cannot hold strictly, and therefore a strict preference for discrete learning implies no preference for
gradual learning.

B.15 Proof of Theorem 5

The problem described in Corollary 1, using the fact that it is without loss of generality to assume
a pure jump process, is

W+(qt, λ) = sup
{ψ̄s,zs},τ

Et[û(qτ∗)− τ
ρ

ρ− 1
(κ− λcρ)]

subject to
ψ̄sD

∗(qs− + zs||qs−) ≤ χ(λ).

Suppose that the theorem is false– that for some qt− and z∗t , qt− + z∗t = q′ is in the continua-
tion region. The first-order condition (see equation (28) in the proof of Theorem 2, which proves
differentiability) can be written as

W+(qt− + z∗t , λ)−W+(qt− , λ)− z∗Tt ·W+
q (qt− , λ) = θD∗(q′||qt−).

If q′ is in the continuation region, there must be some q′′ � q′ such that

W+(q′′, λ)−W+(q′, λ)− (q′′ − q′)T ·W+
q (q′, λ) = θD∗(q′′||q′).

Adding these two equations together and re-arranging,

W+(q′′, λ)−W+(qt− , λ)− (q′′ − qt−)T ·W+
q (qt− , λ) =

θD∗(q′||qt−) + θD∗(q′′||q′) + (q′′ − q′)T · (W+
q (q′, λ)−W+

q (qt− , λ)).

Observe that, because q′′ � q′, there exists an ε̄ > 0 such that, for all ε ∈ [0, ε̄], q′ − ε
1−ε (q

′′ − q′)
remains in the the simplex. By the fact that z∗t is optimal, for all such ε,

W+(q′, λ)−W+(qt− , λ)− (q′ − qt−)T ·W+
q (qt− , λ)− θD∗(q′||qt−) ≥

W+(q′ − ε

1− ε
(q′′ − q′), λ)−W+(qt− , λ)− (q′ − ε

1− ε
(q′′ − q′)− qt−)T ·W+

q (qt− , λ)−

θD∗(q′ − ε

1− ε
(q′′ − q′)||qt−),

or

θD∗(q′||qt−)− θD∗(q′ − ε

1− ε
(q′′ − q′)||qt−) ≤

W+(q′, λ)−W+(q′ − ε

1− ε
(q′′ − q′), λ)− ε

1− ε
(q′′ − q′)TW+

q (qt− , λ).

Now consider the chain rule inequality, supposing that s ∈ {s1, s2} with πs1 = ε, πs2 = 1 − ε,
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qs1 = q′′, and qs2 = q′ − ε
1−ε (q

′′ − q′),

D∗(q′||qt−) + εD∗(q′′||q′) + (1− ε)D∗(q′ − ε

1− ε
(q′′ − q′)||q′) ≥

εD∗(q′′||qt−) + (1− ε)D∗(q′ − ε

1− ε
(q′′ − q′)||qt−).

We have, for all ε ∈ [0, ε̄],

W+(q′, λ)−W+(q′ − ε

1− ε
(q′′ − q′), λ)− ε

1− ε
(q′′ − q′)TW+

q (qt− , λ)+

εθD∗(q′ − ε

1− ε
(q′′ − q′)||qt−) + εθD∗(q′′||q′) ≥

εθD∗(q′′||qt−)− (1− ε)θD∗(q′ − ε

1− ε
(q′′ − q′)||q′).

Dividing by ε and taking limits,

(q′′ − q′)T · (W+
q (q′, λ)−W+

q (qt− , λ))+

θD∗(q′||qt−) + θD∗(q′′||q′) ≥ θD∗(q′′||qt−).

Consequently,

W+(q′′, λ)−W+(qt− , λ)− (q′′ − qt−)T ·W+
q (qt− , λ) ≥ θD∗(q′′||qt−),

meaning that it is without loss of generality to suppose that beliefs jump directly to q′′ instead of to
q′. Therefore, it is without loss of generality to suppose beliefs jump directly to the stopping region.

B.16 Proof of Theorem 6

The associated Bellman equation, in the continuation region, is (letting W+(q, λ) denote the con-
tinuous time value function of Definition 1, generalized to allow multiple jumps)

0 = max
σs,ψs

E[dW+(qs, λ)] + ln(β)W+(qs− , λ)ds− (κ− λcρ)ds

− λ

ρ
{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρds.

Let σ+
s and ψ+

s denote optimal policies for this problem. Suppose that the constraint does not bind,
and consider a perturbation which scales σ+

s σ
+T
s and ψ+

s be some constant (1 + ε). Note that such
a perturbation would also scale E[dW+] by (1 + ε), and that at least one of σ+

s and ψ+
s must be

non-zero by the assumption that − ln(β)W+(qs, λ) + κ− λcρ > 0. The first order condition for this
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perturbation is

− ln(β)W+(qs− , λ) + (κ− λcρ) +
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)]+

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ =

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ,

which must hold at the optimal policies for this problem.
Define

θ(qs−) = λ(
− ln(β)W+(qs− , λ) + (κ− λcρ)

λ(1− 1
ρ )

)
ρ−1
ρ

and observe that it is strictly positive by Theorem 2.
If a jump is optimal, we must have (by the above first-order condition)

W+(qs− + z∗s , λ)−W+(qs− , λ)− z∗Ts W+
q (qs− , λ) = θ(qs−)D∗(qs− + z∗s ||qs−),

where W+
q (qs− , λ) is the derivative that exists by Theorem 2.

Suppose that for some qt− and z∗t , qt−+z∗t = q′ is in the continuation region and thatW+(q′, λ) ≥
W+(qt− , λ). Then we have

θ(q′) ≥ θ(qt−)

and, for some q′′ � q′,

W+(q′′, λ)−W+(q′, λ)− (q′′ − q′)T ·W+
q (q′, λ) = θ(q′)D∗(q′′||q′),

and therefore

W+(q′′, λ)−W+(q′, λ)− (q′′ − q′)T ·W+
q (q′, λ) ≥ θ(qt−)D∗(q′′||q′).

