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This Appendix is organized as follows. Section A studies the case of a hire from unemployment where

the internal firm negotiation involves multiple workers. Section B lays out the notation for the fully

dynamic model. Section C provides extensive details on the derivation of the joint surplus Ω(z, n).

Section D provides a characterization of the surplus function. Section E derives the limiting behavior of

our economy when frictions vanish. Section F details the algorithms used in the paper to compute and

estimate the model.

A UE hire when the internal renegotiation involves with multiple workers

In this section, we demonstrate that the case with one worker analyzed in the main text is not a special

case and describe internal renegotiation with multiple workers. It is sufficient to consider the case of two

incumbent workers, n = 2. Without loss of generality, assume that the second worker is paid more than

the first, w2 > w1. As in the approach taken earlier, suppose the firm has posted a vacancy that has met

an unemployed worker. We have three cases to consider which illustrate how the firm may use a worker

outside the firm to sequentially reduce wages of workers inside the firm.

First, the firm hires without renegotiation if:

y(z, 3)− w1 − w2 − b > y(z, 2)− w1 − b︸ ︷︷ ︸
No credible threat to w2

, y(z, 3)− w1 − w2 − b > y(z, 2)− w1 − w2︸ ︷︷ ︸
Optimal to hire under (w1, w2)

.

Hiring with current wages is preferred to replacing the most expensive incumbent—there is no credible

threat—, and given no renegotiation, hiring is optimal. Since w2 > w1, no credible threat to worker 2

implies no credible threat to worker 1.

Second, the firm hires with renegotiation with worker 2 if:

y(z, 2)− w1 − b > y(z, 3)− w1 − w2 − b > y(z, 2)− w2 − b︸ ︷︷ ︸
Credible threat for worker 2 only

, y(z, 3)− w1 − w∗2 − b > y(z, 2)− w1 − w∗2︸ ︷︷ ︸
Optimal to hire under (w1, w∗2)

.

The threat is credible for worker 2, but is not for worker 1, and, conditional on renegotiating to (w1, w∗2),

hiring is optimal.

1



Third, the firm hires with renegotiation with both workers if:

y(z, 2)− w1 − b > y(z, 2)− w2 − b > y(z, 3)− w1 − w2 − b︸ ︷︷ ︸
Credible threat for both workers

, y(z, 3)− w∗1 − w∗2 − b > y(z, 2)− w∗1 − w∗2︸ ︷︷ ︸
Optimal to hire under (w∗1 , w∗2)

.

In all three cases, the optimal hiring condition can be written as:

Ω(z, 3)−Ω(z, 2) > U. (1)

This last inequality does not depend on the order of the internal negotiation between firm and work-

ers. In conclusion, the distribution of wages among incumbents again determines the patterns of wage

renegotiation, but is immaterial for the sufficient condition for hiring.

Assumption (A-LC-c) that was not present in the one worker example plays a role here. Sup-

pose that the renegotiated wage for worker 2 is pushed all the way down to b, making her indiffer-

ent between staying and quitting. Worker 1 could transfer a negligible amount to worker 2 in ex-

change of her quitting, which would raise the firm’s marginal product and, possibly, remove its own

threat. This is problematic for the representation because in this latter case the hiring condition becomes

y(z, 2) − y(z, 1) − w1 − b > y(z, 1) − w1, distinct from (1). Thus, to know whether a firm hires or not,

one would need to know the wage distribution inside the firm. (A-LC-c) is sufficient to rule out transfers

among workers and to prevent this scenario from happening.

Note that, this transfer scheme between workers occurring during the internal negotiation changes

the joint value, and hence one can think of (A-LC-c) as being subsumed into (A-IN) already.

B Notation for dynamic model

We first specify the value function of an individual worker i in a firm with arbitrary state x: V(x, i). We

then specify the value function of the firm: J(x). Combining all workers’ value functions with that of

the firm we define the joint value: Ω(x). We then apply the assumptions from Section ?? which allow

us to reduce (x) to only the number of workers and productivity of the firm, (z, n). Finally we take the

continuous work force limit to derive a Hamilton-Jacobi-Bellman (HJB) equation for Ω(z, n) Applying

the definition of total surplus used above, we obtain a HJB equation in S(z, n) which we use to construct

the equilibrium.
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B.1 Worker value function: V

As in the static example, let U be the value of unemployment. It is convenient to define separately

worker i’s value when employed at firm x before the quit, layoff and exit decisions, V (x, i), and their

value after these decisions, V (x, i).1

Value of unemployment. Let hU (x) denote how the state of firm x is updated when it hires an un-

employed worker.2 Let A denote the set of firms making job offers that an unemployed worker would

accept. The value of unemployment U therefore satisfies

ρU = b + λU(θ)

ˆ
x∈A

[V (hU (x) , i)−U] dHv (x)

where Hv is the vacancy-weighted distribution of firms. If x /∈ A, then the worker remains unemployed.

Stage I. To relate the value of the worker pre separation, V(x, i), to that post separation, V(x, i), we

require the following notation regarding firm and co-worker actions. Since workers do not form ‘unions’

within the firm, all of these actions are taken as given by worker i.

- Let ε(x) ∈ {0, 1} denote the exit decision of firm, and E = {x : ε(x) = 1} the set of x’s for which

the firm exits.

- Let `(x) ∈ {0, 1}n(x) be a vector of zeros and ones of length n(x), with generic entry `i(x), that char-

acterizes the firm’s decision to lay off incumbent worker i ∈ {1, . . . , n(x)}, andL = {(x, i) : `i(x) = 1}
the set of (x, i) such that worker (x, i) is laid off.

- Let qU (x) ∈ {0, 1}n(x) be a vector of length n(x), with generic entry qU
i (x) that characterizes an

incumbent workers’ decisions to quit, and QU =
{
(x, i) : qU

i (x) = 1
}

the set of (x, i) such that

worker (x, i) quits into unemployment.

- Let κ (x) = (1− ` (x)) ◦ (1− qU (x)) be an element-wise product vector that identifies workers that

are kept in the firm, and S = L ∪QU = {(x, i) : κi (x) = 0}, the set of (x, i) such that worker (x, i)

separates into unemployment.

- Let s(x, κ(x)) denote how the state of firm x is updated when workers identified by κ(x) are kept.

This includes any renegotiation.

1In terms of Figure ??, the value V is computed after the first stage of the flow chart, and the value V after the second stage,
in the case that the firm stays in operation.

2For example, size would be update from n to n + 1 and possibly some of the incumbent wages would be bargained down.
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Given these sets and functions, the pre separation value V (x, i) satisfies:

V (x, i) = ε(x)U︸ ︷︷ ︸
Exit

+(1− ε(x))
[

I{(x,i)/∈S}V(s(x, κ(x)), i)︸ ︷︷ ︸
Continuing employment

+ I{(x,i)∈S}U︸ ︷︷ ︸
Separations and Quits

]

Stage II. It is helpful to characterize the value of employment post separation decisions, V(x, i), in

terms of the three distinct types of events described in Figure ??. First, the value changes due to ‘Direct’

labor markets shocks to worker i, VD(x, i). These include her match being destroyed exogenously or

meeting a new potential employer. Second, the value changes due to labor market shocks hitting other

workers in the firm, VI(x, i), including their matches being exogenously destroyed or them meeting new

potential employers. These events have an ‘Indirect’ impact on worker i. Third, the value changes due to

events on the ‘Firm’ side, VF(x, i), including the firm contacting new workers and receiving productivity

shocks. Combining events and exploiting the fact that in continuous time they are mutually exclusive,

we obtain the following, where w (x, i) is the wage paid to worker i:

ρV (x, i) = w (x, i) + ρVD (x, i) + ρVI (x, i) + ρVF (x, i) .

We note that the wage function w(x, i) includes the transfers between worker i and the firm that

may occur at the stage of vacancy posting (after separations and before the labor market opens), as

discussed in Section ?? in the context of the static example. These transfers can depend on the entire

wage distribution inside the firm which is subsumed in the state vector x.

Direct events. We first characterize changes in value due to labor market shocks directly to worker i

in firm x, VD(x, i). Exogenous separation shocks arrive at rate δ and draws of outside offers arrive at

rate λE(θ) from the vacancy-weighted distribution of firms Hv. If worker i receives a sufficiently good

outside offer from x′, she quits to the new firm. We denote by QE(x, i) the set of such quit-firms x′ for

i. Otherwise, the worker remains with the current firm but with an updated contract. Therefore VD(x, i)

satisfies

ρVD (x, i) = δ [U −V (x, i)]︸ ︷︷ ︸
Exogenous separation

+ λE(θ)

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
EE Quit

+ λE(θ)

ˆ
x′/∈QE(x,i)

[
V
(
r
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
Retention

,
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where hE (x, i, x′) describes how the state of a poaching firm x′ gets updated when it hires worker i from

firm x. Similarly, r (x, i, x′) updates x when—after meeting firm x′—worker i in firm x is retained and

renegotiates its value. In all functions with three arguments (x, i, x′), the first argument denotes the

origin firm, the second identifies the worker, and the third the potential destination firm.

Indirect events. We next characterize changes in value due to the same labor market shocks hitting

other workers in firm x, VI(x, i). The value VI(x, i) satisfies

ρVI (x, i) =
n(x)

∑
j 6=i

{
δ [ V (d(x, j), i)−V (x, i)]︸ ︷︷ ︸

Exogenous separation

+ λE(θ)

ˆ
x′∈QE(x,j)

[
V
(
qE
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
EE Quit

+ λE(θ)

ˆ
x′/∈QE(x,j)

[
V
(
r
(

x, j, x′
)

, i
)
−V (x, i)

]
dHv

(
x′
)

︸ ︷︷ ︸
Retention

}
,

where d(x, j) updates x when worker j exogenously separates, and qE (x, j, x′) when worker j quits to

firm x′.

Firm events. Finally, we characterize changes in value due to events that directly impact the firm and

hence indirectly its workers, VF(x, i). Taking as given the firm’s vacancy posting policy v(x) and other

actions, VF(x, i) satisfies

ρVF (x, i) =

UE Hire φq(θ)v (x) [V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threat +φq(θ)v (x) [V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hire + (1− φ) q(θ)v (x)
ˆ

x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threat + (1− φ) q(θ)v (x)

ˆ
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shock +Γz [V , V] (x, i)

where tU (x) updates x when an unemployed worker is met and not hired, but could be possibly used as

a threat in firm x. Similarly, tE(x′, i′, x) updates x when worker i′ employed at firm x′ is met, not hired,

but could be used as a threat. And, with a slight abuse of notation, Hn(x′, i′) gives the joint distribution

of firms x′ and worker types within firms i′.

Finally, Γz [V , V] (x, i) identifies the contribution of productivity shocks z to the Bellman equation.
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At this stage we only require that the productivity process is Markovian with an infinitesimal generator.

Later we will specialize this to a diffusion process dzt = µ(zt)dt + σ(zt)dWt such that

Γz [V , V] (x, i) = µ (z) lim
dz→0

V ((x, z + dz) , i)−V (x, z, i)
dz

+
σ2 (z)

2
lim

dz→0

V ((x, z + dz) , i) + V ((x, z− dz) , i)− 2V (x, z, i)
dz2 (2)

In the case that V = V, this becomes the standard expression for a diffusion featuring the first and second

derivatives of V with respect to z: Γz[V](x, i) = µ(z)Vz(x, z, i) + 1
2 σ(z)2Vzz(x, z, i).3

In the event productivity changes or n (x) changes because of exogenous labor market events, the

worker will want to reassess whether to stay with the firm or not. Additionally, the firm may want to

reassess whether to exit or fire some workers. Bold values V capture any case where the state changes.

B.2 Firm value function: J

Consistent with the notation we used for workers’ values, let J(x) and J(x) be the values of the firm at

the corresponding points of an interval dt. For now, we take the vacancy creation decision v (x) as given.

At the end of the section we describe the expected value of an entrant firm.

Stage I. Consistent with the first stage worker value function, we define the firm value before the

exit/layoff/quit decision, where we recall that ϑ is the firm’s value of exit, or scrap value:

J (x) = ε (x) ϑ + [1− ε (x)] J (s (x, κ (x))) .

Stage II. Given a vacancy policy v (x), let J (x) be the value of a firm with state x after the layoff/quit,

exit. It is convenient to split the value of the firm, as we did for the worker, into three components

ρJ (x) = y (x)−
n(x)

∑
i=1

wi (x, i)︸ ︷︷ ︸
Flow profits

+ ρJW (x)︸ ︷︷ ︸
Workforce events

+ ρJF (x)− c (v (x) , x)︸ ︷︷ ︸
Firm events net of vacancy costs

.

For a given policy v(x) there is a set of associated transfers between workers and the firm which, as

for the worker value function, are implicit in the wage function w(x, i).

3Note that in (2) we abuse notation and write the state as (x, z) with some redundancy since z is clearly a member of x. We
also note that we are not constrained to a diffusion process. We could also consider a Poisson process where, at exogenous rate
η, z jumps according to the transition density Π(z, z′): Γz [V , V] (x, i) = η[∑z′∈Z V ((x, z′) , i)Π (z′, z)−V (x, z, i)].
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The component JW (x) is given by

ρJW (x) =

Destruction δ
n(x)

∑
i=1

[J (d(x, i))− J (x)]

EE Quit + λE(θ)
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
J
(
qE
(
x, i, x′

))
− J (x)

]
dHv

(
x′
)

Retention + λE(θ)
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
− J (x)

]
dHv

(
x′
)

.

The component JF (x) is given by

ρJF (x) =

UE Hire φq(θ)v (x) [J (hU (x))− J (x)] · I{x∈A}

UE Threat + φq(θ)v (x) [J (tU (x))− J (x)] · I{x/∈A}

EE Hire + (1− φ) q(θ)v (x)
ˆ

x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
EE Threat + (1− φ) q(θ)v (x)

ˆ
x/∈QE(x′,i′)

[
J
(
tE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
Shock + Γz [J, J] (x)

It is useful to recall that, in continuous time at most one contact is made per instant. That is, either

one worker is exogenously separated, or one worker is contacted by another firm, or one worker is met

by posting vacancies (at rate q(θ)v(x)), or a shock hits the firm. Note also that we have bold J’s in each

line since after any of these events, the firm may want to layoff some workers or exit, and workers may

want to quit.

Entry. The expected value of an entrant firm is

J0 = −c0 +

ˆ
J (x0) dΠ0 (z0) (3)

where x0 is the state of the entrant firm which includes only the random productivity value z0 drawn

from Π0 since we assumed the initial number of workers is 0. The argument of the integral is J, which

incorporates the firm’s decision to exit or operate after observing z0. Entry occurs when J0 > 0.
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C Derivation of the joint value function Ω

We define the joint value of the firm and its employed workers Ω (x) := J (x) + ∑
n(x)
i=1 V (x, i). We also

define the joint value before exit/quit/layoff decisions: Ω (x) := J (x) + ∑
n(x)
i=1 V (x, i).

C.1 Combinining worker and firm values

In this section, we show that summing firm and worker values, then applying these definitions delivers

the following Bellman equation for the joint value:

ρΩ (x) = y (x)− c (v (x) , x) (4)

Destruction +
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

Retention + λE(θ)
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

EE Quit + λE(θ)
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
+ V

(
hE
(
x, i, x′

)
, i
)
−Ω (x)

]
dHv

(
x′
)

UE Hire + φq(θ)v (x) [Ω (hU (x))−U −Ω (x)] · I{x∈A}

UE Threat + φq(θ)v (x) [Ω (tU (x))−Ω (x)] · I{x/∈A}

EE Hire + (1− φ)q(θ)v (x)
ˆ

x∈QE(x′,i′)

[
Ω
(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i′
)
−Ω (x)

]
dHn

(
x′, i′

)
EE Threat + (1− φ)q(θ)v (x)

ˆ
x/∈QE(x′,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω (x)

]
dHn

(
x′, i′

)
Shock + Γz [Ω, Ω] (x) .

