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A Additional Results and Robustness Checks
A.1 Effect of Homes on Fire Costs

A.1.1 Robustness Checks

Appendix Table 1 shows the results from Table 1 in the main text, including coeffi-
cients on the control variables as well as an additional “no controls” specification. It
also shows an additional specification that includes controls for the distance from the
ignition point to the nearest primary road.30

Appendix Table 2 shows a robustness check proposed by Oster (2019), building on
Altonji, Elder, and Taber (2005) and related work. This sensitivity test bounds
the potential bias from unobservable confounders under an assumption about δ, the
relative degree of selection on observables and unobservables, and an assumption
about Rmax, the R2 of a hypothetical regression containing all the observables and
unobservables. Oster (2019) shows that for δ = 1 (equal selection on onbservables
and unobservables), the bias-adjusted treatment effect β∗ is approximately β̃ − [β̇ −
β̃]Rmax−R̃

R̃−Ṙ
. Here, β̃ and R̃ are the coefficient and R2 from a regression with the full

set of controls, and β̇ and Ṙ come from a restricted specification. This approximate
formula provides intuition: results are more robust when including controls produces
smaller changes in the coefficient, and larger increases in the R2.

We implement the exact version of the calculation provided in Oster (2019) and the
software package psacalc. Because Oster’s test is limited to a scalar treatment, we
implement the regression test for a linear version of Equation 3, where g(Homes) is the
distance from the ignition point to the nearest home (this is a mild restriction given
the near-linearity apparent in Figure 3). The restricted specification includes only
national forest fixed effects. The controlled specification is Column (3) from Table 1,
the richest set of controls that we discuss. It includes the weather, topography, and
vegetation variables described in Table 1 and Appendix Table 1. It also includes year-
month by state (i.e., month of sample by state) dummies that proxy for unobservable
changes in fire risk due to factors such as fuel dryness. We follow Oster (2019) and
assume that Rmax = 1.3R̃. The final column of Appendix Table 2 reports Oster’s
recommended quantity, an “identified set” for the effect of distance to homes on fire
costs. The lower bound is the bias-adjusted treatment effect assuming δ=1, and the
upper bound is β̃. In Oster’s framework, results are considered robust when this set
excludes zero. This condition holds in our case. Furthermore, the lower bound on
the treatment effect of -0.042 is similar to the fully-controlled regression coefficient of
-0.050.

Appendix Table 3 shows additional robustness checks for the effects of the number of

30. Road data come from the US Census TIGER/Line shapefile for primary roads for 2016. Pri-
mary roads roughly correspond to interstate highways.
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nearby homes on fire costs. Columns (1) through (5) show the same checks that we
showed for the effect of the nearest home in Table 1. Our results are robust to these
various tests. Column (6) shows an additional specification that measures the stock
of nearby homes by total transaction value, instead of number of homes. Results are
again similar.

Appendix Figure 1 shows results using different radii around the ignition point to
count threatened homes. The omitted category in each regression is fires with zero
homes within the radius. The other bins in each regression are defined by deciles
of number of homes, conditional on any homes within the radius. For all three
radii, there is a clear pattern of quick increases across the first two bins, and then
roughly constant costs at higher numbers of homes. Note that direct comparisons
of these coefficients across bins are difficult, since the comparison group of fires with
zero threatened homes is systematically different across columns (e.g., for 40 km,
all fires with zero homes are very remote by construction). Several other effects
also presumably occur simultaneously as we widen the radius: since further-away
homes have less effect on costs, these measures attenuate somewhat; however, because
calculating density over a wider area may reduce noise in our assessment of the number
of threatened homes, there may be another factor making these measurements more
precise. Finally, note that the actual bin endpoints vary across models. Importantly,
however, the obvious non-linear pattern of costs by number of homes exists for any
radius.

Appendix Figure 2 plots covariate overlap for the covariates included in the regres-
sions.
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Appendix Table 1: The Effect of Proximity to Homes: Full Results

(1) (2) (3)

10–20 km -0.5232 -0.3436 -0.4099
(0.1709) (0.1491) (0.1586)

20–30 km -1.1075 -0.9018 -0.9957
(0.3261) (0.2676) (0.2861)

30–40 km -2.4784 -1.6605 -1.7601
(0.3796) (0.4528) (0.5275)

40+ km -2.7290 -2.0257 -2.1063
(0.3631) (0.3774) (0.4511)

WindSpeed 0.0642 0.0691
(0.0347) (0.0347)

WindSpeed2 -0.0017 -0.0019
(0.0013) (0.0013)

TerrainSlope 0.0413 0.0420
(0.0181) (0.0185)

TerrainSlope2 -0.0007 -0.0007
(0.0004) (0.0004)

VaporPressureDeficit 0.0681 0.0661
(0.0371) (0.0351)

VaporPressureDeficit2 -0.0015 -0.0014
(0.0007) (0.0007)

Precipitation -0.0513 -0.0446
(0.0440) (0.0432)

Precipitation2 0.0010 0.0010
(0.0010) (0.0010)

South/SW Aspect 0.2361 0.2322
(0.1356) (0.1362)

Shrub Fuel Model -0.1266 -0.1482
(0.1926) (0.1921)

Timber Fuel Model -0.0829 -0.0900
(0.1545) (0.1527)

Slash Fuel Model 0.5048 0.4466
(0.3638) (0.3730)

Urban/Barren Fuel Model -0.1804 -0.1837
(0.2460) (0.2476)

Distance to Primary Road 0.0109
(0.0064)

(Distance to Primary Road)2 -0.0000
(0.0000)

Constant 13.5168 10.8345 10.1655
(0.1873) (1.6243) (1.6171)

National Forest FE X X
Year by State FE X X
Month-of-Year by State FE X X
Fires 2,089 2,089 2,089
R2 0.09 0.43 0.43

Notes: Column (2) reproduces Column (2) of Table 1, showing coefficients for the controls. Column (1) shows a
no-controls specification for comparison. Terrain slope is the linear slope of the ground surface. Wind speed is average
speed on the day of ignition at the reference weather station listed in FAMWEB (in miles per hour). Vapor pressure
deficit is for the ignition location and day, from PRISM, and measured in hectopascals (millibars). Precipitation is
the amount of precipitation on the ignition day in mm, from PRISM. Fuel model fixed effects include four categories
corresponding to LANDFIRE fuel models for brush, grass, timber, and barren/urban/other. The omitted fuel model
category is grass. Forest unit fixed effects include 86 national forests in the western US Standard errors are clustered
at the national forest level.