We also have the first order condition

W+(qt− + z∗t , λ)−W+(qt− , λ)− z∗Tt ·W+
q (qt− , λ) = θ(qt−)D∗(q′||qt−)

and, putting these two equations together,

W+(q′′, λ)−W+(qt− , λ)− (q′′ − qt−)T ·W+
q (qt− , λ) ≥

θ(qt−)D∗(q′||qt−) + θ(qt−)D∗(q′′||q′) + (q′′ − q′)T · (W+
q (q′, λ)−W+

q (qt− , λ)).

Observe that, because q′′ � q′, there exists an ε̄ > 0 such that, for all ε ∈ [0, ε̄], q′− ε
1−ε (q

′′− q′)
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remains in the the simplex. By the fact that z∗t is optimal, for all such ε,

W+(q′, λ)−W+(qt− , λ)− (q′ − qt−)T ·W+
q (qt− , λ)− θ(qt−)D∗(q′||qt−) ≥

W+(q′ − ε

1− ε
(q′′ − q′), λ)−W+(qt− , λ)− (q′ − ε

1− ε
(q′′ − q′)− qt−)T ·W+

q (qt− , λ)−

θ(qt−)D∗(q′ − ε

1− ε
(q′′ − q′)||qt−),

or

θ(qt−)D∗(q′||qt−)− θ(qt−)D∗(q′ − ε

1− ε
(q′′ − q′)||qt−) ≤

W+(q′, λ)−W+(q′ − ε

1− ε
(q′′ − q′), λ)− ε

1− ε
(q′′ − q′)TW+

q (qt− , λ).

Now consider the chain rule inequality, supposing that s ∈ {s1, s2} with πs1 = ε, πs2 = 1 − ε,
qs1 = q′′, and qs2 = q′ − ε

1−ε (q
′′ − q′),

D∗(q′||qt−) + εD∗(q′′||q′) + (1− ε)D∗(q′ − ε

1− ε
(q′′ − q′)||q′) ≥

εD∗(q′′||qt−) + (1− ε)D∗(q′ − ε

1− ε
(q′′ − q′)||qt−).

We have, for all ε ∈ [0, ε̄],

W+(q′, λ)−W+(q′ − ε

1− ε
(q′′ − q′), λ)− ε

1− ε
(q′′ − q′)TW+

q (qt− , λ)+

εθ(qt−)D∗(q′ − ε

1− ε
(q′′ − q′)||qt−) + εθ(qt−)D∗(q′′||q′) ≥

εθ(qt−)D∗(q′′||qt−)− (1− ε)θ(qt−)D∗(q′ − ε

1− ε
(q′′ − q′)||q′).

Dividing by ε and taking limits,

(q′′ − q′)T · (W+
q (q′, λ)−W+

q (qt− , λ))+

θ(qt−)D∗(q′||qt−) + θ(qt−)D∗(q′′||q′) ≥ θ(qt−)D∗(q′′||qt−).

Consequently,

W+(q′′, λ)−W+(qt− , λ)− (q′′ − qt−)T ·W+
q (qt− , λ) ≥ θ(qt−)D∗(q′′||qt−),

and therefore it is without loss of generality to suppose that beliefs jump directly to q′′ instead of
to q′. Note that this inequality is strict if W+(q′, λ) > W+(qt− , λ). Hence it follows that if beliefs
jump in such a way that increases the value function, they must jump to the stopping region.

Observe by Lemma 13 and Theorem 2 that W+ is the limit of a sequence of bounded and convex
functions, and hence convex. It follows that if W+(q′, λ) = W+(qt− , λ), we must have (by the mean
value theorem) (q′−qt−)T ·W+

q (αqt−+(1−α)q′, λ) = 0 for some α ∈ (0, 1), and therefore by convexity
(q′ − qt−)T ·W+

q (q′t− , λ) ≤ 0. If such a jump were optimal, we would require θ(qs−)D∗(q′||qt−) ≤ 0,
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which cannot hold. Therefore, jumps to the same level of the value function do not occur.
Now suppose that

W+(q′, λ) < W+(qt− , λ)

and therefore θ(q′) < θ(qt−). Define

q′′ = αq′ + (1− α)qt−

for some α ∈ (0, 1).
By the convexity of W+, for all α ∈ [0, 1), W+(q′′, λ) < W+(qt− , λ), and therefore

W+(q′, λ)−W+(q′′, λ)− (q′ − q′′)T ·W+
q (q′′, λ) ≥ θ(qt−)D∗(q′||q′′)

and
W+(q′, λ)−W+(q′′, λ)− (q′ − q′′)T ·W+

q (q′′, λ) > θ(q′′)D∗(q′||q′′).

Define ψ̄′ by

λ(ψ̄′D∗(q′||q′′))ρ−1D∗(q′||q′′) = W+(q′, λ)−W+(q′′, λ)− (q′ − q′′)T ·W+
q (q′, λ).

We have
λ(ψ̄′D∗(q′||q′′))ρ−1 > λ(

− ln(β)W+(q′′, λ) + (κ− λcρ)
λ(1− 1

ρ )
)
ρ−1
ρ

and therefore
− ln(β)W+(q′′, λ) + (κ− λcρ) < λ(1− 1

ρ
)(ψ̄′D∗(q′||q′′))ρ,

which is

− ln(β)W+(q′′, λ) + (κ− λcρ) < −λ
ρ

(ψ̄′D∗(q′||q′′))ρ

+ ψ̄′[W+(q′, λ)−W+(q′′, λ)− (q′ − q′′)T ·W+
q (q′, λ)].