Note that this joint value is only written in terms of other joint values and worker values. However, it

involves both firm and worker decisions through the sets A,QE and the vacancy policy, v(x).
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Derivation. We start by computing the sum of the workers’ values at a particular firm. Summing

values of all the employed workers

ρ
n(x)

∑
i=1

V (x, i) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ [U −V (x, i)]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
V
(
r
(
x, i, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

))
−V (x, i)

]
dHv

(
x′
)

Incumbents +
n(x)

∑
i=1

ρVI(x, i)

Firm +
n(x)

∑
i=1

ρVD(x, i)

where the indirect term due to incumbents can be written as:

n(x)

∑
i=1

ρVI(x, i) =

Destructions
n(x)

∑
i=1

n(x)

∑
j 6=i

δ [V (d(x, j), i)−V (x, i)]

Retentions +
n(x)

∑
i=1

n(x)

∑
j 6=i

λE
ˆ

x′/∈QE(x,j)

[
V
(
r
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

EE Quits +
n(x)

∑
i=1

n(x)

∑
j 6=i

λE
ˆ

x′∈QE(x,j)

[
V
(
qE
(
x, j, x′

)
, i
)
−V (x, i)

]
dHv

(
x′
)

and the indirect term due to the firm can be written as:
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n(x)

∑
i=1

ρVF(x, i) =

UE Hires qv (x) φ
n(x)

∑
i=1

[V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threats +qv (x) φ
n(x)

∑
i=1

[V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hires +qv (x) (1− φ)
n(x)

∑
i=1

ˆ
x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

n(x)

∑
i=1

ˆ
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shocks +

n(x)

∑
i=1

Γz[V , V](x, i)

We now collect terms.

Destructions. When worker i separates from firm x, the sum of the changes in values of all employed

workers at its own firm is given by:

Destructions = δ [U −V (x, i)] + δ
n(x)

∑
j 6=i

[V (d(x, i), j)−V (x, j)]

= δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−
n(x)

∑
j=1

V (x, j)

]

Retentions. When i renegotiates at firm x, the sum of the changes in values of all employed workers at

its own firm is given by:

Retentions = λE
ˆ

x′/∈QE(x,i)

[
V
(
r
(

x, i, x′
)

, i
)
−V (x, i)

]
dHv

(
x′
)

+λE
ˆ

x′/∈QE(x,i)

n(x)

∑
j 6=i

[
V
(
r
(
x, i, x′

)
, j
)
−V (x, j)

]
dHv

(
x′
)

= λE
ˆ

x′/∈QE(x,i)

[
V
(
r
(

x, i, x′
)

, i
)
+

n(x)

∑
j 6=i

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

= λE
ˆ

x′/∈QE(x,i)

[
n(x)

∑
j=1

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)
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Quits. Similarly, when i quits firm x, the sum of the changes in values of all employed workers at its

own firm is given by:

EE Quits = λE
ˆ

x′∈Q(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

Combining terms. Before summing up all these terms, define for convenience the total worker value:

ρV (x) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−
n(x)

∑
j=1

V (x, j)

]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−

n(x)

∑
j=1

V (x, j)

]
dHv

(
x′
)

UE Hires +qv (x) φ
n(x)

∑
i=1

[V (hU (x) , i)−V (x, i)] · I{x∈A}

UE Threats +qv (x) φ
n(x)

∑
i=1

[V (tU (x) , i)−V (x, i)] · I{x/∈A}

EE Hires +qv (x) (1− φ)
n(x)

∑
i=1

ˆ
x∈QE(x′,i′)

[
V
(
hE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

n(x)

∑
i=1

ˆ
x/∈QE(x′,i′)

[
V
(
tE
(
x′, i′, x

)
, i
)
−V (x, i)

]
dHn

(
x′, i′

)
Shocks +

n(x)

∑
i=1

Γz[V , V](x, i)
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Now sum, up all the previous terms, collect terms and use the definition of V (x):

ρV (x) =
n(x)

∑
i=1

w (x, i)

Destructions +
n(x)

∑
i=1

δ

[
U +

n(x)

∑
j 6=i

V (d(x, i), j)−V (x)

]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−V (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−V (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ

[
n(x)

∑
i=1

V (hU (x) , i)−V (x)

]
· I{x∈A}

UE Threats +qv (x) φ

[
n(x)

∑
i=1

V (tU (x) , i)−V (x)

]
· I{x/∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[
n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
−V (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

ˆ
x/∈QE(x′,i′)

[
n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
−V (x)

]
dHn

(
x′, i′

)
Shocks +Γz[V , V](x)
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Adding this last equation to the Bellman equation for J(x) yields

ρΩ (x) = y (x)− c (v (x) , x)

Destructions +
n(x)

∑
i=1

δ

[
J (d(x, i)) + U +

n(x)

∑
j 6=i

V (d(x, i), j)− J (x)−V (x)

]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
J
(
r
(

x, i, x′
))

+
n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
− J (x)−V (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
J
(
qE
(

x, i, x′
))

+ V
(
hE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
− J (x)−V (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ

[
J (hU (x)) +

n(x)

∑
i=1

V (hU (x) , i)− J (x)−V (x)

]
· I{x∈A}

UE Threats +qv (x) φ

[
J (tU (x)) +

n(x)

∑
i=1

V (tU (x) , i)− J (x)−V (x)

]
· I{x/∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′ ,i′)

[
J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(

x′, i′, x
)

, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

ˆ
x/∈QE(x′ ,i′)

[
J
(
tE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
Shocks +Γz[J + V , J + V](x)− J (x)−V (x)

Collecting terms and using the definition of Ω :

ρΩ (x) = y (x)− c (v (x) , x)

Destructions +
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

Retentions +λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
Ω
(
r
(

x, i, x′
))
−Ω (x)

]
dHv

(
x′
)

EE Quits +λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
+ V

(
hE
(
x, i, x′

)
, i
)
−Ω (x)

]
dHv

(
x′
)

UE Hires +qv (x) φ [Ω (hU (x))−U −Ω (x)] · I{x∈A}
UE Threats +qv (x) φ [Ω (tU (x))−Ω (x)] · I{x/∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′ ,i′)

[
Ω
(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i′
)
−Ω (x)

]
dHn

(
x′, i′

)
EE Threats +qv (x) (1− φ)

ˆ
x/∈QE(x′ ,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω (x)

]
dHn

(
x′, i′

)
Shocks +Γz[Ω, Ω](x)
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C.2 Value sharing

To make progress on (4), we begin by stating seven intermediate results, conditions (C-RT)-(C-E) which

we prove from the assumptions listed in Section ??. These results establish how worker values V in

(4) evolve in the six cases of hiring, retention, layoff, quits, exit and vacancy creation. Next, we apply

conditions (C-RT)-(C-E) to (4).

To highlight the structure of the argument, we note a key implication our zero-sum game assumption

(A-IN): during internal negotiation, any value lost to one party must accrue to the other. This feature is

obvious in the static model, and extends readily to our dynamic environment. In other words, the joint

value of the firm plus its incumbent workers is invariant during the negotiation. We use this property

extensively in the proof. This generalizes pairwise efficient bargaining—commonly used in one-worker

firm models with linear production—to an environment with multi-worker firms and decreasing returns

in production.

We now state the seven conditions that we apply to (4). In section C.3 below, we prove how each of

them is implied by the assumptions of Section ??.

(C-RT) Retentions and Threats. First, if firm x meets an unemployed worker and the worker is not hired

but only used as a threat, then the joint value of coalition x does not change since threats only

redistribute value within the coalition. Second, when firm x uses employed worker i′ from firm x′

as a threat, the joint value of coalition x does not change. Third, when firm x meets worker i′ at x′

and the worker is retained by firm x′, the joint value of coalition x′ does not change. Formally,

Ω
(
r
(
x′, i′, x

))
= Ω(x′) , Ω (tU (x)) = Ω(x) , Ω

(
tE
(
x′, i′, x

))
= Ω(x).

Respectively, these imply that the Retention, UE Threat and EE Threat components of (4) are equal

to zero.

(C-UE) UE Hires. An unemployed worker that meets firm x is hired when x ∈ A. This set consists of firms

that have a joint value after hiring that is higher than the pre-hire joint value plus the outside value

of the hired worker. Due to the take-leave offer, the new hire receives her outside value, which is

the value of unemployment:

A = {x|Ω(hU(x))−Ω(x) ≥ U} , V (hU (x) , i) = U.

(C-EE) EE Hires. An employed worker i′ at firm x′ that meets firm x is hired when x ∈ QE (x′, i′). This set
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consists of firms that have a higher marginal joint value than that of the current firm:

QE (x′, i′
)
=
{

x
∣∣∣Ω (

hE
(
x′, i′, x

))
−Ω (x) ≥ Ω(x′)−Ω

(
qE
(
x′, i′, x

))}
.

Due to the take-leave offer, the new hire receives her outside value, which is the marginal joint

value at her current firm:

V
(
hE
(
x′, i′, x

))
= Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))
.

(C-EU) EU Quits and Layoffs. An employed worker i at firm x quits to unemployment when (x, i) ∈ QU .

This set consist of states x such that the marginal joint value is less than the value of unemployment:

QU =
{
(x, i)

∣∣∣Ω (ŝq1 (x, i)
)
+ U > Ω

(
ŝq0 (x, i)

)}
,

where ŝq1 (x, i) = s (x, (1− [qU,−i (x) ; qU,i (x) = 1]) ◦ (1− ` (x))) ,

ŝq0 (x, i) = s (x, (1− [qU,−i (x) ; qU,i (x) = 0]) ◦ (1− ` (x))) .

The first expression captures when worker i quits, and the second where worker i does not. Simi-

larly, an EU layoff will be chosen by the firm when (x, i) ∈ L:

L =
{
(x, i)

∣∣∣Ω (ŝ`1 (x, i)) + U > Ω (ŝ`0 (x, i))
}

,

where ŝ`1 (x, i) = s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) ,

ŝ`0 (x, i) = s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) .

The first expression captures when worker i is laid off, and the second when worker i is not.

(C-X) Exit. A firm x exits when x ∈ E . This set consists of the states in which the total outside value of

the firm and its workers is larger than the joint value of operation:

E =
{

x
∣∣∣ϑ + n (s (x, κ (x))) ·U > Ω (s (x, κ (x)))

}
.

(C-V) Vacancies. The expected return to a matched vacancy R(x) depends only on the joint value, and

so the firm’s optimal vacancy policy v(x) depends only on the joint value. The policy v(x) solves

max
v

q(θ)vR(x)− c (v, x) ,
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where the expected return to a matched vacancy is

R(x) = φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}︸ ︷︷ ︸
Return from unemployed worker match

+ (1− φ)

ˆ
x∈QE(x′,i′)

{[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]}
dHn

(
x′, i′

)
︸ ︷︷ ︸

Expected return from employed worker match

.

(C-E) Entry. A firm enters if and only if

ˆ
Ω (x0) dΠ0(z) ≥ c0 + n0U.

Summarizing (C). The substantive result is that all firm and worker decisions and employed workers’

values can be expressed in terms of joint value Ω and exogenous worker outside option U.

C.3 Proof of Conditions (C)

C.3.1 Proof of C-UE and C-RT (UE Hires and UE Threats)

In this subsection, we consider a meeting between a firm x and an unemployed worker. Following A-IN

and A-EN, the firm internally renegotiates according to a zero-sum game with its incumbent workers

and makes a take-leave offer to the new worker. Intuitively, having the worker “at the door” is identical

to having her hired at value U for the firm and for all incumbent workers: the firm can always make new

take-leave offers to its incumbents after hiring the new worker. Hence, we expect the firm to make one

take-leave offer to the new worker and its incumbents at the time of the meeting, and not make a new,

different offer to is incumbents afer hiring has taken place.

We start by showing this equivalence formally. To do so, when meeting an unemployed worker, we

let the firm conduct internal renegotiation with its incumbent workers and make an offer to the new

worker. Then, we let a second round of internal offers take place after the hiring. We introduce some

notation to keep track of values throughout the internal and external negotiations. To fix ideas, we

denote by (IR1) the first round of internal negotiation, pre-external negotiation. We denote by (IR2) the

second round of internal negotiation, post-hire.

Post-hire and post-internal negotiation (IR2) values are denoted with double stars. Post-internal-
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negotiation (IR1) but pre-external-negotiation values are denoted with stars.

Ω∗∗ := J∗∗ +
n(x)

∑
j=1

V∗∗j + V∗∗i

Ω∗ := J∗ +
n(x)

∑
j=1

V∗j

Ω := J +
n(x)

∑
j=1

Vj

Proceeding by backward induction, under A-EN the firm makes a take-it-or-leave-it offer to the un-

employed worker, therefore

V∗∗i = U

We now divide the proof in several steps. We start by proving that for all incumbent workers j =

1...n(x), V∗∗j = V∗j . We then use A-IN to argue that Ω∗ = Ω. Once these claims have been proven, we

move on to proving C-UE (UE Hires) and the part of for threats from unemployment C-RT (UE Threats).

Finally, we show that our microfoundations for the renegotiation game deliver A-IN.

Claim 1: For all incumbents workers j = 1...n(x), we have V∗∗j = V∗j .

We proceed by backwards induction using our assumptions A-EN and A-IN. Immediately after (IR1)

has taken place, only the following events can happen:

1. Hire/not-hire

• Either the worker is hired from unemployment (H),

• Or the worker is not hired from unemployment (NH)

2. Possible new round of internal negotiation (IR2). This possible second round of internal negotia-

tion (now including the newly hired worker) leads to values V∗∗j .

We focus on subgame perfect equilibria in this multi-stage game. Therefore, after (IR1), workers

perfectly anticipate what the outcome of the hire/not-hire stage will be. That is, after (IR1), they know

perfectly what hiring decision (H or NH) the firm will make. Now suppose that internal renegotiation

(IR2) actually happens after the hire/not-hire decision, that is, that for some incumbent worker j ∈
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{1, ..., n(x)}, V∗∗j 6= V∗j . Note that the firm has no incentives to accept a change in the new worker’s

value to anything above U, so by A-MC her value does not change in the second round (IR2).

We construct the rest of the proof by contradiction. Consider for a contradiction an incumbent worker

j whose value changed in (IR2). Because of A-MC, her value can change only in the following cases:

• The firm has a credible threat to fire worker j, in which case V∗∗j < V∗j

• Worker j has a credible threat to quit, in which case V∗∗j > V∗j

In addition, those credible threats can lead to a different outcome than in (IR1), and thus V∗∗j 6= V∗j ,

only if the threat on either side was not available in (IR1). If that same threat was available in the first

round (IR1), then the outcome of the bargaining (IR1) would have been V∗∗j .

Recall that both incumbent worker j and the firm understand and anticipate which hire/not-hire

decision the firm will make after the first round (IR1). They also understand and anticipate that, in case

of hire, the value of the new worker will remain U in the second round (IR2).

Therefore, the firm can credibly threaten to hire the new worker in the first round if and only if it actually

hires her after the first round (IR1) is over. This implies that the firm can credibly threaten worker to fire

j in the second round (IR2), by A-LC, if and only if it could credibly threaten her with hiring the new

worker in the first round of internal renegotiation (IR1). This in turn entails that any credible threat the firm

can make in the second round (IR2) was already available in the first round.

On the worker side, quitting into unemployment is a credible threat when her value is below the

value of unemployment. So this threat does not change between the first round (IR1) and the second

round (IR2), because the equilibrium value to that worker will always be above the value of unemploy-

ment.

In sum, the set of credible threats both to the firm and to worker j does not change between the initial

round of internal renegotiation (IR1) and the post-hiring-decision round (IR2). This finally implies that

the outcome of the initial round of internal renegotiation (IR1) for any incumbent j remains unchanged

in the second round (IR2), that is:

V∗∗j = V∗j

which proves Claim 1.

We can now move on to proving C-UE.
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Proof of C-UE. Using the definitions of Ω∗∗ and Ω, we can write

Ω∗∗ −Ω =

[
J∗∗ +

n(x)

∑
j=1

V∗∗j + V∗∗i

]
−
[

J +
n(x)

∑
j=1

Vj

]

Now using V∗∗i = U, we obtain

Ω∗∗ −Ω =

[
J∗∗ +

n(x)

∑
j=1

V∗∗j

]
−
[

J +
n(x)

∑
j=1

Vj

]
+ U

Using Claim 1: V∗∗j = V∗j , and adding and subtracting J∗ we obtain

Ω∗∗ −Ω = [J∗∗ − J∗] +

[
J∗ +

n(x)

∑
j=1

V∗j

]
−
[

J +
n(x)

∑
j=1

Vj

]
+ U

Subsituting in the definition of Ω and of Ω∗,

Ω∗∗ −Ω = [J∗∗ − J∗] + [Ω∗ −Ω] + U

Finally recall that internal renegotiation is (1) individually rational, and (2) is a zero-sum game, according

to A-IN. Thus, all incumbent workers remain in the coalition after internal renegotiation, and the joint

value is unchanged: Ω∗ = Ω. Using Ω∗ = Ω

Ω∗∗ −Ω = [J∗∗ − J∗] + U

which can be re-written

J∗∗ − J∗ = [Ω∗∗ −Ω]−U

Now under A-LC, the firm will only hire if its value after hiring is higher than its value after internal

renegotiation: J∗∗ − J∗ ≥ 0. This inequality requires

Ω∗∗ −Ω ≥ U

Ω (hU (x))−Ω (x) ≥ U
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The firm does not hire when its value of hiring is below its value of renegotiation J∗∗ < J∗. This inequality

implies

Ω∗∗ −Ω < U

When the firm does not hire, we obtain using again A-IN and Ω∗ = Ω:

Ω∗∗ −Ω∗ < U

which finally implies

Ω (hU (x))−Ω (tU(x)) < U

Now, we argue that conditional on not hiring, Ω∗∗ = Ω∗ = Ω, where in this case Ω∗∗ denotes the

value of the coalition without hiring, and thus does not include the value of the unemployed worker. Just

as before, this is a direct consequence from A-IN and that the internal renegotiation game is zero-sum.

