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Online Appendix

Appendix A reports the proofs to propositions, lemmas and corollaries in the paper, while ap-

pendix B reports additional derivations and extensions.

A Proofs

A.1 Proof of Lemma 1

First, consider that ξ ≤ ξ̂ ≡ (δD(1+ rD)− LIQ)/I. Then, θ(ξ,1) = (LIQ+ ξ · I)/(D(1+ rD)) ≤
(LIQ+ ξ̂I)/(D(1+ rD)) = δ. Also, λ̂(ξ) in (13) can be written as [θ(ξ,1)(1+ rD)(1+ rI)− ξ(1+

r̄D)−ξ ·X/(ωD)]/((1+ rD)(1+ rI)−ξ(1+ r̄D)), which is smaller than θ(ξ,1) as long as θ(ξ,1)<

1+X/[ωD(1+ r̄D)((1+ rD)(1+ rI)−ξ(1+ r̄D))], which is always true. So, λ̂(ξ)< δ as well, and

only the full run region is possible. Next, define ξ
ld as the solution to λ̂(ξld) = δ; ˆ̂

ξ as the solution

to θ(
ˆ̂
ξ,1) = 1, yielding ˆ̂

ξ = (D(1+ rD)−LIQ)/I; and ξ
ud as the solution to λ̂(ξud) = 1, yielding

ξ
ud =

ˆ̂
ξ/(1−X/(ωI(1+rI)))>

ˆ̂
ξ. Moreover, λ̂(

ˆ̂
ξ)> δ and ∂λ̂(ξ)/∂ξ > 0, so ξ

ld <
ˆ̂
ξ < ξ

ud . Finally,

ξ
ud < ξ, because X < X ≡ ωI(1+ rI)(1− ˆ̂

ξ/ξ). Using these observations, it is easy to establish the

non-empty regions for the remaining ξ ∈ (ξ̂,ξ] in the Lemma.

A.2 Proof of Proposition 1

The proof follows the steps in Goldstein and Pauzner (2005) but includes additional derivations and

arguments to tackle the perverse state monotonicity as well as the monitoring incentives and limited

liability of the bank.

An equilibrium with threshold x∗ exists only if ∆(x∗,x∗) = 0 given by (19). Consider a potential

threshold x′. We will show that x′ exists and it satisfies (19) at exactly one point, x′ = x∗.

By the existence of ξ
ld and ξ

ud defined in Lemma 1, ∆(x′,x′) is negative for x′ ≤ ξ
ld − ε and

positive for x′ ≥ ξ
ud + ε. Thus, in order to establish that a threshold equilibrium exists, it suffices

to show that ∆(x′,x′) is continuous in x′ ∈ [ξld − ε,ξud + ε]. It is convenient to write the utility

differential ∆(x′,x′) as ∆(x̂+∆x, x̂+∆x) for some x̂ such that ∆x is the change in both the signal that
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the marginal saver receives and the threshold strategy. Then,

∆(x̂+∆x, x̂+∆x) =
1
2ε

∫ x̂+∆x+ε

x̂+∆x−ε

ν(ξ,λ(ξ, x̂+∆x))dξ

=
1
2ε

∫ x̂+ε

x̂−ε

ν(ξ+∆x,λ(ξ+∆x, x̂+∆x))dξ

=
1
2ε

∫ x̂+ε

x̂−ε

ν(ξ+∆x,λ(ξ, x̂))dξ, (A.1)

because λ(ξ+∆x, x̂+∆x) = λ(ξ, x̂) from (15). In other words, the marginal saver’s belief about how

many other savers withdraw is unchanged when her private signal and the threshold strategy change

by the same amount. Yet, she expects ξ to be higher for ∆x > 0 and lower for ∆x < 0, which is

reflected in the calculation of ν(ξ+∆x,λ(ξ, x̂)). Thus, we need to show that, for a given distribution

of λ
′s, the integral in (A.1) is continuous in ∆x.

The integrand ν(ξ+∆x,λ(ξ, x̂)) in (A.1) is a piecewise function such that each sub-function is

computed over a distribution of λ unaffected by ∆x, but the interval for each sub-function depends

on ∆x. The thresholds λ̂∆x and θ̂∆x, which show the level of withdrawals above which the bank does

not monitor and there is a full run (Lemma 1), are functions of certain levels of the liquidation value,

which belong in the posterior distribution of ξ and are denoted by ξ
λ̂∆x

and ξ
θ̂∆x

, respectively.

Given that the distribution of λs does not change with ∆x, we can compute ξ
λ̂∆x

as a function

of ∆x by equating the portion of savers withdrawing at this liquidation value for signal x̂, which is

λ(ξ
λ̂∆x

, x̂) given by (15), to the threshold λ̂∆x(ξλ̂∆x
+∆x), which moves with ∆x and is given by (13):

λ(ξ
λ̂∆x

, x̂) = λ̂∆x(ξλ̂∆x
+∆x)

⇒δ+(1−δ)
x̂−ξ

λ̂∆x
+ ε

2ε
=

[
LIQ+

(
ξ

λ̂∆x
+∆x

)
I
]
(1+ rI)−

(
ξ

λ̂∆x
+∆x

)
(D(1+ r̄D)+X/ω)

D
[
(1+ rD)(1+ rI)−

(
ξ

λ̂∆x
+∆x

)
(1+ r̄D)

] .

(A.2)

Similarly, we can compute ξ
θ̂∆x

as a function of ∆x by equating the portion of savers withdrawing

at this liquidation value for signal x̂, which is λ(ξ
θ̂∆x

, x̂) given by (15), to the threshold θ̂∆x(ξθ̂∆x
+

∆x)≡ θ(ξ
θ̂∆x

+∆x,1), which moves with ∆x and is given by (10):

λ(ξ
θ̂∆x

, x̂) = θ̂∆x(ξθ̂∆x
+∆x)

⇒δ+(1−δ)
x̂−ξ

θ̂∆x
+ ε

2ε
=

LIQ+
(

ξ
θ̂∆x

+∆x
)

I

D(1+ rD)
. (A.3)

To ease notation, we will denote λ̂∆x(ξλ̂∆x
+∆x) and θ̂∆x(ξθ̂∆x

+∆x), that is the value if the threshold

at fundamentals ξ
λ̂∆x

+∆x, by λ̂∆x and θ̂∆x, respectively.

Because the number of savers withdrawing decreases as fundamentals improve for given strat-
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egy threshold–see equation (15)–and λ̂∆x < θ̂∆x from Lemma 1, we get that ξ
θ̂∆x

< ξ
λ̂∆x

. Thus, using

(17), (A.1) can be written as:

∆(x̂+∆x, x̂+∆x) =− 1
2ε

∫
ξ

θ̂∆x

x̂−ε

LIQ+(ξ+∆x) I
λ(ξ, x̂)

dξ− 1
2ε

∫
ξ

λ̂∆x

ξ
θ̂∆x

D(1+ rD)dξ

+
1
2ε

∫ x̂+ε

ξ
λ̂∆x

{ωD(1+ r̄D)−D(1+ rD)}dξ. (A.4)

All the integrands ν in (A.4) are bounded and continuous in ∆x, the thresholds ξ
θ̂∆x

and ξ
λ̂∆x

change

continuously with ∆x from (A.3) and (A.2), and the only discontinuity in ν across regions occurs at

one discrete point, ξ
λ̂∆x

. Hence, ∆(x̂+∆x, x̂+∆x) is continuous and a threshold equilibrium exists.

We will now establish that the threshold equilibrium is unique. By implicitly differentiating

(A.2) and (A.3), we get:
dξ

λ̂∆x

d∆x
=−

2εΓξ
λ̂∆x

1−δ+2εΓξ
λ̂∆x

< 0 (A.5)

because

Γξ
λ̂∆x
≡ I(1+ rI)− (D(1+ r̄D)+X/ω)

D
[
(1+ rD)(1+ rI)−

(
ξ

λ̂∆x
+∆x

)
(1+ r̄D)

] + λ̂∆x(1+ r̄D)

(1+ rD)(1+ rI)−
(

ξ
λ̂∆x

+∆x
)
(1+ r̄D)

> 0,

and
dξ

θ̂∆x

d∆x
=− 2εI

(1−δ)D(1+ rD)+2εI
< 0. (A.6)

(A.5) and (A.6) tell us that, as fundamentals become better (∆x > 0), the region where the banker

monitors and the region that a run does not occur become bigger.

The derivative of (A.4) with respect to ∆x is:

d
∆(x̂+∆x, x̂+∆x)

d∆x
=− 1

2ε

∫
ξ

θ̂∆x

x̂−ε

I
λ(ξ, x̂)

dξ− 1
2ε

dξ
λ̂∆x

d∆x
ωD(1+ r̄D), (A.7)

because (LIQ+(ξ
θ̂∆x

+∆x)I)/λ(ξ
θ̂∆
, x̂) = D(1+ rD) from (A.3).

The first term (A.7) is negative and captures the perverse incentives of making withdrawals

more profitable when fundamentals are stronger given that the run is underway. The second term

in (A.7) is positive and represents the payoff change from decreasing the threshold ξ
λ̂∆x

where the

banker ceases to monitor. As a result, we cannot unambiguously sign the derivative for any signal

x. However, as we discussed in the paper, it suffices to evaluate (A.7) at a candidate threshold x̂,

which as we established above, that exists. If the derivative is positive at candidate threshold, we can

conclude that (A.4) does not cross zero from above and, given continuity, the threshold is unique.

Adding and subtracting 1/(2ε)
∫ ξ

θ̂∆x
x̂−ε

ξ
λ̂∆x

I/λ(ξ, x̂)dξ to ∆(x̂+∆x, x̂+∆x) = 0 in (A.4) we get
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that:

− 1
2ε

∫
ξ

θ̂∆x

x̂−ε

I
λ(ξ, x̂)

dξ =
1

ξ
λ̂∆x

+∆x
1
2ε

∫ ξ
θ̂∆x

x̂−ε

LIQ+
(

ξ−ξ
λ̂∆x

)
I

λ(ξ, x̂)
dξ+

∫
ξ

λ̂∆x

ξ
θ̂∆x

D(1+ rD)dξ



− 1
ξ

λ̂∆x
+∆x

1
2ε

∫ x̂+ε

ξ
λ̂∆x

{ωD(1+ r̄D)−D(1+ rD)}dξ. (A.8)

Substituting (A.8) in (A.7) we get:

d
∆(x̂+∆x, x̂+∆x)

d∆x
=− 1

ξ
λ̂∆x

+∆x
1
2ε

ωD(1+ r̄D)

[
dξ

λ̂∆x

d∆x

(
ξ

λ̂∆x
+∆x

)
+
(

x̂+ ε−ξ
λ̂∆

)]

+
1

ξ
λ̂∆x

+∆x
1
2ε

∫ ξ
θ̂∆x

x̂−ε

LIQ+
(

ξ−ξ
λ̂∆x

)
I

λ(ξ, x̂)
dξ+

∫
ξ

λ̂∆x

ξ
θ̂∆x

D(1+ rD)dξ

 . (A.9)

Using (17), (A.2) and (A.5), the bracketed terms in the first line in (A.9), can be written as:

dξ
λ̂∆x

d∆x

(
ξ

λ̂∆x
+∆x

)
+
(

x̂+ ε−ξ
λ̂∆

)
=

− 2ε

1−δ+2εΓξ
λ̂∆x

[
Γξ

λ̂∆x
·
(

ξ
λ̂∆x

+∆x
)
−
(

λ̂∆x−δ

)
+
(

λ̂∆x−δ

)(
δ−2εΓξ

λ̂∆x

)]
. (A.10)

Consider the terms in A.10 separately and use the definition of λ̂∆x:

Γξ
λ̂∆x
·
(

ξ
λ̂∆x

+∆x
)
−
(

λ̂∆x−δ

)
=

(ξ
λ̂∆x

+∆x)I(1+ rI)− (ξ
λ̂∆x

+∆x)(D(1+ r̄D)+X/ω)+(ξ
λ̂∆x

+∆x)λ̂∆xD(1+ r̄D))

D
[
(1+ rD)(1+ rI)−

(
ξ

λ̂∆x
+∆x

)
(1+ r̄D)

]
−λ̂∆xD(1+ rD)(1+ rI)+

(
λ̂∆x−δ

)(
ξ

λ̂∆x
+∆x

)
D(1+ r̄D)+δD(1+ rD)(1+ rI)

D
[
(1+ rD)(1+ rI)−

(
ξ

λ̂∆x
+∆x

)
(1+ r̄D)

]
=

(
λ̂∆x−δ

)(
ξ

λ̂∆x
+∆x

)
D(1+ r̄D)+(δD(1+ rD)−LIQ)(1+ rI)

D
[
(1+ rD)(1+ rI)−

(
ξ

λ̂∆x
+∆x

)
(1+ r̄D)

] , (A.11)

which is positive from Lemma 1. Hence, there exists small enough noise such that A.10 is negative

(bracketed terms positive) and the first line in A.9 is positive.

Now, consider the bracketed terms in the second line A.9, which can be written, by substituting
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the definition of λ(ξ, x̂) from (15), as:

∫
ξ

θ̂∆x

x̂−ε

LIQ+
(

ξ−ξ
λ̂∆x

)
I

1+δ

2 + x̂−ξ

2ε

dξ+
∫

ξ
λ̂∆x

ξ
θ̂∆x

D(1+ rD)dξ. (A.12)

The first term in (A.9) can be made very close to zero for small enough noise, and hence the second

line in (A.9) is positive as well.

This concludes the argument to establish uniqueness of a threshold equilibrium x′ = x∗ for small

noise. See section 2.4 in the paper for a simpler version of this proof in the case of limiting noise,

ε→ 0.