A4



ONLINE APPENDIX

Appendix Table 2: Oster’s (2019) Coefficient Stability Test

Restricted Controlled Identified
Specification Specification Set

Coefficient -0.054 -0.050 (-0.042,-0.050)
Standard Error 0.005 0.007
R2 0.27 0.54

Included Controls National Forest FEs National Forest FEs,
Weather, Topography,

Vegetation, Month-of-sample
by state dummies

Notes: This table implements a procedure proposed by Oster (2019) to bound
selection bias due to unobservable confounders. See the text of Appendix A.1.1
for details.
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Appendix Table 3: The Effect of Number or Value of Homes, Robustness
Checks

Number Value

(1) (2) (3) (4) (5) (6)

Quintile Bins

1 0.97 0.94 0.91 1.00 1.15 0.89
(0.31) (0.31) (0.36) (0.34) (0.69) (0.32)

2 1.52 1.46 1.38 1.46 1.41 1.43
(0.38) (0.37) (0.40) (0.39) (0.54) (0.42)

3 1.61 1.57 1.37 1.45 1.91 1.64
(0.45) (0.43) (0.48) (0.45) (0.66) (0.40)

4 1.85 1.78 1.75 1.71 2.31 1.86
(0.39) (0.37) (0.44) (0.43) (0.65) (0.37)

5 1.87 1.81 1.54 1.75 1.98 1.83
(0.43) (0.41) (0.47) (0.49) (0.70) (0.41)

Controls for Weather, X X X X X
Topography, and Vegetation

National Forest FE X X X X X X
Month-of-Year by State FE X X X X X
Year by State FE X X X X X
Month-of-Sample by State FE X
Lightning fires only X
Timber Fuels only X

N 2,089 2,089 2,089 1,470 772 2,089
R2 0.42 0.43 0.54 0.45 0.57 0.43

Notes: Columns (1) through (5) reproduce estimates from Figure 4 in the main
text, using bins of the number of homes within 30 kilometers as the variables of
interest. The bins are equal observation bins for fires with at least one nearby
home (see Figure 4 for bin ranges). The omitted category is fires with zero nearby
homes. Column (6) shows an alternative specification that measures the stock of
homes within 30 km by total transaction value. Again, bins are equal observation
bins for fires with at least one nearby home, and the excluded category is fires
with zero nearby homes. Homes with unusable transaction values, as defined in
Section B.2, are assigned the average transaction value of other homes withing
30 km of the ignition point. See Table 1 for details on controls for weather,
topography, and vegetation. Standard errors are clustered by national forest.
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Appendix Figure 1: Costs by Number of Homes: Alternative Radii

Notes: This figure reproduces Figure 4 from the main text using alternative radii. Each set
of markers shows coefficients from a single regression using a different radius around the
ignition point of the fire. The bins correspond to deciles of the distribution of number of
homes within the radius, conditional on any homes within the radius. The omitted category
in each regression is fires with zero homes within the radius. For all three radii, there is a
clear pattern of quick increases across the first three to four bins, and then roughly constant
costs at higher numbers of homes.
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Appendix Figure 2: Covariate Overlap by Distance from Ignition Point to Nearest Home

(a) Day of Year (Ignition) (b) Wind Speed (mph)

(c) Temperature (F) (d) Vapor Pressure Deficit

(e) Terrain Slope (f) South/southwest-facing

(g) Lightning-caused (h) “Timber” fuel model

Notes: Figure shows covariate distributions for the US Forest Service fires analyzed in Table 1 and
Figures 3 and 4. Panels (b), (c), and (d) report weather on the day of ignition. Wind speed is
average wind speed from the reference weather station reported in FAMWEB. Temperature and vapor
pressure deficit are mean daily values from PRISM. Terrain slope is the slope percentage, where 100
corresponds to a slope of 1 (i.e, a 45-degree line). “Timber” fuel models follow the Anderson Fire
Behavior Fuel Models.
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A.1.2 Non-USFS Agencies

The analysis of the effect of home construction on firefighting costs in Section 4
focuses on fires managed by the US Forest Service. Forest Service fires represent the
largest group of expenditures and longest time series in our dataset. The national
forests also provide a useful source of identifying variation, in that each national forest
represents a mostly-contiguous area of public land with broadly similar landscapes
and vegetation. This contiguity allows us to take advantage of variation in ignition
locations within each of these 86 units using a fixed effects strategy. In comparison,
Bureau of Land Management lands are less likely to consist of large contiguous units
of land (instead, patches of BLM land in each state are managed by a system of
district offices). Similarly, Cal Fire incidents take place on diffuse private and state
lands throughout California.

For completeness, this section shows the relationship between homes and ignition
costs for each of the agencies from which we were able to obtain data. Given that the
empirical design used in the main text is not available for these other agencies, we
focus on raw correlations. Appendix Figure 3 plots log firefighting costs against the
distance from the ignition point to the nearest home. Across agencies, costs decline
for fires located further from homes. Given that the data represent independent
administrative databases compiled separately by each agency, the broad similarities
across agencies are notable. For the US Forest Service, Cal Fire, the Bureau of Indian
Affairs, and the National Park Service, there is a clear downward relationship with
a linear slope between -0.036 and -0.073. Bureau of Land Management incidents
show a different relationship, with a slope near zero and a lower intercept. One
possible explanation for this difference is that it may reflect the characteristics of
fires managed by BLM. Compared to USFS fires, the fires managed by BLM are
more likely to occur in easier-to-manage grass areas, and less likely to occur in timber
fuels. Notwithstanding this pattern for BLM, the broad agreement across the other
four agencies is reassuring. This is particularly true given the relatively small size of
BLM expenditures relative to USFS and Cal Fire, both overall and in per-incident
terms (see Appendix Table 7).

Appendix Figure 4 plots log firefighting costs against the total number of nearby
homes. Across agencies, these ln-ln plots imply small or near-zero increases in fire-
fighting costs as the number of nearby homes grows large.
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Appendix Figure 3: Cost vs. Distance to Nearest Home, by Agency

Notes: Figure shows binned scatterplots for each agency from which we obtained incident
expenditure data. The dots show average log incident costs for each decile of distance to
nearest home. The red lines show a linear fit. Cal Fire is the California Department of
Forestry and Fire Protection; BIA is the Bureau of Indian Affairs; BLM is the Bureau of
Land Management; and NPS is the National Park Service.
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Appendix Figure 4: Cost vs. Number of Nearby Homes, by Agency

Notes: Figure shows binned scatterplots for each agency from which we obtained incident
expenditure data. The dots show average log incident costs for each decile of log number
of nearby homes (fires with zero nearby homes are not plotted). The red lines show a
quadratic fit. Cal Fire is the California Department of Forestry and Fire Protection; BIA
is the Bureau of Indian Affairs; BLM is the Bureau of Land Management; and NPS is the
National Park Service.
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A.1.3 Effect of Homes on the Number of Fires

To evaluate whether adding homes increases the number of fires (in addition to in-
creasing expenses on each fire), we use panel variation in home construction near
national forests in our dataset. We construct a year-by-national forest panel includ-
ing 76 national forests and 20 years. Because new homes are most likely to affect the
number of ignitions in places with relatively low levels of existing development, we
exclude national forests with more than 100,000 homes within 30 kilometers of the
national forest boundary in 1995 (this excludes 20% of national forest areas with the
highest 1995 populations).

We implement a range of panel regression specifications. The outcome variable is
the number of fires larger than 300 acres in each forest-year. Our preferred sta-
tistical approach is a Poisson regression, since the number of large fires is a count
variable.31 The key identification challenge in this setting is to separate the effect
of new home construction from other time-varying determinants of fire probability.
Because homes are durable, the number of homes near each national forest increases
monotonically across the sample. We adopt a variety of time trends and year fixed
effects specifications to control as flexibly as possible for potential secular trends in
the number of fires in each national forest caused by factors like climate change or
annual drought cycles. Our results in this section should be interpreted with caution,
since they rest on the assumption that, conditional on these controls, the trend in
new home construction near each national forest is uncorrelated with other trends in
fire occurrence.