Therefore:

Ω (tU(x)) = Ω(x)

We have therefore shown C-UE and part of C-RT (UE Hires and UE Threats): An unemployed worker

that meets x is hired whenx ∈ QU , where

A =
{

x
∣∣∣Ω (hU (x))−Ω (x) ≥ U

}
and upon joining the firm, has value

V (hU (x, i)) = U.

and

Ω(tU(x)) = Ω(x).

C.3.2 Proof of C-EE and C-RT (EE Hires, EE Threats and Retentions)

Consider firm x that has met worker i′ at firm x′. We first seek to determine QE (x′, i′). Under A-IN

and A-EN, upon meeting an employed worker, internal negotiation may take place at the poaching firm

x, and x makes a take-it-or-leave-it offer. Internal negotiation may take place at x′ with all workers

including i′.

Proceeding by backward induction, we again define intermediate values but here at x′, noting that
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qE (x′, i′, x) gives the number of employees in x′ if the worker leaves:

Ω = J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

Ω∗ = J∗ +
n(qE(x′,i′,x))

∑
j=1

V∗j + V∗i′

Ω∗∗ = J∗∗ +
n(qE(x′,i′,x))

∑
j=1

V∗∗j

Note, in the second line we are describing the values of the firm in renegotiation where i′ stays with the

firm, so V∗i′ is the outcome of internal negotiation. In the third line we consider the firm having lost the

worker. Under A-EN the firm will respond to an offer V from x with

V∗i′ = V

The same result as in Claim 1 from section C.3.1 obtains: under A-EN and A-IN, the values accepted by

the incumbent workers after the internal renegotiation
(

V∗j
)

j
will be equal to the values they receive after

the external negotiation
(

V∗∗j

)
j
, that is

V∗∗j = V∗j

The argument are exactly the same.

Using these two results and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(qE(x′,i′,x))

∑
j=1

V∗∗j

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]

=

[
J∗∗ + J∗ − J∗ +

n(qE(x′,i′,x))

∑
j=1

V∗∗j + V∗i′ −V∗i′

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]

= [J∗∗ − J∗] +

[
J∗ +

n(qE(x′,i′,x))

∑
j=1

V∗j + V∗i′

]
−
[

J +
n(qE(x′,i′,x))

∑
j=1

Vj + Vi′

]
−V∗i′

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i′

= [J∗∗ − J∗] + [Ω∗ −Ω]−V

In this setup, A-IN again implies that any value lost to the firm must accrue to its workers, while any

value lost to a worker must accrue either to the firm, or to another worker, which we earlier formulated
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as “the joint value stays constant before and after an internal negotiation”. Mathematically, this statement

translates into

Ω∗ = Ω

Subsituting into the equation that we obtained above Ω∗∗ −Ω = [J∗∗ − J∗] + [Ω∗ −Ω]−V, we obtain

Ω∗∗ −Ω = [J∗∗ − J∗]−V

Now under A-LC, the firm x′ will only try to keep the worker if J∗ > J∗∗, which requires

Ω−Ω∗∗ ≤ V

Ω
(
r(x′, i′, x

)
−Ω

(
qE
(
x′, i′, x

))
≤ V

This determined the maximum value that x′ can offer to the worker to retain them. Knowing that firm

x′ can counter at most with V = Ω (r(x′, i′, x)−Ω (qE (x′, i′, x)), then will firm x successfully poach the

worker?

First, note that the bargaining protocol implies that x firm will offer V if it is making an offer, since

it need not offer more. For firm x the argument may proceed identically to the case of unemployment,

simply replacing U with V. The result is that the firm will hire only if

Ω
(
hE
(
x′, i′, x

))
−Ω (x) ≥ V

or

Ω
(
hE
(

x′, i′, x
))
−Ω (x) ≥ Ω

(
r(x′, i′, x)

)
−Ω

(
qE
(
x′, i′, x

))
Finally, when firm x does not hire, the same argument as in Claim 32 in Section C.3.1 applies: Ω∗∗ =

Ω∗ = Ω. This observation implies

Ω(tE(x′, i′, x)) = Ω(x)

Similarly, the same argument as in Claim 2 implies that when firm x′ does not lose its worker, Ω∗∗ =

Ω∗ = Ω, thereby implying

Ω(r(x′, i′, x)) = Ω(x′)

The combination of these conditions deliver C-UE and part of C-RT (EE Hires, EE Threats and Re-

tention):
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1. The quit set of an employed worker is determined by

QE (x′, i′
)
=

{
x

∣∣∣∣∣Ω (
hE
(
x′, i′, x

))
−Ω (x) ≥ Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))}

2. The worker’s value of being hired from employment from firm x′ is

V(hE(x, x′, i′)) = Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))
3. Worker i′s value of being retained at x′ after meeting x is4

V(r(x′, i′, x), i′) = Ω
(
hE
(
x′, i′, x

))
−Ω (x)

4. The joint value of the potential poaching firm x when the worker is not hired does not change:

Ω(tE(x′, i′, x)) = Ω(x)

5. The joint value of the potential poached firm x′ does not change when the worker stays:

Ω(r(x′, i′, x)) = Ω(x′)

C.3.3 Proof of C-EU (EU Quits and layoffs)

We first show that

L =
{
(x, i)

∣∣∣Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i) + U

> Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)
}

from the firm side, then that

QU =
{
(x, i)

∣∣∣Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
}

4Because offers are made at no cost, both firms always make an offer, even when they know that they cannot retain/hire
the worker in equilibrium. This is exactly the same as in Postel-Vinay Robin (2002).
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on the worker side.

Part 1: Firm side Consider a firm x who is considering laying off worker i for whom qU,i (x) = 0. As

above, we start with definitions, noting that n (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x)))) is the number

of workers if i is laid off.

Ω = J +
n(s(·))

∑
j=1

Vj + Vi

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j + V∗i

Ω∗∗ = J∗∗ +
n(s(·))

∑
j=1

V∗∗j

Note that in the first line the coalition has still worker i in it. In the second line, the firm and the worker

i have negotiated (and internal negotiation has determined V∗i which is what i will get if they stay in the

firm). In the third line, the worker has been fired and another round of negotiation has occurred among

incumbents.

The same result as in Claim 1 from section C.3.1 obtains: under A-BP, the values accepted by the

incumbent workers after the internal renegotiation
(

V∗j
)

will be equal to the values they receive after the

external negotiation
(

V∗∗j

)
, that is V∗∗j = V∗j .

Using this result and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(s(·))

∑
j=1

V∗∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

=

[
J∗∗ − J∗ + J∗ +

n(s(·))

∑
j=1

V∗j + V∗i −V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

= [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j + V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]
−V∗i

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i

Using again A-IN to conclude that Ω∗ = Ω, we obtain

Ω∗∗ −Ω = [J∗∗ − J∗]−V∗i
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Now under A-LC, the firm x will only layoff the worker if J∗∗ > J∗, which requires

Ω−Ω∗∗ < V∗i

As long as V∗i > U the worker would be willing to transfer value to the firm to avoid being laid off,

implying

Ω−Ω∗∗ < U.

which we can re-write

Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i)+U > Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)

where the LHS is Ω∗∗ + U (under the layoff) and the RHS is Ω. This concludes the proof for the firm

side.

Part 2: Worker side Consider worker i in firm x who is considering quitting to unemployment for

whom `i (x) = 0. As above, we start with definitions, noting that n (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])))

is the number of workers if i quits. As before,

Ω = J +
n(s(·))

∑
j=1

Vj + Vi

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j + V∗i

Ω∗∗ = J∗∗ +
n(s(·))

∑
j=1

V∗∗j

The same result as in Claim 1 from section C.3.1 obtains V∗∗j = V∗j .
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Using this result and the above definitions

Ω∗∗ −Ω =

[
J∗∗ +

n(s(·))

∑
j=1

V∗∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

=

[
J∗∗ + J∗ − J∗ +

n(s(·))

∑
j=1

V∗j + V∗i −V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]

= [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j + V∗i

]
−
[

J +
n(s(·))

∑
j=1

Vj + Vi

]
−V∗i

= [J∗∗ − J∗] + [Ω∗ −Ω]−V∗i

Again, Ω∗ = Ω from A-IN, so that

Ω∗∗ −Ω = [J∗∗ − J∗]−V∗i

Now under A-LC, worker i will quit into unemployment iff V∗i < U, which requires

J∗∗ − J∗ + [Ω−Ω∗∗] < U

As long as J∗∗ < J∗, the firm is willing to transfer value to worker i to retain her. Therefore, worker i

quits into unemployment iff the previous inequality holds at J∗∗ = J∗, i.e.

Ω−Ω∗∗ < U

Therefore, the worker quits iff

Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)

which concludes the proof of the worker side. This delivers C-EU.
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C.3.4 Proof of C-X (Exit)

Consider a firm x who contemplates exit after all endogenous quits and layoffs, thus when its employ-

ment is n (s (x, κ (x))). As before we define values conditional on exiting:

Ω = J +
n(s(·))

∑
j=1

Vj

Ω∗ = J∗ +
n(s(·))

∑
j=1

V∗j

Ω∗∗ = J∗∗ + 0

Notice that the joint value after exit is simply the value of the firm, since all other workers have left

because of exit. We can compute:

Ω∗∗ −Ω = J∗∗ −
[

J +
n(s(·))

∑
j=1

Vj

]

(add and subtract J∗) = [J∗∗ − J∗] + J∗ −
[

J +
n(s(·))

∑
j=1

Vj

]

(add and subtract
n(s(·))

∑
j=1

V∗j ) = [J∗∗ − J∗] +

[
J∗ +

n(s(·))

∑
j=1

V∗j

]
−
[

J +
n(s(·))

∑
j=1

Vj

]
−

n(s(·))

∑
j=1

V∗j

(definition of Ω, Ω∗) = [J∗∗ − J∗] + [Ω∗ −Ω]−
n(s(·))

∑
j=1

V∗j

Again, Ω∗ = Ω from A-IN, so that

Ω∗∗ −Ω = [J∗∗ − J∗]−
n(s(·))

∑
j=1

V∗j

The firm exits iff J∗∗ ≥ J∗, that is, ϑ ≥ J∗. This is equivalent to

Ω∗∗ −Ω ≥ −
n(s(·))

∑
j=1

V∗j

Using again that Ω∗∗ = J∗∗ = ϑ, the firm exits iff

ϑ +
n(s(·))

∑
j=1

V∗j ≥ Ω

27



Since any worker is better off under V∗i ≥ U than unemployed, all workers are willing to take a value

cut down to U if ϑ ≥ Ω−∑
n(s(·))
j=1 V∗j because then the firm can credibly exit.

This implies that the firm exits if and only if

ϑ−Ω (s (x, κ (x))) + n (s (x, κ (x)))U ≥ 0

This proves C-X (Exit): the set of x such that the firm exits is given by

E =
{

x
∣∣∣ϑ + n (s (x, κ (x))) ·U ≥ Ω (s (x, κ (x)))

}
C.3.5 Proof of C-V (Vacancies)

We split the proof in two steps. First, we show that workers are collectively willing to transfer value

to the firm in exchange for the joint value-maximizing vacancy policy function. Second, we show that

a single worker can create a system of transfers that achieves the same outcome. These transfers are

equivalent to wage renegotiation, which explains why we have subsumed them in the wage function

w(x, i) in the equations above. Similarly to wages, these transfers drop out from the expression for the

joint value.

Part 1: Collective transfers In this step, we show that workers are collectively better off transferring

value to the firm in exchange of the firm posting the joint value-maximizing amount of vacancies.

The vacancy posting decision vJ that maximizes firm value is:

cv
(
vJ (x) , n (x)

)
q

= φ [J (hU (x))− J (x)] · I{x∈A}+(1− φ)

ˆ
x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
− J (x)

]
dHn

(
x′, i′

)
.

Similarly, define vΩ be the policy that maximizes the value of the coalition, and vV be the policy that

maximizes the value of all the employees. Let Ωγ,Jγ, Vγ be the value of the coalition, firm and all workers

under the vγ, for γ ∈
{

Ω, J, V
}

. We now prove our claim in several steps.

Part 1-(a) Collective value gains. The policy vΩ will lead to VΩ ≥ V J
+ [J J − JΩ] where J J − JΩ ≥ 0.

Proof: By construction ΩΩ is greater than ΩJ : ΩΩ ≥ ΩJ . By definition: ΩΩ = JΩ + VΩ, and ΩJ =

J J + V J . Use those definitions to obtain inequality JΩ + VΩ ≥ J J + V J , which can be re-arranged into

VΩ − V J ≥ J J − JΩ. Since J J is the value under the optimal policy for J, then J J ≥ JΩ. The above then
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implies that

VΩ −V J ≥ J J − JΩ ≥ 0

This implies that workers would be prepared to transfer T = J J − JΩ ≥ 0 to the firm in order for the firm

to pursue policy vΩ instead of vJ . This concludes the proof of Part 1-(a).

Part 1-(b) Infeasibility of VV . There does not exist an incentive-compatible transfer from workers

to firm that will lead to VV .

Proof: Suppose workers consider transferring even more to induce the firm to follow policy vV that

maximizes their value. By construction ΩΩ ≥ ΩV . Using definitions for each of these, then JΩ + VΩ ≥

JV + VV . Rearranging this: JΩ − JV ≥ VV − VΩ. Since VV is the value under the optimal policy for V,

then VV ≥ VΩ. The above then implies that

JΩ − JV ≥ VV −VΩ ≥ 0

Taking vΩ as a baseline, the above implies that a change to vV causes a loss of JΩ − JV to the firm, which

is more than the gain of VV − VΩ to the workers. This implies that workers could transfer all of their

gains under vV to the firm, but the firm would still not choose vV over vΩ. This concludes the proof of

Part 1-(b).

Part 1-(c) Optimality of VΩ. There does not exist an incentive-compatible transfer from workers to

firm that will lead to V∗ ∈
(

VΩ, VV
)

.

Proof: Call such a policy vV∗. Then: ΩΩ ≥ ΩV∗ , and by definitions

JΩ + VΩ ≥ JV∗ + VV∗

JΩ − JV∗ ≥ VV∗ −VΩ

Since by definition V∗ ∈
(

VΩ, VV
)

, then VV∗ −VΩ ≥ 0. Therefore

JΩ − JV∗ ≥ VV∗ −VΩ ≥ 0

Taking vΩ as a baseline, the above implies that a change to vV∗ causes a loss of JΩ− JV∗ to the firm, which
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is more than the gain of VV∗ −VΩ to the workers. This concludes the proof of Part 1-(c).

Part 1-(d) Conclusion. In summary, it is optimal for workers to transfer exactly T = J J − JΩ to the

firm, in order for the firm to pursue vΩ instead of vJ . Further transfers to the firm would be required to

have the firm pursue a better policy for workers, but this is exceedingly costly to the firm and the workers

are unwilling to make a transfer to cover these costs. This concludes the proof of Step 1: Collective

transfers.

Part 2: Individual transfers In this step, we show that a single, randomly drawn worker can construct

a system of transfers that induces the firm to post vΩ instead of vJ , while leaving all agents better off.

Within dt, consider the single, randomly drawn worker j0. Consider the following system of trans-

fers. Worker j0 makes a transfer J J − JΩ to the firm, in exchange of what (i) the firm posts vΩ instead of

vJ , and (ii) the worker gets a wage increase that gives her all the differential surplus VΩ −V J .

Following the same steps as in Part 1: Collective transfers, the firm gets JΩ + [J J − JΩ] = J J and is

hence indifferent. Similarly, workers j 6= j0 do not get any value change, and are thus indifferent Finally,

worker j0 gets a value increase of

[VΩ −V J
]− [J J − JΩ] ≥ 0

where the inequality similarly follows from Part 1: Collective transfers. This concludes the proof of Part

2: Individual transfers.