To conclude the proof, we need to show that the threshold equilibrium is indeed an equilibrium,

i.e., ∆(xi,x∗) in (18) is positive for all xi > x∗ and negative for all xi < x∗. A higher (lower) signal

indicates not only that the fundamental state is better (worse), but also that fewer (more) patient

savers withdraw. Both forces result in lower (higher) incentive to withdraw under global strate-

gic complementarities and state monotonicity. But this is less obvious under one-sided strategic

complementarities and perverse state monotonicity: In the run region, the incentive to withdraw

increases the fewer savers withdraw and the higher the fundamental state is, which complicates the

argument. Goldstein and Pauzner (2005) show that the single-crossing property is sufficient to show

that the candidate threshold is indeed an equilibrium in a model without global strategic comple-

mentarities but with state monotonicity. We show below that single-crossing is sufficient even under

perverse state monotonicity.

First, consider that xi < x∗. Then we can decompose the intervals [xi−ε,xi+ε] and [x∗−ε,x∗+ε]

into a common part c = [xi− ε,xi + ε]∩ [x∗− ε,x∗+ ε] and two disjoint parts di = [xi− ε,xi + ε]\c
and d∗ = [x∗− ε,x∗+ ε]\c. Thus, (18) and (19) can be written as:

∆(xi,x∗) = ∆
i
ξ∈c +∆

i
ξ∈di , (A.13)

∆(x∗,x∗) = ∆
∗
ξ∈c +∆

∗
ξ∈di . (A.14)

All savers have the same belief about the (deterministic) number of withdrawals for threshold

strategy x∗, which are given by λ(ξ,x∗) for the level of fundamentals ξ. What changes with the

signals is the posterior belief about ξ and, hence, the possible realizations of λ. From (15), λ(ξ,x∗)

is always one over di, thus ∆
i
ξ∈di =

∫
ξ∈di ν(ξ,1)dξ = −

∫
ξ∈di(LIQ+ ξ · I)dξ < 0. As a result, it

suffices to show that ∆
i
ξ∈c < 0. We will use the facts that A.14 is zero, and that ν changes sign

(“crosses zero") only once and it is positive for higher values of ξ and negative for lower values

of ξ in the interval [x∗− ε,x∗+ ε]. Hence, ∆
∗
ξ∈d∗ > 0 and ∆

∗
ξ∈c < 0, since the fundamentals are

higher over d∗ than c. The fact that v may be increasing in ξ in the lower segment of c does not

matter, because v is still negative in that segment. If ∆
i
ξ∈c ≤ ∆

∗
ξ∈c, then we get the desired result.

First, consider the case that all ξ ∈ c are below the monitoring threshold ξ
λ̂

given by equating (15)

and (13), i.e., λ(ξ
λ̂
,x∗) = λ̂(ξ

λ̂
). Then, it is obvious that v is negative over c and ∆

i
ξ∈c = ∆

∗
ξ∈c < 0.

Second, consider the case that ξλ
∗ lies within c. Because a saver that receives signal xi still believes
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that the number of withdrawals at each ξ is given by λ(ξ,x∗), the (perceived) monitoring threshold,

ξ
λ̂
, is not affected by the signal. Hence, ∆

i
ξ∈c = ∆

∗
ξ∈c < 0 in this case as well, which concludes the

argument. Essentially, observing a signal xi below x∗ shifts probability from positive values of ν to

negative values of ν (recall that noise is uniformly distributed) and, thus, ∆(xi,x∗)< ∆(x∗,x∗). Note

that the argument holds trivially if the interval c is empty. The proof for xi > x∗ is similar, which

verifies that x∗ is indeed a threshold equilibrium.

A.3 Proof of Corollary 1

Totally differentiating (19), we get that ∂ξ
∗/∂z =−(∂GG∗/∂z)/(∂GG∗/∂ξ

∗), where z can be any of

I, LIQ, D, rI , rD, or r̄D. Recall that ∂GG∗/∂ξ > 0 from (22). Then, ∂ξ
∗/∂I < 0, because ∂GG∗/∂I =

ωD(1+ r̄D)∂λ
∗/∂I−

∫ 1
θ
∗ ξ
∗/λdλ = ωD(1+ r̄D)[∂λ̂(ξ∗)/∂I− (λ∗− δ)/I] + (θ∗− δ)D(1+ rD)/I +∫ 1

θ
∗ LIQ/(λI)dλ > 0, from ∂λ

∗/∂I− (λ∗− δ)/I = [(δD(1+ rD)− LIQ)(1+ rI)+ (1− δ)ξ∗D(1+

r̄D)+ξ
∗X/ω]/[I ·D((1+ rD)(1+ rI)−ξ

∗(1+ r̄D)]> 0 from Lemma 1.

Moreover, ∂ξ
∗/∂D > 0 because ∂GG∗/∂D = ωD(1+ r̄D)[∂λ

∗/∂D+(λ∗−δ)/D]− (θ∗−δ)(1+

rD)< 0, from ∂λ
∗/∂D =−ξ

∗(1+ r̄D)/[D((1+ rD)(1+ rI)−ξ
∗(1+ r̄D)]−λ

∗/D < 0.

The partial effect of the loan rate and the early deposit rate are, respectively, negative and

positive, because ∂GG∗/∂rI = ωD(1 + r̄D)∂λ
∗/∂rI = ωD(1 + r̄D)[(1 + rD)(1 + r̄D)ξ

∗(1− θ
∗) +

ξ
∗X/ω]/[((1+ rD)(1+ rI)−ξ

∗(1+ r̄D)]> 0 and ∂GG∗/∂rD = ωD(1+ r̄D)∂λ
∗/∂rD− (θ∗−δ)D =

−ωD(1+ r̄D)λ
∗(1+ rI)/[((1+ rD)(1+ rI)−ξ

∗(1+ r̄D)]− (θ∗−δ)D < 0.

However, the sign of ∂ξ
∗/∂LIQ< 0 is ambiguous, because ∂GG∗/∂LIQ=ωD(1+ r̄D)∂λ

∗/∂LIQ−∫ 1
θ
∗ 1/λdλ = ωD(1+ r̄D) · [∂λ

∗/∂LIQ−(λ∗−δ)/LIQ]+(θ∗−δ)D(1+rD)/LIQ+
∫ 1

θ
∗ ξI/(λLIQ)dλ,

and we cannot unambiguously sign ∂λ
∗/∂LIQ− (λ∗−δ)/LIQ = [(δD(1+ rD)−ξ

∗I)(1+ rI)+(1−
δ)ξ∗D(1+ r̄D)+ξ

∗X/ω]/[I ·D((1+ rD)(1+ rI)−ξ
∗(1+ r̄D)].

Finally, the sign of ∂ξ
∗/∂r̄D is also ambiguous, because ∂GG∗/∂r̄D = ωD(1+ r̄D)∂λ

∗/∂r̄D +

ωD(λ∗− δ) = ωD[(λ∗− δ)(1+ rD)(1+ rI)− (1− δ)ξ∗(1+ r̄D)]/[(1+ rD)(1+ rI)− ξ
∗(1+ r̄D)],

which cannot be unambiguously signed.

A.4 Proof of Corollary 3

Given that c(0) = 0 and c′(·)> 0, c′′(·) = 0 implies that c(x) = ac ·x, with ac > 0. Then, ∂U∗E/∂ξ
∗ =

−[c′(I)I− c(I)]/∆ξ = 0. Moreover, the surplus to E, (1− q)c′′(I)I, is zero. Similarly, given that

V (0) = 0 and V ′(·) > 0, V ′′(·) = 0 implies that V (x) = av · x, with av > 0. Then, ∂U∗S/∂ξ
∗ =

−[V (D(1+ rD))−V ′(D(1+ rD))D(1+ rD)]/∆ξ = 0. Moreover, the surplus from the transaction

services of deposits, (1− q)V ′′(D(1 + rD))D(1 + rD)
2, is zero. Finally, the surplus in terms of

period 1 utility, U ′′(eR−D)D, is zero for U ′′(·) = 0 as well as for LIQS > 0, because then U∗S = Uα
S

given that V (D(1+ rD))−V ′(D(1+ rD))D(1+ rD) = 0 from condition (ii). In turn, LIQS > 0 if

savers endowment is higher than some threshold eS at which (3) holds with equality.
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A.5 Proof of Proposition 2

First, set X = 0 to make the determination of the run threshold in (20) scale invariant. Dividing it

by the balance sheet size, E +D (or I +LIQ), (20) becomes:

GGBS =
∫

λ̂

δ

ω(1− k)(1+ r̄D)dλ−
∫

θ
∗

δ

(1− k)(1+ rD)−
∫ 1

θ
∗

ξ
∗(1− `)+ `

λ
dλ = 0, (A.15)

where

λ̂BS =
(ξ∗(1− `)+ `)(1+ rI)−ξ

∗((1− k)(1+ r̄D))

(1− k)[(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)]

. (A.16)

Thus, k affects the payoff differential in a partial run as well as the range that monitoring occurs,

λ̂− δ, via its effect on bank profitability. Totally differentiating (A.15) with respect to k, while

keeping `, rI , rD and r̄D constant we get:

∂GGBS

∂k
=

∂λ̂

∂k
ω(1− k)(1+ r̄D)︸ ︷︷ ︸
More monitoring

−(λ̂−δ)[ω(1+ r̄D)− (1+ rD)]︸ ︷︷ ︸
Lower payoff

given monitoring

+(θ∗− λ̂)(1+ rD)︸ ︷︷ ︸
’Higher’ payoff

absent monitoring

, (A.17)

where ∂λ̂/∂k > 0. Hence, the trade-off from setting a higher requirement k ≥ k̄ is that monitoring

becomes more probable, but the payoff to depositors is smaller given monitoring. Combining the

two effects, we get that

∂GGBS

∂k
=

[
ξ
∗(1+ r̄D)

(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)

+δ

]
ω(1+ r̄D)+(θ∗−δ)(1+ rD)> 0, (A.18)

which implies that ∂ξ
∗/∂k =−(∂GG∗BS/∂k)/(∂GG∗BS/∂ξ

∗)< 0, i.e., higher k reduces the run prob-

ability q.

Finally, note that CR = k(1− `). So tightening leverage is equivalent to setting a higher capital

requirement, all else being equal, and, thus, higher CR reduces the run probability q.

A.6 Proof of Proposition 3

The proof uses material described in proof A.5. Totally differentiating (A.15) with respect to `,

while keeping k, rI , rD and r̄D constant, we get:

∂GGBS

∂`
=

∂λ̂

∂`
ω(1− k)(1+ r̄D)︸ ︷︷ ︸
More monitoring

−
∫ 1

θ
∗

1−ξ
∗

λ
dλ︸ ︷︷ ︸

Higher payoff
in full run

, (A.19)

where ∂λ̂/∂` > 0. Hence, the trade-off from setting a higher requirement ` ≥ ¯̀ is that monitoring

becomes more probable, but the incentives to join a full run increase. Combining the two effects,
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we get that
∂GGBS

∂`
= (1−ξ

∗)

[
ω(1+ r̄D)(1+ rI)

(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)

+ logθ
∗
]
, (A.20)

which is definitely positive if logθ
∗ > −1 given that ω(1+ r̄D) > 1+ rD. In turn, this is satisfied

under sufficient conditions δ > e−1 given that θ
∗ > δ or ` > ˆ̀≡

[
e−1 · (1− k)(1+ rD)−ξ

∗]/(1−
ξ
∗), which is true for high enough ξ

∗ in the private equilibrium.

Finally, note that LCR = ((1−ξ)`+ξ)/(k(1+ rD)) and NSFR = (k+(1−δ)(1− k))/(1− `).

So increasing ` is equivalent to increasing LCR or NSFR, all else being equal, and, thus, higher LCR

or NSFR reduce the run probability q.

A.7 Proof of Proposition 4

We show that three tools are needed to replicate the planner’s allocations. We start with case i),

which considers corrective taxes, and then turn to cases ii) and iii), which consider combinations of

taxation and regulatory-ratio tools.

Our conjecture is that three tools are needed. For example, consider τI , τD and τLIQ. As shown

in section B.6, condition (B.27) is sufficient and necessary to replicate the planner’s allocations.

This condition takes the following matrix form under the three aforementioned Pigouvian taxation

tools  1 0 −1

0 1 0

−1 −1 0


 τI

τD

τLIQ

=

 AAMWD

CSMWD

SIMWD

 , (A.21)

which reduces to 1 0 0

0 1 0

0 0 1


 τI

τD

τLIQ

=

 −(CSMWD +SIMWD)

CSMWD

−(AAMWD +CSMWD +SIMWD)

 . (A.22)

Since, generically, AAMWD 6= 0, CSMWD 6= 0, SIMWD 6= 0, CSMWD + SIMWD = −AAMWD +

(wS ·∂U∗S/∂ξ
∗+wE ·∂U∗E/∂ξ

∗) ·∂ξ
∗/∂LIQ 6= 0 and AAMWD+CSMWD+SIMWD = (wS ·∂U∗S/∂ξ

∗+

wE ·∂U∗E/∂ξ
∗) ·∂ξ

∗/∂LIQ 6= 0, (A.22) tells us that three tools are needed to replicate the planner’s

allocations.

Alternatively, we could consider a combination of τI , τE , and τLIQ. Following the same method-

ology, we get τI =−SIMWD 6= 0, τE =−CSMWD 6= 0, and τLIQ =−(AAMWD+SIMWD)=CSMWD−
(wS · ∂U∗S/∂ξ

∗+wE · ∂U∗E/∂ξ
∗) · ∂ξ

∗/∂LIQ 6= 0. Other possible combinations would also yield the

same result, i.e., that three tools are needed to replicate the planner’s allocations.

Turning to combinations of taxation and regulatory-ratio tools, consider the following mix: A

capital requirement CR, a liquidity requirement ` and a subsidy on deposit-taking −τD. Condition
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(B.27) becomes  CR 1 0

1 0 1

−CR −` −1


 λCR

λ`

τD

=

 AAMWD

CSMWD

SIMWD

 , (A.23)

which reduces to 1 0 0

0 1 0

0 0 1


 λCR

λ`

τD

=
1

1−CR(1− `)

 ` ·AAMWD +CSMWD +SIMWD

AAMWD−CR · (AAMWD +CSMWD +SIMWD)

−` ·AAMWD− (1− `) ·CR ·CSMWD−SIMWD

 .
(A.24)

Thus, λCR and λ` are positive, i.e., the capital and liquidity requirement are binding, if CR <

AAMWD/(AAMWD +CSMWD +SIMWD)< 1− `.