It follows that the policy z′ = (q′− q′′) and ψ̄′ violates the HJB equation at q′′, and therefore jumps
downward never occur.

Hence we conclude that only upward jumps in the value function occur, and only to the stopping
region.
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B.17 Proof of Theorem 7

The associated Bellman equation, in the continuation region, is (letting W+(q, λ) denote the con-
tinuous time value function of Definition 1, generalized to allow multiple jumps)

0 = max
σs,ψs

E[dW+(qs, λ)] + ln(β)W+(qs− , λ)ds− (κ− λcρ)ds

− λ

ρ
{1

2
tr[σsσ

T
s k(qs−)] +

ˆ
R|X|\{0}

ψs(z)D
∗(qs− + z||qs−)dz}ρds.

Let σ+
s and ψ+

s denote optimal policies for this problem. Suppose that the constraint does not bind,
and consider a perturbation which scales σ+

s σ
+T
s and ψ+

s be some constant (1 + ε). Note that such
a perturbation would also scale E[dW+] by (1 + ε), and that at least one of σ+

s and ψ+
s must be

non-zero by the assumption that − ln(β)W+(qs, λ) + κ− λcρ > 0. The first order condition for this
perturbation is

− ln(β)W+(qs− , λ) + (κ− λcρ) +
λ

ρ
{1

2
tr[σ+

s σ
+T
s k(qs−)]+

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ =

λ{1

2
tr[σ+

s σ
+T
s k(qs−)] +

ˆ
R|X|\{0}

ψ+
s (z)D∗(qs− + z||qs−)dz}ρ,

which must hold at the optimal policies for this problem.
Define

θ(qs−) = λ(
− ln(β)W+(qs− , λ) + (κ− λcρ)

λ(1− 1
ρ )

)
ρ−1
ρ

and observe that it is strictly positive by Theorem 2.
Because a jump is optimal, we must have (by the above first-order condition)

W+(qs− + z∗s , λ)−W+(qs− , λ)− z∗Ts W+
q (qs− , λ) = θ(qs−)D∗(qs− + z∗s ||qs−),

where W+
q (qs− , λ) is the derivative that exists by Theorem 2, and for all feasible jumps,

W+(qs− + z, λ)−W+(qs− , λ)− zTW+
q (qs− , λ) ≤ θ(qs−)D∗(qs− + z||qs−).

We begin by proving that a preference for gradual learning exists for two-signal alphabets, and
assuming that all of the relevant elements of the simplex are interior. We then extend the result to
prove the full preference for discrete learning.

Proof by contradiction: suppose there exists an interior q, q′, q1, q2 ∈ P(X) and π ∈ (0, 1) such
that

πq1 + (1− π)q2 = q′

and
D∗(q′|q) + πD∗(q1|q′) + (1− π)D∗(q2||q′) < πD∗(q1|q) + (1− π)D∗(q2||q).
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Now suppose that there exists a utility function such that z = q1 − q and z = q2 − q are both
optimal policies from q, and for which

W+(q′, λ) ≤W+(q, λ).

Then we must have, for i ∈ {1, 2},

W+(qi, λ)−W+(q, λ)− (qi − q)T ·W+
q (q, λ) = θ(q)D∗(qi||q),

W+(q′, λ)−W+(q, λ)− (q′ − q)T ·W+
q (q, λ) ≤ θ(q)D∗(q′||q),

W+(qi, λ)−W+(q′, λ)− (qi − q′)T ·W+
q (q′, λ) ≤ θ(q′)D∗(qi||q′) ≤ θ(q)D∗(qi||q′),

where θ(q′) ≤ θ(q) by the definition of θ(·) and W+(q′, λ) ≤W+(q, λ). Putting these together,

θ(q)D∗(q′||q) + θ(q)D∗(qi||q′)− θ(q)D∗(qi||q) ≥ −(qi − q′)T · [W+
q (q′, λ)−W+

q (q, λ)].

It would follow in this case that

D∗(q′|q) + πD∗(q1|q′) + (1− π)D∗(q2||q′) ≥ πD∗(q1|q) + (1− π)D∗(q2||q),

a contradiction. To prove the result, we construct such a utility function. Note that our construction
below will assume there are three actions; when applying this proof to the case of |X| = 2, one of
the actions will be redundant.

Define, for some µ = (0, 1), a q3 such that

µq3 + (1− µ)q′ = q.

Note that such a q3 exists by the assumption that q is in the interior of the simplex.
Let v ∈ R|X| be a vector and let k1, k2, k3,K be constants. Suppose there are three actions, and

let their utilities satisfy
ui ∈ θ(q)∂D∗(qi||q) + v + ιki,

where ∂D∗(qi||q) denotes the sub-gradient with respect to the first argument. This sub-gradient
exists by the convexity of D∗ in its first argument and the assumption that qi is interior. Define

ki = θ(q)D∗(qi||q)− qTi · θ(q)∂D∗(qi||q)] +K − qT v

so that
θ(q)D∗(qi||q) = qTi · ui −K + (q − qi)T v.
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Observe by convexity that

qTi (ui − uj) = θ(q)D∗(qi||q) +K − (q − qi)T v

− θ(q)D∗(qj ||q)−K + (q − qj)T v

− (qi − qj)T · uj ,

and by the definition of the sub-gradient this yields

qTi (ui − uj) ≥ 0.

By sub-optimality, for any q′′ � q and any i ∈ {1, 2, 3},

θ(q)D∗(q′′||q) ≥ (q′′)Tui −W+(q, λ)− (q′′ − q)T ·W+
q (q, λ).