Conclusion. The previous arguments show that a single worker has an incentive to and can induce the

firm to post vΩ. Notice also that the same argument holds starting from any vacancy policy function

ṽ 6= vJ together with a value of the firm J̃. Thus, even if some worker induces the firm to post a different

vacancy policy function which is not vΩ any other worker has an incentive to induce the firm to post vΩ.

Therefore, in equilibrium, the firm posts vΩ, which concludes the proof of C-V.

C.4 Applying Conditions (C)

Having established that Assumption (A) can be used to prove Conditions (C), we now apply conditions

(C) to the Bellman equation for the joint value. The goal of this section is to show that for x ∈ E c the
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complement of the exit set, we can considerably simplify the recursion for the joint value:

ρΩ (x) = y (z(x), n (x))− c (v (x) , n (x) , z(x))

Destructions −δ
n(x)

∑
i=1

[Ω (x)−Ω (d(x, i))−U]

UE Hires +qv (x) φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}

EE Hires +qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
Shocks +Γ[Ω, Ω]

with the sets

QU =
{
(x, i)

∣∣∣Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 1])) , i) + U

> Ω (s (x, (1− ` (x)) ◦ (1− [qU,−i (x) ; qU,i (x) = 0])) , i)
}

L =
{
(x, i)

∣∣∣Ω (s (x, (1− [` (x) ; `i (x) = 1]) ◦ (1− qU (x))) , i) + U

> Ω (s (x, (1− [` (x) ; `i (x) = 0]) ◦ (1− qU (x))) , i)
}

E =
{

x
∣∣∣ϑ + n (s(x, κ(x))) ·U ≥ Ω(s(x, κ(x)))

}
A =

{
x
∣∣∣Ω (hU (x))−Ω (x) ≥ U

}
QE (x′, i′

)
=

{
x

∣∣∣∣∣Ω (
hE
(

x′, i′, x
))
−Ω (x) ≥ Ω

(
x′
)
−Ω

(
qE
(
x′, i′, x

))}

and—as per (C-V)—the vacancy policy v (x) is given by the solution to the following:

cv (v (x) , n (x))
q

= φ [Ω (hU (x))−Ω (x)] · I{x∈A}

+ (1− φ)

ˆ
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
In continuous time, the exit decision is captured by x ∈ E . The Bellman equation above holds exactly

for x ∈ E c. Exit is accounted for in the “bold” continuation values, which all include the possible exit

decision should the firm’s state fall into E after an event.

We first proceed one term at the time, working through (B.4.1) exogenous destructions, (B.4.2) re-

tentions, (B.4.3) EE (poached) quits, (B.4.4) UE hires, (B.4.5) UE threats, (B.4.6) EE (poached) hires, and

(B.4.7) EE threats.
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C.4.1 Exogenous destructions

Destructions =
n(x)

∑
i=1

δ

[
J (d(x, i)) +

n(d(x,i))

∑
j=1

V (d(x, i), j) + U −Ω (x)

]

=
n(x)

∑
i=1

δ [Ω (d(x, i)) + U −Ω (x)]

where we simply have used the definition Ω (d(x, i)) := J (d(x, i)) + ∑
n(d(x,i))
j=1 V (d(x, i), j).

C.4.2 Retentions

Retentions = λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
J
(
r
(
x, i, x′

))
+

n(x)

∑
j=i

V
(
r
(
x, i, x′

)
, j
)
−Ω (x)

]
dHv

(
x′
)

= λE
n(x)

∑
i=1

ˆ
x′/∈QE(x,i)

[
Ω
(
r
(
x, i, x′

))
−Ω (x)

]
dHv

(
x′
)

where we simply have used the definition Ω (r (x, i, x′)) = J (r (x, i, x′)) + ∑
n(x)
j=i V (r (x, i, x′) , j). Now

using the result in C-RT that

Ω
(
r
(
x, i, x′

))
= Ω(x′)

we obtain that

Retentions = 0

C.4.3 EE Quits

EE Quits = λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
J
(
qE
(
x, i, x′

))
+ V

(
qE
(
x, i, x′

)
, i
)
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
−Ω (x)

]
dHv

(
x′
)

Now by definition

Ω
(
qE
(

x, i, x′
))

= J
(
qE
(
x, i, x′

))
+

n(qE(x,i,x′))

∑
j=1

V
(
qE
(
x, i, x′

)
, j
)

= J
(
qE
(
x, i, x′

))
+

n(x)

∑
j 6=i

V
(
qE
(
x, i, x′

)
, j
)
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Using this last equality in the term in square brackets

EE Quits = λE
n(x)

∑
i=1

ˆ
x′∈QE(x,i)

[
Ω
(
qE
(
x, i, x′

))
−Ω (x) + V

(
qE
(
x, i, x′

)
, i
)]

dHv
(
x′
)

Using C-EE, the value going to the poached worker is V (qE (x, i, x′)) = Ω (x)−Ω (qE (x, i, x′)). Substi-

tuting this into the last equation, we observe that the term in the square brackets is zero, and so

EE Quits = 0

C.4.4 UE Hires

UE Hires = qv (x) φ

[
J (hU (x)) +

n(x)

∑
i=1

V (hU (x) , i)−Ω (x)

]
· I{x∈A}

Now by definition

Ω (hU (x)) = J (hU (x)) +
n(hU(x))

∑
i=1

V (hU (x) , i)

= J (hU (x)) +
n(x)

∑
i=1

V (hU (x) , i) + V (hU (x) , i)

and so, re-arranging,

J (hU (x)) +
n(x)

∑
i=1

V (hU (x) , i) = Ω (hU (x))− V (hU (x) , i)

Substituting this last equation into the term in the square brackets of the first equation,

UE Hires = qv (x) φ [Ω (hU (x))−Ω (x)− V (hU (x) , i)] · I{x∈A}

Following C-UE, the value going to the hired worker is V (hU (x) , i) = U. Substituting in:

UE Hires = qv (x) φ [Ω (hU (x))−Ω (x)−U] · I{x∈A}

C.4.5 UE Threats

UE Threats = qv (x) φ

[
J (tU (x)) +

n(x)

∑
i=1

V (tU (x) , i)−Ω (x)

]
· I{x/∈A}
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Using the definition of Ω(tU(x)), we can re-write this term as

UE Threats = qv (x) φ [Ω (tU (x))−Ω(x)] · I{x/∈A}

Now using our result in condition C-UE that Ω (tU (x)) = Ω(x), we can conclude that

UE Threats = 0

C.4.6 EE Hires

EE Hires = qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[
J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)
−Ω (x)

]
dHn

(
x′, i′

)
Now by definition

Ω
(
hE
(

x′, i′, x
))

= J
(
hE
(
x′, i′, x

))
+

n(hE(x′,i′,x))

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)

=

[
J
(
hE
(

x′, i′, x
))

+
n(x)

∑
i=1

V
(
hE
(
x′, i′, x

)
, i
)]

+ V
(
hE
(
x′, i′, x

)
, i
)

which can be re-arranged into

J
(
hE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
hE
(

x′, i′, x
)

, i
)
= Ω

(
hE
(
x′, i′, x

))
− V

(
hE
(
x′, i′, x

)
, i
)

Using this in the term in the square brackets

EE Hires = qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)− V

(
hE
(
x′, i′, x

)
, i
)]

dHn
(
x′, i′

)
Under C-EE, the value going to the hired worker is V (hE (x′, i′, x) , i) = Ω (x′)−Ω (qE (x′, i′, x)). Substi-

tuting this in:

EE Hires = qv (x) (1− φ)

ˆ
x∈QE(x′,i′)

[[
Ω
(
hE
(
x′, i′, x

))
−Ω (x)

]
−
[
Ω
(
x′
)
−Ω

(
qE
(
x′, i′, x

))]]
dHn

(
x′, i′

)
C.4.7 EE Threats

EE Threats = qv (x) (1− φ)

ˆ
x/∈QE(x′,i′)

[
J
(
tE
(
x′, i′, x

))
+

n(x)

∑
i=1

V
(
tE
(
x′, i′, x

)
, i
)
− J (x)−V (x)

]
dHn

(
x′, i′

)
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Using the definition of Ω(tE(x′, i′, x)), we obtain

EE Threats = qv (x) (1− φ)

ˆ
x/∈QE(x′,i′)

[
Ω
(
tE
(
x′, i′, x

))
−Ω(x)

]
dHn

(
x′, i′

)
Now using the result in condition C-RT that Ω (tE (x′, i′, x)) = Ω(x), we obtain that

EE Threats = 0

C.5 Reducing the state space

Now that we obtained the simplified recursion, we are in a position to argue that the only payoff-relevant

states are (z, n), and that the details of the within-firm contractual structure do not affect allocations. The

goal of this section is to show that we can express the joint values pre- and post- separation and exit

decisions as follows. First, the exit and separation decisions are characterized by

Ω(z, n) = I{(z,n)∈E}

{
ϑ + nU

}
+ I{(z,n)∈QU}

{
Ω(z, n− 1) + U

}
+ I{(z,n)/∈QU∪E}Ω(z, n), (5)

where E =
{

n, z
∣∣ϑ + nU > Ω(z, n)

}
,

QU =
{

z, n
∣∣Ω (z, n− 1) + U > Ω (z, n)

}
.

The first expression is the value of exit. A firm that does not exit, chooses whether to separate with a

worker or not. If separating with a worker, the firm re-enters (5) with Ω(z, n− 1), having dispatched

with a worker with value U, and again choosing whether to exit, fire another worker, or continue. Iter-

ating on this procedure delivers

Ω(z, n) = max
{

ϑ + nU , max
s∈[0,...,n]

Ω(z, n− s) + sU
}

. (6)
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Second, the post-exit/separation decision joint value is given by the Bellman equation

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, n, z)

Destruction + δn
{(

Ω (z, n− 1) + U
)
−Ω (z, n)

}
UE Hire + φq(θ)v · I{(z,n)∈A} ·

{
Ω (z, n + 1)−

(
Ω (z, n) + U

)}
EE Hire + (1− φ) q(θ)v

ˆ
(z,n)∈QE(z′,n′)

{
[Ω (z, n + 1)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
z′, n′ − 1

)] }
dHn

(
z′, n′

)
Shock + Γz [Ω, Ω] (z, n) ,

where A =
{

z, n
∣∣Ω (z, n + 1) ≥ Ω (z, n) + U

}
,

QE (z′, n′
)

=
{

z, n
∣∣Ω (z, n + 1)−Ω (z, n) ≥ Ω

(
z′, n′

)
−Ω

(
z′, n′ − 1

) }
.

Finally, firms enter if and only if ˆ
Ω (z, 0) dΠ0(z) ≥ ce. (7)

This condition pins down the entry rate per unit of time.5

We proceed in three steps. First, we isolate (z, n) in the state vector x by writing x = (z, n, χ) where

χ collects all other terms in x. Second, we introduce functions that update χ following events to the firm

and worker. Third, we argue that χ is a redundant state. This delivers the final Bellman equation for the

joint value function for the discrete workforce model, equation (7).

5Recall that J0 = −ce +
´

J(x0)dΠ(z0). Given Ω(z0, 0) = J(z0, 0), we have J0 = −ce +
´

Ω(z0, 0)dΠ(z0). Free-entry implies
J0 = 0, which delivers (7).
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C.5.1 Isolate (z, n) in the state vector

It is immediate that x should contain at least the pair (z, n). Call everything else χ. Then we express

x = (z, n, χ). Making this substitution into the above conditions:

ρΩ (z, n, χ) = y (z, n)− c (v (z, n, χ) , n)

Destructions −δ
n(x)

∑
i=1

[Ω (z, n, χ)−Ω (d (z, n, χ, i))−U]

UE Hires +qv (z, n, χ) φ [Ω (hU (z, n, χ))−Ω (z, n, χ)−U] · I{(z,n,χ)∈A}

EE Hires +qv (z, n, χ) (1− φ)

ˆ
(z,n,χ)∈QE(n′,z′,χ′,i′)

[ [
Ω
(
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
qE
(
n′, z′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Shocks +Γz[Ω, Ω](z, n, χ)

with sets

QU =

{
(z, n, χ, i)

∣∣∣Ω (s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 1])) , i) + U

> Ω (s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 0])) , i)

}

L =

{
(z, n, χ, i)

∣∣∣Ω (s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 1]) ◦ (1− qU (z, n, χ))) , i) + U

> Ω (s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 0]) ◦ (1− qU (z, n, χ))) , i)

}
E =

{
z, n, χ

∣∣∣ϑ + n (s(z, n, χ, κ(z, n, χ))) ·U ≥ Ω(s(z, n, χ, κ(z, n, χ)))
}

A =

{
z, n, χ

∣∣∣∣∣Ω (hU (z, n, χ))−Ω (z, n, χ) ≥ U

}

QE (z′, n′, χ′, i′
)
=

{
z, n, χ

∣∣∣∣∣Ω (
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ) ≥ Ω

(
n′, z′, χ′, i′

)
−Ω

(
qE
(
z′, n′, χ′, i′, z, n, χ

))}
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and vacancy posting

cv (v (z, n, χ) , z, n)
q

= φ [Ω (hU (z, n, χ))−Ω (z, n, χ)] · I{(z,n,χ)∈A}

+ (1− φ)

ˆ
(z,n,χ)∈QE(z′,n′,χ′,i′)

[ [
Ω
(
hE
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
qE
(
n′, z′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Finally, note that the contribution of shocks writes explicitly

Γz[Ω, Ω] = lim
dt→0

Et

[
Ω(zt+dt, nt+dt, χt+dt)

dt

]
To avoid introducing too much stochastic calculus notation, we will show that χ is a redundant state

under the special case that shocks z follow a multi-point Poisson jump process. The logic of the proof

with other stochastic processes would be exactly the same, at the expense of more notation. In the

Poisson case, we have

Γz[Ω, Ω] = τ(z)Ez

[
Ω(η, n, χ′(z, n, χ, η))−Ω(z, n, χ)

]
where τ(z) is the intensity at which the Poisson shocks hit, and η is a random variable following the

distribution of those shocks conditional on arrival and conditional on the initial productivity z.
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C.5.2 Introduce functions that update the residual χ

We define the following functions given that we know how n changes in each of the cases

s(z, n, χ, κ(z, n, χ)) = (N (z, n, χ), z, sχ(z, n, χ))

d (z, n, χ, i) = (n− 1, z, dχ (z, n, χ, i))

s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 1])) = (N (z, n, χ)− τ1(z, n, χ), z, τ
χ
1 (z, n, χ, i))

s (z, n, χ, (1− ` (z, n, χ)) ◦ (1− [qU,−i (z, n, χ) ; qU,i (z, n, χ) = 0])) = (N (z, n, χ), z, τ
χ
0 (z, n, χ, i))

s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 1]) ◦ (1− qU (z, n, χ))) = (N (z, n, χ)− η1(z, n, χ), z, η
χ
1 (z, n, χ, i))

s (z, n, χ, (1− [` (z, n, χ) ; `i (z, n, χ) = 0]) ◦ (1− qU (z, n, χ))) = (N (z, n, χ), z, η
χ
0 (z, n, χ, i))

hU (z, n, χ) =
(
n + 1, z, hχ

U (z, n, χ)
)

hE
(
z′, χ′, i′, z, n, χ, n′

)
=

(
n + 1, z, hχ

E
(
z′, n′, χ′, i′, z, n, χ

))
qE
(
z′, n′, χ′, i′, z, n, χ

)
=

(
n′ − 1, z′, qχ

E
(
n′, z′, χ′, i′, z, n, χ

))
Hn
(
z′, n′, χ′, i′

)
=

1
n′

Hn
(
z′, n′, χ′

)
gz (z, n, χ, η) =

(
η, n, gχ

z (z, n, χ, η)
)

The above uses the functionN (z, n, χ), which gives the number of workers the firm retains after endoge-

nous quits and layoffs. It solves

N (z, n, χ) = arg max
k∈{0,...,n}

Ω(k, z, χ) + (n− k)U

In addition, τ1(z, n, χ), η1(z, n, χ) ∈ {0, 1}. τ1(z, n, χ) = 0 if `i(z, n, χ) = 1. Similarly, η1(z, n, χ) = 0 if

qU,i(z, n, χ) = 1. Using these definitions in the Bellman equation above:

ρΩ (z, n, χ) = y (z, n)− c (v (z, n, χ) , z, n)

Destructions −δ
n(x)

∑
i=1

[Ω (z, n, χ)−Ω (n− 1, z, sχ (z, n, χ, i))−U]