Finally, consider a regulatory mix consisting for a capital requirement CR, a lending subsidy

−τI , and a deposit-taking subsidy −τD. Condition (B.27) becomes CR 1 0

1 0 1

−CR −1 −1


 λCR

τI

τD

=

 AAMWD

CSMWD

SIMWD

 , (A.25)

which reduces to 1 0 0

0 1 0

0 0 1


 λCR

τI

τD

=

 AAMWD +CSMWD +SIMWD

AAMWD−CR · (AAMWD +CSMWD +SIMWD)

−(AAMWD +SIMWD)

 . (A.26)

Thus, λCR > 0, i.e., capital requirements are binding because AAMWD +CSMWD + SIMWD =

(wS∂U∗S/∂ξ
∗+wE∂U∗E/∂ξ

∗) · ∂ξ
∗/∂LIQ > 0 under the assumptions in Proposition 3. Moreover, a

lending subsidy requires AAMWD < CR · (AAMWD +CSMWD + SIMWD), which is trivially guaran-

teed for high enough wE making AAMWD < 0. Otherwise, a tax on lending would be needed, which

is equivalent to a liquidity requirement examined above.

B Extensions and Additional Derivations

B.1 Intermediation Margins in Private Equilibrium

The first-order conditions (24) together with the four constraints in Y can be combined to charac-

terize the private equilibrium as follows. If (24) gives an interior rD > 0, then it is used to determine

rD as a function of all other variables in C ; otherwise, set rD = 0. Then, use (2), (7), (9), and (20)

to express (implicitly) r̄D, rI , E, and ξ
∗ in terms of I, LIQ and D. The next step is to express the

shadow values on the four constraints Y in terms of I, LIQ, and D. The shadow value of funds is

9



determined by the first-condition with respect to E,

ψBS =W ′(eB +D− I−LIQ), (B.1)

where we have substituted E = I +LIQ−D.

The shadow value on the deposit supply schedule can be obtained from (24) with respect to r̄D,

which yields

ψDS =−
(

∂UB

∂r̄D
+ψGG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1

. (B.2)

The choice of r̄D matters for the banker via the effect on profits and on the run dynamics. The

shadow value determined in (B.2) captures the sum of these effects as the deposit rate moves along

the deposit supply schedule. Because the three variables of interest—I, LIQ, and D—affect the loan

demand directly as well as indirectly via r̄D, their overall effect on the deposit supply will be scaled

by the shadow value ψDS in their respective first-order conditions.

The shadow value on the loan demand schedule can be obtained from (24) with respect to rI ,

which yields

ψLD =−
(

∂UB

∂rI
+ψGG

∂GG
∂rI

)
∂LD
∂rI

−1

. (B.3)

Similar to (B.2), condition (B.3) says that the shadow value on the loan demand is measured by how

a change in the loan rate along the loan demand schedule affects banker’s utility.

Equivalently, combining (24) for C = ξ
∗, (B.2) and (B.3), the shadow value on the global game

constraint is given by

ψGG =−dUB

dξ
∗ ·

dGG
dξ
∗

−1
, (B.4)

where dUB/dξ
∗ is the total effect of the run threshold ξ

∗ on banker’s utility, which captures the

partial direct effect—∂UB/∂ξ
∗ in (B.70)—and the partial indirect effects via the deposit and loan

rate, in (B.70) and (B.70), respectively:

dUB

dξ
∗ =

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
. (B.5)

Similarly, dGG/dξ
∗ is the total effect of the run threshold ξ

∗ on the utility differential deter-

mining the run behavior, which captures the partial direct effect—∂GG/∂ξ
∗ in (22)—and the partial

indirect effects via the deposit and loan rate, in (B.94) and (B.102), respectively:

dGG
dξ
∗ =

∂GG
∂ξ
∗ −

∂GG
∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂GG
∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗ . (B.6)

Overall, ψGG measures the effect of a change in the run threshold, which is consistent with optimal

run behavior, i.e., along the global game constraint, on B’s welfare.

Combining (24) with respect to LIQ and I and substituting in (B.2), (B.3), and (B.4), we obtain
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the asset allocation margin in the private equilibrium (AAMPE):

Effect of asset mix on UB via bank profits: dUB/dLIQ−dUB/dI︷ ︸︸ ︷
∂UB

∂LIQ
− ∂UB

∂I
− ∂UB

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂LIQ

− ∂DS
∂I

)
− ∂UB

∂rI

∂LD
∂rI

−1(
∂LD
∂LIQ

− ∂LD
∂I

)

+

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
︸ ︷︷ ︸

Effect on UB via ξ
∗: dUB/dξ

∗

·
(

∂ξ
∗

∂LIQ
− dξ

∗

dI

)
︸ ︷︷ ︸

Effect of asset mix on ξ
∗

= 0, (B.7)

where dξ
∗/dLIQ and dξ

∗/dI are obtained from total differentiation of (20), hence

dξ
∗

dLIQ
− dξ

∗

dI
=−

[
∂GG
∂LIQ

− ∂GG
∂I
− ∂GG

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂LIQ

− ∂DS
∂I

)
− ∂GG

∂rI

∂LD
∂rI

−1(
∂LD
∂LIQ

− ∂LD
∂I

)]
· dGG

dξ
∗

−1
.

(B.8)

The asset allocation margin in (B.7) captures the decision to substitute a unit of loans with a unit of

liquid assets. The banker in the private equilibrium weighs the effect of the change in the asset mix

on the bank profitability (the first line) and on the run threshold, which determines run-risk, because

both affect her welfare (the second line). The asset mix matters for bank profits because of portfolio

effects (first two terms in first line), but also because of the way it influences the profit margin via

the loan rate and deposit rates (remaining terms in first line). The latter (general equilibrium) effect

via rates captures how the asset mix matters for the loan rate or deposit rate that entrepreneurs and

depositors are willing to accept. Similarly, the asset mix changes the payoffs governing the run

dynamics directly and indirectly via the loan and deposit rates (captured by (B.8)), which in turn

affect the run threshold influencing B’s welfare directly and indirectly via the loan and deposit rates.

Similarly, combining (24) with respect to E and D and substituting in (B.2), (B.3), and (B.4),

we obtain the capital structure margin in the private equilibrium (CSMPE):

Effect of liabilities mix on UB via bank profits: dUB/dE−dUB/dD︷ ︸︸ ︷
∂UB

∂E
− ∂UB

∂D
+

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂D

+
∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂D

−

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
︸ ︷︷ ︸

Effect on UB via ξ
∗: dUB/dξ

∗

· dξ
∗

dD︸︷︷︸
Effect of liabilities

mix on ξ
∗

= 0, (B.9)

where
dξ
∗

dD
=−

[
∂GG
∂D
− ∂GG

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂D
− ∂GG

∂rI

∂LD
∂rI

−1
∂LD
∂D

]
· dGG

dξ
∗

−1
. (B.10)

Finally, combining (24) with respect to I and D and substituting in (B.2), (B.3), and (B.4), we
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obtain the margin for the scale of intermediation in the private equilibrium (SIMPE):

Effect of intermediation scale on UB via bank profits: dUB/dI +dUB/dD︷ ︸︸ ︷
∂UB

∂I
+

∂UB

∂D
− ∂UB

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂I

+
∂DS
∂D

)
− ∂UB

∂rI

∂LD
∂rI

−1(
∂LD
∂I

+
∂LD
∂D

)

+

(
∂UB

∂ξ
∗ −

∂UB

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂ξ
∗ −

∂UB

∂rI

∂LD
∂rI

−1
∂LD
∂ξ
∗

)
︸ ︷︷ ︸

Effect on UB via ξ
∗: dUB/dξ

∗

·
(

dξ
∗

dI
+

dξ
∗

dD

)
︸ ︷︷ ︸

Effect of intermediation
scale on ξ

∗

= 0, (B.11)

where

dξ
∗

dI
+

dξ
∗

dD
=−

[
∂GG

∂I
+

∂GG
∂D
− ∂GG

∂r̄D

∂DS
∂r̄D

−1(
∂DS
∂I

+
∂DS
∂D

)
− ∂GG

∂rI

∂LD
∂rI

−1(
∂LD
∂I

+
∂LD
∂D

)]
· dGG

dξ
∗

−1
.

(B.12)

Note that, expanding the first two terms in (B.11), we get that

∂UB

∂I
+

∂UB

∂D
= ω

{
[(1−q)−δ(1+ rD)log(ξ/ξ

∗)/∆ξ](1+ rI)− (1−δ)(1+ r̄D)
}
, (B.13)

where q is the run probability. Hence, the third margin capturing the scale of intermediation can be

proxied by the intermediation spread between the loan rate, rI , and the late deposit rate, r̄D.

The three intermediation margins pin down the three free variables I, LIQ, and D. The remaining

variables, E, ξ
∗, rI , and r̄D, are implicitly functions of the three free variables via constraints (9),

(20), (7) and (2), which are always binding in equilibrium . Hence, there are three degrees of

freedom and the private equilibrium is characterized by (B.7), (B.9) and (B.11).

B.2 Intermediation Margins in Social Planner’s Equilibrium

As for the private equilibrium, we can use the first-order conditions (34) in the planning problem

together with the four constraints in Y to characterize the planning allocations. In particular, we use

the first-order condition with respect to rD to determine its value—which is zero as in the PE— and

(2), (7), (9), and (20) to express (implicitly) r̄D, rI , E, and ξ
∗ in terms of I, LIQ, and D. As discussed,

we consider a planner that respects the deposit supply and loan demand schedule, because we want

to focus on regulation to affect bank’s behavior. See section B.9 for a more powerful planner, who

can levy distortionary taxes to affect the private deposit supply and loan demand schedules.

Up to this point everything is analogous to the characterization of PE allocations in section

B.2. But, the planner also cares about the direct effect on S and E welfare as captured in the social

welfare function (29). This influences the functional form of the Lagrange multipliers on constraints

Y , which are denoted by ζY instead of ψY .

The functional forms of ζBS, ζDS, and ζLD are the same as for ψBS, ψDS, and ψLD given by

(B.1), (B.2) and (B.3), with the exception that the latter two are functions of ζGG instead of ψGG.

The reason is that E, r̄D, and rI do not appear directly in (29). Note, this does not mean that the

12



equilibrium values of these Lagrange multipliers are the same in the private and planning solutions.

But, the multiplier ζGG on constraint (20) will have a different functional form compared to (B.4),

because ξ
∗ appears in the indirect utilities:

ζGG =−

(
∂UB

∂ξ
∗ −

∂UB

∂rD
3

∂DS
∂rD

3

−1
∂DS
∂ξ
∗ −

∂UB

∂rI
∂LD
∂rI

−1
∂LD
∂ξ
∗ +wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
dGG
dξ
∗

−1

= ψGG−
(

wS
∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
dGG
dξ
∗

−1

= ψGG

[
1+
(

wS
∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
dUB

dξ
∗

]
, (B.14)

where the terms in red are the additional terms in the planner’s problem. Because ∂U∗S/∂ξ
∗ =

−[V (D)−V ′(D)D]∆ξ < 0, ∂U∗E/∂ξ
∗ = −[c′(I)I − c(I)]∆ξ < 0, and, from (B.5), dUB/dξ

∗ < 0,1

internalizing the run externalities makes the Lagrange multiplier on the constraint (20) higher (when

evaluated at the PE allocations). We can now derive the wedges between the private and social

intermediation margins.

Combining (34) with respect to LIQ and I together with (25), we can derive the following wedge

in the Asset Allocation Margin (also reported in (35)):

AAMWD =

(
wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
·
(

∂ξ
∗

∂LIQ
− ∂ξ

∗

∂I

)
︸ ︷︷ ︸

Run externality from asset allocation

− wE(1−q)c′′(I)I︸ ︷︷ ︸
Surplus to E from additional I

(B.15)

As discussed, the first term in (B.15) captures how a shift in the asset allocation from loans

to liquid asset holdings affects savers’ and entrepreneurs’ welfare via its effect on the run proba-

bility. Both savers and entrepreneurs are worse-off when run-risk goes up, i.e., ∂U∗S/∂ξ
∗ < 0 and

∂U∗E/∂ξ
∗ < 0. Thus, if run-risk decreases when the asset allocation shifts towards liquid assets, then

the planner would want a more liquid asset mix. The second term in (B.15) captures the surplus

created for the entrepreneur from an additional unit of investment. This term is negative (including

the minus sign) if the planner puts weight on E and if E extracts some surplus to start with, i.e.,

c′′ > 0, which is true for a strictly convex function.

Examining the run externalities in more detail the term ∂ξ
∗/∂LIQ− ∂ξ

∗/∂I captures exactly

the effects of substituting a unit of liquid assets with a unit of loans on the probability of a run

and is given by (B.8). If it is negative, correcting the run externalities requires a more liquid asset

mix. The first and third terms inside the bracket are unambiguously positive, respectively. The

first term captures the direct effect of shifting the asset allocation towards more liquid assets on the

incentive to run. Combining (B.83) and (B.82) we get that ∂GG/∂LIQ−∂GG/∂I = ∂GG/∂`, which

1
∂UB/∂ξ

∗ < 0 from (B.70); ∂UB/∂r̄D < 0 from (B.73); ∂DS/∂r̄D > 0 from (B.97); ∂DS/∂DS/ξ
∗ < 0 from (B.94);

∂UB/∂rI > 0 from (B.71); ∂LD/∂rI < 0 from (B.103); ∂LD/∂ξ
∗ from (B.102) can be positive or negative, so the effect

through the loan demand cannot be unambiguously determined. However, in our examples, the first two terms dominate,
and overall, a higher run threshold reduces banker’s utility all else being equal.
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is positive as we prove in Proposition 3 (recall that ` ≡ LIQ/(I +LIQ) is the share of liquid assets

in the asset portfolio). Intuitively, a more liquid asset portfolio (directly) decreases the incentives to

run. The third term captures the indirect effect via the loan rate. In particular, ∂GG/∂rI > 0 from

(B.79) and (B.87), ∂LD/∂rI = −ω
∫ ξ

ξ
∗(1− y)Idξ/∆ξ < 0 from (B.103), and, combining (B.98) and

(B.99), we get that ∂LD/∂LIQ−∂LD/∂I =ω[A−(1+rI)]log(ξ/ξ
∗)/∆ξ[LIQ+I−δD(1+rD)]/I2−

(1−q)c′′(I)> 0. Thus, the third term in (B.8)—including the minus sign—is positive. Intuitively,

a higher loan rate reduces the incentives to run, because it increases bank profits and, hence, the

region where the banker decides to monitor. In turn, a more liquid asset portfolio increases the loan

demand, because of convex investment costs and fewer loans being recalled, pushing up the loan

rate entrepreneurs are willing to pay.