Appendix Table 4 shows the results. All of these regressions include national forest
fixed effects to account for time-invariant determinants of fire risk, such as local
topography. Across specifications, new home development has a small positive effect
on the number of large fires each year. In Column (1), the estimated coefficient in the
Poisson regression is 0.042. This implies that adding 1,000 new homes increases the
annual number of fires in this national forest by about 4.3%. The mean number of
large fires in each national forest-year is 1.48, so this implies that an additional 1,000
homes lead to 0.06 additional large fires per year. Columns (2)–(5) include alternative
polynomial time trends and find similar results. Column (6) instead includes year
fixed effects, which allows for arbitrary annual trends at the West-wide level. Column
(7) shows the same fixed effects specification in an OLS regression.

31. We use a cluster-robust variance estimator to eliminate the typical limitation of classical Poisson
regression, which is that that the mean and variance of the estimates must be equal.
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Appendix Table 4: The Effect of Homes on the Number of Fires

(1) (2) (3) (4) (5) (6) (7)
Poisson Poisson Poisson Poisson Poisson Poisson OLS

Thousands of Homes 0.042 0.050 0.040 0.051 0.043 0.040 0.033
(0.008) (0.011) (0.013) (0.011) (0.012) (0.013) (0.018)

National Forest FE X X X X X X X
Linear Time Trend X
Quadratic Time Trend X
Regional Linear Trends X
Regional Quadratic Trends X
Year Fixed Effects X X

N 1,180 1,180 1,180 1,180 1,180 1,180 1,180

Notes: Table reports the results of seven separate regressions. In each regression
the dependent variable is the number of fires larger than 300 acres in each national
forest-year. Columns (1)-(6) show results for several Poisson regression specifica-
tions, and Column (7) shows an OLS specification for comparison. The variable of
interest is the number homes within 30 kilometers of the national forest boundary,
in thousands. The table reports regression coefficients and standard errors, which
are calculated using a cluster robust variance estimator at the national forest level.
For the Poisson specifications, the coefficients can be converted to expected per-
centage changes in the number of large fires using calculation eβ − 1. See text for
details. The mean number of fires in each national forest-year is 1.5. “Regional
Linear Trends” and “Regional Quadratic Trends” indicate that the regression in-
cludes separate polynomial time trends for each of the five forest service regions
included in the sample area.
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A.2 Expected Protection Costs

A.2.1 Variables Used to Define Actuarial Groups

Appendix Figure 5: Variables Used to Define Actuarial Groups

(a) Wildfire Hazard Potential (b) Population Density

(c) Region

Notes: Wildfire hazard potential: Dillon (2015). Population density: CIESIN (2017).
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A.2.2 Maps of Suppression-Only and California Measures

Appendix Figure 6 reproduces the map in Figure 6 using the alternative measures of
expected protection cost described in Section 5.1.3 of the main text. Panel A uses the
Suppression Only cost measure and Panel B uses the California-specific cost measure.
The California measure is displayed as zero for all areas outside California.

Appendix Figure 6: Expected Protection Cost, Alternative Measures

(a) “Suppression Only” (b) California-specific

Notes: This figure reproduces Figure 6 showing alternative measures of expected protection
cost. See Section 5 for a detailed description of the construction of these measures. Units
for the color scale are 2017 dollars per home. The California-specific measure in Panel (b)
is displayed as zero for areas outside California.

A.2.3 Alternative Measures Based on Interview Evidence

Table 5 compares implicit subsidy estimates using different methods to measure the
share of expenditures devoted to protecting homes. Columns 1A, 2A, and 3A show
the main estimates from Table 2. Spending on home protection for each incident is
the difference between observed costs and predicted costs for that fire in the absence
of nearby homes, using the regression model in Section 4. Columns 1B, 2B, and 3B
compute analogous subsidy estimates under the alternative assumption that 72.5% of
all fire costs are attributable to protecting homes, based on USDA (2006). Comparing
1A to 1B, 2A to 2B, and 3A to 3B shows relatively small differences.
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Appendix Table 5: Expected Parcel Protection Costs, Alternative Esti-
mates

Federal Suppression California
Suppression Plus Only

Only ($) ($) ($)
(1A) (1B) (2A) (2B) (3A) (3B)

Mean 1,077 932 2,408 2,129 2,712 2,315
p50 500 400 1,200 1,100 1,300 1,100
p90 2,100 1,800 5,200 4,500 6,600 5,500
p95 3,800 3,400 8,400 7,300 9,000 7,800
p99 12,700 11,100 22,700 20,900 18,200 15,700

N 8,633,554 8,633,554 8,633,554 8,633,554 3,483,715 3,483,715

Notes: Columns 1A, 2A, and 3A are identical to Table 2. Columns 1B, 2B,
and 3B assume that 72.5% of all fire costs are attributable to homes. The
method used to divide protection expenditures across individual homes is the
same as in the main analysis.

A.2.4 Machine Learning to Define Actuarial Groups

The main analysis assigns homes to actuarial groups and then averages historical
costs for homes in each group to yield expected protection costs. Instead of having
the researcher define these actuarial groups, it is possible to use a machine learning
technique to define groups. To evaluate the robustness of the actuarial groups used in
the main text, we implemented such an approach using a regression tree. Using right-
hand-side variables supplied by the researcher, the regression tree algorithm groups
homes in order to minimize the prediction error for historical firefighting costs in each
group. The number of groups is governed by a complexity parameter that specifies
the minimum required improvement in prediction accuracy to justify additional splits.
Appendix Figure 7 illustrates the approach. For this figure, we use a high value for
the complexity parameter so that there are relatively few splits in the tree. The
right-hand-side variables are 10 bins of wildfire hazard potential (WHP) and 10 bins
of development density as predictors.

To compare results using this approach to those displayed in Table 2 in the main
text, Appendix Table 6 shows the distribution of expected protection costs with a
more complex tree using 10 bins of WHP, 10 bins of development density, and the
7 firefighting dispatch regions. This tree generates 79 actuarial groups. The overall
distribution of expected protection costs with the regression tree (column 2) is similar
to the distribution of expected protection costs in the main analysis (column 1), and
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Appendix Figure 7: Illustrative Regression Tree for Defining Actuarial Groups

data$density.quantile >= 4

data$density.quantile >= 9

data$hazard.quantile < 7

data$density.quantile >= 6

data$density.quantile >= 2

data$hazard.quantile < 6 data$hazard.quantile < 7

data$hazard.quantile < 5 data$hazard.quantile < 9

 < 4

 < 9

 >= 7

 < 6

 < 2

 >= 6  >= 7

 >= 5  >= 9

2419
n=8633554

1877
n=8323362

1145
n=6688500

4874
n=1634862

3495
n=1141814

8069
n=493048

6840
n=383930

12391
n=109118

16945
n=310192

11903
n=207573

7678
n=105590

16278
n=101983

27143
n=102619

17589
n=66852

14275
n=51747

28942
n=15105

44999
n=35767

39155
n=23873

56730
n=11894

Notes: This figure illustrates the regression tree approach to defining actuarial groups using
a restricted set of predictors and a limited complexity parameter. The top number in each
node is the predicted protection cost. The number of homes in each group is given as “n”.

the correlation of individual protection costs between the two approaches is 0.8.