UE Hires +qv (z, n, χ) φ
[
Ω
(
n + 1, z, hχ

U (z, n, χ)
)
−Ω (z, n, χ)−U

]
· I{(z,n,χ)∈A}

EE Hires +qv (z, n, χ) (1− φ)

ˆ
(z,n,χ)∈QE(n′,z′,χ′,i′)

[ [
Ω
(
n + 1, z, hχ

E
(
z′, n′, χ′, i′, z, n, χ

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, qχ

E
(
z′, n′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
Shocks +τ(z)Ez

[
Ω
(

η, n, gχ
z (z, n, χ, η)

)
−Ω (z, n, χ)

]
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and sets

E =
{

z, n, χ
∣∣∣ϑ +N (z, n, χ) ·U ≥ Ω(N (z, n, χ), z, sχ(z, n, χ))

}
QU =

{
(z, n, χ, i)

∣∣∣Ω(N (z, n, χ)− τ1(z, n, χ), z, τ
χ
1 (z, n, χ, i)) + U

> Ω(N (z, n, χ), z, τ
χ
0 (z, n, χ, i))

}

L =

{
(z, n, χ, i)

∣∣∣Ω(N (z, n, χ)− η1(z, n, χ), z, η
χ
1 (z, n, χ, i)) + U

> Ω(N (z, n, χ), z, η
χ
0 (z, n, χ, i))

}

A =

{
z, n, χ

∣∣∣∣∣Ω (n + 1, z, hχ
U (z, n, χ)

)
−Ω (z, n, χ) ≥ U

}

QE (z′, n′, χ′, i′
)
=

{
z, n, χ

∣∣∣∣∣Ω (
n + 1, z, hχ

E
(
z, n, χ, z′, n′, χ′, i′

))
−Ω (z, n, χ)

≥ Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, pχ

(
z′, n′, χ′, i′, z, n, χ

)) }

and the definition

N (z, n, χ) = arg max
k∈{0,...,n}

Ω(k, z, χ) + (n− k)U

and vacancy posting

cv (v (z, n, χ) , z, n)
q

= φ
[
Ω
(
n + 1, z, hχ

U (z, n, χ)
)
−Ω (z, n, χ)

]
· I{(z,n,χ)∈A}

+ (1− φ)

ˆ
(z,n,χ)∈QE(z′,n′,χ′,i′)

[ [
Ω
(
n + 1, z, hχ

E
(
z, n, χ, n′, z′, χ′, i′

))
−Ω (z, n, χ)

]
−
[
Ω
(
z′, n′, χ′, i′

)
−Ω

(
n′ − 1, z′, qχ

E
(
z′, n′, χ′, i′, z, n, χ

))] ]
· dHn

(
z′, n′, χ′, i′

)
C.5.3 Argue that (χ, i) are a redundant state

The system above defines a functional fixed point equation. Inspection of the Bellman equation reveals

that χ has no direct impact on the flow payoff, continuation values, or mobility sets. Its only impact

is through the dependence of Ω on χ. This observation implies that χ is a redundant state, and can be

removed from the fixed point equation. The same argument ensures that the worker index i is redundant

40



as well.

C.5.4 Bellman equation without (χ, i)

We can re-write our Bellman equation for (z, n) ∈ E c as:

ρΩ (z, n) = y (z, n)− c (v (z, n) , n)

Destructions −δ
n

∑
i=1

[Ω (z, n)−Ω (n− 1, z)−U]

Retentions +λE
n

∑
i=1

ˆ
(n′ ,z′)∈R(z,n)

[Ω (z, n)−Ω (z, n)] dHv
(
x′
)

UE Hires +qv (z, n) φ [Ω (n + 1, z)−Ω (z, n)−U] · I{(z,n)∈A}

EE Hires +qv (z, n) (1− φ)

ˆ
(z,n)∈QE(z′ ,n′)

[
[Ω (n + 1, z)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)] ]
dH̃n

(
z′, n′

)
Shocks +Γz[Ω, Ω](z, n)

with the sets

E c =

{
z, n

∣∣∣∣∣Ω(N (z, n)) ≥ ϑ +N (z, n)U

}

L = QU =

{
z, n

∣∣∣∣∣Ω(N (z, n), z)−Ω(N (z, n)− 1, z) ≤ U

}

A =

{
z, n

∣∣∣∣∣Ω (n + 1, z)−Ω (z, n) ≥ U

}

QE (z′, n′
)
=

{
z, n

∣∣∣∣∣Ω (n + 1, z)−Ω (z, n) ≥ Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)}

and the definition

N (z, n) = arg max
k∈{0,...,n}

Ω(k, z) + (n− k)U

and the vacancy policy function:

cv (v (z, n) , z, n)
q

= φ [Ω (n + 1, z)−Ω (z, n)] · I{(z,n)∈A}

+ (1− φ)

ˆ
(z,n)∈QE(z′,n′)

[
[Ω (n + 1, z)−Ω (z, n)]−

[
Ω
(
z′, n′

)
−Ω

(
n′ − 1, z′

)] ]
dH̃n

(
n′, z′

)
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C.5.5 Expressing “bold” values

In this step we express “bold” values – that encode the optimal quit, layoff and exit decisions – as simple

functions of non-bold values.

From the definition of the exit and quit sets E ,QU , we can express:

Ω(z, n) = max

{
Ω(z, n)︸ ︷︷ ︸
Operate

, Ω(n− 1, z) + U︸ ︷︷ ︸
Separate one worker and re-evaluate

, ϑ + nU︸ ︷︷ ︸
Exit

}

We can iterate on this equation. To see the logic, consider the first few steps.

Ω(z, n) = max

{
Ω(z, n) , Ω(n− 1, z) + U , ϑ + nU

}

= max

{
Ω(z, n) , max

{
Ω(n− 1, z) , Ω(n− 2, z) + U , ϑ + (n− 1)U

}
+ U , ϑ + nU

}

= max

{
Ω(z, n) , Ω(n− 1, z) + U , Ω(n− 2, z) + 2U , ϑ + (n− 1)U + U , ϑ + nU

}

= max

{
Ω(z, n) , Ω(n− 1, z) + U , Ω(n− 2, z) + 2U , ϑ + nU

}

By recursion, it is easy to see that

Ω(z, n) = max

{
Ω(N (z, n), z) + (n−N (z, n)) ·U , ϑ + nU

}

= max

{
max

k∈{0,...,n}
Ω(k, z) + (n− k)U , ϑ + nU

}

where recall that

N (z, n) = arg max
k∈{0,...,n}

Ω(k, z) + (n− k)U

C.6 Continuous workforce limit

Up to this point the economy has featured a continuum of firms, but an integer-valued workforce. We

now take the continuous workforce limit by defining the ‘size’ of a worker—which is 1 in the integer

case—and taking the limit as this approaches zero. Specifically, denote the “size” of a worker by ∆, such

that n = N∆ where N is the old integer number of workers. Now define Ω∆(z, n) := Ω(z, n/∆), and

likewise define y∆(z, n) := y(z, n/∆) and c∆(v, n, z) := c(v/∆, n/∆, z). We also define b∆ := b/∆ and
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ϑ∆ := ϑ/∆. These imply, for example, that Ω(z, N) = Ω∆(z, N∆). Substituting these terms into (6) and

(7), and taking the limit ∆→ 0, while holding n = N∆ fixed, we would obtain a version of (8) in which

all functions have the ∆ super-script notation. We also specialize the productivity to a diffusion process

dzt = µ(zt)dt + σ(zt)dWt.

The result is the joint value representation of section ??: a Hamilton-Jacobi-Bellman (HJB) equation

for the joint value conditional on the firm and its workers operating:

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, n, z) (8)

Destruction −δn[Ωn(z, n)−U]

UE Hire +φq(θ)v [Ωn(z, n)−U]

EE Hire +(1− φ)q(θ)v
ˆ

max
{

Ωn(z, n)−Ωn(n′, z′) , 0
}

dHn
(
z′, n′

)
Shock +µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n).

Boundary conditions for the firm and its workers operating require the state to be interior to the exit and

separation boundaries:

Exit boundary: Ω(z, n) ≥ ϑ + nU,

Layoff boundary: Ωn(z, n) ≥ U

Note the absence of Ω terms. Since the value we track is that of a hiring firm subject to boundary condi-

tions, then Ω = Ω. This admits the simplification of ‘Shock’ terms we noted when discussing (2).

We proceed in three steps:

(A.5.1) Define worker size and the renormalization

(A.5.2) Take the limit as worker size goes to zero

(A.5.3) Introduce a continuous productivity process.

C.6.1 Define worker size and the renormalization

We denote the “size” of a worker by ∆. That is, we currently have an integer work-force n ∈ {1, 2, 3, . . . }.

We now consider m ∈ {∆, 2∆, 3∆, . . . }. So then n = m/∆. We use this to make the following normaliza-
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tions:

ω(z, m) = Ω
(m

∆
, z
)

Y(z, m) = y
(m

∆
, z
)

C(z, m) = c
( v

∆
,

m
∆

, z
)

These definition imply

Ω(z, n) = ω(n∆, z)

y(z, n) = Y(n∆, z)

c(v, z, n) = C(v∆, n∆, z)

In addition, the value of unemployment solves

ρU = b

Define

U =
b

ρ∆
=

U
∆

and

θ =
ϑ

∆

Substituting these definitions into the Bellman equation, we obtain

ρω (n∆, z) = max
v∆≥0

Y (n∆, z)− C (v∆, n∆, z)

Destructions −δn∆
[

ω (n∆, z)−ωωω (n∆− ∆, z)
∆

−U
]

UE Hires +qv∆φ

[
ωωω (n∆ + ∆, z)−ω (n∆, z)

∆
−U

]
· I{(n∆,z)∈A}

EE Hires +qv∆ (1− φ)

ˆ
(n∆,z)∈QE(n′∆,z′)

[
ωωω (n∆ + ∆, z)−ω (n∆, z)

∆
− ω (n′∆, z′)−ωωω (n′∆− ∆, z′)

∆

]
dH̃n

(
n′∆, z′

)
Shocks +Γz [ωωω, ω] (n∆, z)
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with the set definitions

E =

{
n∆, z

∣∣∣∣∣ max
k∆∈{0,...,n∆}

ω(k∆, z) + (n∆− k∆)U < θ + n∆U
}

A =

{
n∆, z

∣∣∣∣∣ωωω (n∆ + ∆, z)−ω (n∆, z)
∆

≥ U
}

QU =

{
n∆, z

∣∣∣∣∣ω (n∆, z)−ωωω (n∆− ∆, z)
∆

≤ U
}

QE (n′∆, z′
)
=

{
n∆, z

∣∣∣∣∣ωωω (n∆ + ∆, z)−ω (n∆, z)
∆

≥ ω (n′∆, z′)−ωωω (n′∆− ∆, z′)
∆

}

and the definition:

ωωω(n∆, z) = max

{
max

k∆∈{0,...,n∆}
ω(k∆, z) + (n∆− k∆)U , θ + n∆U

}

C.6.2 Continuous limit as worker size goes to zero

Now we take the limit ∆→ 0, holding m = n∆ fixed. We note v̂ = lim∆→0 v∆. We see derivatives appear.

We denote ωm(z, m) = ∂ω
∂m (z, m).

First, we note that the following limit obtains:

ωωω(z, m) = max

{
max

k∈[0,m]
ω(k, z) + (m− k)U , θ + m∆U

}

In particular, the exit set limits to

E =

{
z, m

∣∣∣∣∣ max
k∈[0,m]

ω(k, z) + (m− k)U < θ + mU
}

In equilibrium, the ωωω(z, m) terns on the right-hand-side of the Bellman equation are the result of endoge-

nous quits, layoffs and hires. Because our continuous time assumption has been made before we take the

limit to a continuous workforce limit, we need only consider those changes in the workforce one at a

time. Hence, for any (z, m) ∈ Interior(E c ∩A), the interior of the continuation set, there is always ∆ > 0:

such that for any ∆ ≤ ∆:

ωωω(m± ∆, z) = ω(m± ∆, z)
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Using this observation in the Bellman equation, we can obtain derivatives on the right-hand-side. We

obtain, for pairs (z, n) in the interior of the continuation set (z, n) ∈ Interior(E c ∩A):

ρω (z, m) = max
v̂≥0

Y (z, m)− C (v̂, z, m)

Destructions −δm[ωm(z, m)−U ]

UE Hires +qv̂φ [ωm(z, m)−U ] · I{(z,m)∈A}

EE Hires +qv̂ (1− φ)

ˆ
(z,m)∈QE(m′,z′)

[
ωm(z, m)−ωm(m′, z′)

]
dH̃n

(
m′, z′

)
Shocks +Γz [ωωω, ω] (z, n)

with the set definitions

E =

{
z, m

∣∣∣∣∣ max
k∈[0,m]

ω(k, z) + (n− k)U < θ + mU
}

A =

{
z, m

∣∣∣∣∣ωm(z, m) ≥ U
}

QU =

{
z, m

∣∣∣∣∣ωm(z, m) ≤ U
}

= A , the complement of A

QE (z′, m′
)
=

{
z, m

∣∣∣∣∣ωm(z, m)−ωm(m′, z′) ≥ 0

}

and the definition

ωωω(z, m) = max

{
max

k∈[0,m]
ω(k, z) + (m− k)U , θ + mU

}

Note that now, the only place where ωωω enters in the Bellman equation is the contribution of shocks. To

replace it with ω, we need to apply the same argument to z as the one we applied to n. We thus need to

specialize to a continuous productivity process.

C.6.3 Continuous productivity process

We now specialize to a continuous productivity process, as this makes the formulation of the problem

very economical. It allows to simplify the contribution of productivity shocks and get rid of the remain-
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ing “bold” notation. We suppose that productivity follows a diffusion process:

dzt = µ(zt)dt + σ(zt)dWt

In this case, for any (z, m) in the interior of the continuation set, productivity shocks in the interval

[t, t + dt] cannot move the firm towards a region in which it would endogenously separate or exit, when

dt is small enough. In this case, we can write the following, where we have also replaced theQE set with

the max operator:

ρω (z, m) = max
v≥0

Y (z, m)− C (v, z, m)

Destructions −δm[ωm(z, m)−U ]

UE Hires +qvφ [ωm(z, m)−U ]

EE Hires +qv (1− φ)

ˆ
max

{
ωm(z, m)−ωm(z′, m′) , 0

}
dH̃n

(
m′, z′

)
Shocks +µ(z)ωz(z, m) +

σ(z)2

2
ωzz(z, m)

s.t.

No Exit ω(z, m) ≥ θ + mU

No Separations ωm(z, m) ≥ U

To make the notation more comparable, we slightly abuse notation and use the same letters as before,
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but now for the continuous workforce case. We obtain finally:

ρΩ (z, n) = max
v≥0

y (z, n)− c (v, z, n)

Destructions −δn[Ωn(z, n)−U]

UE Hires +qvφ [Ωn(z, n)−U]

EE Hires +qv (1− φ)

ˆ
max

[
Ωn(z, n)−Ωn(z′, n′) , 0

]
dH̃n

(
z′, n′

)
Shocks +µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n)

s.t.

No Exit Ω(z, n) ≥ ϑ + nU

No Separations Ωn(z, n) ≥ U

When the coalition hits Ωn(z, n) = U, it endogenous separates worker to stay on that frontier. It exits

when it hits the frontier Ω(z, n) = ϑ + nU.

In addition to these “value-pasting” boundary conditions, optimality implies necessary “smooth-

pasting” boundary conditions (see Stokey 2008): Ωz(z, n) = 0 if the firm actually exits at (z, n) following

productivity shocks, and Ωn(z, n) = 0 if the firm actually exits at (z, n) following changes in size. These

are necessary and sufficient for the definition of our problem (Brekke Oksendal 1990). Its general formu-

lation terms of optimal switching between three regimes (operation, layoffs, exit) on the entire positive

quadrant, can be made as a system of Hamilton-Jacobi-Bellman-Variational-Inequality (see Pham 2009),

which we present here for completeness :

max

{
− ρΩ (z, n) + max

v≥0
−δn[Ωn(z, n)−U] + qvφ [Ωn(z, n)−U]

+qv (1− φ)

ˆ
max

[
Ωn(z, n)−Ωn(z′, n′) , 0

]
dH̃n

(
z′, n′

)
+ µ(z)Ωz(z, n) +

σ(z)2

2
Ωzz(z, n) ;

ϑ + nU −Ω(z, n) ; max
k∈[0,n]

Ω(z, k) + (n− k)U −Ω(z, n)

}
= 0 , ∀(z, n) ∈ R2

+
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D Characterization of surplus function

First define the surplus as S(z, n) = Ω(z, n) − nU. Given that ρU = b, this implies that ρS(z, n) =

ρΩ(z, n)− nb. We also have that Sn(z, n) = Ωn(z, n)−U. Combining these with the Bellman equation

for Ω:

ρS(z, n) = max
v≥0

y(z, n)− c(v, z, n)− nb

+ [qφv− δn]Sn(z, n)

+ q(1− φ)v
ˆ Sn(z,n)

0
[Sn(z, n)− s]dHn(s)

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)

where we sligtly abuse notation and use Hn(s) to also denote here the employment-weighted cumulative

distribution function of marginal surpluses. The value-pasting conditions become

S(z, n) ≥ ϑ

Sn(z, n) ≥ 0

We now make a number of assumptions to characterize the surplus. They are not all strictly necessary

for each individual comparative static, but for convenience of exposition we present them all at the same

time.