Finally, the second term captures the indirect effect via the late deposit rate. If we could show

that this is always positive, then the whole expression would be negative given that dGG/dξ
∗ needs

to be positive to have ψGG > 0 in the private equilibrium. In particular, combining (B.91) and (B.90)

we get that ∂DS/∂LIQ− ∂DS/∂I = q[1− (ξ∗+ ξ)/2−]/D > 0, while ∂DS/∂r̄D = ω(1− q)(1−
δ) > 0 from (B.97). Intuitively, a more liquid asset portfolio increases the demand for deposits

because it increases the probability of being repaid in a run, θ, and, thus, pushes down the rate

depositors demand. However, the effect of the deposit rate on the incentives to run, ∂GG/∂r̄D,

could be unambiguously determined:

∂GG
∂r̄D

= (λ̂−δ)ωD︸ ︷︷ ︸
Higher payoff

given monitoring

+
∂λ̂

∂r̄D
ωD(1+ r̄D)︸ ︷︷ ︸

Lower chance
of monitoring

= ωD
(λ−δ)(1+ rD)(1+ rI)− (1−δ)ξ∗(1+ r̄D)

(1+ rD)(1+ rI)−ξ
∗(1+ r̄D)

.

(B.16)

In other words, a higher deposit rate increases the payoff from waiting given monitoring, which re-

duces the incentives to run, but also reduces the chances that monitoring takes place, i.e., ∂λ̂/∂r̄D < 0

from (B.81), which increases the incentives to run. We haven’t been able to sign the overall effect

analytically, but, in all the examples we have studied, we find that ∂GG/∂r̄D > 0, or in other words a

higher deposit rate reduces the run probability, all else being equal.2 This is an important and novel

channel in our model (see the discussion at the end of section 2.4).

Turning to the capital structure margin, we combine (34) with respect to E and D together with

(26) to get the following wedge (also reported in (36)):

CSMWD =−
(

wS
∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
∂ξ
∗

∂D︸ ︷︷ ︸
Run externality from liabilities mix

+wR
[
U ′′(eR−D)D+(1−q)V ′′(D(1+ rD)D(1+ rD)

2]︸ ︷︷ ︸
Surplus to S from additional D

(B.17)

Similar to the wedge in the asset allocation margin, the wedge in the capital structure margin

features two components. The first term captures how a shift in the liabilities mix from deposits to

equity affects savers’ and entrepreneurs’ welfare via its effect on the run probability. Both savers and

2Recall that ∂ξ
∗/∂r̄D =−(∂GG/∂r̄D)/(∂GG/∂ξ

∗).
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entrepreneurs are worse-off when run-risk goes up. Thus, if run-risk decreases when the liabilities

mix shifts towards equity, then the planner would want lower leverage.3 The second term captures

the surplus created for savers from an additional unit of deposits and is negative if the planner puts

weigh on S and if S extracts some surplus to start with, which is true for strictly concave functions

U and V . In others words, shifting the capital structure away from deposits entails a welfare cost

because of the lower surplus from deposit services to savers.

With respect to the run externalities, the term ∂ξ
∗/∂D can be decomposed into a direct effect on

the incentives to run and two indirect effects via the deposit and loan rate depicted in (B.10). Similar

to above, the direct effect and the indirect effect via the loan rate can be unambiguously signed, but

the indirect effect via the deposit rate cannot. In particular, expanding (B.84), we get ∂GG/∂D =

−ω(1+ r̄D)[δ(1+ rD)(1+ rI)+(1−δ)ξ∗(1+ r̄D)]− (1+ rD)(θ
∗−δ)< 0, while ∂DS/∂D < 0 from

(B.92), and ∂LD/∂D < 0 from (B.100). But, as mentioned, we find that ∂GG/∂r̄D > 0, which means

that the indirect effect via the deposit rate operates in the opposite direction compared with both the

direct effect and indirect effect via the loan rate. Nevertheless, the indirect effect via the deposit rate

does not dominate the other two effects and ∂ξ
∗/∂D > 0, which means that run-risk increases when

deposits go up, all else being equal.

Lastly, combining first-order condition (34) with respect to I and D together with (27), we obtain

the following wedge in the scale of intermediation margin (also reported in (37):

SIMWD =

Run externality from intermediation scale︷ ︸︸ ︷(
wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
·
(

∂ξ
∗

∂I
+

∂ξ
∗

∂D

)
−wS[U ′′(eS−D)D+(1−q)V ′′(D(1+ rD))D(1+ rD)

2]+wE(1−q)c′′(I)I︸ ︷︷ ︸
Surplus to S and E from higher intermediation scale

. (B.18)

Similar to the other two wedges, (B.18) has a component that captures the externality from the

intermediation scale on the run probability and a component that captures the surplus created for S

and E. The latter is unambiguously positive as more intermediation, i.e., more deposits channeled

to lending, increases the surplus to both savers and entrepreneurs. The impact of the intermediation

scale of the run probability captured by ∂ξ
∗/∂I + ∂ξ

∗/∂D (see (B.12) for the detailed expression)

comprises of a direct effect as well as indirect effects via the deposit and loan rate, similar to the

other two wedges. All three components are hard to sign analytically without knowing the ratio of

lending to deposits, I/D, in the private equilibrium.

Overall, the planner balances the run externalities and the additional surpluses to savers and

entrepreneurs when deciding how the asset allocation, the capital structure, and the scale of inter-

mediation should differ from the private equilibrium.

3Note that the equity capital choice does not directly enter the global game constraint GG. Thus, the effect of shifting
the capital structure from deposit to equity is written as ∂ξ

∗/∂E−∂ξ
∗/∂D =−∂ξ

∗/∂D.
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B.3 Disciplining Role of Runs

This section explores what is the role of the run in disciplining the banker. In particular, we compute

the private equilibrium in which the banker does not internalize the effect of her actions on the run

probability, i.e., ψGG = 0 in (24). Table B.1 reports the results. The banker chooses allocations that

result in higher run-risk and all agents are worse-off, while capital and liquidity are much lower

than in the socially optimal outcomes even when E is favored. As expected, there is a much bigger

scope for regulation if B neglected her impact on run-risk and all agents could be made better-off.

PE PE SP for weights (wE ,wS)

ψGG > 0 ψGG = 0 (0.00,0.20) (0.10,0.10) (0.20,0.00)

I 0.862 0.827 0.785 0.873 0.906
LIQ 0.052 0.000 0.221 0.060 0.000
D 0.875 0.803 0.962 0.894 0.867
E 0.038 0.024 0.044 0.039 0.038
rI 3.097 3.119 3.198 3.089 3.042
r̄D 0.717 0.581 0.804 0.767 0.758
q 0.407 0.425 0.386 0.403 0.408
` 0.057 0.000 0.219 0.065 0.000
k 0.042 0.028 0.044 0.042 0.042
rI− (1−δ)r̄D 2.739 2.828 2.796 2.705 2.663
I +LIQ 0.914 0.827 1.006 0.933 0.906
I−E 0.824 0.803 0.741 0.834 0.867
E(Div) 0.745 0.703 0.755 0.747 0.743
∆UE - -1.11% -1.66% 0.33% 1.19%
∆US - -2.10% 3.63% 0.71% -0.30%
∆UB - -0.89% -0.44% -0.05% -0.09%

Table B.1: Private equilibrium allocations when the banker does and does not internalize the effect of her
action on run-risk versus Socially optimal solutions. The welfare changes are computed over the level of
welfare in the private equilibrium where the banker internalizes run-risk, which is normalized to one for each
agent.

B.4 Incomplete Deposit Contracts and Lack of Commitment

This section studies the case of incomplete deposit contracts. First, we show how the wedges in the

intermediation margins between the private and social solutions change. Second, we report how the

numerical solution for the private equilibrium under incomplete contracts compares to the private

and social outcomes discussed in section 3.2.

Under incomplete deposit contracts, the banker only internalizes the effect of terms specified

in the deposit contract on the deposit supply. At minimum, these terms include the amount of

deposits, D, and the deposit rates, rD and r̄D. As a result, the banker would be tempted to deviate
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when choosing the rest of the balance sheet after she has entered into a deposit contract and received

the deposits. The banker does understand that taking more risk increases the cost of raising deposits

and would ideally want to promise depositors that she will behave prudently. But, after the deposit

contract has been signed, the banker has an incentive to deviate towards lending more, holding fewer

liquid assets, and raising less equity.

Depositors have rational expectations and ex ante require that the banker offers higher deposit

rates to compensate for the anticipated risk-taking due to the lack of commitment. As a result, the

deposit supply schedule has the same functional form to the benchmark environment. The difference

in the private equilibrium comes from the fact that the banker will not include the effect of I, LIQ

and ξ
∗ on DS in the respective first-order conditions, i.e., the respective (24) will not include the

terms multiplied by ψDS.

The Lagrange multipliers ψDS and ψLD will have the same functional form derived in (B.2) and

(B.3), respectively. However, the functional form of ψGG will be different from the one in (B.4):

ψ̂GG =−
∂UB
∂ξ
∗ − ∂UB

∂rI

∂LD
∂rI

−1 ∂LD
∂ξ
∗

∂GG
∂ξ
∗ − ∂GG

∂rI

∂LD
∂rI

−1 ∂LD
∂ξ
∗

. (B.19)

So the difference between the multipliers in the social equilibrium, ζGG given by (B.14), and

private equilibrium, ψ̂GG given by (B.19), does not only come from the presence of run externalities,

but also from externalities arising from contract incompleteness:

ζGG− ψ̂GG =

−
(

wS
∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
dGG
dξ
∗

−1

︸ ︷︷ ︸
Run externality

+

(
∂UB

∂r̄D
+ ψ̂GG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1
∂DS
∂ξ
∗

dGG
dξ
∗

−1

︸ ︷︷ ︸
Incomplete contract externality

, (B.20)

where dGG/dξ
∗ is given as before by (22). Note that, under complete contracts, the difference

between ζGG and ψGG, given by (B.4), is only due to the run externality, i.e., the first term in (B.20).

The three expressions in (B.21), (B.22), and (B.23) below report the wedges in the three inter-

mediation margins, separating the externalities stemming from incomplete contracts.
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The wedge is the asset allocation margin is:

ÂAMWD =

(
wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
·
(

∂ξ
∗

∂LIQ
− ∂ξ

∗

∂I

)
︸ ︷︷ ︸

Run externality from asset allocation

− wE(1−q)c′′(I)I︸ ︷︷ ︸
Surplus to E from additional I

+

(
∂UB

∂r̄D
+ ψ̂GG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1
∂DS
∂ξ
∗ ·

·

[
∂GG
∂LIQ

− ∂GG
∂I
− ∂GG

∂rI

∂LD
∂rI

−1(
∂LD
∂LIQ

− ∂LD
∂I

)]
dGG
dξ
∗

−1

︸ ︷︷ ︸
(Indirect) Incomplete contract externality

−
(

∂UB

∂r̄D
+ζGG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1(
∂DS
∂LIQ

− ∂DS
∂I

)
︸ ︷︷ ︸

(Direct) Incomplete contract externality

. (B.21)

The terms in the first line are the same ones in (B.15) under complete deposit contracts. The

second line captures the effect of the asset allocation on the run threshold, which in turn was not

part of the deposit contract that the banker would internalize. The last line captures the direct effect

of incomplete contracts on the asset allocation margin, i.e., the planner internalizes how the asset

mix affects the deposit supply schedule.

Examining the direct effect first, note that −(∂UB/∂r̄D +ζGG ·∂GG/∂r̄D) · (∂DS/∂r̄D)
−1 is the

planner’s Lagrange multiplier on the deposit supply schedule, which we expect to be positive as

long as the planner wants to encourage the supply of deposits by offering a higher deposit rate.

Also, we have shown that (∂DS/∂I−∂DS/∂LIQ) < 0, which means that having a less liquid asset

mix will adversely affect the supply of deposits. The planner internalizes this, but the banker may

have an incentive to deviate and take more asset risk after the deposit contract has been signed. The

overall direct effect is negative, which means the planner (and a banker that can commit) would like

to implement a more liquid asset allocation.

Turning to the indirect externality, −(∂UB/∂r̄D + ψ̂GG ·∂GG/∂r̄D) · (∂DS/∂r̄D)
−1 is the multi-

plier on DS in the private problem, which we expect to be positive for the same reasons as above.

The overall effect from all the terms is negative (see the benchmark model where we sign the other

terms). This means that the planner (and a banker that can commit) would, similarly to the direct

effect, also want a more liquid asset allocation. Hence, the incomplete contract externality results

in more asset risk in private allocations.
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Similarly, the wedges for the capital structure becomes:

ĈSMWD =−
(

wS
∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
∂ξ
∗

∂D︸ ︷︷ ︸
Run externality from liabilities mix

+wR
[
U ′′(eR−D)D+(1−q)V ′′(D(1+ rD)D(1+ rD)

2]︸ ︷︷ ︸
Surplus to S from additional D

−
(

∂UB

∂r̄D
+ ψ̂GG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1
∂DS
∂ξ
∗ ·

[
∂GG
∂D
− ∂GG

∂rI

∂LD
∂rI

−1
∂LD
∂D
− ∂GG

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂D

]
dGG
dξ
∗

−1

︸ ︷︷ ︸
(Indirect) Incomplete contract externality

.