Appendix Table 6: Expected Protection Costs using Regression Trees

(1) (2)

Mean 2,408 2,416
p50 1,200 1,300
p90 5,200 4,700
p95 8,400 8,000
p99 22,700 22,300

N 8,633,554 8,633,554

Notes: This table shows expected protection costs for the Suppression Plus
cost metric. Column 1 is identical to Table 2. Column 2 shows the distri-
bution of costs when actuarial groups are selected using a regression tree
algorithm. Percentile cutoffs are rounded to the nearest $100.
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A.3 Theory Appendix

Proof that Per-Capita Disaster Costs Decrease with Population

Claim: Per-capita disaster-related costs f(nr)
nr

+ H(f(nr)) decrease with nr. Proof :
Take the derivative with respect to nr and re-arrange.

f ′(nr)

nr

(
1 + nrH

′(f)
)
− f(nr)

n2
r

(4)

Recall f is chosen to minimize f + nrH(f), so that the derivative 1+ nrH
′(f) equals

zero. Expression 4 reduces to −f(nr)
n2
r

, which is negative.

Intensive margin changes in risky place population

This section considers the marginal protection cost and the marginal welfare impact
of changes in the risky place population. Differentiating Expression 1 with respect to
nr yields the change in net benefits,

θnr − s(nr)− ϕf ′(nr)− ϕ

[
H(f(nr)) +

∂H

∂f(nr)
f ′(nr)nr

]
(5)

The first term is WTP of the marginal risky place resident. The second is the marginal
cost of supplying housing. The third is the expected marginal increase in defensive
expenditures. The final term in brackets is the change in expected property dam-
ages, which includes expected damages for one more home and decreased expected
losses for all inframarginal homes due to increased defensive expenditures during a
disaster.

The assumptions in this model allow us to apply the envelope theorem to further
simplify Expression 5 to θnr − s(nr) − ϕH(f(nr)).32 Compare this expression for
social marginal benefit to the private marginal benefit for risky place residents, θnr −
s(nr) − ϕH(f(nr)) − ϕ ∂H

∂f(nr)
f ′(nr)nr. The latter expression includes an additional

term equalling the benefit to inframarginal residents. Thus, private marginal benefit
in the risky place exceeds social marginal benefit (recall that ∂H

∂f
< 0).

Welfare analysis on the intensive margin depends on assumptions about how devel-
opment is coordinated. If we assume the marginal resident internalizes all costs and
benefits of their location decision except central government expenditures, then fail-
ure to price marginal defensive expenditures leads to excess development in the risky
place. Such an assumption may be justified if a local government manages risky place
development to maximize local benefits, or if risky place residents arrange private side
payments. If we instead assume that the marginal resident receives no compensation

32. Rewrite θnr−s(nr)−ϕH(f(nr))−ϕf ′(nr)[1+
∂H
∂f nr]. Optimality of f means that 1+ ∂H

∂f nr = 0.
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for benefits to inframarginal households, then the failure to price marginal defensive
expenditures is offset by this second externality. If dispatch of defensive expenditures
during disasters is exactly optimal and we only consider small changes in population,
these externalities offset exactly and providing defensive expenditures for free yields
the optimal result on the intensive margin.

Let us step back from this ambiguous result and consider the empirical analysis. We
find that f ′(nr) is near zero in already-developed areas. This means that any intensive
margin distortion due to subsidized marginal protection costs would be small. It also
means that spillover benefits to inframarginal residents must be small because there
is little actual change in firefighting dispatch. Thus, regardless of what one assumes
about how development proceeds in already-developed places, our results imply that
any intensive margin distortions are small. What matters for welfare is instead new
development in undeveloped and sparsely-developed high-risk places, where the large
average protection costs that we measure imply that total benefits may not exceed
total social cost.

Extending the Theoretical Model to Private Self-protection

Let g represent the amount of private risk-reducing investment by each identical
homeowner in the risky place. Private damages in the event of a disaster are now
H(f, g), with ∂H

∂g
< 0 and ∂2H

∂g2
> 0. Assume that the central government takes g

and nr as given when choosing f during a disaster (as happens for wildfire and other
natural hazards). The optimal emergency defensive expenditure f during a disaster
is now given by,

f ∗(nr, g) = arg min
f

f + nrH(f, g)

so that f ∗ is defined by the first order condition −nr
∂H(f,g)

∂f
= 1.

If ∂2H
∂f∂g

= 0, private protection has no effect on the government’s choice of emergency
defensive expenditures. If ∂2H

∂f∂g
> 0, private investments g reduce the rate at which

damages decrease with increases in f (the marginal benefit of emergency defensive
expenditures), and thus the optimal choice of f during a disaster. For example,
increased g may reduce a structure’s vulnerability to wildfire, reducing the need for
an aggressive firefighting response (the final possibility, ∂2H

∂f∂g
< 0, seems unlikely in

practice).

Knowing the central government’s dispatch rule for aid during a disaster, homeown-
ers in the risky place choose g to minimize their private disaster-related costs. When
homeowners must reimburse the central government for their share of per-capita de-
fensive expenditures, they solve

min
g

g + ϕ
1

nr

f ∗(nr, g) + ϕH(f ∗(nr, g), g)
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When homeowners do not pay for defensive expenditures, they solve

min
g

g + ϕH(f ∗(nr, g), g)

The first order conditions for these problems are identical except for an additional
ϕ
nr

∂f∗(nr,g)
∂g

term for the fully accountable household. This term is the marginal re-
duction in future expected emergency defensive expenditures due to investments in
self-protection. Fully accountable households consider this benefit when choosing
g. When emergency defensive expenditures are provided for free, households do not
consider this benefit and thus choose less than the socially optimal investment in
self-protection.

B Construction of the dataset
Our data combine administrative data on firefighting expenditures from multiple
agencies, parcel-level assessor data for the universe of western US homes, topographi-
cal information, risk assessments, and weather conditions data. This section provides
a complete account of the dataset construction; readers should refer to section Sec-
tion 3 in the main paper for a high-level summary. Table 7 gives descriptive statistics
for the dataset and Figure 8 maps all of the large fires in the sample, colored by
agency.

B.1 Wildland Firefighting Expenditures

The fire suppression and preparedness cost data come from six different sources,
including five federal agencies and one state firefighting agency. The federal agencies
are the United States Forest Service, the National Park Service, the Bureau of Land
Management, the Bureau of Indian Affairs, and the Federal Emergency Management
Agency. The state agency is California’s Department of Forestry and Fire Protection
(Cal Fire). We obtained firefighting data at the incident level from each agency
through a combination of Freedom of Information Act (FOIA) requests (or similar
records requests for state data) and publicly available sources. Our geographical focus
is the western United States. We define the “western United States” as the states of
Arizona, California, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, Utah,
Washington, and Wyoming. We discuss each source of data in detail below, as well
as the process by which we harmonize these datasets.