Therefore, for all i ∈ {1, 2, 3},

(qi − q)T · (W+
q (q, λ)− v) ≥ K − V (q)

Since this must hold for all qi, we must have

W+(q, λ) = K

and
(qi − q)T · (W+

q (q, λ)− v) = 0.

Hence it follows that
(q′ − q)T ·W+

q (q, λ) = (q′ − q)v.

By sub-optimality,

θ(q)D∗(q′||q) + (q′ − q)T · v ≥W+(q′, λ)−W+(q, λ).

Setting
v ∈ −θ(q)∂D∗(q′||q)

ensures by convexity that W+(q, λ) ≥W+(q′, λ).
Observe that

θ(q)D∗(qi||q) = qTi · ui −K + (q − qi)T v

= qTi · ui −W+(q′, λ) + (q − qi)TW+
q (q, λ)

and therefore that jumps to the points qi are optimal. Observe also that for any other q′′, by the
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definition of the sub-gradient,

θ(q)D∗(q′′||q)− θ(q)D∗(qi||q) ≥ (q′′ − qi)T (ui − v)

and therefore
θ(q)D∗(q′′||q) ≥ (q′′)Tui −W+(q′, λ) + (q − q′′)TW+

q (q, λ)

as required. Therefore, the stationary policy of jumping to {q1, q2, q3} in proportions π(1− µ), (1−
π)(1− µ), µ is optimal.

We conclude that for all interior pairs,

D∗(q′|q) + πD∗(q1|q′) + (1− π)D∗(q2||q′) ≥ πD∗(q1|q) + (1− π)D∗(q2||q).

The result extends immediately to more than two {qs} by adding this expression for different pairs.
The result extends to the boundary of the simplex by continuity.

B.18 Proof of Lemma 4

Recall the definition of a preference for discrete learning: for all q, q′, {qs}s∈S with q′ � q and∑
s∈S πsqs = q′,

D∗(q′||q) +
∑
s∈S

πsD
∗(qs||q′) ≥

∑
s∈S

πsD
∗(qs||q)

Therefore, for all z ∈ R|X| with support on the support of q′ and ε sufficiently small,

D∗(q′||q′ + εz) +
∑
s∈S

πsD
∗(qs||q′) ≥

∑
s∈S

πsD
∗(qs||q′ + εz).

It follows immediately by the differentiability assumption that

∑
s∈S

πs
∂

∂ε
D∗(qs||q′ + εz)|ε=0 = 0.

By step 1 in the proof of theorem 4 of Banerjee et al. [2005], it follows immediately that

D∗(q′||q) = H(q′)−H(q)− (q′ − q)THq(q)

for some convex function H, where Hq denotes the gradient. Note that theorem 4 of Banerjee et al.
[2005] is stated as requiring that ∑

s∈S
πsD

∗(qs||q′ + εz)

be minimized at ε = 0 for all z, but step 1 of the proof in fact only requires that ε = 0 correspond to
a critical value for all z. Step 2 of the proof relaxes slightly the regularity conditions, but we have
simply assumed these. Minimization is only required to establish the last step of the proof, step
3, which proves strict convexity of H. Strict convexity of H(q) on the support of q follows in our
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setting immediately from the properties of the k(q) matrix (Theorem 1).

B.19 Proof of Lemma 5

Define M(qt) as the set of |X| × |X| matrices such that, for all σ ∈M(qt), qTt σ = ~0.
In the continuation region, everywhere the value function is twice differentiable,

sup
σt∈M(qt)

1

2
tr[σTt D(qt)Vqq(qt)D(qt)σt] = κ,

subject to
1

2
tr[σTt k(qt)σt] ≤ χ.

First, suppose that the constraint does not bind and a maximizing optimal policy exists:

1

2
tr[σ∗Tt k(qt)σ

∗
t ] = aχ,

where σ∗t is a maximizer, for some a ∈ [0, 1) (a ≥ 0 by the positive semi-definiteness of k(qt)). For
any c ∈ (1, a−1), with a−1 =∞ for a = 0, if we used σt = cσ∗t instead, the policy would be feasible
and we would have

1

2
tr[σTt D(qt)Vqq(qt)D(qt)σt] = c2κ >

1

2
tr[σ∗Tt D(qt)Vqq(qt)D(qt)σ

∗
t ] = κ,

a contradiction by the fact that κ > 0. Therefore, either the constraint binds under the optimal
policy or an optimal policy does not exist. The latter would require that, for some non-zero vector
z ∈ R|X| with zzT ∈M(qt),

zTD(qt)Vqq(qt)D(qt)z > 0

and zT k(qt)z = 0, but the null space of k(qt) consists only of vectors whose elements are constant
over the support of qt by Theorem 1, and therefore satisfy qT z 6= 0, implying that zzT /∈ M(qt).
Therefore, the constraint binds, and an optimal policy exists.

Using θ as defined in the lemma, it must be the case (anywhere the DM chooses not to stop and
the value function is twice differentiable) that

max
σt∈M(qt)

1

2
tr[σtσ

T
t (Diag(qt)Vqq(qt)Diag(qt)− θk(qt))] = 0.

B.20 Proof of Theorem 8

Define φ(qt) as the static value function in the statement of the theorem (we will prove that it is
equal to V (qt), the value function of the dynamic problem). We first show that φ(qt) satisfies the
HJB equation, can be implemented by a particular strategy for the DM, and that any other strategy
for the DM achieves weakly less utility. We begin by observing that

ιT k(qt)Diag(qt)
−1 = 0 = ιTDiag(qt)Hqq(qt) = qTt Hqq(qt),
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and therefore converse of Euler’s homogenous function theorem applies. That is, Hq(qt) is homoge-
nous of degree zero, and H(qt) is homogeneous of degree one.