(B.22)

Note that in (B.22), the additional terms stem only for the indirect incomplete contract externality

through the run threshold because the banker internalizes the effect of D on the deposit supply

schedule.

Finally, the wedge in the scale of intermediation margin becomes:

ŜIMWD =

Run externality from intermediation scale︷ ︸︸ ︷(
wS

∂U∗S
∂ξ
∗ +wE

∂U∗E
∂ξ
∗

)
·
(

∂ξ
∗

∂I
+

∂ξ
∗

∂D

)
−wS[U ′′(eS−D)D+(1−q)V ′′(D(1+ rD))D(1+ rD)

2]+wE(1−q)c′′(I)I︸ ︷︷ ︸
Surplus to S and E from higher intermediation scale

+

(
∂UB

∂r̄D
+ ψ̂GG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1
∂DS
∂ξ
∗ ·

·

[
∂GG

∂I
+

∂GG
∂D
− ∂GG

∂rI

∂LD
∂rI

−1(
∂LD
∂I

+
∂LD
∂D

)
− ∂GG

∂r̄D

∂DS
∂r̄D

−1
∂DS
∂D

]
dGG
dξ
∗

−1

︸ ︷︷ ︸
(Indirect) Incomplete contract externality

−
(

∂UB

∂r̄D
+ζGG

∂GG
∂r̄D

)
∂DS
∂r̄D

−1
∂DS
∂I︸ ︷︷ ︸

(Direct) Incomplete contract externality

. (B.23)

Along the same lines, the direct incomplete contract externality in (B.23) is only due to the choice

of I.

Overall, the externalities from incomplete contracts are an additional source of divergence be-

tween private and social intermediation margins. Table B.2 compares the private equilibrium un-

der incomplete deposit contracts to both the private equilibrium under complete contracts and the

socially optimal allocations. Comparing the private equilibria under complete and incomplete con-

tracts, we can see that the banker has an incentive to choose a less liquid asset portfolio and more

leveraged capital structure. The inability to commit, results in higher run-risk, and the banker needs

to cut deposit-taking in order to sustain a not-too-low profit margin. All agents are worse-off. As
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a result, the planner cannot only fix the run externalities, but also the inefficiencies arising from

incomplete deposit contracts. In other words, the planner can “enable" the banker to commit, which

can be beneficial for all agents including the banker.

PE PE SP for weights (wE ,wS)

Complete Incomplete (0.00,0.20) (0.10,0.10) (0.20,0.00)

I 0.862 0.825 0.785 0.873 0.906
LIQ 0.052 0.000 0.221 0.060 0.000
D 0.875 0.797 0.962 0.894 0.867
E 0.038 0.028 0.044 0.039 0.038
rI 3.097 3.121 3.198 3.089 3.042
r̄D 0.717 0.550 0.804 0.767 0.758
q 0.407 0.424 0.386 0.403 0.408
` 0.057 0.000 0.219 0.065 0.000
k 0.042 0.035 0.044 0.042 0.042
rI− (1−δ)r̄D 2.739 2.846 2.796 2.705 2.663
I +LIQ 0.914 0.825 1.006 0.933 0.906
I−E 0.824 0.797 0.741 0.834 0.867
E(Div) 0.745 0.714 0.755 0.747 0.743
∆UE - -1.14% -1.66% 0.33% 1.19%
∆US - -2.12% 3.63% 0.71% -0.30%
∆UB - -0.85% -0.44% -0.05% -0.09%

Table B.2: Private equilibrium allocations under complete and incomplete deposit contracts versus Socially
optimal solutions. The welfare changes are computed over the level of welfare in the private equilibrium
under complete contracts, which is normalized to one for each agent.

B.5 Loan Market and Price-Taking Behavior

This section presents the private equilibrium outcomes when the banker acts as a price-taker in the

loan market, i.e., she takes rI as given and does not internalize the effect of the other choices in

C on the loan demand schedule (7). Technically, this means that the first-order conditions (24)

in the private equilibrium should not include the terms multiplied by ψLD. This would introduce

an additional reason why the privately and socially optimal allocations diverge on top of the run

externalities and surplus considerations present in the three wedges in (35), (36), and (37). Indeed,

one can derive expressions similar to (B.21), (B.22), and (B.23) where, instead of the terms for

the incomplete deposit contract externalities, there would be terms capturing the externalities from

pricing taking behavior in the loan market.

Table B.3 compares the private equilibrium when the banker is a price-taker in the loan market

with both the private equilibrium when the banker internalizes the loan demand schedule and the

socially optimal allocations. Comparing the two private equilibria, the banker extends more loans to

entrepreneurs, which reduces the loan rate and the profit margin, when she does not internalize how

20



her choice affects the loan demand by entrepreneurs. Naturally, the banker is worse-off compared

with the private equilibrium where she fully internalizes her actions. Entrepreneurs and savers are

better-off—the former because they get more loans and the latter because the banker raises more

deposits to fund lending, which pushes up the deposit rate. It may seem that social welfare is higher

in the private equilibrium with price-taking behavior compared with the socially optimal outcomes.

This is not true. Consider, for example, that the social welfare weights are wE = wS = 0.1. The

difference between social welfare in the planner’s solution and the private equilibrium with risk-

taking behavior is 1.06%, i.e., the planner does better. The planner still cares about the banker and,

thus, she chooses allocations that favor the banker, who did not internalize how her actions affected

loan demand. The concerns about the banker’s welfare diminish as more weight is placed on S and

E, which can be seen from the last column where the social welfare weights are wE = wS = 0.5.

Social welfare is higher by 0.05% in the planner solution compared with the private equilibrium

with price-taking behavior.

PE PE SP for weights (wE ,wS)

Price-taking (0.00,0.20) (0.10,0.10) (0.20,0.00) (0.50,0.50)

I 0.862 0.976 0.785 0.873 0.906 0.944
LIQ 0.052 0.000 0.221 0.060 0.000 0.056
D 0.875 0.933 0.962 0.894 0.867 0.957
E 0.038 0.043 0.044 0.039 0.038 0.043
rI 3.097 2.966 3.198 3.089 3.042 3.015
r̄D 0.717 0.981 0.804 0.767 0.758 0.996
q 0.407 0.400 0.386 0.403 0.408 0.395
` 0.057 0.000 0.219 0.065 0.000 0.056
k 0.042 0.044 0.044 0.042 0.042 0.043
rI− (1−δ)r̄D 2.739 2.475 2.796 2.705 2.663 2.516
I +LIQ 0.914 0.976 1.006 0.933 0.906 1.000
I−E 0.824 0.933 0.741 0.834 0.867 0.901
E(Div) 0.745 0.740 0.755 0.747 0.743 0.739
∆UE - 3.57% -1.66% 0.33% 1.19% 2.57%
∆US - 2.33% 3.63% 0.71% -0.30% 3.37%
∆UB - -1.60% -0.44% -0.05% -0.09% -1.57%

Table B.3: Private equilibrium allocations with and without price-taking banker’s behavior versus Socially
optimal solutions. The welfare changes are computed over the level of welfare in the private equilibrium
where the banker internalizes the loan demand schedule, which is normalized to one for each agent.

B.6 Tools-Augmented Planner

We consider a tools-augmented planner who is endowed with the set of tools T ∈ T and wants

to replicate the social planner’s allocations Csp, as a private equilibrium. The tools-augmented

planner’s problem is akin to a Ramsey planner’s problem in the public finance literature.
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We will consider two types of tools. First, restrictions on regulatory ratios denoted by TR.

Second, Pigouvian taxes imposed directly on B′s payoffs and denoted by TP. For each TR, there

is a regulatory constraint RC(TR,C ) ≥ 0, which ties the tool with the endogenous variables C ,

while for each TP, there is an additional term in B’s utility, UB(TP,C ). It is important to note that

the regulatory constraints, RC, are defined as inequalities, i.e., the planner can tighten them but not

loosen them while there are no restrictions on Pigouvian taxes which can be positive or negative. Let

ψTR
be the multipliers that the banker in the private equilibrium assigns to constraint RC(TR,C )≥ 0.

Under regulation, the optimization margins change to:

AAMT : AAMPE +∑
T

{
ψTR

[
∂RC(TR,C )

∂LIQ
− ∂RC(TR,C )

∂I

]
+

∂UB(TP,C )

∂LIQ
− ∂UB(TP,C )

∂I

}
= 0,

(B.24)

CSMT : CSMPE +∑
T

{
ψTR

[
∂RC(TR,C )

∂E
− ∂RC(TR,C )

∂D

]
+

∂UB(TP,C )

∂E
− ∂UB(TP,C )

∂D

}
= 0,

(B.25)

SIMT : SIMPE +∑
T

{
ψTR

[
∂RC(TR,C )

∂I
+

∂RC(TR,C )

∂D

]
+

∂UB(TP,C )

∂I
+

∂UB(TP,C )

∂D

}
= 0.

(B.26)

We will show that in order to implement the equilibrium allocations of the social planner, de-

noted by Csp, it is not necessary to solve the full problem of the tools-augmented planner. In-

stead, it suffices that there are tools, T = {TR,TP}, that first satisfy the regulatory constraints

RC(TR,Csp) = 0 at the planner’s allocations, and, second, the intermediation margins in the as-

sociated equilibrium are the same as the intermediation margins of the planner. Essentially, this

means that the additional terms in (B.24), (B.25), and (B.26) need to equal the wedges derived in

(35), (36), and (37). In matrix form, this can be written as:[
∆TR

∆TP

]
·
[
ΨTR T̄P

]
=WDsp, (B.27)

where ΨTR is the TRx1 vector of the multiplier on the TR regulatory constraints, WDsp is the 3x1

vector of the wedges in the three intermediation margins evaluated at the planner’s equilibrium

values, ∆TR ≡ ∆RC(TR,Csp) is the 3xTR matrix of the partial derivatives of the relevant variables

for each intermediation margin on the TR regulatory constraints, T̄P is the TPx1 vector of Pigouvian

tools, and ∆TP is the 3xTP matrix of the coefficient on the tools TP in the partial derivatives of the

utility terms, i.e., ∆TP · T̄P ≡ ∆UB(T ,Csp).

Given that there are at most three distorted wedges in intermediation margins, only three inde-

pendent tools are needed, i.e, #TR +#TP = 3. First, consider that there are three tools TP and none
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TR. As long as ∆TP is invertible, three Pigouvian tools TP are sufficient to implement the planner’s

solution, i.e., (B.27) has a solution even if regulatory-ratio tools TR are not considered. Alterna-

tively, the planner’s allocations can be implemented with just three regulatory-ratio tools, if first,

the matrix ∆TR is invertible and, second, all elements in ΨTR are positive. But, three regulatory-ratio

tools (capital or liquidity) may not be linearly independent, because choosing two of them may

replicate the value of the third. For example, a capital and a liquidity tool can be jointly binding,

but two liquidity tools cannot. Additionally, some of resulting multipliers ψTR
may be negative,

because the planner may want to encourage instead of restrict activity (recall that the regulatory

constraints RC are inequalities). Indeed, this is the case we study in section 4.3. For these reasons,

we combine a capital and a liquidity tool with a (Pigouvian) subsidy on deposit interest expenses to

implement the planner’s allocations when savers are favored, while a capital tool is combined with

(Pigouvian) deposit and lending subsidies when entrepreneurs are favored. When both regulatory-

ratio and Pigouvian tools are used, it suffices that the matrix ∆T ≡ [∆TR ∆TR ]
′ is invertible in order

to implement the planner’s allocations.

We now show that (B.27) is a necessary and sufficient condition such that the social planner’s

solution described in section 3.1 can be decentralized as a private equilibrium by using regulatory

tools T = {TR,TP} ∈T. The tools-augmented planner not only chooses optimally allocations C , but

also the level of tools T ∈ T and the multipliers ψTR
, which are the shadow values that the banker

assigns to constraints RC(TR,C )≥ 0 in the new equilibrium. Her problem is:

max
C ,T ,ψTR

UT
sp s.t. Y (C ) = 0, RC(TR,C )≥ 0, AAMT (TR,C ,ΨT ) = 0, CSMT (TR,C ,ΨT ) = 0,

SIMT (TR,C ,ΨT ) = 0. (B.28)

Note that the additional utility terms UB(TP,C ) due to Pigouvian taxation tools do not appear in the

utility that the tools-augmented planner maximizes, because she engages in lump-sum transfers of

equal size.

The first-order condition with respect to C (similar to first-order condition (34)) are:

∂UB

∂C
+wS

∂U∗S
∂C

+wE
∂U∗E
∂C

+∑
Y

ζY
∂Y
∂C

+∑
TR

ζTR

∂RC
∂C

+ζAAM
∂AAMT

∂C
+ζCSM

∂CSMT
∂C

+ζSIM
∂SIMT

∂C
= 0, (B.29)

where ζTR
, ζAAM, ζCSM and ζSIM are the multipliers the tool-augmented planner assigns to regulatory

constraints and the three regulation-distorted intermediation margins.

The first-order conditions with respect to the level of tools TR and TP, respectively, are:

ζTR

∂RC
∂TR

+ζAAM
∂AAMT

∂TR
+ζCSM

∂CSMT
∂TR

+ζSIM
∂SIMT

∂TR
= 0, (B.30)
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and

ζAAM
∂AAMT

∂TP
+ζCSM

∂CSMT
∂TP

+ζSIM
∂SIMT

∂TP
= 0, (B.31)

Finally, choosing optimally the multipliers ψTR
yields:

ζAAM
∂AAMT

∂ψTR

+ζCSM
∂CSMT

∂ψTR

+ζSIM
∂SIMT
∂ψTR

= 0. (B.32)

The solutions of the social and tools-augmented planners coincide if the optimality conditions

(34) and (B.29) coincide, i.e., if ζAAM = ζCSM = ζSIM = 0 and ζTR
= 0 for all tools TR.

To prove sufficiency, note that augmenting (B.32) and (B.31) and representing them in combat

form yields ∆T
′ · [ζAAM ζCSM ζSIM]′ = 0. Given that ∆T should be invertible for (B.27) to yield a

solution, its transpose is also invertible, and the only solution is ζAAM = ζCSM = ζSIM = 0. Thus, all

ζTR
= 0 in (B.30) are also zero, and (34) and (B.29) coincide.