• The production function y(z, n) satisfies ylog z, yn, ylog z,n > 0 > ynn.

• Productivity follows a geometric Brownian motion µ(z) = µz and σ(z) = σz.

• Vacancy costs depend only on v and are isoelastic: c(v) = c0v1+γ.

• The surplus function is twice continuously differentiable up to the boundary of the continuation

region.

We now proceed to show the comparative statics discussed in the main text.

D.1 S is increasing in n

The no-endogenous-separations condition Sn ≥ 0 immediately implies that the surplus is increasing in

n.
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D.2 S is increasing in z

Re-write the problem in terms of x = log z. Denote with a slight abuse of notation y(x, n) = y(ex, n).

Then, as a function of (x, n), the joint surplus solves

ρS(x, n) = max
v≥0

y(x, n)− c(v)− nb

+ [qφv− δn]Sn(x, n)

+ q(1− φ)vH(Sn(x, n))

+
(

µ− σ

2

)
Sx(x, n) +

σ2

2
Sxx(x, n)

where we integrated by parts, and denoted H(s) =
´ s

0 Hn(r)dr. Denote ζ(x, n) = Sx(x, n). Differentiate

the Bellman equation w.r.t. x and use the envelope theorem to obtain

ρζ(x, n) = yx(x, n)

+
{[

q(1− φ)Hn(Sn(x, n)) + qφ
]
v∗(x, n)− δn

}
ζn(x, n)

+ µζx(x, n) +
σ2

2
ζxx(x, n)

Now consider the stochastic process defined by

dxt = µdt + σdWt

dnt =
{[

q(1− φ)Hn(Sn(xt, nt)) + qφ
]
v∗(xt, nt)− δnt

}
dt (9)

This correponds to the true stochastic process for productivity, but a hypothetical process for employ-

ment, that in general differes from the realized one. We can now use the Feynman-Kac formula (Pham

2009) to go back to the sequential formulation:

ζ(x, n) = E

[ˆ T

0
e−ρtyx(xt, nt) + e−ρTζ(xT, nT)

∣∣∣ x0 = x, n0 = n, {xt, nt} follows (9)

]

and where T is the hitting time of either the separation of exit region. By assumption, yx > 0, so the

contribution of the first part is always positive. On the exit region, smooth-pasting requires that ζ = 0.

In the interior of the separation region, ζ = 0. Under our regularity assumption, we thus get ζ = 0 on
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the layoff boundary. Thus,

ζ(x, n) = E

[ˆ T

0
e−ρtyx(xt, nt)dt

∣∣∣ x0 = x, n0 = n, {xt, nt} follows (9)

]
> 0

which concludes the proof.

D.3 S is concave in n

Denote s(z, n) = Sn(z, n). Differentiate the Bellman equation w.r.t. n on the interior of the domain, use

the envelope theorem and integrate by parts to obtain:

(ρ + δ)s(z, n) = yn(z, n)− b

+
{[

qφ + q(1− φ)Hn(s(z, n))
]
v∗(z, n)− δn]sn(z, n)

+ µ(z)sz(z, n) +
σ2(z)

2
szz(z, n)

Recall that

(1 + γ)c0[v∗(z, n)]γ = qφs(z, n) + q(1− φ)H(s(z, n))

In particular, differentiating w.r.t. n,

γ(1 + γ)c0[v∗(z, n)]γ−1v∗n(z, n) =
[
qφ + q(1− φ)Hn(s(z, n))

]
sn(z, n)

and so

γ
v∗n(z, n)
v∗(z, n)

=
φ + (1− φ)Hn(s(z, n))
φ + (1− φ)H(s(z, n))

sn(z, n)
s(z, n)

where H(s) = H(s)
s ≤ 1. Now denote ζ(z, n) = sn(z, n) = Snn(z, n). Differentiate the recursion for s w.r.t.

n to obtain (
ρ + 2δ− q(1− φ)H′n(s(z, n)v∗(z, n)sn(z, n)− q[φ + (1− φ)Hn(s(z, n))v∗n(z, n)

)
ζ(z, n)

= ynn(z, n)

+
{[

λφ + λ(1− φ)Hn(s(z, n)
]
v∗(z, n)− δn]ζn(z, n)

+ µ(z)ζz(z, n) +
σ2(z)

2
ζzz(z, n)
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Now define the “effective discount rate”

R(z, n, sn(z, n)) = ρ + 2δ− q(1− φ)H′n(s(z, n)v∗(z, n)sn(z, n)− q[φ + (1− φ)Hn(s(z, n))]v∗n(z, n)

= ρ + 2δ− qv∗(z, n)sn(z, n)
{
(1− φ)H′n(s(z, n)) +

φ + (1− φ)Hn(s(z, n))
γs(z, n)

φ + (1− φ)Hn(s(z, n))
φ + (1− φ)H(s(z, n))

}
︸ ︷︷ ︸

≡P(z,n)>0

where the second equality uses the expression for v∗n derived above. Define the stochastic process

dzt = µ(zt)dt + σ(zt)dWt

dnt =
{[

q(1− φ)Hn(Sn(zt, nt)) + qφ
]
v∗(zt, nt)− δnt

}
dt (10)

As before, we can use the Feynman-Kac formula to obtain

ζ(z, n) = E

[ ˆ T

0
e−
´ t

0 R(zτ ,nτ ,ζ(zτ ,nτ))dτynn(zt, nt)dt + e−
´ T

0 R(zτ ,nτ ,ζ(zτ ,nτ))dτTζ(zT, nT)

∣∣∣ z0 = z, n0 = n, {zt, nt} follows (10)

]

for T the first hitting time of the exit/separation region. The contribution of the first term is always

negative. Note that ζ enters in the effective discount rate. Inside the separation region and in the exit

regions, ζ = 0. We restrict attention to twice continuously differentiable functions, so ζ = 0 on the exit

and separation frontiers. Then

ζ(z, n) = E

[ ˆ T

0
e−
´ t

0 R(zτ ,nτ ,ζ(zτ ,nτ))dτynn(zt, nt)dt
∣∣∣ z0 = z, n0 = n, {zt, nt} follows (10)

]
< 0

which concludes the proof.

D.4 S is supermodular in (log z, n)

Denote again s(x, n) = Sn(x, n), where x = log z. Recall

(ρ + δ)s(x, n) = yn(x, n)− b

+
{[

qφ + q(1− φ)Hn(s(x, n)
]
v∗(x, n)− δn]sn(x, n)

+ µsx(x, n) +
σ2

2
sxx(x, n)
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and that

(1 + γ)c0[v∗(x, n)]γ = qφs(x, n) + q(1− φ)H(s(x, n))

In particular, differentiating w.r.t. x,

γ
v∗x(x, n)
v∗(x, n)

=
φ + (1− φ)Hn(s(x, n))
φ + (1− φ)H(s(x, n))

sx(x, n)
s(x, n)

Now denote ζ(x, n) = sx(x, n) = Sxn(x, n). Differentiate the recursion for s(x, n) w.r.t. x to obtain

(
ρ + δ− q(1− φ)H′n(s(x, n)v∗(x, n)sx(x, n)− q[φ + (1− φ)Hn(s(x, n))v∗x(x, n)

)
ζ(x, n)

= ynx(x, n)

+
{[

λφ + λ(1− φ)Hn(s(x, n)
]
v∗(x, n)− δn]ζn(x, n)

+ µζx(x, n) +
σ2

2
ζxx(x, n)

As before, define the “effective discount rate”

R(x, n, sx(x, n)) = ρ + δ− q(1− φ)H′n(s(x, n)v∗(x, n)sx(x, n)− q[φ + (1− φ)Hn(s(x, n))]v∗x(x, n)

= ρ + δ− qv∗(x, n)sx(x, n)
{
(1− φ)H′n(s(x, n)) +

φ + (1− φ)Hn(s(x, n))
γs(x, n)

φ + (1− φ)Hn(s(x, n))
φ + (1− φ)H(s(x, n))

}
︸ ︷︷ ︸

≡P(x,n)>0

where the second equality uses the expression for v∗n derived above. As before, define the stochastic

process

dxt = µdt + σdWt

dnt =
{[

q(1− φ)Hn(Sn(ext , nt)) + qφ
]
v∗(xt, nt)− δnt

}
dt (11)

As before, we can use the Feynman-Kac formula to obtain

ζ(x, n) = E

[ ˆ T

0
e−
´ t

0 R(xτ ,nτ ,ζ(xτ ,nτ))dτynx(xt, nt)dt + e−
´ T

0 R(xτ ,nτ ,ζ(xτ ,nτ))dτTζ(xT, nT)

∣∣∣ x0 = z, n0 = n, {xt, nt} follows (11)

]

for T the first hitting time of the exit/separation region. The contribution of the first term is always

positive. Inside the separation region and in the exit regions, ζ = 0. We restrict attention to twice
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continuously differentiable functions, so ζ = 0 on the exit and separation frontiers. Then

ζ(x, n) = E

[ ˆ T

0
e−
´ t

0 R(xτ ,nτ ,ζ(xτ ,nτ))dτynx(xt, nt)dt
∣∣∣ x0 = z, n0 = n, {xt, nt} follows (11)

]

which concludes the proof.

D.5 Net employment growth

Net employment growth in the continuation region is

dnt

dt
= q

[
φ + (1− φ)Hn(Sn(z, n))

]
v∗(z, n)− λE(1− Hv(Sn(z, n)))n− δn ≡ g(z, n)

Using the expression above for v∗(z, n):

g(z, n) =
q1+1/γ

[(1 + γ)c0]1/γ

(
φ + (1− φ)Hn(Sn(z, n))

)(
φSn(z, n) + (1− φ)H(Sn(z, n))

)1/γ

−λE(1− Hv(Sn(z, n)))n− δn

From the previous comparative statics on Sn(z, n), it is straightforward to see that g(z, n) is increasing in

log z and decreasing in n.
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E Frictionless limits

E.1 Setup

Frictional problem. Start by recalling the Bellman equation for the joint surplus in the frictional case:

ρS(z, n) = max
v

y(z, n)− nb− c(v)− δnSn(z, n) (12)

+ q(θ)v

{
φSn + (1− φ)

ˆ Sn

0
Hn(s)ds

}
+ (LS) (z, n)

s.t. S(z, n) ≥ 0, Sn(z, n) ≥ 0

where Hn is the employment-weighted cumulative distribution function of marginal surpluses. L is the

differential operator that encodes the continuation value from productivity shocks. For instance, for a

diffusion, (LS) (z, n) = µ(z)Sz(z, n) + σ(z)2

2 Szz(z, n). Recall that φ = u
u+ξ(1−u) is the probability that a

vacancy meets an unemployed worker, and q is the vacancy meeting rate.

Note that we abstracted from exogenous separations for simplicity, but endogenous separations

when S(n, z) < 0 still occur. Denote by ∆ the aggregate endogenous separation rate.

Inside the continuation region, the density function h(z, n) of the distribution of firms by productivity

and size is determined by the stationary KFE

0 = − ∂

∂n

(
h(z, n)g(z, n)

)
+ (L∗h) (z, n)

where L∗ is the formal adjoint of the operator L, and g(z, n) is the growth rate of employment

g(z, n) = q(θ)v∗(z, n)
[
φ + (1− φ)Hn(Sn(z, n))

]
− ξλUn

[
1− Hv(Sn(z, n)),

]
(13)

where λU is the meeting rate from unemployment, and ξ the relative search efficiency of the employed.

Finally, the mass of entrant firms m0 is determined by the free-entry condition

ce = EEntry[max{S(z, n0), 0}] (14)

where n0 is initial employment which is a parameter, and EEntry is the expectation operator under the

productivity distribution for entrants Π0(z). The surplus is a function of m0 through the vacancy meeting

rate q(θ), since θ is increasing in m0.
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Functional forms. For ease of exposition, we consider isoelastic vacancy cost functions

c(v) =
c0

1 + γ
v1+γ,

and normalize c0 = 1, but the result does not depend on the particular functional form nor on the

normalization. Also, we specialize to a Cobb-Douglas matching function m(s, v) = Asβv1−β, where A

is match efficiency, a proxy for labor market frictions. Finally, for ease of exposition, we set to zero

exogenous separations to unemployment δ = 0.

Comparative statics. We describe behavior of the economy in the limit when match efficiency A→ ∞.

We do so for two different configurations of the economy:

1. No on-the-job-search: ξ = 0

2. On-the-job search: ξ > 0

Notation. We write B ≈ C for a first-order Taylor expansion. Denote ||Sn|| = ESteady−state
[
S1/γ

n

]γ
,

where ESteady−state denotes the expectation under the steady-state distribution of marginal surpluses.

This is also the Lebesgue (1/γ)-norm of Sn under the steady-state probability measure.

E.2 No on-the-job search

Since ξ = 0, φ = 1. From (12), the FOC for vacancies gives

v∗(z, n) =
(

qSn

)1/γ
. (15)

using this optimality condition in the value function of hiring firms:

ρS(z, n) = y(z, n)− nb +
γ

1 + γ
· q(θ)

1
1+γ S

1
1+γ
n + (LS) (z, n)

s.t. S(z, n) ≥ 0, Sn(z, n) ≥ 0

which now only depends on q(θ) as the sole aggregate. Hence, free-entry (14) uniquely pins down q(θ)

to the same value no matter what value A takes. Therefore, the value function always satisfies the same

Bellman equation, irrespective of A. Hence, throughout the state space, at any given (n, z), marginal

surpluses Sn(z, n) remain the same as A varies. Moreover, since the value S(z, n) is independent from A,
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so are all the decisions by firms. As a result, the endogenous separation rate ∆ always remains the same

– and in particular, finite.

We now study how aggregates v, u, θ evolve along this limiting path. Given the matching function

these determine all other equilibrium objects: λU , λE, q. In characterizing the limit we make use of the

simple fact that both m0 and v must remain finite. If this were not the case, then infinite entry and vacancy

costs would violate the economy’s resource constraint.

E.2.1 Aggregates in the limit

Integrating both sides of the FOC for vacancies under the firm distribution, and using the matching

function which implies that q = Aθ−β, aggregate vacancies are

v = m0q
1
γ ||Sn||

1
γ = m0A

1
γ θ−

β
γ ||Sn||

1
γ

Since q remains constant, and v and m0 are finite in the limit, then the first equality implies that ||Sn||

remains finite in the limit.

In the limit, the unemployment rate is u ≈ ∆
λU . The matching function implies λU = Aθ1−β. Com-

bined, the unemployment rate is u ≈ ∆A−1θ−(1−β). Combining these expressions with the expression

for aggregate vacancies v, tightness satisifies

θ =
v

u
≈ m0A

1
γ θ−

β
γ ||Sn||

1
γ

∆Aθ1−β

so that

θβ 1+γ
γ ≈

(m0

∆

)
||Sn||

1
γ A

1+γ
γ .

Since m0, ∆, and ||Sn|| are finite, θ diverges with A. Therefore, λU diverges as well. On the worker side,

since λU , diverges to infinity, u goes to zero. On the firm side, m0 remains finite, but changes such that q

remains constant and vacancies remain finite.

E.2.2 Invariant distribution of marginal surpluses

We now turn to the invariant distribution h(z, n). After substituting optimal vacancies into (13) evaluated

at ξ = 1− φ = 0, one obtains that the growth of employment in the hiring region is:

g(z, n) = q
(

qSn(z, n)
) 1

γ
.
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Since Sn(z, n) remains constant throughout the state space, then employment growth in the hiring region

remains constant throughout the state space. The firm loses no workers to employment because there is

no on-the-job search. Since Sn(z, n) and U = b/ρ both stay unchanged, then the employment losses to

unemployment are still unchanged. Since S(z, n) is unchanged, then the exit decision is also unchanged.