We start by showing that the function φ(qt) is twice-differentiable in certain directions. Substi-
tuting the definition of the divergence into the statement of theorem,

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A

∑
a∈A

π(a)uTa · qa + θH(q0)− θ
∑
a∈A

π(a)H(qa),

subject to the same constraint. Define a new choice variable, q̂a = π(a)qa. By definition, q̂a ∈ R|X|+ ,
and the constraint is

∑
a∈A q̂a = q0. By the homogeneity of H, the objective is

φ(q0) = max
π∈P(A),{qa∈P(X)}a∈A,{q̂a∈P(X)}a∈A

∑
a∈A

uTa · q̂a + θH(q0)− θ
∑
a∈A

H(q̂a).

Any choice of q̂a satisfying the constraint can be implemented by some choice of π and qa in the
following way: set π(a) = ιT q̂a, and (if π(a) > 0) set

qa =
q̂a
π(a)

.

If π(a) = 0, set qa = q0. By construction, the constraint will require that π(a) ≤ 1,
∑
a∈A π(a) = 1,

and the fact that the elements of qa are weakly positive will ensure π(a) ≥ 0. Similarly, ιT qa = 1 for
all a ∈ A, and the elements of qa are weakly greater than zero. Therefore, we can implement any
set of q̂a satisfying the constraints.

Rewriting the problem in Lagrangian form,

φ(q0) = max
{q̂a∈R|X|}a∈A

min
κ∈R|X|,{νa∈R|X|+ }a∈A

∑
a∈A

uTa · q̂a + θH(q0)

− θ
∑
a∈A

H(q̂a) + κT (q0 −
∑
a∈A

q̂a) +
∑
a∈A

νTa q̂a.

Observe that φ(q0) is convex in q0. Suppose not: for some q = λq0 + (1 − λ)q1, with λ ∈ (0, 1),
φ(q) < λφ(q0) + (1−λ)φ(q1). Consider a relaxed version of the problem in which the DM is allowed
to choose two different q̂a for each a. Because of the convexity of H, even with this option, the
DM will set both of the q̂a to the same value, and therefore the relaxed problem reaches the same
value as the original problem. However, in the relaxed problem, choosing the optimal policies for
q0 and q1 in the original problem, scaled by λ and (1 − λ) respectively, is feasible. It follows that
φ(q) ≥ λφ(q0) + (1 − λ)φ(q1). Note also that φ(q0) is bounded on the interior of the simplex. It
follows by Alexandrov’s theorem that is is twice-differentiable almost everywhere on the interior of
the simplex.

By the convexity of H, the objective function is concave, and the constraints are affine and a
feasible point exists. Therefore, the KKT conditions are necessary. Anywhere the objective function
is continuously differentiable in the choice variables and in q0, and therefore the envelope theorem
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applies. We have, by the envelope theorem,

φq(q0) = θHq(q0) + κ,

and the first-order conditions (for all a ∈ A with q̂a 6= ~0),

ua − θHq(q̂a)− κ+ νa = 0. (32)

If q̂a = ~0, we must have qT (ua−κ) ≤ θH(q) for all q, meaning that ua−κ is a sub-gradient of H(q)

at q = 0. In this case, we can define νa = ~0 and observe that the first-order condition holds for an
appropriately-chosen sub-gradient. Define q̂a(q0), κ(q0), and νa(q0) as functions that are solutions
to the first-order conditions and constraints.

We next prove the “locally invariant posteriors” property described by Caplin et al. [2019]. Con-
sider an alternative prior, q̃0 ∈ P(X), such that

q̃0 =
∑
a∈A

α(a)q̂a(q0)

for some α(a) ≥ 0. Conjecture that q̂a(q̃0) = α(a)q̂a(q0), κ(q̃0) = κ(q0), and νa(q̃0) = νa(q0). By the
homogeneity property,

Hq(α(a)q̂a(q0)) = Hq(q̂a(q0)),

and therefore the first-order conditions are satisfied. By construction, the constraint is satisfied, the
complementary slackness conditions are satisfied, and q̂a and νa are weakly positive. Therefore, all
necessary conditions are satisfied, and by the concavity of the problem, this is sufficient. It follows
that the conjecture is verified.

Consider a perturbation
q0(ε; z) = q0 + εz,

with z ∈ R|X|, such that q0(ε; z) remains in P(X) for some ε > 0. If z is in the span of q̂a(q0),
then there exists a sufficiently small ε > 0 such that the above conjecture applies. In this case
that κ is constant, and therefore φq(q0(ε; z)) is directionally differentiable with respect to ε. If
q0(−ε; z) ∈ P(X) for some ε > 0, then φq is differentiable, with

φqq(q0) · z = θHqq(q0) · z,

proving twice-differentiability in this direction. This perturbation exists anywhere the span of q̂a(q0)

is strictly larger than the line segment connecting zero and q0 (in other words, all q̂a(q0) are not
proportional to q0). Define this region as the continuation region, Ω. Outside of this region, all
q̂a(q0) are proportional to q0, implying that

φ(q0) = max
a∈A

uTa · q0,

as required for the stopping region. Within the continuation region, the strict convexity of H(q0) in
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all directions orthogonal to q0 implies that, as required,

φ(q0) > max
a∈A

uTa · q0.

Now consider an arbitrary perturbation z such that q0(ε; z) ∈ R|X|+ and q0(−ε; z) ∈ R|X|+ for some
ε > 0. Observe that, by the constraint,

εz =
∑
a∈A

(q̂a(ε; z)− q̂a(q0)).

It follows that

(κT (q0(ε; z))− κT (q0))εz =
∑
a∈A

(κT (q0(ε; z))− κT (q0))(q̂a(ε; z)− q̂a(q0)).

By the first-order condition,

(κT (q0(ε; z))− κT (q0))(q̂a(ε; z)− q̂a(q0)) =

[θHq(q̂a(q0))− θHq(q̂a(ε; z)) + νTa (q0(ε; z))− νTa (q0)](q̂a(ε; z)− q̂a(q0)).