To prove necessity, suppose that (B.27) does not hold, i.e., ∆T is not invertible and some or

all multipliers ζTR
, ζAAM, ζCSM and ζSIM do not need to be zero. Using conditions (B.29), we can

derive intermediation margins AAMTAP = AAMSP +AAMTAP,WD, CSMTAP = CSMSP +CSMTAP,WD

and SIMTAP = SIMSP + SIMTAP,WD for the tool-augmented planner, where the wedges are linear

combination of the multipliers ζTR
, ζAAM, ζCSM and ζSIM. The social planner’s and tools-augmented

planner’s solutions coincide if wedges AAMTAP,WD, CSMTAP,WD, and SIMTAP,WD are all zero, which

in principle is possible by varying ζTR
, ζAAM, ζCSM and ζSIM. However, equations (B.30), (B.31), and

(B.32) remove as many degrees of freedom and are, thus, generically satisfied when all multipliers

are zero—a contradiction.

B.7 Perfectly Elastic Demand Curve

This section studies the special case of a perfectly elastic demand curve, which obtains for cI = 0.

Then, from (7), 1+ rI = A, and, from (8), U∗E = 0. There are two implications of abstracting from a

downward sloping demand curve. First, the planner does not consider the welfare of entrepreneurs

as they make zero profits. Second, the banker cannot manipulate her profit margin by adjusting the

volume of lending to affect the loan rate and all of the adjustment in the intermediation spread is

happening via the deposit rate.

Table B.4 reports the results from implementing single and combined regulatory tools, which

are consistent with the results in the baseline model when the planner places more weight on savers.

Tightening the leverage requirement forces the banker to raise more equity and results in some

substitution away from liquid assets toward loans. The difference with the case of a downward

sloping loan demand curve is that here the banker can extend more lending without pushing the

loan rate down and, hence, eroding her profit margin. As in the general case, funding more loans

with equity reduces the need for deposits, which also pushes down the deposit rate improving the

intermediation margin and enabling the banker to raise more equity. Expected dividends are higher,
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but the banker is worse-off, because she had to contribute more equity than what was optimal for

her in the private equilibrium.

The results for liquidity regulation are similar to the baselines ones. The only difference is that

the reduction in lending does not boost loan rates, and hence the banker cannot increase deposit-

taking as much as she would be able to under a downward sloping demand curve. Contrary to the

baseline case, the deposit rate falls because the lower run probability dominates the effect from the

somewhat higher deposit demand. In the baseline case, lower lending could support a higher spread

and, thus, the banker could increase deposit-taking a lot, undoing the effect of lower run-risk on

deposit rates and pushing them to levels above their private equilibrium ones.

Comparing column “`" and “k&`", we see that leverage and liquidity regulations can be com-

bined to improve welfare. The margin effect of adding a leverage requirement on top of the liquidity

requirement is small in this example but goes in the direction of the baseline results. Finally, a sub-

sidy on deposits, τD =−3.61%, is needed to fully implement the planner’s allocations, as is the case

in the baseline model when the planner puts higher weight on savers.

PE k ` k&` k, `&τD

I 0.550 0.558 0.503 0.503 0.510
LIQ 0.109 0.103 0.193 0.193 0.195
D 0.627 0.625 0.663 0.663 0.672
E 0.031 0.036 0.033 0.033 0.034
rI 2.300 2.300 2.300 2.300 2.300
r̄D 0.754 0.734 0.690 0.689 0.721
q 0.510 0.506 0.504 0.503 0.501
` 0.165 0.156 0.277 0.277 0.277
k 0.047 0.055 0.047 0.048 0.048
rI− (1−δ)r̄D 1.923 1.933 1.955 1.955 1.939
I +LIQ 0.658 0.661 0.695 0.696 0.706
I−E 0.519 0.522 0.470 0.470 0.477
E(Div) 0.244 0.256 0.248 0.249 0.249
∆UE - 0.00% 0.00% 0.00% 0.00%
∆US - -0.05% 0.962% 0.965% 1.23%
∆UB - -0.05% -0.06% -0.06% -0.08%
∆Ssp - -0.01% 0.90% 0.90% 1.16%

Table B.4: Equilibrium allocation under perfectly elastic loan demand. The welfare changes are computed
over the level of welfare in the private equilibrium, which is normalized to one for each agent.

B.8 Direct Lending

This section derives the conditions for direct lending to entrepreneurs by savers and computes the

equilibrium outcomes for the parametrization in section 3.2.
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Direct lending requires the individual savers to be able to monitor the entrepreneur. Denote

by XS the monitoring cost to an individual saver, which we assume can be higher or equal to the

monitoring cost of the banker, i.e., XS≥X . At t = 1, an individual saver can lend to the entrepreneur,

Idl , at interest rate rdl . In the intermediate period, she would liquidate all of her loans if she turns

out to be impatient. Otherwise, the saver waits until the final period and receives the percentage

repayment on the loans she made. The saver’s utility under direct lending is given by

Udl
S =U (eR− Idl)+βδ

∫
ξ

ξ

ξ · Idl
dξ

∆ξ

+β
2(1−δ)∑

s
(ωIdl(1+ rdl)−XS)

dξ

∆ξ

. (B.33)

The entrepreneur will choose Idl to maximize her utlity Udl
E = (1− δ) [ωIdl(1+ rdl)− c(Idl)]

; with probability δ, an individual entrepreneur has her project liquidated and receives zero utility,

while, with probability 1−δ, the saver does not liquidate the project, and the entrepreneur incurs the

effort cost and defaults in the bad state. E’s optimizing behavior yields the following loan demand

schedule:

1+ rdl = A− c′(Idl)/ω. (B.34)

Because each individual saver is sufficiently small, she takes the loan rate as given and, thus,

the loan supply schedule is:

1+ rdl =
1

ωβ
2(1−δ)

[
U ′(eR− Idl)−βδE(ξ)

]
. (B.35)

The intersection of the loan demand and loan supply schedule in (B.34) and (B.35) yields the

equilibrium loan rate and loan amount. Finally, S’s and E’s levels of welfare in equilibrium are

given by Udl∗
S =U(eR− Idl)+U ′(eR− Idl)Idl−β

2(1−δ)XS and Udl∗
E = (1−δ)

(
c′(Idl)Idl− c(Id l)

)
.

Table B.5 reports the equilibrium in the loan market together with how S’s and E’s levels of welfare

compare across three cases: the bank intermediation private equilibrium reported in section 3.2,

the direct lending equilibrium, and the autarkic outcome when S uses only the storage technology.

Savers are better-off under bank intermediation as they enjoy the transaction services of deposits,

and they do not need to pay the monitoring cost. However, for X = XS, savers are better-off lending

directly to E compared with autarky. There is a level of the monitoring cost XS that this stops being

true (XS/X > 1.46 in our example). Direct lending is higher than bank lending because the bank

strategically curtails credit extension to secure higher loan rates and increase her profit margins.

Note that the monitoring cost does not affect the marginal choice of Idl because it is not incurred per

unit of loans extended but rather applies to the whole portfolio.

B.9 Additional Distortionary Tools

This section extends the analysis in section 3 by allowing the planner to use tools to distort the

deposit supply and loan demand schedules of savers and entrepreneurs. We consider generic tools,

τDS for the deposit supply schedule and τLD for the loan demand schedule, and discuss how they
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Loan rate Loan amount %∆US %∆UE

Intermediation 3.097 0.862 - -
Direct lending 1.272 0.928 -3.20% 0.38%
Autarky - - -4.34% -7.61%

Table B.5: Equilibrium allocation under bank intermediation, direct lending, and autarky with storage. The
welfare changes are computed over the level of welfare in the private equilibrium with bank intermediation,
which is normalized to one for each agent.

can be implemented in practice.

The deposit supply schedule (2) that the planner faces becomes:

U ′(eS−D−LIQS) =
[
βδ+β

2(1−δ)
]
(1+ rD)

∫
ξ
∗

ξ

θ(ξ,1)
dξ

∆ξ

+
[
βδ(1+ rD)+β

2(1−δ)ω(1+ r̄D)+V ′ (D(1+ rD))(1+ rD)
]
(1−q)+ τDS.

(B.36)

The planner can distort the willingness of savers to hold deposits at given deposit rates by

varying the level of the distortionary tool τDS. In other words, the planner can set τDS, which

implies that (B.36) stops being a constraint in her optimization problem defined in Definition 2 and,

thus, ζDS = 0 in (34). The intervention can be implemented, for example, either as a tax on the

supply of deposits at t = 1 or as a tax on the interest income accruing to late depositors at t = 3

when the bank is solvent. In the first case, the tax can be computed as −τDS/U ′(eR−D−LIQS),

while in the second, as −τDS/(β
2(1− δ)ω(1+ r̄D)(1− q)). If τDS < 0, then a tax is levied, while

τDS > 0 implies a subsidy. We assume that the planner rebates the tax proceeds back to the same

agents in the same period in a lump-sum fashion in order to neutralize any income effects.

Similarly, the loan demand schedule (7) becomes:

∫
ξ

ξ
∗
{ω[A− (1+ rI)](1− y(ξ,δ))− c′(I)}dξ

∆ξ

+ τLD = 0. (B.37)

The planner can distort the willingness of entrepreneurs to borrow by varying the level of the

distortionary tool τLD, such that, if τLD 6= 0, then ζLD = 0 in (34). The intervention can be imple-

mented with a tax on loan repayment in the good state of the world, which can be computed as

−τLD/(
∫

ξ

ξ
∗
(1− y(ξ,δ))(1+ rI)dξ/∆ξ). If τLD < 0, then a tax is levied, while τLD > 0 implies a

subsidy.

Given that the planner may choose to distort the deposit supply and loan demand schedules, we

cannot use the indirect utilities (4) and (8), which imply the social welfare function (29). Instead,

the planner maximizes the more elaborate social welfare function (28), which considers the direct

utilities (1) and (5).

Table B.6 reports the planning equilibria under two sets of weights and three configurations: the
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benchmark one where the planner respects the deposit supply and loan demand schedule, a second

where she distorts the deposit supply, and a third where she distorts the loan demand. When the

planner can distort the deposit supply schedule, she can convince savers to supply deposits even if

this is not optimal for them. For example, a distortionary subsidy on deposits makes savers want

to supply more deposits and accept lower deposit rates, which is beneficial for the banker and en-

trepreneurs: lower deposit rates increase the profit margin of the banker, who is then willing to

extend more loans at a lower loan rate. The planner goes all the way down to extracting all the sur-

plus from depositors and pushing them to their participation constraint, i.e., their utility in autarky.4

The opposite is true when the planner distorts the loan demand schedule, i.e., τLD 6= 0. A distor-

tionary subsidy on investment/borrowing to E allows the planner to increase lending without having

to attract E by offering a lower loan rate. Higher lending requires more deposits, which pushes

deposit rates up and enhances transaction services. Yet, the planner can compensate the banker with

a higher loan rate, which provides incentives for injecting more equity. The planner goes all the way

to extracting all the surplus from entrepreneurs and pushing them to their participation constraint.

The higher the weight on entrepreneurs is, the higher is their utility under a positive τDS, which

distorts the deposit supply schedule urging savers to supply more deposits for lower deposit rates.

Similarly, the higher the weight on savers is, the higher is their utility under a positive τLD, which

distorts the loan demand schedule urging entrepreneurs to borrow more for higher loan rates. In all

cases, the planner still cares about the banker and can transfer some of the surplus back to her. As

the weight on other agents becomes higher, this transfer will become smaller. Note that this was

not possible in our benchmark analysis because both the banker and the planner had to respect the

deposit supply and loan demand schedules. Hence, the banker was always losing from the planner’s

interventions.

B.10 Negative Interest Rates and Run-Proof Banking

In our benchmark results in section 3.2, we assumed that the bank cannot set (charge) negative

interest rates for early withdrawals, i.e., rD ≥ 0. In this section, we relax this assumption. On the

one hand, a negative rD may allow the bank to eliminate all run-risk, i.e., the bank is run-proof

despite issuing demandable deposits. On the other hand, a negative rD would reduce the utility from

transaction services and the bank would need to offer a higher late deposit rate, r̄D; otherwise, savers

may choose to self-insure by holding the liquid asset and stop using the bank.

There are two subtle assumptions we have made that offer the best chance for negative rates to

eliminate run-risk without hurting welfare. The first assumption is that V (0) = 0, i.e., if the bank

sets rD = −100%, then savers get zero utility. This is important because, if V (0)→ −∞, savers

would become explosively worse-off as rD became more and more negative, and they would require

an explosively high r̄D to supply deposits. As a result, intermediation would be impossible under

4Given that the planner distorts the deposit supply schedule (2), savers’ welfare in equilibrium is not given by (4) but
rather (1). Hence, there is no guarantee that savers are strictly better-off under bank intermediation compared to autarky
(see footnote 4).
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PE SP for (wE ,wS) = (0.05,0.15) SP for (wE ,wS) = (0.15,0.05)
No tools τDS 6= 0 τLD 6= 0 No tools τDS 6= 0 τLD 6= 0

I 0.862 0.841 1.190 1.002 0.899 1.211 0.991
LIQ 0.052 0.119 0.000 0.000 0.012 0.000 0.000
D 0.875 0.919 1.164 0.956 0.873 1.184 0.946
E 0.038 0.041 0.026 0.045 0.038 0.027 0.045
rI 3.097 3.131 2.706 3.312 3.051 2.678 3.316
r̄D 0.717 0.778 0.668 1.047 0.761 0.689 1.008
q 0.407 0.398 0.422 0.392 0.407 0.420 0.393
` 0.057 0.124 0.000 0.000 0.013 0.000 0.000
k 0.042 0.043 0.022 0.045 0.042 0.022 0.046
rI− (1−δ)r̄D 3.239 3.242 2.872 3.288 3.170 2.833 3.312
I +LIQ 0.914 0.960 1.190 1.002 0.911 1.211 0.991
I−E 0.824 0.800 1.164 0.956 0.861 1.184 0.946
E(Div) 0.745 0.750 0.858 0.864 0.743 0.859 0.864
∆UE 0.076 -0.44% 11.87% -7.61% 1.02% 12.97% -7.61%
∆US 1.050 1.74% -4.34% 3.35% -0.10% -4.34% 2.87%
∆UB 0.327 -0.13% 14.13% 10.11% -0.08% 14.02% 10.16%
τDS - - 0.164 - - 0.173 -
τLD - - - 0.122 - - 0.120

Table B.6: Privately versus Socially Optimal Solutions when additional distortionary tools are available. The
welfare changes are computed over the level of welfare in the private equilibrium, which is normalized to one
for each agent.

very negative rD. The second assumption is that the liquid asset cannot offer the transaction services

of deposits (or if it does, its services are inferior to the ones offered by deposits). If deposits and

the liquid assets were perfect substitute for transactions, then savers would very quickly switch to

holding the liquid assets once rD became sufficiently negative. Instead, in our environment, savers

would still be willing to hold deposits along with the liquid asset, even under considerably negative

rD. The reason is that savers’ utility under bank intermediation is strictly higher than in autarky for

rD >−100% (see the discussion at the end of section 2.1).