B.1.1 US Forest Service

The US Department of Agriculture, Forest Service (USFS) accounts for the largest
share of fire suppression expenditures of any federal agency and is primarily responsi-
ble for fires that ignite in or near the boundaries of National Forest areas. We obtain
historical by-incident suppression costs (primarily wage and equipment costs incurred
by USFS) for fires managed by the USDA Forest Service from 1995 to 2014 from the
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National Fire and Aviation Management Web (FAMWEB) Database. Some institu-
tional detail is helpful in understanding the process by which the data are compiled:
the FAMWEB database represents a compilation of individual reports on fire occur-
rence, the conditions in which the fire ignited, and the suppression efforts undertaken
by USFS. These reports are entered into the Fire Statistics System (FIRESTAT) ap-
plication, which is run by the USFS. FAMWEB is the database which contains this
information.33

Gebert, Calkin, and Yoder (2007) argue that fire suppression costs are captured more
accurately by USFS accounting data than in the FAMWEB database. We therefore
also obtain separate USFS accounting data on incident level expenditures through
a separate Freedom of Information Act request. However, USFS was only able to
provide these records for the period 2004–2012. Moreover, because of inconsisten-
cies between agency reporting of incident PCodes, it is not possible to identify the
fire characteristics for many fires in the accounting data. In Appendix Section C,
we conduct our empirical analysis using both the accounting data and a subset of
the FAMWEB data limited to 2004–2012 and find both qualitatively and quantita-
tively similar results. We conclude that inaccuracies in the FAMWEB database are
sufficiently limited within our sampling frame to have limited impact on our em-
pirical questions of interest and therefore conduct the bulk of our analysis with the
FAMWEB data because of its greater temporal coverage.34

Over the course of our sampling frame, more than 150,000 wildfire incidents are logged
in this database. However, since the Forest Service only reports per-fire cost data for
fires above 300 acres, we limit this sample to the 2,419 fires in the 11 western states
with a size of 300 acres or larger (the smallest size for which suppression expenditures
are separately reported) for which the Forest Service was the jurisdictional owner.
We also require that each fire have suppression cost, ignition date, and location data
available.

Most ignitions are quickly suppressed at low marginal cost by “initial attack” efforts.
33. Previously, these data were compiled using Kansas City Fire Access Software, or KCFAST.

Both KFCAST and FAMWEB include data on suppression expenditures and fire locations, but
FAMWEB is the more current and complete of the two, with one exception: FAMWEB does not
include any data on which agency was responsible for a given ignition or on the wind speed and
direction at the nearest weather station at time of ignition. To obtain these additional fields, we
also load and merge in the KCFAST dataset.
34. A more subtle difference between this study and Gebert, Calkin, and Yoder (2007) is that the

latter authors use the fire cost per acre as the outcome variable when considering the drivers of
wildfire suppression costs, arguing that “fire managers are accustomed to thinking in terms of cost
per acre,” and also include the natural log of total acres burned as an explanatory variable. We
choose to use total cost as the outcome variable in our regression analysis of incident costs. We also
do not include a measure of acres burned as an explanatory variable. We prefer this specification
for two reasons: the policy-relevant figure is the total cost of suppression; and acreage burned as the
denominator and size of fire as an explanatory variable induces a reverse causality problem (since
acreage is a function of suppression effort) and a “bad controls” problem (Angrist and Pischke 2009).

A21



ONLINE APPENDIX

These incidents are not included in our dataset of large fires. We address this in
Section 5 by incorporating data on preparedness expenditures for USFS and the DOI
agencies: these are expenditures that occur not in direct response to any particular
large wildfire, but instead are undertaken to prevent or mitigate future fire risk. To
identify these costs, we obtain budget justification reports from the US Forest Service
website for the years 2007-2017. From these documents we extract the region-specific
spending allocated towards “Fire Preparedness.” In total we obtain more than $6.1
billion of preparedness spending for the regions that overlap our sampling frame.35

These preparedness costs represent the cost of maintaining initial attack readiness
and other fixed costs of the wildland firefighting system. Section 5 describes how we
allocate these costs over ignitions.

B.1.2 Department of Interior Agencies

Four separate agencies within the Department of Interior (DOI) engage in significant
fire management. They are the Bureau of Land Management (BLM), the Bureau of
Indian Affairs (BIA), the National Park Service (NPS), and the US Fish and Wildlife
Service (FWS). We successfully obtained firefighting cost data for BLM, BIA, and
NPS through FOIA requests. BLM is responsible for fires that ignite on the 248
million acres of public lands they manage. BIA is responsible for fires starting on the
55 million acres of Indian trust lands, and NPS is responsible for fires igniting within
its 417 park units across 84 million acres of land. Each agency provided incident-level
data from 2003-2016 from its own accounting databases for fires larger than 100–300
acres. To match the data available from the Forest Service, we limit this sample to
include only fires that were the jurisdictional responsibility of the given agency and
that affect more than 300 acres and apply similar data quality restrictions as those
described for the USFS data. Our final DOI suppression dataset includes 1,617 BLM
fires, 315 BIA fires, and 126 NPS fires.

As with USFS, we also include DOI preparedness costs in some scenarios in Section 5.
The DOI agencies collectively prepare one annual budget justification that covers
wildland fire activities across the entire United States. Our data on DOI preparedness
costs come from the fiscal year 2012–2018 versions of these documents. In total, we
account for $2.7 billion of preparedness spending. Because DOI does not provide
region-specific figures for these preparedness costs, we allocate them according to the
proportion of total US ignitions that occur within our sampling frame on an annual
basis. On average, we allocate 54% of this preparedness spending to our study area
to obtain a total of $1.5 billion from the DOI agencies.

B.1.3 California Department of Forestry and Fire Protection

We also collect fire suppression cost data for California, which includes over 50% of
the population in our sample area and some of the most frequent and costly wildfires.

35. The Forest Service regions that overlap our sampling frame are 01, 02, 03, 04, 05, and 06.
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Suppression cost data for California come from a public records request to the Cali-
fornia Department of Forestry and Fire Protection (Cal Fire). Cal Fire is responsible
for managing wildfires on 31 million acres of State Responsibility Area lands, loosely
corresponding to private- and state-owned lands outside of incorporated towns and
cities. We merge three sets of administrative records from Cal Fire. The first is
a complete listing of all reported wildland fire incidents in the Cal Fire protection
area during 2007–2016, regardless of size. This dataset includes the ignition date,
acres burned, Cal Fire geographic unit, and, for incidents after mid-2011, the latitude
and longitude of the ignition point.36 The third dataset is an administrative record
of firefighting expenditures at the incident level for 788 incidents during 2011–2016.
According to Cal Fire, these expenditure data are carefully tracked because they are
the basis of cross-agency reimbursements for mutual aid expenditures – for example,
reimbursements to California by the federal government under the FEMA Fire Man-
agement Assistance Grant (FMAG) program, or by local governments to Cal Fire for
firefighting assistance in incorporated areas.

Beginning with the list of significant fires, we drop those that are not the jurisdictional
responsibility of Cal Fire. Limiting our sample to fires for which we are able to obtain
precise location and suppression cost data results in 104 large fires (and 318 fires of
any size) from 2011–2016.

B.1.4 Federal Emergency Management Agency

Our final agency source is the Federal Emergency Management Agency (FEMA).
FEMA does not directly engage in firefighting efforts. Instead, FEMA reimburses
state agencies and local governments for their costs on large firefighting efforts through
the Fire Management Assistance Grant (FMAG) program. These grants reimburse
75% of the firefighting expenses incurred by state and local governments during qual-
ifying incidents. We obtained incident-level data on FEMA reimbursements for wild-
fire incidents during 2000–2017 through a Freedom of Information Act request. These
records contain the incident name, date, state, and amount reimbursed. They do not
contain geographic coordinates (or a common identifier that would allow us to merge
them to other agency data to recover geographic information). For cost scenarios in
Section 5 that include FEMA reimbursements, we allocate these costs, multiplied by
1.33 to include the non-reimbursed portion, over fires in each year-state cell similarly
to preparedness costs. In any calculation where we include Cal Fire cost data, we
do not include FEMA reimbursements to California, which presumably include costs
incurred by Cal Fire.