Consider the term

(νTa (q0(ε; z))− νTa (q0))(q̂a(ε; z)− q̂a(q0)) =
∑
x∈X

(νTa (q0(ε; z))− νTa (q0))exe
T
x (q̂a(ε; z)− q̂a(q0)).

By the complementary slackness condition,

(νTa (q0(ε; z))− νTa (q0))(q̂a(ε; z)− q̂a(q0)) = −νTa (q0(ε; z))q̂a(q0)− νTa (q0)q̂a(ε; z) ≤ 0.

By the convexity of H,

θ(Hq(q̂a(q0))− θHq(q̂a(ε; z)))(q̂a(ε; z)− q̂a(q0)) ≤ 0.

Therefore,
(κT (q0(ε; z))− κT (q0))εz ≤ 0.

Thus, anywhere φ is twice differentiable (almost everywhere on the interior of the simplex),

φqq(q) � θHqq(q),

with equality in certain directions. Therefore, it satisfies the HJB equation almost everywhere in
the continuation region. Moreover, by the convexity of φ,

(Hq(q0(ε; z))−Hq(q0))T εz ≥ (φq(q0(ε; z))− φq(q0))T εz ≥ 0,

implying that the “Hessian measure” (see Villani [2003]) associated with φqq has no pure point
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component. This implies that φ is continuously differentiable.
Next, we show that there is a strategy for the DM in the dynamic problem which can implement

this value function. Suppose the DM starts with beliefs q0, and generates some q̂a(q0) as described
above. As shown previously, this can be mapped into a policy π(a, q0) and qa(q0), with the property
that ∑

a∈A
π(a, q0)qa(q0) = q0.

We will construct a policy such that, for all times t,

qt =
∑
a∈A

πt(a)qa(q0)

for some πt(a) ∈ P(A). Let Ω (the continuation region) be the set of qt such that a πt ∈ P(A)

satisfying the above property exists and πt(a) < 1 for all a ∈ A. The associated stopping rule will
be the stop whenever πt(a) = 1 for some a ∈ A.

For all qt ∈ Ω, there is a linear map from P(A) to Ω, which we will denote Q(q0):

Q(q0)πt = qt.

Therefore, we must have
Q(q0)dπt = Diag(qt)σtdBt.

By the assumption that |X| ≥ |A|, there exists a |A| × |X| matrix σπ,t such that

Q(q0)σπ,t = Diag(qt)σt

and dπt = σπ,tdBt. Define φ̃(πt) = φ(qt). As shown above,

QT (q0)φqq(qt)Q(q0)

exists everywhere in Ω, and therefore

φ̃(πt)− θH(Q(q0)πt)

is a martingale. We also have to scale σπ,t to respect the constraint,

1

2
tr[σtσ

T
t k(qt)] = χ > 0.

This can be rewritten as

1

2
tr[σπ,tσ

T
π,tQ

T (q0)Diag+(Q(q0)πt)k(Q(q0)πt))Diag
+(Q(q0)πt)Q(q0)] = χ,

where Diag+ denotes the pseudo-inverse of the diagonal matrix.
By the positive-definiteness of k in all directions except those constant in the support of Q(q0)πt,
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we will always have 1
2 tr[σπ,tσ

T
π,t] > 0. Under the stopping rule described previously, the boundary

will be hit a.s. as the horizon goes to infinity. As a result, by the martingale property described
above, initializing π0(a) = π(a, q0),

φ̃(π0) = E0[φ̃(πτ )− θH(Q(q0)πτ ) + θH(Q(q0)π0)].

By Ito’s lemma,

θH(Q(q0)πτ )− θH(Q(q0)π0) =

ˆ τ

0

χθdt = µτ.

By the value-matching property of φ, φ̃(πτ ) = û(Q(q0)πτ ). It follows that, as required,

φ(q0) = φ̃(π0) = E0[û(qτ )− µτ ].

Finally, we verify that alternative policies are sub-optimal. Consider an arbitrary control process
σt and stopping rule described by the stopping time τ . We have, by the convexity of φ and the
generalized Ito formula for convex functions (noting that we have shown that the Hessian measure
associated with φqq has no pure point component), interpreting φqq in a distributional sense,

E0[φ(qτ )]− φ(q0) =
1

2
E0[

ˆ τ

0

tr[σTt D(qt)φqq(qt)D(qt)σt]dt].

By the feasibility of the policies, anywhere in the continuation region of the optimal policy,

1

2
tr[σTt D(qt)φqq(qt)D(qt)σt] ≤

1

2
θtr[σTt k(qt)σt] ≤ θχ.

In the stopping region of the optimal policy,

1

2
tr[σTt D(qt)φqq(qt)D(qt)σt] = 0 < θχ.

Therefore,

φ(q0) ≥ E0[φ(qτ )]−
ˆ τ

0

θχdt.

By inequality φ(qτ ) ≥ û(qτ ), φ(q0) ≥ E0[û(qτ )− µτ ] for all policies, verifying optimality.

B.21 Proof of Corollary 2

We begin by observing that Theorem 8 characterizes the solution to the value function in this case–
the proof of Theorem 8 requires only that the problem of Definition 2 be further restricted to have
no jumps, not that there be a preference for gradual learning per se.

Now consider in particular utility functions with only two actions, L and R (all other action
in A are dominated by those two and hence will never occur with positive probability). Using the
first-order conditions for the static problem (equation (22)), we have, assuming interior solutions,

uL − θHq(q
∗
L(q0)) = uR − θHq(q

∗
R(q0))
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and
π∗L(q0)q∗L(q0) + (1− π∗L(q0))q∗R(q0) = q0.