We derive below the conditions under which run-proof banking is possible as well as the corre-

sponding private and social equilibrium allocation for our benchmark parametrization. Our analysis

has focused on the externalities induced by the banker’s behavior when there is positive run-risk

in equilibrium. Thus, the natural candidate for comparison is run-proof banking, which is possible

given the two aforementioned assumptions.5

Given Lemma 1, banking is run-proof if λ̂(ξ)—given by combining (13) and (10) for the lowest

5This does not mean that negative interest rates are only compatible with run-proof banking. Although quantitatively
the results in section 3.2 will differ if we allow for negative rD, the wedges derived in section 3.1 will maintain their
functional form and, hence, the sources of divergence between the privately and socially optimal solutions will be the
same.
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realization of the liquidation value ξ = ξ and the highest number of withdrawals λ = 1—is not lower

than one. Hence, liquid asset holdings should satisfy:

λ̂(ξ) =
θ(ξ,1)− ξ(1+r̄D)

(1+rD)(1+rI)
− ξ·X/ω

D(1+rD)(1+rI)

1− ξ(1+r̄D)

(1+rD)(1+rI)

≥ 1⇒ θ(ξ,1)≥ 1+
ξ ·X/ω

D(1+ rD)(1+ rI)

⇒ LIQ≥ D(1+ rD)−ξ

(
I− X

ω(1+ rI)

)
. (B.38)

Beyond that level, it is inefficient to hold liquid assets, so (B.38) holds with equality.

If LIQ≥ δD(1+ rD) or

(1−δ)D(1+ rD)≥ ξ

(
I− X

ω(1+ rI)

)
, (B.39)

then the liquid asset holdings of the bank are higher than the predictable early withdrawals and

the bank will transfer the excess liquidity, L̂IQ = (1− δ)D(1+ rD)− ξ(I−X/(ω(1+ rI))) in the

last period. Otherwise, the bank will need to recall a fraction ŷ(ξ) = [ξ(I−X/(ω(1+ rI)))− (1−
δ)D(1+ rD)]/(ξ · I) of loans to pay early withdrawals. Note that, if ξ is very small, then (B.39)

is satisfied for a larger range of negative rD; at the limit, as ξ→ 0, (B.39) is satisfied for all rD >

−100%, i.e., the bank does not need to recall any loans. For the rest of this section, we assume that

ξ→ 0 in order to simplify the algebra.

In the absence of run-risk, the loan demand schedule can be written as

1+ rI = A− c′(I)/ω. (B.40)

The deposit supply schedule is more elaborate, because the excess liquidity L̂IQ will be dis-

tributed pro-rata to the (1−δ) patient savers when the bank defaults in the bad state of the world.6

Thus, the percentage payment, R , to patient savers in the bad state is R = L̂IQ/((1−δ)D(1+ r̄D))

and the total payoff from holding deposits in the bad state is R ·D(1+ r̄D). Individual savers take

the percentage payment in the bad state as given when choosing the amount of deposits. The deposit

6In the bad state, the bank defaults if L̂IQ < (1−δ)D(1+ r̄D), which is true because r̄D > rD.
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supply schedule is, thus, given by the following first-order condition with respect to D:

Consumption cost
of depositing︷ ︸︸ ︷

−U ′ (eS−D−LIQS)+

Marginal payoff to
impatient S︷ ︸︸ ︷

βδ(1+ rD) +

Marginal payoff to
patient S in good state︷ ︸︸ ︷

β
2(1−δ)ω(1+ r̄D)+

Marginal payoff to
patient S in bad state︷ ︸︸ ︷

β
2(1−δ)(1−ω)R · (1+ r̄D)

+V ′ (D(1+ rD))(1+ rD)︸ ︷︷ ︸
Marginal payoff from
transaction services

= 0

⇒ω(1−δ)(r̄D− rD) =
U ′ (eS−D−LIQS)−V ′ (D(1+ rD))(1+ rD)−

(
βδ+β

2(1−δ)
)
(1+ rD)

β
2 ,

(B.41)

where we have substituted the definition of R .

A negative rD makes self-insuring through holding the liquid asset more appealing to savers. As

a result, LIQS can be positive, in contrast to the benchmark equilibrium we have studied, and (3)

will hold with equality. We assume that this is the case and verify our conjecture in equilibrium,

under the same parametrization used for the benchmark equilibrium. Hence,

U ′(eS−D−LIQS) = βδ+β
2(1−δ). (B.42)

Using the balance sheet constraint (9) and (B.38), we can express equity in terms of the lending,

deposit and early deposit rate choices:

E = I +DrD. (B.43)

Moreover, using (B.38), (B.40), (B.41), (B.42), and (B.43), the utility of the banker can be

re-written as:

Unr
B =W (eB−E)+ω

[
(1+ rI)I + L̂IQ− (1−δ)D(1+ r̄D)

]
−X

=W (eB− I−DrD)+ω

[
A · I− c′(I)I/ω+β

−2V ′ (D(1+ rD))(1+ rD)

+
(

β
−1

δ+(1−δ)
)

rD

]
−X . (B.44)

The private equilibrium is characterized by the choice of I, D, and rD that result in the highest

Unr
B in (B.44), i.e., by the following first-order condition:

−W ′(eB− I−DrD)+ωA− c′′(I)I− c′(I) = 0, (B.45)

−W ′(eB− I−DrD)rD +ωβ
−2V ′′ (D(1+ rD))(1+ rD)

2 = 0, (B.46)
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and

−W ′(eB− I−DrD)D+ωβ
−2V ′′ (D(1+ rD))D(1+ rD)+ω

(
β
−1

δ+(1−δ)
)
= 0. (B.47)

Table B.7 reports the equilibrium outcomes such that the bank is run-proof. In order to satisfy

(B.38), the banker has an incentive to set a negative deposit rate for early withdrawals; otherwise,

she would need to hold as many liquid asset as the amount of deposits and could not use any to

extend loans. Eliminating the run reduces the risk premium savers demand to hold deposits, but

it also reduces the transaction services to savers and hence the convenience yield that the bank

extracts. In particular, there is a trade-off between rD and r̄D. Given that deposits are safer, savers

are willing to accept a negative late deposit rate r̄D in exchange for a less negative rD. A more

negative rD allows the banker to channel more deposits to loans and still eliminate all run-risk.

But, savers would demand higher compensation in terms of r̄D, which reduces banking profits.

The banker balances these two effects and offers deposit rates that are making savers indifferent

between supplying deposits and self-insuring (LIQS > 0 in the run-proof equilibrium). Overall,

lending and intermediation are lower in the run-proof private equilibrium, while the liquid asset

holdings are substantially higher compared to our benchmark PE where we restrict rD ≥ 0. Still, the

level deposits are comparable across the two private equilibria. For our parametrization, all agents

are worse-off in the run-proof equilibrium. Nevertheless, this does not always need to be always the

case. For example, if ξ was high enough, then the bank could be run-proof without the need to hold

a lot of liquid assets, which hurt lending, or charge negative deposit rates for early withdrawals,

which diminish transaction services.

Substituting (B.40), (B.41), and (B.42) in (5) and (1), and setting q = 0, we get the following

indirect utility functions:

Unr,∗
E = c′(I)I− c(I) (B.48)

and

Unr,∗
S = Uα

S +V (D(1+ rD))−V ′ (D(1+ rD))D(1+ rD). (B.49)

The run-proof socially optimal equilibrium allocation maximize a social welfare function Unr
sp =

Unr
B +wEUnr,∗

E +wSUnr,∗
S given (B.44), (B.48), and (B.49). As a result, the first-order conditions

characterizing the planner’s solution are

−W ′(eB− I−DrD)+ωA− c′′(I)I− c′(I)+wE∂Unr,∗
E /∂I = 0, (B.50)

−W ′(eB− I−DrD)rD +ωβ
−2V ′′ (D(1+ rD))(1+ rD)

2 +wS∂Unr,∗
S /∂D = 0, (B.51)

and

−W ′(eB− I−DrD)D+ωβ
−2V ′′ (D(1+ rD))D(1+ rD)+ω

(
β
−1

δ+(1−δ)
)
+wS∂Unr,∗

S /∂rD = 0,

(B.52)
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PE PE Run-proof SP for weights (wE ,wS)

Restrict rD ≥ 0 Run-proof (0.05,0.15) (0.10,0.10) (0.15,0.05)

I 0.853 0.114 0.104 0.107 0.111
LIQ 0.061 0.683 0.693 0.689 0.686
D 0.876 0.739 0.739 0.739 0.739
E 0.039 0.058 0.058 0.058 0.058
rI 3.108 3.495 3.496 3.496 3.495
rD 0.000 -0.076 -0.062 -0.067 -0.071
r̄D 0.726 -0.334 -0.344 -0.340 -0.337
q 0.408 0.000 0.000 0.000 0.000
` 0.067 0.857 0.869 0.865 0.861
k 0.042 0.073 0.073 0.073 0.073
rI− (1−δ)r̄D 2.382 3.829 3.839 3.836 3.833
I +LIQ 0.915 0.797 0.797 0.797 0.797
I−E 0.815 0.056 0.046 0.049 0.053
LIQS 0.000 0.081 0.080 0.081 0.081
∆UE - -7.33% -7.33% -7.33% -7.33%
∆US - -1.26% -1.19% -1.21% -1.23%
∆UB - -40.94% -43.81% -42.85% -41.90%

Table B.7: Private equilibrium and socially optimal run-proof allocations. The welfare changes are computed
over the level of welfare in the private equilibrium where deposit rates are restricted to be positive and banking
is not run-proof. All equilibria are for ξ = 0.

where ∂Unr,∗
E /∂I = c′′(I)I > 0, ∂Unr,∗

S /∂D = −V ′′ (D(1+ rD))D(1+ rD)
2 > 0, and ∂Unr,∗

S /∂rD =

−V ′′ (D(1+ rD))D2(1+ rD)> 0.

When the planner puts more weight on the saver, she choose a less negative rD and, hence, needs

higher LIQ to implement the run-proof equilibrium, which pushes lending down compared with the

private equilibrium or cases where less weight is put on S. Both the banker and entrepreneurs are

worse-off compared with the private equilibrium—the welfare loss for the entrepreneur is small

because lending and investment are already low in the private run-proof equilibrium, and the higher

investment is, the bigger the surplus to E due to the convex effort cost. Overall, all agents are worse-

off, even for the planner’s allocations, compared with the benchmark private equilibrium indicating

that run-proof banking is not optimal for the example we present.

B.11 Outside Equity

This section extends the baseline model such that the bank has an alternative source of funding

apart from the equity contributed by the banker and the deposits offered by savers. In particular,

we consider a separate group of agents, who we call outside investors and who may choose to buy

equity at a certain price from the bank at t = 1 in exchange for a share of the dividends at t = 3.

These investors do not have a preference for early consumption nor do they value the transaction
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services of deposits contrary to savers. We assume that their preferences are the same as for bankers,

but contrary to them, investors do not have the ability to monitor entrepreneurs and, hence, manage

a bank themselves. We will refer to the equity contributed by the banker and investors as inside

equity and outside equity, respectively.7

Denote by P the price of one share of outside equity and by O the number of shares issued and

distributed to outside investors. Inside equity is equally divided into E shares, i.e., the banker first

injects inside equity, normalizing the price of each (inside equity) share to one, and then decides how

many shares to issue to outside investors and at what price. Thus, the total number of shares is E+O

and the total equity capital E+P ·O. It is convenient to denote bank dividends as Div(ξ,δ) = ω[(1−
y(ξ,δ)) ·I ·(1+rI)−(1−δ) ·D ·(1+ r̄D)] and dividends per share as DPS(ξ,δ) =Div(ξ,δ)/(E+O).

Then, investors choose how much of their period 1 endowment, eO, to invest in equity, in order to

maximize

UO =W (eO−P ·O)+
∫

ξ

ξ
∗

O ·DPS(ξ,δ)
dξ

∆ξ

, (B.53)

which, taking the dividends per share as given, yields the following outside equity supply (ES)

schedule:

−P ·W ′(eO−P ·O)+
∫

ξ

ξ
∗

DPS(ξ,δ)
dξ

∆ξ

≤ 0, (B.54)

holding with equality for O > 0. Finally, substituting (B.54) in (B.53) we get the following indirect

utility for outside investors:

U∗O =W (eO−P ·O)+P ·O ·W ′(eO−P ·O). (B.55)

On top of the previous choices in C , the banker will also choose the level of outside equity, O,

and the price, P, that are consistent with the equity supply schedule (B.54). Hence, B’s choice set

becomes C̃ = C ∪{O,P}. Because B will receive only a fraction E/(E +O) of the dividends, her

utility becomes:

ŨB =W (eB−E)+
∫

ξ

ξ
∗

E ·DPS(ξ,δ)
dξ

∆ξ

=W (eB−E)+
∫

ξ

ξ
∗

{
E

E +O
·ω · [(1− y(ξ,δ)) · I · (1+ rI)− (1−δ) ·D · (1+ r̄D)]−X

}
dξ

∆ξ

.