Hence, the law of motion of employment is independent of A. Thus, the steady-state distribution

h(z, n) is also independent from A. Therefore the values of firms S(z, n) are the same across the state

space and the relative mass of firms at each (z, n) is unchanged, despite higher but finite m0.

E.2.3 Summary

Summarizing this case: as A → ∞, even though unemployment vanishes, the allocations in the search

model without on-the-job search do not converge to those of a competitive firm-dynamics model. The

free entry condition requires the vacancy meeting rate q to remain finite and thus a non degenerate

dispersion of marginal products of labor survives even in the limit as firms face the same adjustment

frictions regardless of A. In contrast, in the competitive benchmark, marginal products of labor are

equalized across firms.

E.3 On-the-job search with a fat-tailed entry distribution

We now turn to the case in which on-the-job search remains positive at some fixed value ξ > 0, and

thus φ < 1. We follow the same logic as before, with some additional steps due to on-the-job search. To

simplify algebra we abstract from exogenous job destruction, setting δ = 0.

To keep the arguments manageable, we also introduce an additional assumption. We require the

entry productivity distribution to have a “fat enough” tail. With decreasing returns to scale, the optimal

frictionless size of the firm grows without bound as productivity becomes large. We assume that the

productivity distribution of entrants is unbounded, and assume that it is fat-tailed enough that the rate at

which the optimal size of a firm grows with productivity is faster rate than the decay of the productivity

distribution. More precisely, the frictionless optimal size is n∗(z) = arg maxn y(z, n)− bn. We assume

that the entry productivity distribution Π0(z) is such that

lim
z↑+∞

n∗(z)Π0(z) = +∞

This is satisfied for the production function y(z, n) = znα and the entry distribution Π0(z) ∝ z−ζ , when
1

1−α − ζ ≥ −1. Our empirical implementation uses these functional forms and satisfies these restrictions.6

6An alternative approach is to assume a constant arrival rate of “The Godfather” shocks that leave workers unable to refuse
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Consider (12) written in terms of the return on a vacancy

ρS(z, n) = max
v

y(z, n)− nb− c(v) + q(θ)vR(Sn) + (LS) (z, n)

s.t. S(z, n) ≥ 0, Sn(z, n) ≥ 0

where

R(Sn) = φSn + (1− φ)

ˆ Sn

0
Hn(s)ds (16)

is the return to a vacancy. The growth of employment is

g(z, n) = qv∗(z, n)
[
φ + (1− φ) Hn (Sn(z, n))

]
− ξλUn

[
1− Hv (Sn(z, n))

]
(17)

E.3.1 Aggregates in the limit

We restrict attention to the economically meaningful case in which (1) output remains finite and strictly

positive in the limit, and (2) the rate at which workers separate into unemployment remains finite in the

limit. These restrictions are equivalent to a guess and verify strategy, in which we guess that (1-2) hold

and then verify those conditions. The logic of our approach is then to exhibit a solution in which (1-2)

hold – but in principle other cases may arise.

Consider the set of meeting rates. Because some measure n employed jobseekers are always present

regardless of A, the amount of effective search effort s = u+ ξn remains finite and positive even if u

goes to zero. By (1), vacancies also remain finite. Combined, these imply that market tightness θ = v/s

remains finite. Since q = Aθ−β and λU = Aθ−(1−β), then both meeting rates diverge to infinity at the

same rate as A.7

Consider unemployment and aggregate vacancies. (2) requires that the rate at which workers sep-

arate into unemployment is a positive constant ∆ in the limit. Since u ≈ ∆
λU , and λU diverges, then

the unemployment rate converges to zero. Since the unemployment rate converges to zero, then φ also

converges to zero. Firm level and aggregate vacancies are given by

v = q
1
γ R (Sn)

1
γ , v = m0q

1
γ ||R (Sn) ||

1
γ . (18)

(1) implies that both aggregate vacancies v the mass of entering firms m0 remain finite. Since v is finite

and m0 is finite, while q diverges at the same rate as A, then γ > 0 requires ||R (Sn) || must go to zero at

any job offer. Additional details available on request.
7Strictly speaking, free-entry then ensures that theta is pinned down to a strictly positive value. This proof is more lengthy

but does not require any additional assumptions and is available upon request.
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the same rate as A goes to infinity.

E.3.2 Invariant distribution of marginal surpluses

We now show that the distribution of marginal surpluses degenerates to a single value on the support

of the invariant distribution.

First, we use (18) to express firm level vacancies as a share of aggregate vacancies, where that share

is determined by the firms’ return on a vacancy relative to the average return:

v =
1

m0

(
R (Sn)

||R (Sn) ||

) 1
γ

v =
1

m0

(
R (Sn)

||R (Sn) ||

) 1
γ
(

λUξ

q

)

where the second equality uses q = A(v/ξ)−β, and λU = A(v/ξ)−(1−β), which jointly imply that v =

λUξ/q. Now consider the expression for growth of employment inside the continuation region (17),

under the limiting case of φ = 0:

g(z, n) ≈ qvHn (Sn(z, n))− ξλUn
[
1− Hv (Sn(z, n))

]
Substituting in the expression for firm vacancies and collecting λUξ terms:

g(z, n) ≈ λUξ

{
1
m0

(
R(Sn)

||R(Sn)||

) 1
γ

Hn(Sn)− n
[
1− Hv(Sn)

]}
.

Consider some (n, z) that has positive mass in steady state. Since λU diverges but growth must remain

finite, the term in braces must be equal to zero in the limit:

1
m0

(
R(Sn)

||R(Sn)||

) 1
γ

Hn(Sn) = n
[
1− Hv(Sn)

]
Using this we can show that the distribution of marginal surplus converges point-wise to a degenerate

limiting distribution H∞
n .

We proceed by contradiction. Suppose that Hn converges to a limiting distribution H∞
n that is non-

degenerate.8 Consider a firm at the top of the distribution, such that 1− Hv(Sn) = 0 . The probability

that the firm loses a worker is zero, so the right-hand side is zero. However, by the supposition that

Hn is non-degenerate, then R(Sn) converges to a non-zero value, since the firm can increase its value by

poaching from workers below it on the ladder. Since there is some R(Sn) that is non-zero, then ||R(Sn)||

8So the probability measure of Sn in the cross-section would converge in distribution to a non-degenerate limit.
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also converges to a non-zero value. Therefore flows out of the firm are zero, but flows into the firm are

positive. This violates the above equality, which would imply infinite growth as λU diverges. This is a

contradiction. Hence, in the limit H∞
n must be degenerate, and marginal surpluses of firms converge to

a common limit which we denote S∗n.

We have shown that the limiting distribution H∞
n is degenerate. This implies that the invariant distri-

bution of employment and productivity lines up along a strip {z, n∗(z)}where n∗(z) is implicitly defined

by Sn(n∗(z), z) = S∗n, so is strictly increasing.9

E.3.3 Unique value for S∗n on the limiting strip

We have shown that ||R(Sn)|| and R(Sn) converge to zero in the limit, yet this does not necessarily imply

a particular value for S∗n. Here we show that S∗n = 0. We guess the following, which we verify below:

(?) n∗(z) = arg maxn y(z, n)− bn .

From the concavity of marginal surplus and n∗(z) > n0, we have

S(z, n0) ≤ S(z, n∗(z))− Sn(z, n∗(z))× (n∗(z)− n0)

In the limit Sn(z, n∗(z)) ≡ S∗n is equalized, which delivers the following upper bound to the value of

entry: ˆ
S(z, n0)Π0(z)dz ≤

ˆ
S(z, n∗(z))Π0(z)dz− S∗n

ˆ (
n∗(z)− n0

)
Π0(z)dz

We show that S∗n = 0 by contradiction. Suppose that S∗n > 0. From our assumption on the entry

distribution then in the limit
´

n∗(z)Π0(z)dz is infinity. Since all other terms on the right-hand side of

the above inequality are finite,10 then a necessary condition for the above inequality to be satisfied is that´
S(z, n0)Π0dz < 0, which violates the free-entry condition. Therefore it must be that S∗n = 0.

Intuitively, a strictly positive marginal surplus S∗n reflects that there is an excess supply of firms in

the economy relative to the supply of workers. The fat tail assumption implies that this excess supply

translates into a very negative value of entry, which cannot be an equilibrium in which firms enter freely.

9To see that this is a strip, recall that S(z, n) is such that Snn < 0 and Szn > 0. Therefore Sn(n∗(z), z) = S∗n implicitly defines
an strictly increasing function n∗(z).

10´ S(z, n∗(z))Π0(z)dz remains finite because S(z, n∗(z)) satisfies (12) evaluated at (z, n∗(z)). It can then be shown that, in
the limit, q(θ)R(S∗n) depends only on S∗n and θ, but not on A directly. The details of the derivation are available upon request.
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E.3.4 Limiting value function

We now return to the limiting Bellman equation for marginal surplus. Given that q(θ)R(S∗n) = 0,11

making the generator L explicit, applying the result that n = n∗(z), and noting that Sn(n, z) ≥ 0 is

satisfied with equality, we have

ρS(z, n∗(z)) = y(z, n∗(z))− n∗(z)b + µ(z)Sz(z, n∗(z)) +
σ(z)2

2
Szz(z, n∗(z))

s.t. S(z, n∗(z)) ≥ 0

Our key result in the text was that the limiting economy featured a value function that depended only

on z. However, the continuation value terms in the above value function contain partial derivatives with

respect to z, not total derivatives. To argue that it is enough to focus on the value function evaluated on

the strip, we must show that the partial derivatives approximate the total derivatives in the limit. The

following shows that this is the case in the limit

lim
A→∞

dS(z, n∗(z))
dz

= lim
A→∞

{
∂S(z, n)

∂z

∣∣∣∣∣
n=n∗(z)

+
∂S(z, n)

∂n

∣∣∣∣∣
n=n∗(z)︸ ︷︷ ︸

→S∗n=0

· dn∗(z)
dz︸ ︷︷ ︸

Finite constant

}
= lim

A→∞

∂S(z, n∗(z))
∂z

∣∣∣∣∣
n=n∗(z)

Therefore, in the limit, exit can be described by the value function evaluated on the strip, S(z) :=

S(z, n∗(z)) which evolves according to

ρS(z) = y(z, n∗(z))− n∗(z)b + µ(z)Sz(z) +
σ(z)2

2
Szz(z)

and an exit cut-off determined by S(z) = 0.

E.3.5 Optimal size

We now characterize the optimal size of incumbents in the limit and verify (?). We note that, if for a

small period of time dt, the firm was away from the exit cutoff but close to its optimal size, then

S(z, n) ≈
[
y(z, n)− bn

]
dt + e−ρdtE

[
S
(

zdt, n∗(zdt)
)∣∣∣z0 = z

]

11Details are available upon request.
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because the other contributions in n− n∗(z) scale with ||Sn|| = 0. Therefore,

Sn(z, n∗(z)) ≈
[
yn(z, n∗(z))− b

]
dt

and so it must be that yn(z, n∗(z)) = b. This confirms guess (?).12

E.3.6 Summary

With on-the-job search, as A → +∞, the value function converges to the one of the Hopenhayn model.

The mass of active firms converges to some finite value. Free-entry pins down the mass of firms, and

converges to a condition that differs from the Hopenhayn model’s. There is an additional term that stems

from the value gains that entrant realize along their (very fast) growth towards their optimal size. The

equilibrating variable is the limiting market tightness, that governs the size of these gains.

E.4 On-the-job search with godfather shocks

We can relax the assumption on the entry distribution if we replace it with a “spousal” or “godfather”

shock assumption. The alternative assumption is to assume that, at rate δGξλU , a worker’s spouse finds

a job in a different location, forcing the worker to switch firms and accept any job offer. Because these

relocation shocks follow from spouses’ job contacts, the rate at which they affect workers scales with the

overall contact rate λU .

We will consider the limit when the fraction of hires from spousal shocks is small, δG → 0. Formally,

we take A→ ∞ first, and next δG → 0. The derivations follow closely those in the previous section (E.3).

The value function writes:

ρS(z, n) = max
v

y(z, n)− nb− c(v)

+ qv

{
φSn + (1− φ)

ˆ Sn

0
Hn(s)ds +

δGξλU(1− u)
qv

Sn

}
− δGξλUnSn

+ LS

s.t. S ≥ 0, Sn ≥ 0.

12To make this argument strictly formal, differentiate the Bellman equation and represent marginal surplus as an integral
with the Feynan-Kac formula as in Appendix D. The derivation details are available upon request.
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Define the return to a vacancy as

R(Sn) = φSn + (1− φ)

ˆ Sn

0
Hn(s)ds +

δGξλU(1− u)
qv

Sn

The growth of employment becomes

g(z, n) = qv∗(z, n)
[

φ + (1− φ)Hn(Sn(z, n)) +
δGλU(1− u)

qv

]
− ξλUn

[
1− Hv(Sn(z, n))

]
− δGξλUn

E.4.1 Aggregates in the limit

The same arguments as in section E.3 apply. Because of the employed jobseekers and because vacancies

remain finite by aggregate feasibility, market tightness θ remains finite as A → ∞. Thus, both q and λU

diverge with A.

Here too, we restrict attention to the economically meaningful case in which (1) output remains fi-

nite and strictly positive in the limit, and (2) firms remain active on average for a strictly positive time

period in the limit. (1) implies that the mass of active firms m0 also remains finite. (2) implies that the

rate at which workers separate into unemployment limits to a positive constant ∆. Since u ≈ ∆
λU , the

unemployment rate (as well as φ) converges to zero. Moreover, since

v = m0q1/γ||R (Sn) ||1/γ,

||R (Sn) || goes to zero at the same rate at which A diverges.

E.4.2 Invariant distribution of marginal surpluses

We now show that the distribution of marginal surpluses degenerates to a single value on the support

of the invariant distribution.

From the KFE equation, the growth of employment inside the continuation region is:

g(z, n) = q
(

φ + (1− φ)Hn(Sn) +
δGξθ(1− u)

v

)
·
(

qR(Sn)
)1/γ

− nλUξ
(
(1− Hv(Sn(z, n)) + δG

)
Using the expression for v and u in the limit, we again obtain that

q
1+γ

γ

λU ≈ ξm−1
0 ||R(Sn)||−

1
γ .
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Using this expression and recalling that in the limit φ = 0 and that v = ξθ,

g(z, n) ≈ λU ·
{

ξm−1
0

(
Hn(Sn) + δG

)( R(Sn)

||R(Sn)||

)1/γ

− ξn
(

1− Hv(Sn) + δG
)}

.

Since λU diverges, at the points in the state space that have positive employment in steady state the

bracket must vanish in the limit, i.e.

m−1
0

(
Hn(Sn) + δG

)( R(Sn)

||R(Sn)||

)1/γ

= n
(

1− Hv(Sn) + δG
)

Now consider the limit in which the spousal shocks are small, δG → 0. Then we obtain

m−1
0 Hn(Sn)

(
R(Sn)

||R(Sn)||

)1/γ

= n
(

1− Hv(Sn)
)

Now suppose for a contradiction that Hn, the cumulative distribution function of Sn, converges point-

wise to a non-degenerate limiting distribution H∞
n .13 Then ||R(Sn)|| converges to a non-zero value.

Consider a firm at the top of the distribution, such that 1− Hv(Sn) = 0. For such firm R(Sn) > 0. With a

non-degenerate distribution, the left-hand-side cannot be zero in the limit, a contradiction.

We have again shown that the invariant distribution of marginal surpluses concentrates on a strip

{z, n∗(z)}z where the limiting marginal surplus is equalized.14 We denote S∗n its common limit. In addi-

tion, to a second order, Sn(z, n∗(z)) = S∗n +O(δG)

E.4.3 Unique value for S∗n on the limiting strip, and finite value for labor market tightness θ

To pin down labor market tightness, we return to the maximized value. Given that firms jump to their

optimal size, we can evaluate R(Sn) at S∗n for each term that corresponds to a jump. We arrive at the

following expression15 up to a second order in δG,

ρS(z, n) = y(z, n)− nb

+
γ

1 + γ

{
κ0Sn + κ0 I0S∗n + ξδGΛ(θ)

θ

} 1+γ
γ

− ξδGΛ(θ)n

+ LS

where κ0 = ∆
ξ , I0 ≥ 0 and Λ(θ) = λUS∗n.