Now pick any q0, qL, qR such that q0 = πqL + (1− π)qR for some π ∈ (0, 1). Set

uL = θHq(qL))− θHq(q0) +Kι

and
uR = θHq(qR))− θHq(q0) +Kι

for some K such that both uL and uR are strictly positive. Observe that if the solution is interior,
qL, qR, and π are optimal policies.

If the solution is not interior, stopping must be optimal. By the convexity of H,

qTL · uL − θH(qL) + θH(q0) + θ(qL − q0)THq(q0))− qT0 · uL =

θ(qL − q0)THq(qL)− θH(qL) + θH(q0) ≥ 0,

and likewise for qR. It follows that the q0 is in the continuation region, and therefore that (qL, qR, π)

are indeed optimal policies in the static problem.
By the “locally invariant posteriors” property described by Caplin et al. [2019], it follows that

for any q = αqL + (1− α)qR with α ∈ [0, 1], (qL, qR, α) are optimal policies given initial prior q0.
As in the proof of Theorem 8, this implies that the value function is twice-differentiable on the

line segment between qL and qR, with

(qL − q0)T ·Wqq(q, λ) · (qL − q0) = θ(qL − q0)T k̄(q)(qL − q0)

for all q on that line segment. Integrating,

W (qL, λ)−W (q0, λ)− (qL − q0)T ·Wq(q0, λ) =

θ(qL − q0)T · (
ˆ 1

0

(1− s)k̄(sqL + (1− s)q0)ds) · (qL − q0) =

θH(qL)− θH(q0)− θ(qL − q0)THq(q0)).

By the sub-optimality of jumping directly from q0 to qL, it must be the case that

W (qL, λ)−W (q0, λ)− (qL − q0)T ·Wq(q0, λ) ≤ θD∗(qL||q0)

and therefore a preference for gradual learning holds between the points q0 and qL.
This argument can be repeated for all (q0, qL) in the relative interior of the simplex. By the

convexity of D∗ and H, we can extend the result to the entirety of the simplex by continuity,
proving that a preference for gradual learning must hold.
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B.22 Proof of Lemma 7

Let φ(q, t, q0) denote the likelihood that qt = q ∈ [qL, qH ] given the initial beliefs q0. The forward
equation is

φt(q, t; q0) =
∂2

∂q2
[σ∗(q)2φ(q, t; q0)].

By Lemma 5, the constraint binds,

1

2
tr[σTt Diag(qt)k̄(qt)Diag(qt)σt] = ρ

1
ρ c.

In the two-state model, with an alpha-divergence, k̄ is the Fisher matrix,

k̄(qt) =

[
1
qt
− 1 −1

−1 1
1−qt − 1

]

and assuming one-dimension of Brownian motion without loss of generality,

Diag(qt)σt =

[
σ∗(qt) 0

−σ∗(qt) 0

]
.

Therefore,
1

2
σ∗(qt)

2(
1

qt
+

1

1− qt
) = ρ

1
ρ c,

which is
σ∗(qt)

2 = 2ρ
1
ρ cqt(1− qt),

as required.
For the conditional dynamics,

e1Diag(qt)σtσ
T
t e1 = e1Diag(qt)σtσ

T
t Diag(qt)Diag(qt)

−1e1

=
σ∗(q)2

q
,

and the result follows, and likewise

e1Diag(qt)σtσ
T
t e2 = −σ

∗(q)2

1− q
.

B.23 Proof of Lemma 8

We will show that Conditions 1-5 are satisfied. Recall the definition:

C(p, q;S) =
∑
s∈S

πs(p, q)D(qs(p, q)||q).
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B.23.1 Condition 1

Condition 1 requires that if the information structure is uninformative, the cost is zero, and if it is
not, the cost is weakly positive. If the signal is uninformative, for any signal received with positive
probability,

qs = q,

and by our convention that qs = q if πs(p, q) = 0, this also holds for zero-probability signals. By
the definition of a divergence, D(q||q) = 0 for all q, and therefore the cost of an uninformative
information structure is zero.

The cost is strictly positive by the definition of a divergence (being strictly positive if qs 6= q)
and the fact that probabilities must sum to one.

B.23.2 Condition 2

Mixture feasibility requires that

C(pM , q;SM ) ≤ λC(p1, q;S1) + (1− λ)C(p2, q;S2).

By definition,

C(pM , q;S) =
∑
s∈S

πs(pM , q)D(qs(pM , q)||q)

= λ
∑
s∈S1

πs(p1, q)D(qs(p1, q)||q) + (1− λ)
∑
s∈S2

πs(p2, q)D(qs(p2, q)||q)

= λC(p1, q;S1) + (1− λ)C(p2, q;S2).

verifying that the condition holds.

B.23.3 Condition 3

By Blackwell’s theorem, for any Markov mapping Π : S → S′, we require that

C(Πp, q;S′) ≤ C(p, q;S).

By definition,
πs′(Πp, q) =

∑
s∈S

Πs′,sπs(p, q)

and by Bayes’ rule, treating p as an |S| × |X| matrix and letting es denote a vector with one
corresponding to s and zero otherwise,

D(q)pTΠT es′ = πs′(Πp, q)qs′(Πp, q),
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where qs′ is the posterior associated with s′ ∈ S′. This is

qs′(Πp, q) =

∑
s∈S πs(p, q)qs(p, q)Πs′,s

πs′(Πp, q)

It follows by the convexity of D in its first argument and Jensen’s inequality that

πs′(Πp, q)D(qs′(Πp, q)||q) ≤
∑
s∈S

Πs′,sπs(p, q)D(qs(p, q)||q).

It immediately follows that∑
s′∈S′

πs′(Πp, q)D(qs′(Πp, q)||q) ≤
∑
s∈S

πs(p, q)D(qs(p, q)||q).