36. To supplement the location records for earlier fires, we also obtain shapefile data for a subset
of Cal Fire incidents from the publicly available Fire and Resource Assessment Program database
managed by Cal Fire.
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B.1.5 Harmonization of Fire Suppression Cost Data

To ensure consistent data quality, we harmonize the data across all agencies from
which we source suppression expenditures. Specifically, we ensure that ignition date,
ignition location, responsible agency, cause of fire, area burned, and suppression cost
data are present for all incidents and that the costs reflect values in 2017 dollars. Fed-
eral, state, and local firefighting agencies provide assistance to one another through
coordinated dispatch systems and mutual aid agreements. We carefully considered
the implications of this aid for our analysis. We confirmed with each agency that
its reported costs represent only that agency’s costs for a given incident (except for
FEMA reimbursements). Thus, we avoid double counting when adding up historical
costs across agencies in Section 5. When investigating the effect of homes on costs
in Section 4.1, we use only USFS cost data and further limit the sample to incidents
where USFS was the primary responsible agency. This restriction is used by Gebert,
Calkin, and Yoder (2007), who argue that USFS bears at least 90% of the costs of
these fires.37

We have also attempted to ensure that cost concepts are at least broadly comparable
across agencies. In general, the firefighting cost data in the final dataset include
wages (salaries, overtime, hazard pay) and equipment costs. Usage costs for agency-
owned equipment (as opposed to equipment from private contractors) are tracked
somewhat differently by different agencies. For example, in direct correspondence
BLM indicated that they assign mileage costs for regular vehicles and engine-hour
costs for fire engines to each incident, while NPS indicated that they assign only
fuel and repair costs. The allocation of salary costs between “preparedness” and
“suppression” budget categories may also differ somewhat across agencies.

Finally, we compute the spatial relationship between each fire and potentially valuable
resources nearby. Specifically, we measure the distance from the ignition point of each
fire to the nearest parcel in the parcels dataset described in Section B.2, the nearest
state or federal highway, and the count of homes and their value within x km of the
ignition point, where x ∈ {5, 10, . . . , 50}.

B.1.6 Ignition Point Characteristics and Weather Data

Using the harmonized location data, we obtain elevation, slope, aspect, and fuel
model data for the ignition point of each fire from LANDFIRE. The former three
products are derived from the high-resolution National Elevation Dataset; elevation
represents the land height above sea level and is given in meters, slope represents the
angle of the land and is given in degrees, and aspect represents the direction of the
slope and is given in degrees as well. The fuel model data are the 13 Anderson Fire

37. Ideally, we would sum each agencies expenditures on each individual incident. Unfortunately,
USFS and the DOI agencies do not reliably use consistent incident identifiers, making such a merge
impossible.
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Appendix Table 7: Descriptive statistics

Panel A: Pooled fire characteristics
Mean P10 P50 P90

Area burned 7,873 383 1,433 16,034
Fire cost 2,350,820 9,066 227,461 5,233,689
Elevation 1,554 707 1,559 2,353
Slope 12 1 10 29
Temperature 20 13 21 27
Precipitation 0 0 0 1
Vapor Pressure Deficit 21 11 21 32
Nearest home distance 14 1 10 33
Parcels in 5km 160 0 0 109
Parcels in 10km 757 0 0 1,011
Parcels in 20km 3,345 0 90 7,093
Value in 5km 45,633 0 0 18,536
Value in 10km 210,261 0 0 182,871
Value in 20km 936,119 0 13,094 1,450,741

Panel B: Fire characteristics by agency
USFS BLM BIA NPS Cal Fire

Number of fires 2,419 1,617 315 126 104
Acres burned (1000s) 19,442 13,435 1,814 685 690
Suppression cost (m) 8,799 507 257 94 854

Notes: Table reports descriptive statistics for fires with area greater or equal to 300 acres
in our sample. P10, P50, and P90 indicate the 10th, 50th (median), and 90th percentile
of values. Aspect is given in degrees, elevation is in meters above sea level, fire cost is in
2017 US $, nearest home distance is in kilometers, parcels is the number of parcels within
the given distance, precipitation is in mm, slope is in degrees, temperatures is in Celsius,
and Vapor Pressure Deficit is in millibars.

Behavior Fuel Models and describe the fire potential of surface fuel components (e.g.,
the type of foliage in the area). We also obtain ignition-day weather (maximum and
minimum temperatures, precipitation, and measure of humidity) from the PRISM
daily weather dataset, as well as ignition-day wind direction and speed from the
FAMWEB dataset.
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Appendix Figure 8: Federal Wildfires

Notes: Map of federally managed fires between 1995 and 2016 larger than 300 acres.
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Appendix Figure 9: Cal Fire Wildfires

Notes: Map of Cal Fire-managed fires between 2011 and 2016 larger than 300 acres.
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B.2 Parcel Data

The homes data include information on home locations, values, year built, and other
property characteristics for 18.5 million parcels, or nearly all of the homes in the
western United States. We also include parcels within 50 km of these states to
accurately capture the nearness and number of parcels for wildfires that occur near
the eastern borders of our sample. These data represent a compilation of tax assessor
data from individual counties.38 A primary advantage of these data is the inclusion
of detailed locational information; specifically the data include both latitude and
longitude as well as street address for each parcel. While previous studies in this
area rely on publicly available data on the number and value of homes in a Census
block (Gebert, Calkin, and Yoder 2007; Gude et al. 2013), this confidential dataset
enables us to precisely locate homes relative to wildfire ignition points. Because
Census blocks can be large in rural areas and particularly when located near national
forests, the standard approach using Census block centroids introduces substantial
noise into the estimate of distance-to-nearest parcel for each fire. In Section B.2.1 we
document the improved locational precision and the data quality benefits produced
by this approach.

We limit the sample to include only homes in partially vegetated areas that would
be threatened by wildland fires, based on wildland-urban interface (WUI) categories
identified in Radeloff et al. (2005). Specifically, we include homes located in the fol-
lowing vegetation categories: high density interface, high density intermix, medium
density interface, medium density intermix, low density interface, low density inter-
mix, very low density vegetated, and uninhabited vegetated.39 We exclude homes in
areas without wildland vegetation, and specifically in areas with the following cat-
egories: high density no vegetation, medium density no vegetation, low density no
vegetation, very low density no vegetation, and uninhabited no vegetation. Because
the federal government controls so much land in the West, and so much residential
development is in wildland areas, these sample exclusions are not particularly restric-
tive. Our analysis dataset includes 9,148,972 homes (about 44% of all residential
parcels including homes, condos, and apartments in the West).40 We also link the
parcels to the USFS Wildfire Hazard Potential (WHP) ratings to assess physical fire
risk (Dillon 2015). These risk scores are designed to “depict the relative potential for
wildfire that would be difficult for suppression resources to contain,” and combine

38. This proprietary compilation was provided by CoreLogic© through a data agreement with
Stanford University. Our comparisons to publicly-available home counts at the tract level, available
upon request, confirm the comprehensiveness of the data.
39. Because the WUI data are built from Census records and our parcel data represent precise

locations, occasionally a parcel is located in a so-called “uninhabited vegetated” area. As we rely
on the WUI data to identify vegetated areas, we include homes in these areas as well.
40. This sample of 9.1 million homes used to estimate Equation (3) also includes homes near the

sampling area but lying in bordering states in order to appropriately account for all nearby homes.
In our main results, we report the expected protection cost only for homes in the 11 western states.
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data from a large-scale fire simulator with spatial fuels and vegetation data to pro-
duce indicators of WHP. For each parcel, we assign a categorical and a continuous
measure of WHP for that location as a measure of the risk faced by that parcel. We
also add a measure of population density (population per square meter) from the
Gridded Population of the World dataset, which reports density within roughly one
km square grid cells.