13So the probability measure of Sn in the cross-section would converge in distribution to a non-degenerate limit.
14We can argue that it is such a strip using the concavity properties shown in Appendix D.
15The details of the derivation are available upon request.
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For the value of entry to remain finite, it must be that Λ(θ) remains finite as A→ +∞, for any δG > 0.

Since Λ(θ) = λUS∗n and λU → +∞, S∗n → 0 up to a second order in δG.

Using free-entry again, we can now draw two additional conclusions. First, ΛδG converges to a

constant as δG → 0. That constant may be positive, but may also be zero. Denote that constant

w− b ≡ lim
δG↓0

ξΛδG ≥ 0

Define also

C f (w, θ) = − lim
δG↓0

κ0γ

1 + γ

{
w− b

θ

} 1+γ
γ

.

Substituting these definitions into the Bellman equation, we obtain

ρS(z, n) = y(z, n)− nw− C f + LS .

E.4.4 Limiting value function

The value function evaluated on the strip {z, n∗(z)}z – where Sn = 0 in the limit – converges to the

solution of

ρS(z, n∗(z)) ≈ y(z, n∗(z))− n∗(z)w− C f

+ µ(z)
∂S
∂z

(z, n∗(z)) +
σ2(z)

2
∂2S
∂z2 (z, n∗(z))

S(z, n∗(z)) ≥ 0

where recall that the continuation term vanishes for incumbent firms. We have made explicit the genera-

tor L. Recall that the candidate limiting competitive economy has a value function that depends only on

z. However, the continuation value terms here contain partial derivatives w.r.t. z, not total derivatives.

To argue that it is enough to focus on the value function evaluated on the strip, we must show that the

partial derivatives approximate the total derivatives in the limit. To see this, compute

dS(z, n∗(z))
dz

=
∂S
∂z

(z, n∗(z)) +
∂S
∂n

(z, n∗(z)) · dn∗(z)
dz

But now recall that ∂S
∂n (z, n∗(z)) → 0. In addition, dn∗(z)

dz stays finite by definition of n∗(z). Therefore, as

A→ ∞,

dS(z, n∗(z))
dz

≈ ∂S
∂z

(z, n∗(z))
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Therefore, in the limit, the exit behavior of an existing firm can be described by the firm’s realized value:

S(z) ≡ S(z, n∗(z))

ρS(z) = y(z, n∗(z))− n∗(z)w− C f + LS(z)

S(z) ≥ 0

E.4.5 Optimal size

We now characterize the optimal size of incumbents in the limit. We note that, for a small period of time

dt, away from the exit cutoff and close to the optimal size,

S(z, n) ≈
[
y(z, n)− wn

]
dt + e−ρdtE

[
S(zdt, n∗(zdt)|z0 = z

]
because the other contributions in n− n∗(z) scale with ||Sn|| = 0. Therefore,

Sn(z, n∗(z)) ≈
[
yn(z, n∗(z))− w

]
dt

and so it must be that yn(z, n∗(z)) = w.

E.4.6 Summary

With on-the-job search, as A → +∞, the value function converges to one of the Hopenhayn model, and

a wage w ≥ b. The mass of active firms converges to some finite value. Free-entry pins down the mass

of firms, and converges to a condition that differs from the Hopenhayn model’s. There is an additional

term that stems from the value gains that entrant realize along their (very fast) growth towards their

optimal size.

The presence of godfather shocks requires coalitions to pay the limiting marginal surplus S∗n very

frequently as they hire (or lose) many workers each instant. This extra value spending reduces the

optimal size of a coalition. As S∗n goes to zero in the limit, but coalitions must pay this small cost more

and more frequently, the total cost per worker stays finite. As a result, the frictionless limit resembles

the Hopenhayn economy, but with an endogenous cost of labor that reflects marginal surplus spending

by coalitions. This endogenous cost of labor plays the role of a limiting wage. Similarly, part of that

marginal surplus spending results in an endogenous contribution to the fixed cost.
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F Algorithm

Recall that the problem facing the coalition is to optimally separate, exit and post vacancies such as to

maximize the joint coalition value,

ρΩ(z, n) = max
v≥0

y (z, n)− δn [Ωn(z, n)−U] (19)

+ q

[
φ [Ωn(z, n)−U] + (1− φ)

ˆ
max

{
Ωn (n, z)−Ωn

(
n′, z′

)
, 0
}

dHn
(
n′, z′

) ]
v

− c (v, n)

+ µ(z)Ωz(z, n) +
σ2(z)

2
Ωzz(z, n)

s.t.

Ω(z, n) ≥ nU + ϑ

Ωn(z, n) ≥ U

We can rewrite the term under the integral sign in (19) to integrate directly over Ω′n = Ωn (n′, z′)

ˆ Ωn(n,z)

U
[Ωn (n, z)−U]−

[
Ω′n −U

]
dHn

(
Ω′n
)

where we used the fact that the lower bound of the support must be U, since Ω′n ≥ U and the upper

bound is given by the fact that a firm only hires if Ω′n ≤ Ωn (n, z), and we added and subtracted U in the

integrand. Since Ω′n ∈ [U, Ωn (n, z)] implies Ω′n −U ∈ [0, Ωn (n, z)−U], we can integrate over Ω′n −U

and adjust the bounds

ˆ Ωn(n,z)−U

0
[Ωn (n, z)−U]−

[
Ω′n −U

]
dHn

(
Ω′n −U

)
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We can hence restate the problem (19) as

ρΩ(z, n) = max
v≥0

y (z, n)− δn [Ωn(z, n)−U] (20)

+ q

[
φ [Ωn(z, n)−U] + (1− φ)

ˆ Ωn(n,z)−U

0
[Ωn (n, z)−U]−

[
Ω′n −U

]
dHn

(
Ω′n −U

) ]
v

− c (v, n)

+ µ(z)Ωz(z, n) +
σ2(z)

2
Ωzz(z, n)

s.t.

Ω(z, n) ≥ nU + ϑ

Ωn(z, n) ≥ U

Let S (z, n) be the surplus of the coalition, S (z, n) = Ω (z, n) − nU. Note that Sz (z, n) = Ωz (z, n),

Szz (z, n) = Ωzz (z, n) and Sn (z, n) = Ωn (z, n)−U. Substituting this in problem (20),

ρS (z, n) = max
v≥0

y (z, n)− δnSn (z, n)

+ q

[
φSn (z, n) + (1− φ)

ˆ Sn(z,n)

0
Sn (z, n)− S′n dHn

(
S′n
) ]

v

− c (v, n)

+ µ(z)Sz (z, n) +
σ2(z)

2
Szz (z, n)− ρnU

s.t.

S (z, n) ≥ ϑ

Sn (z, n) ≥ 0

Integrate by parts the expected value of a vacancy conditional on meeting an employed worker

ˆ Sn(z,n)

0

[
Sn (z, n)− S′n

]
dHn

(
S′n
)

=
[
Sn (z, n)− S′n

]
Hn
(
S′n
) ∣∣∣∣Sn(z,n)

0
+

ˆ Sn(z,n)

0
Hn
(
S′n
)

dS′n

= [Sn (z, n)− Sn (z, n)] Hn (Sn (z, n))

− [Sn (z, n)− 0] Hn (0) +
ˆ Sn(z,n)

0
Hn
(
S′n
)

dS′n

The second term on the second line is equal to zero since the constraint on the firms’ problem Sn (z, n) ≥ 0
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implies that the distribution of marginal surpluses at other firms must also be zero at zero

ˆ Sn(z,n)

0

[
Sn (z, n)− S′n

]
dHn

(
S′n
)
=

ˆ Sn(z,n)

0
Hn
(
S′n
)

dS′n

Recall that we definedH (x) as the integral of the cdf Hn: H (x) =
´ x

0 Hn (u) du

ˆ Sn(z,n)

0

[
Sn (z, n)− S′n

]
dHn

(
S′n
)
= H (Sn (z, n))

Substituting this into the Bellman equation

ρS (z, n) = max
v≥0

y (z, n)− δnSn (z, n)

+ q [φSn (z, n) + (1− φ)H (Sn (z, n))] v

− c (v, n)

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)− ρnU

s.t.

S (z, n) ≥ 0

Sn (z, n) ≥ 0

We assume that the vacancy cost satisfies c (v, n) = c
( v

n

)
v, where c is iso-elastic with elasticity γ.

Define the functionH (x) byH (x) = q [φx + (1− φ)H (x)]. Substituting this into problem (20)

ρS (z, n) = max
v≥0

y (z, n)− δnSn (z, n)

+ H (Sn (z, n)) v− c (v, n)

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)− ρnU

Since c (v/n) is iso-elastic in (v/n), cv (v, n) = (γ + 1) c
( v

n

)
.16 Along with the first order condition

cv (v, n) = H (Sn (z, n)), this implies

c (v, n) = c
( v

n

)
v =

1
γ + 1

cv (v, n) v =
1

γ + 1
H (Sn (z, n)) v

16

cv = c′
v
n
+ c =

(
c′

c
v
n
+ 1
)

c = (γ + 1) c
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Therefore the total value of vacancy posting is

H (Sn (z, n)) v− c (v, n) =
γ

γ + 1
H (Sn (z, n)) v

H (Sn (z, n)) v− c (v, n) =
γ

γ + 1
H (Sn (z, n))

( v
n

)
n

Letting c
( v

n

)
= κ

1+γ

( v
n

)γ and using c
( v

n

)
= 1

γ+1H (Sn (z, n)) then

v
n
= κ−1/γH (Sn (z, n))

1
γ

and

H (Sn (z, n)) v− c (v, n) =
γκ−

1
γ

γ + 1
H (Sn (z, n))

γ+1
γ n

Substituting this into the Bellman equation

ρS (z, n) = y (z, n)− δnSn (z, n)

+
γκ−

1
γ

γ + 1
H (Sn (z, n))

γ+1
γ n

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)− ρnU

Collecting terms and recognizing that ρU = b,

ρS (z, n) = y (z, n)− bn (21)

+

[
γκ−

1
γ

γ + 1
H (Sn (z, n))

γ+1
γ

Sn (z, n)
− δ

]
Sn (z, n) n

+ µ(z)Sz(z, n) +
σ2(z)

2
Szz(z, n)

subject to

S(z, n) ≥ 0

Sn(z, n) ≥ 0

H (Sn (z, n)) = q [φSn (z, n) + (1− φ)H (Sn (z, n))]

H (Sn (z, n)) =

ˆ Sn(z,n)

0
Hn (s) ds
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F.1 Algorithm

The algorithm consists of three steps, implemented in MATLAB called from master file MAIN.m.

Step 0: Construct an initial guess. Start by constructing a nz× nn grid for log productivity and log size.

Let π = y(z, n)− bn denote the stacked (nz ∗ nn)× 1 vector of flow payoffs on this grid. Guess an initial

surplus S0 on this grid (a (nz ∗ nn)× 1 column vector); a distribution of firms over productivity and size

h0 (a (nz ∗ nn)× 1 column vector); aggregate finding rates q0 and λ0; and an efficiency-weighted share of

unemployed searchers, θ0. Construct marginal surplus. Construct exit regions, separation regions and

the vacancy policy. File InitialGuess.m does this.

Step I: Iterate to convergence the coalition’s problem for given aggregate states. For t ≥ 1, given

qt−1, θt−1, ht−1 and St−1, solve the coalition’s problem to update the coalition value to St. The solution

to the coalition’s surplus function is obtained in an inner iteration τ. Denote by St,τ the surplus in outer

iteration t during inner iteration τ, initiated with St,0 = St; Tn(z, n) a (nz ∗ nn)× (nz ∗ nn) matrix such that

St,τ
n = Tn(z, n)St,τ, where St,τ

n is the stacked (nz ∗ nn)× 1 vector of derivatives of S w.r.t. n during outer

iteration t and inner iteration τ; Tz a (nz ∗ nn)× (nz ∗ nn) matrix such that St,τ
z = TzSt,τ, where St,τ

z is the

stacked (nz ∗ nn)× 1 vector of derivatives of S w.r.t. z during outer iteration t and inner iteration τ; and

Tzz a (nz ∗ nn)× (nz ∗ nn) matrix such that St,τ
zz = TzzSt,τ, where St,τ

zz is the stacked (nz ∗ nn)× 1 vector of

second derivatives of S w.r.t. z during outer iteration t and inner iteration τ. Note that the matrix Tn(z, n)

depends on (z, n) in the sense that the approximation is done either forward or backward depending on

the endogenous drift for n at (z, n) (note that the drift of and innovations to z are independent of (z, n)).

Within each outer iteration t, we iteratively update St−1,τ for τ ≥ 1 following equation (21) based on

(ρ +
1
∆

)
1−

γκ
− 1

γ

γ + 1

H
(

St−1,τ−1
n

) γ+1
γ

St−1,τ−1
n

− δ1

 . ∗ Tn (z, n)− µTz −
σ2

2
Tzz

 St−1,τ = π +
1
∆

St−1,τ−1

where ∆ is the step size, .∗ denotes the element-by-element product, and H
(

St−1,τ−1
n

) γ+1
γ

/St−1,τ−1
n is

a (nz ∗ nn) × (nz ∗ nn) matrix constructed using the previous iteration’s derivative of S stacked (nz ∗

nn) times in the column dimension. The step size cannot be too large for the problem to converge.

These iterations are performed by iterating on τ until convergence by file IndividualBehavior.m, and

the solution is assigned as the updated St. We also obtain from the converged solution the updated

separation, exit and a vacancy policies.
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Step II: Iterate to convergence the aggregate states for given individual behavior. Given updated

individual behavior in outer iteration t, obtain through iteration in an inner loop τ the distribution of

firms ht, the aggregate meeting rates qt and λt, the share of unemployed searchers θt, the distribution

of workers over marginal surplus H t
n, and the distribution of vacancies over marginal surplus H t

v. File

AggregateBehavior.m proceeds to do this in four steps.

Initiate each aggregate object with the previous outer iteration solution, xt−1,0 = xt−1. Then:

Step II-a. Update the distribution of workers over marginal surplus to H t−1,τ
n given a distribution of

firms ht−1,τ−1 and marginal surplus St
n, where the latter was obtained in Step I above. This is done by

file CdfG.m.

Step II-b. Update the distribution of vacancies over marginal surplus H t−1,τ
v given a distribution of

firms ht−1,τ−1, the vacancy policy vt and the ranking of firms in marginal surplus space. This is done by

file CdfF.m.

Step II-c. Update the finding rates qt−1,τ, λt−1,τ and θt−1,τ that is consistent with the vacancy policy vt

and the distribution of firms ht−1,τ−1. This is done by file HazardRates.m.

Step II-d. Given H t−1,τ
n , H t−1,τ

v , qt−1,τ, λt−1,τ and θt−1,τ, update the distribution of firms ht−1,τ follow-

ing the Kolmogorov forward equation in steady-state. This is executed by file Distribution.m.

Iterate over the four sub-steps Step II-a–Step II-d until convergence and assign the updated aggregate

states qt, λt, θt and ht. We subsequently return to step Step I and iterate on step Step I–Step II until both

the surplus function and the aggregate states have converged.

F.2 Estimation

The criterion function that we minimize is highly-dimensional and potentially has many local minima.

Furthermore, the equilibrium does not exist for some regions of the parameter space. For example, if

the drift in productivity is not sufficiently negative, there is no ergodic distribution for productivity.

For these reasons, using a sequential hill-climbing optimizer that updates its initial guess sequentially

through a gradient-based method is prohibitive. Our solution is to use an algorithm that we can easily

parallelize, that efficiently explores the parameter space, and for which we can ignore cases with no

equilibrium.

We set up a hyper-cube in the parameter space and then initialize a Sobol sequence to explore it.

A Sobol sequence is a quasi-random low-discrepancy sequence that maintains a maximum dispersion

in each dimension and far outperforms standard random number generators. We then partition the

sequence and submit each partition to a separate CPU on a high performance computer (HPC). From
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each evaluation of the parameter hyper-cube, we save the vector of model moments. We then collect

them, splice them all together, and choose the one that minimizes the criterion function. Starting with

wide bounds on the parameters, we run this procedure a number of times, shrinking the hyper-cube step

by step until we achieve the global minimum.

Compared to standard optimizers, this procedure has the advantage that, as a byproduct of the esti-

mation, we can learn a lot about model identification. From an optimizer one may retrieve the moments

of the model only along the path of the parameter vector chosen by the algorithm. In our case, we retrieve

tens of thousands of evaluations, knowing that the low-discrepancy property of the Sobol sequence im-

plies that for an interval of any one parameter, the remaining parameters are drawn uniformly. Plotting

each single moment against parameters therefore shows the effect of a parameter on a certain moment,

conditional on local draws of all other parameters.
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