B.23.4 Condition 4

We begin by showing twice-differentiability with respect to perturbations that do not change the
support of the signal structure. By the definition of the cost function and the twice-differentiability of
D in its first argument, it is sufficient to show that πs(p, q) and qs(p, q) are both twice-differentiable
with respect to these perturbations, in the neighborhood of an uninformative information structure.

Suppose that
p(ε, ν) = rιT + ετ + νω,

where r ∈ P(S) and the support of τex is in the support of r, and likewise for ωex, for all x ∈ X.
By Bayes’ rule, for all s ∈ S such that eTs r > 0,

qs(ε, ν) =
D(q)p(ε, ν)T es
qT p(ε, ν)T es

.

Simplifying,

qs(ε, ν) = q
rT es

rT es + εqT τT es + νqTωT es
+

εD(q)τT es
rT es + εqT τT es + νqTωT es

+
νD(q)ωT es

rT es + εqT τT es + νqTωT es
.

In the neighborhood around ε = ν = 0, the denominator is strictly positive, and therefore

∂

∂ν
qs(ε, ν) = −qs(ε, v)

qTωT es
rT es + εqT τT es + νqTωT es

+
D(q)ωT es

rT es + εqT τT es + νqTωT es
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and

∂

∂ε

∂

∂ν
qs(ε, ν) = qs(ε, v)

qTωT es
rT es + εqT τT es + νqTωT es

qT τT es
rT es + εqT τT es + νqTωT es

− qTωT es
rT es + εqT τT es + νqTωT es

D(q)τT es
rT es + εqT τT es + νqTωT es

− qs(ε, v)
qTωT es

rT es + εqT τT es + νqTωT es

qT τT es
rT es + εqT τT es + νqTωT es

− D(q)ωT es
rT es + εqT τT es + νqTωT es

qT τT es
rT es + εqT τT es + νqTωT es

.

For s ∈ S such that eTs r = 0, qs(ε, ν) = q, and therefore ∂
∂ε

∂
∂ν qs(ε, ν) = 0. Therefore, ∂

∂ν qs(ε, ν) can
be written as a quadratic form in vec(τ) and vec(ω). It follows that qs(ε, ν), in the neighborhood of
an uninformative information structure, is twice-differentiable in the directions that do not change
the support of the distribution of signals. By construction, πs(p, q) = (eTs pq) is twice-differentiable.

Now consider a perturbation that changes the support of the signals,

p(ε) = rιT + ετ + εω,

where eTs ω = 0 for all s such that eTs r > 0, and greater than or equal to zero otherwise, and the
support of τex is in the support of r for all x ∈ X. We have

qs(ε) = q
rT es

rT es + εqT τT es + εqTωT es
+

εD(q)τT es
rT es + εqT τT es + εqTωT es

+
εD(q)ωT es

rT es + εqT τT es + εqTωT es
.

For s such that eTs ω > 0,

qs(ε) =
D(q)ωT es
qTωT es

,

and hence does not depend on ε. We also have (eTs pq) = εqTωT es for such s. Directional differen-
tiability, continuous in (ω, τ), follows immediately.

B.23.5 Condition 5

This condition requires that, for some m > 0 and B > 0, for all C(p, q;S) < B,

C(p, q;S) ≥ m

2

∑
s∈S

πs(p, q)||qs(p, q)− q||2X ,

where || · ||X is an arbitrary norm on the tangent space of P(X). It follows immediately by the
strong convexity of the divergence.
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B.24 Proof of Lemma 9

We will show that Conditions 1-5 are satisfied. Recall the definition:

C(p, q;S) =
∑
x∈X

qxD(px||π(p, q);S).

B.24.1 Condition 1

Condition 1 requires that if the information structure is uninformative, the cost is zero, and if it is
not, the cost is strictly positive. If the signal is uninformative, pex = pq for all x ∈ X, and the result
holds by the definition of a divergence. The cost for informative signals is strictly positive by the
definition of a divergence.

B.24.2 Condition 2

Mixture feasibility requires that

C(pM , q;SM ) ≤ λC(p1, q;S1) + (1− λ)C(p2, q;S2).

This follows by the convexity of the divergence, the Blackwell condition, and Lemma 1.

B.24.3 Condition 3

The result follows immediately by the Blackwell assumption on the divergence.

B.24.4 Condition 4

Twice differentiability follows by assumption. Directional differentiability, with continuous direc-
tional derivatives, follows from convexity (for the existence of directional derivatives) and twice-
differentiability in the interior (which ensures continuity), and the assumption of continuity in the
limit (as the signal probability reaches zero, and the signal alphabet changes).

B.24.5 Condition 5

This condition requires that, for some m > 0 and B > 0, for all C(p, q;S) < B,

C(p, q;S) ≥ m

2

∑
s∈S

πs(p, q)||qs(p, q)− q||2X ,

where || · ||X is an arbitrary norm on the tangent space of P(X).
By assumption,

D(r′||r;S) ≥ m(r′ − r)T g(r)(r′ − r),

where g(r) is the Fisher information matrix.
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Consequently,∑
x∈X

qxD(px||π(p, q);S) ≥ m
∑
x∈X

∑
s∈S

qx
πs(p, q)

(eTx − qT )pT ese
T
s p(q − ex),

which by Bayes’ rule is∑
x∈X

(eTx q)D(pex||pq;S) ≥ m
∑
s∈S

πs(p, q)(q
T
s (p, q)− qT )g(q)(qs(p, q)− q).

Therefore, by g(q) � I,∑
x∈X

qxD(px||π(p, q);S) ≥ m
∑
s∈S

πs(p, q)||qs(p, q)− q||22

where || · ||2 denotes the Euclidean norm. The result follows by the equivalence of norms.
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