The data also include reported transaction values. As is common for real estate
data, many reported transactions do not represent true arms-length sales. We use
only transaction values determined by CoreLogic to be arms-length transactions, and
we further remove transactions indicated as refinancing, foreclosures, or inter-family
transfers. We also exclude transaction values below $10,000 or above $100,000,000
in 2017 dollars, and transactions prior to 1980. After these cleaning steps, we have
usable transaction values for 69% of homes in the raw data.

B.2.1 Comparison to Census Aggregate Data

Our study uses parcel-level data to assess the locations of homes threatened by wild-
fire. Previous studies rely on counts of housing units at the Census block scale
(Gebert, Calkin, and Yoder 2007; Gude et al. 2013). Appendix Table 8 demonstrates
that high-risk regions are systematically likely to have large Census block sizes. The
average Census block size for homes in the highest decile of firefighting cost is 7.0
square km, and the 95th percentile is 29.7 square kilometers. This large grid size
introduces substantial noise into geographic analyses of aggregate home counts. Our
study instead uses parcel-level data to assess home locations. This represents a sub-
stantial increase in granularity over existing studies.41 The degree of this advantage
over aggregate block-level data depends on the accuracy with which parcel locations
are reported in the real estate data. The underlying records in this dataset are col-
lected by county tax assessors, and the quality of the data varies across counties. In
the following section, we describe the process by which we obtain highly accurate
parcel locations for the dataset and the advantages this provides relative to using
Census block centroids.

The process of generating geographic coordinates for individual structure locations is
called geocoding. This section compares the default geocoding for the homes in our
dataset to an alternative geocoding algorithm. We also compare our results using
methods to identify homes based on publicly available data that have been used in
related work (e.g., Gebert, Calkin, and Yoder 2007; Radeloff et al. 2005; Radeloff
et al. 2018).

The housing data used in this project come from a compilation of tax assessor data.

41. A separate advantage of parcel-level data over Census data is that we know the year in which
a home was constructed, and thus whether the home was present at the time of each fire in the
dataset. Census data report static housing counts every 10 years.
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This dataset includes a field identifying the latitude and longitude of each home in
the dataset. Overall, careful investigation of subsamples of the data imply that these
coordinates are quite accurate. However, these default locations often locate multiple
homes in precisely the same geographic location. To improve the accuracy of parcel
locations, we implemented a secure, locally-hosted geocoding algorithm on a local
server to calculate coordinates for each home. We used a locally hosted instance of
the Nominatim geocoder42 to geocode homes in our dataset based on the address
field, while maintaining data confidentiality and security.

Overall, the geographic coordinates generated by Nominatim align closely with the
default locations in the homes data. The median distance between reported locations
is 41 meters. For most homes, we believe that the Nominatim locations represent
small shifts that slightly improve location accuracy. The exception is for addresses
that include typographical errors. In this case, Nominatim may return locations that
are not meaningful – for example, that may be hundreds of kilometers outside of the
county containing the home.43 To eliminate these errors, we backstop the Nominatim
locations with the default locations in the original dataset (which tend to be more
accurate but less precise) using the following rule: if the Nominatim location is A)
more than one km outside of the county given in the tax assessor data, B) differs
from the tax assessor location by more than 5 km, or C) was not obtained using the
street address (e.g., was geolocated by the Nominatim algorithm based only on city
and state), we use the tax assessor location instead. Using this backstop method, we
re-code 89% of the addresses in our full dataset using Nominatim, and the remainder
with the default locations in the original dataset.

Previous studies of wildland-urban interface issues have used publicly-available Cen-
sus data to identify approximate home locations. The decennial Census includes
counts of population and housing units at the Census block level. Forestry studies
frequently use these block-level aggregate data to locate homes (e.g., by average pop-
ulation over the area of the Census block, or assigning population to the centroid).44

One challenge with using aggregate Census data is that Census blocks in areas with
high fire risk tend to be many square kilometers or more, reducing the accuracy of
the approach. Appendix Table 8 shows this. On the other hand, Census block-based
approaches do not rely on the accuracy of address-based geocoding.

The figures and tables in this section explore the robustness of our results to three
possible methods to locating homes: our geolocation method, a method that follows
previous work in using Census block centroids for homes’ locations, and a method

42. Nominatim uses Open Street Map data to conduct forward and reverse geocoding and is avail-
able at https://github.com/openstreetmap/Nominatim.
43. The County field in the underlying dataset is likely to be particularly reliable, since the dataset

is assembled from individual county tax records.
44. Martinuzzi et al. (2015) describes one approach in detail, including how raw Census blocks are

processed to remove portions that overlap public land and other steps.
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Appendix Table 8: The Advantage of Parcel-level Data: Census
Blocks in High-Cost Areas are Large

Area in km2

All Populated Highest Decile
Census Blocks of Firefighting Cost

Mean 1.2 6.9
p90 0.9 14.7
p95 3.0 29.7
p99 22.8 101.9

N 416,983.0 42,021.0

Notes: This table shows the distribution of areas for Census blocks,
in square kilometers. Column (1) includes all 2010 Census blocks with
greater than zero housing units. Column (2) includes the 10% subset
with the highest average expected protection costs as identified in our
study. While Census blocks tend to be small overall, the areas of greater
interest for understanding firefighting costs are systematically larger.
Data on Census block areas, housing counts, and locations are from the
US Census Bureau.

using the Census-based list of places (which include both incorporated and unincor-
porated communities). Appendix Figure 10 reproduces the regression from Figure 3
in the main text. The results are not qualitatively sensitive to the choice of loca-
tion method. However, both of the Census-based approaches identify few fires with
homes more than 40 km away and the corresponding standard errors for the estimate
of the effect of home nearness on fire suppression cost are noisier. In our view, both
of these facts reflect that the Census-based approaches systematically underestimate
(on average) the distance to nearest home for fires in remote areas for the reasons we
describe above.
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Appendix Figure 10: Cost by distance to nearest home

Notes: Each panel estimates the impact of nearest home distance, as measured using three
different methods of locating homes, on log suppression cost. “Parcel Data” uses the parcel
real estate data with the geocoding and backstop method described in paper. “Census
Blocks” uses Census block centroids. “Populated Places” uses the location information
given in the Census Populated Places dataset. Each regression includes national forest
fixed effects, state by month-of-year fixed effects, and state by year fixed effects. Standard
errors are clustered by national forest.
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B.3 Calculating Counterfactual Costs With No Nearby Homes

For each fire i, we use the regression results from Section 4 to calculate ∆i, the increase
in firefighting costs relative to what would have been spent on the incident if there
were no nearby homes. This section describes that calculation and compares it to an
alternative calculation based on a generalized linear model (GLM) approach.

B.3.1 Main Approach

Our main approach computes ∆i using the binned model in Section 4.1. Consider
a specification with 5 bins, corresponding to 0, 10, 20, 30, and 40+ kilometers dis-
tance to nearest home, where the omitted category is the 40+ kilometer bin. Let βd

represent the regression coefficient on the dummy variable for bin d. These coeffi-
cients give the increase in log firefighting costs when the nearest home is located d
km away, relative to 40+ km. The percentage increase in firefighting costs in raw
dollars can be calculated as eβd−0.5s − 1, where s is the sample analog of the variance
of βd (Halvorsen and Palmquist 1980; Kennedy 1981). In other words, the regression
provides an estimate of the average effect of distance to nearest home on firefighting
costs. We use these average effect estimates to calculate counterfactual costs in the
absence of any homes within 40 km. For homes in bin d, letting ci be the observed
cost and c̃i the counterfactual cost, we calculate c̃i =

ci
eβd−0.5s . Then ∆i is ci− c̃i.

B.3.2 Alternative Approaches: GLM and Retransformation

These counterfactual costs could be computed in other ways. A similar approach
with the same OLS semi-log regression is to use the regression coefficients to generate
predicted log costs under the counterfactual, and then “re-transform” these predicted
values to predictions in dollar units (Duan 1983; Manning et al. 1987; Manning
1998). These counterfactual predicted costs can then be subtracted from predicted
costs given the observed distance to home, ĉi. In practice, the various retransfor-
mation estimators are vulnerable to specification error, especially in the presence of
heteroskedasticity (Manning and Mullahy 2001).

A potentially more attractive approach is to use a statistical model that does not
require retransformation. Instead of semilog OLS, Manning and Mullahy (2001) rec-
ommends the use of a generalized linear model (GLM) with a log link function.
Among other advantages, the GLM model generates predicted values in raw dollar
units. We implement the GLM approach as a check on the robustness of our main
estimates. Following the results of the selection algorithm in Manning and Mullahy
(2001), we use a GLM model with a gamma distribution and a log link.45 With the
GLM approach, ∆i can be calculated either by using the implied average change in
costs in each distance bin (as we did for the OLS estimates), or by directly gener-
ating predicted costs given the observed and counterfactual x’s. We show results

45. See page 471 in Manning and Mullahy (2001). The resulting value of λ is about 2.3.
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for both approaches. Table 9 shows that the average predicted cost differences are
similar across approaches. The approach using OLS generates slightly smaller pre-
dicted cost differences, implying that the cost differences we use in the main text are
conservative.

Appendix Table 9: Counterfactual cost differences

(1) (2) (3)
Observed distance OLS GLM GLM

Panel A. Average Percentage Change in Costs

0-10 86 88 88
10-20 80 86 86
20-30 66 77 77
30-40 30 45 45
40+ 0 0 0

Panel B. Average Dollar Difference (thousands)

0-10 4,113 4,207 4,662
10-20 2,874 3,070 3,170
20-30 1,351 1,573 1,669
30-40 397 599 299
40+ 0 0 0

Notes: Panel A shows the average percentage decrease in cost for an otherwise-
identical fire with no homes within 40 km. Panel B shows the average difference in
expenditures for an otherwise-identical fire with no homes within 40 km (in thou-
sands of dollars). Column (1) uses the percentage changes implied by the semilog
OLS regression coefficients to scale the observed costs. Column (2) uses the percent-
age changes implied by the GLM regression coefficients to scale the observed costs.
Column (3) also uses GLM, but reports the difference in predicted costs using the
observed values of the covariates and predicted costs with no homes within 40 km.

C Comparison to Forest Service Accounting Data
Our main analysis makes use of publicly available data on suppression expenditures
for US Forest Service Fires. However, Gebert, Calkin, and Yoder (2007) write that
the publicly available data on costs are less accurate than official expenditure data
recorded in the USFS accounting system. Since the time of their writing, the addition
of an accounting code (known as a “P-code”) to the FAMWEB data has made this
match somewhat more straightforward.
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To check whether the results of our empirical exercise in Section 4.1 are altered by the
use of the more accurate accounting data, we submitted a Freedom of Information Act
Request to the US Forest Service for the accounting dataset. The dataset we obtained
as a result of this processing includes suppression expenditures from 2003-2013 with
a limited set of fields. Specifically, it includes the P-code, the amount of suppression
expenditures for that code, and the year that those expenditures were billed. The
following table summarizes yearly cost for 2004-2012 (2003 and 2013 are partially
missing in the accounting dataset) for the FAMWEB data and the accounting dataset
we obtain.

Appendix Table 10: Annual costs by suppression cost dataset

Year FAMWEB FAMWEB West WFSU valid WFSU all
2004 247 236 471 679
2005 271 262 440 768
2006 828 799 1,142 1,355
2007 978 923 977 1,263
2008 708 694 1,070 1,464
2009 401 394 682 840
2010 239 224 373 662
2011 475 436 623 1,251
2012 975 952 917 1,161
Total 5,122 4,920 6,695 9,442

Notes: All values in millions of dollars. First column includes all in-
cidents in FAMWEB, second column includes only incidents in regions
01-06, third column includes only WFSU incidents with P-codes used
for wildfire suppression-related costs. Specifically, the incident code be-
gins with P*, where * is a number for the USFS region, and is followed
by a 4 character alphanumeric code beginning with a letter, per USFS
specification.

Next, we match the costs in the accounting dataset to the FAMWEB data using the
P-code to identify whether the relationship between suppression costs and distance
from homes is stable across the use of either source of cost data. We match from the P-
code and year to the suppression expenditure data from FAMWEB. This match is not
entirely straightforward: the guidelines over the issuance of P-codes and the proper
accounting procedures have changed over the years, and many fires are submitted
under the same P-code. In particular, large complex fires are often accounted for
using the same P-code.46 For the 997 fires in our FAMWEB dataset from 2004-2012,

46. So-called “ABCD” fires, which are small, are also accounted for using a single P-code for each
forest-year, but for our purposes this is not an issue since our focus is on incidents with more than
300 burned acres.
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Appendix Figure 11: Comparison of FAMWEB and accounting data: mean suppres-
sion costs and distance to nearest home

we are able to match 799 of these to the accounting dataset.

We estimate the relationship between fire cost and nearby homes for four sets of costs:
A) FAMWEB costs for all fires in FAMWEB, B) FAMWEB costs for all 2004-2012
fires in FAMWEB, C) FAMWEB costs for fires that match to the accounting data,
and D) accounting data costs for all fires that match to FAMWEB data. Figures 11
to 14 plot binned averages and sums of costs for each dataset on distance from nearest
home and on number of homes within 30km. Although the sums differ due to the
difference in the number of fires included for each set of data, the means have similar
patterns. Our conclusions about the usefulness of the FAMWEB data are similar
to those of Schuster, Cleaves, and Bell (1997), who wrote at the time that, “One
of the purposes for our analysis of per-acre fire expenditures was to assess the qual-
ity of suppression expenditure estimates contained in the NIFMID database. These
estimates are widely regarded as unreliable. However, the correlation between uncor-
rected, NIFMID-based expenditures and those from the accounting system is 0.85, a
surprisingly high level.”
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Appendix Figure 12: Comparison of FAMWEB and accounting data: mean log sup-
pression costs and distance to nearest home

Appendix Figure 13: Comparison of FAMWEB and accounting data: mean suppres-
sion costs and number of homes in 30km
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Appendix Figure 14: Comparison of FAMWEB and accounting data: mean log sup-
pression costs and number of homes in 30km
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