(B.56)

7We have assumed a different investor base for outside equity to keep the extension simple. Note that outside equity
and deposit markets can be endogenously segmented, i.e., there is no need to exogenously restrict outside investors or
depositors to supply deposits or equity, respectively. The decision to abstain from these markets would be consistent with
equilibrium equity prices and deposit rates. Intuitively, savers would require a lower price to purchase equity, because
equity is less useful for early consumption, because it is worthless in a run and secondary market trading can be frictional,
and because it does not provide transaction services. Moreover, an all-equity funding structure would not be possible even
if the bank preferred it due to the disciplinary role of runnable debt, which addresses the critique raised by Jacklin (1987).
Similarly, outside investors would require a higher deposit rate to supply deposits, since they do not price their transaction
services. See, also, Allen, Carletti, and Marquez (2015) for a model of segmented bank equity and deposit markets.

34



Note that the banker bears the full cost of monitoring.

The functional form of the deposit supply and loan demand schedules, (2) and (7) respectively,

are unaffected by the introduction of outside equity. However, the monitoring threshold λ̂, given by

(13) for certain ξ, will change to ˆ̃
λ, because the banker will monitor if her share of, rather than the

total, dividends is higher than the monitoring cost:

E
E +O

·ω · [(1− y(ξ, ˆ̃
λ)) · I · (1+ rI)− (1− ˆ̃

λ) ·D · (1+ r̄D)]−X ≥ 0

⇒ ˆ̃
λ(ξ) =

(ξ · I +LIQ)(1+ rI)−ξ
(
D(1+ r̄D)+

E+O
E

X
ω

)
D[(1+ rD)(1+ rI)−ξ(1+ r̄D)

. (B.57)

In other words, outside equity reduces the threshold for withdrawals under which the banker has

incentives to monitor, i.e., ∂
ˆ̃
λ/∂O < 0. The functional form of the global game constraint (20) does

not change but λ
∗ is replaced with λ̃

∗ ≡ ˆ̃
λ(ξ∗) in the limits of integration:

G̃G =
∫

λ̃
∗

δ

[ωD(1+ r̄D)−D(1+ rD)]dλ−
∫

θ
∗

λ̃
∗ D(1+ rD)dλ−

∫ 1

θ
∗

LIQ+ξ
∗I

λ
dλ = 0. (B.58)

Finally, the balance sheet incorporates the funds form raising outside equity:

B̃S : I +LIQ = D+E +P ·O. (B.59)

B chooses variables in C̃ to maximize ŨB in (B.56) subject to Ỹ = {B̃S, G̃G,DS,LD,ES} given

by (B.59), (B.58), (2), (7), and (B.54). The private equilibrium is characterized by the following

first-order conditions:
∂ŨB

∂C̃
+∑

Ỹ

ψỸ
∂Ỹ
∂C̃

= 0, (B.60)

where ψES is the Lagrange multiplier on the equity supply schedule and ∂ES/∂C̃ are the partial

derivatives reported in (B.106)-(B.115) in section B.12.8 Thus, the banker also internalizes how

her choices affect the supply of outside equity by investors. At the same time, issuing outside

equity has a direct effect on the disutility from injecting inside equity as can be seen by ∂ŨB/∂E =

∂UB/∂E +O/(E +O)
∫ ξ

ξ
∗ DPS(ξ,δ)dξ/∆ξ, where ∂UB/∂E < 0 is given by (B.69). Hence, if the

issuance of outside equity is positive, the disutility for the banker from injecting equity is lower

because it increases her share of dividends. We now turn to the choice of O and P, which are new
8The partial derivatives ∂DS/∂C and ∂LD/∂C are given by (B.90)-(B.97) and (B.98)-(B.105), respectively, while

all ∂DS/∂O, ∂DS/∂P, ∂LD/∂O, and ∂DS/∂P are zero. For choices c′ = {I,LIQ,D,rI ,rD, r̄D}, ∂ŨB/∂c′ = E/(E +O) ·
∂UB/∂c′, where ∂UB/∂c′ are given by (B.66), (B.67), (B.68), (B.71), (B.72) and (B.73), while ∂ŨB/∂ξ

∗ = ∂UB/∂ξ
∗+

O ·DPS(ξ∗,δ) using (B.70). The partial derivatives ∂G̃G/∂C have the same functional form given by (B.82)-(B.89) with
the exception that ∂λ̂/∂C is replaced by ∂

ˆ̃
λ/∂C . In turn, the latter partial derivatives have the same function form with

the former given by (B.74)-(B.76) and (B.79)-(B.81) with the exception of the partial derivatives with respect to E and
ξ
∗, which need to account for outside equity. That is, ∂

ˆ̃
λ/∂E = ξ ·O/E2 ·X/ω/{D[(1+ rD)(1+ rI)− ξ(1+ r̄D)]} and

∂
ˆ̃
λ/∂ξ

∗ = ∂λ̂/∂ξ
∗−O/E ·X/ω/{D[(1+ rD)(1+ rI)− ξ(1+ r̄D)]} using (B.78). The remaining partial derivatives are

discussed in the main text.
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to our benchmark analysis.

The first-order conditions (B.60) with respect to O and P are:

∂ŨB

∂O
+ψBS ·P+ψGG

∂G̃G
∂O

+ψES
∂ES
∂O

= 0 (B.61)

and

ψBS ·O+ψES
∂ES
∂P

= 0. (B.62)

Substituting (B.62) in (B.61) we get:

−

(
∂ŨB

∂O
+ψGG

∂G̃G
∂O

)
︸ ︷︷ ︸

Cost of issuing
outside equity

= ψBS

(
P−O · ∂ES

∂P

−1
∂ES
∂O

)
︸ ︷︷ ︸

Benefit of issuing
outside equity

, (B.63)

where ∂ŨB/∂O = −E/(E +O)
∫ ξ

ξ
∗ DPS(ξ,δ)dξ/∆ξ < 0, ∂ES/∂O < 0 from (B.110), ∂ES/∂P < 0

from (B.115), and ∂G̃G/∂O = ωD(1 + r̄D)∂
ˆ̃
λ/∂O < 0, because ∂

ˆ̃
λ/∂O = −ξ/E · X/ω/{D[(1 +

rD)(1+ rI)−ξ(1+ r̄D)]}< 0.

The cost of issuing outside equity consists of two components. First, outside equity reduces

the share of dividends accruing to the banker, and second, it makes monitoring less likely, which

adversely affects the probability of a run, all else being equal. Note that this does not mean that

issuing outside equity increases the run probability in equilibrium, since other variables will adjust

and the bank may operate with more capital and liquidity reducing the run probability, as we show

in the numerical results below. The benefit of issuing outside equity stems from raising additional

funds given the shadow value of funding ψBS. The banker does not take P as given, but internalizes

how her choice of O affects P via ES and, hence, accurately captures the marginal funding benefit

from issuing outside equity.

The social planner faces the same choices C̃ and constraints Ỹ as the banker in the private

equilibrium but wants to maximize the social welfare function Ũ∗sp = ŨB +wSU∗S +wEU∗E +wSŨ∗O,

where the utilities are defined in (B.56), (4), (8), (B.55), and wO≥ 0 is the weight assigned to outside

investors.

Table B.8 reports the private and social equilibrium outcomes when the bank issues outside

equity and the planner assigns zero weight to outside investors, such that we can have a more

straightforward comparison to the case that there is no outside equity funding. We, first, compare

the private equilibrium outcomes. Issuing outside equity allows the banker to expand the balance

sheet, but reduces her share of profits. To compensate for this, the banker decreases lending to

improve the profit margin and also injects more inside equity. Relying more on equity financing

allows the banker to channel more deposits into the liquid asset resulting in a smaller scale of

intermediation. The higher liquidity and capital ratios outweigh the negative effect of outside equity

on monitoring incentives and result in lower run-risk compared to the PE without issuance of outside
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equity. Deposits become safer and the bank can attract deposits offering lower deposit rates, which

further improves the profit margin. Although it is not reported in the table, the banker enjoys

higher utility in the PE where she issues outside equity compared with the benchmark equilibrium.

Comparing the privately and socially optimal outcomes when the bank issues outside equity, we

derive the same conclusion as in the benchmark case. The planner chooses more liquidity and

capital to favor S resulting in less intermediation, but also lower run-risk. On the contrary, the

planner cuts the liquid asset holdings to support more lending and favor E resulting in higher run-

risk compared with the private equilibrium.9 Finally, comparing the socially optimal outcomes with

and without the issuance of outside equity, we find that the planner can implement lower run-risk

and achieve higher social welfare when outside equity funding is allowed.

We should note that these observations do not rely on the fact that the planner assigns zero

weight on outside investors. If wO > 0, the planner internalizes how the issuance of outside equity

matters for outside investors’ welfare via (B.55). Hence, the first-order conditions with respect to O

and P—given by (B.61) and (B.61) in PE and SP for wO = 0—incorporate additional terms:

∂ŨB

∂O
+ψBS ·P+ψGG

∂G̃G
∂O

+ψES
∂ES
∂O

+wO
∂U∗O
∂O

= 0 (B.64)

and

ψBS ·O+ψES
∂ES
∂P

+wO
∂U∗O
∂P

= 0, (B.65)

where ∂U∗O/∂O =−P2 ·O ·W ′′(eO−P ·O)> 0 and ∂U∗O/∂P =−P ·O2 ·W ′′(eO−P ·O)> 0.

Table B.9 reports the privately and socially optimal outcomes when the planner assigns wO > 0.

In sum, the planner offers a better price P to outside investors compared with the case that wO = 0,

whose welfare improves. But, the rest of the findings remain unchanged.

9One inconsequential difference is that for (wE ,wS) = (0.1,0.1) the planner chooses lower lending compared with
the private equilibrium in the presence of outside equity funding, which results in lower utility for E. The reason is
that issuing outside equity can help savers further, and, as we show, social welfare is higher for this set of weights. If,
instead, we set (wE ,wS) = (0.12,0.08), we find that lending as well as liquidity and capital are higher resulting in higher
welfare for both E and S compared with the private equilibrium (as is the case in absence of outside equity funding for
(wE ,wS) = (0.1,0.1)).
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PE SP for weights (wE ,wS)

(0.1,0.1) (0.2,0.0)
No OE OE No OE OE No OE OE

I 0.862 0.834 0.873 0.829 0.906 0.908
LIQ1 0.052 0.131 0.060 0.168 0.000 0.020
D 0.875 0.908 0.894 0.937 0.867 0.875
E 0.038 0.041 0.039 0.043 0.038 0.039
O 0.000 0.002 0.000 0.002 0.000 0.001
E/(E +O) 1.000 0.962 1.000 0.959 1.000 0.965
rI 3.097 3.142 3.089 3.154 3.042 3.047
r̄D 0.717 0.697 0.767 0.748 0.758 0.727
P - 9.902 - 9.378 - 10.502
q 0.407 0.394 0.403 0.386 0.408 0.401
` 0.057 0.136 0.065 0.169 0.000 0.022
k 0.042 0.059 0.042 0.060 0.042 0.058
rI− (1−δ)r̄D 2.739 2.794 2.705 2.780 2.663 2.683
I +LIQ 0.914 0.965 0.933 0.997 0.906 0.928
I−E−P ·O 0.824 0.777 0.834 0.769 0.867 0.855
E(Div) 0.745 0.789 0.747 0.796 0.743 0.779
∆UE - - 0.33% -0.62% 1.19% 1.93%
∆US - - 0.71% 2.55% -0.30% -1.34%
∆UB - - -0.05% 0.59% -0.09% -0.19%
∆UO - - - 0.36% - -0.05%
∆Usp 0.05% 0.06% 0.14% 0.19%

Table B.8: Privately versus Socially optimal solutions when the bank issues outside equity (OE) and wO = 0.
The welfare changes are computed over the levels of welfare in the respective private equilibrium, which are
normalized to one. We have set eO = 0.09 such that outside investors are willing to buy equity at the price
offered by the bank, which is true as long as eO > 0.062.
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PE SP for weights (wE ,wS,wO)

(0.1,0.1,0.0) (0.2,0.0,0.0) (0.1,0.1,0.1) (0.2,0.0,0.1)

I 0.834 0.829 0.908 0.824 0.907
LIQ1 0.131 0.168 0.020 0.179 0.023
D 0.908 0.937 0.875 0.942 0.876
E 0.041 0.043 0.039 0.043 0.039
O 0.002 0.002 0.001 0.002 0.001
E/(E +O) 0.962 0.959 0.965 0.956 0.963
rI 3.142 3.154 3.047 3.161 3.048
r̄D 0.697 0.748 0.727 0.749 0.726
P 9.902 9.378 10.502 9.200 10.392
q 0.394 0.386 0.401 0.385 0.401
` 0.136 0.169 0.022 0.178 0.024
k 0.059 0.060 0.058 0.061 0.058
rI− (1−δ)r̄D 2.794 2.780 2.683 2.787 2.685
I +LIQ 0.965 0.997 0.928 1.003 0.930
I−E−P ·O 0.777 0.769 0.855 0.763 0.853
E(Div) 0.789 0.796 0.779 0.800 0.781
∆UE - -0.06% 1.93% -0.17% 1.91%
∆US - 1.22% -1.34% 1.41% -1.30%
∆UB - -0.06% -0.19% -0.07% -0.19%
∆UO - 0.05% -0.05% 0.10% -0.02%

Table B.9: Privately versus Socially optimal solutions when the bank issues outside equity. The welfare
changes are computed over the levels of welfare in the private equilibrium, which are normalized to one. We
have set eO = 0.09 such that outside investors are willing to buy equity at the price offered by the bank, which
is true as long as eO > 0.062.
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B.12 Derivatives

This section reports the partial derivatives of the banker’s utility UB in (14), the monitoring threshold

λ̂ in (13), the global game constraint GG in (20), the deposit supply schedule DS in (2), the loan

demand schedule LD in (7), and the (outside) equity supply schedule ES in (B.54), with respect to

the choice variables in C. When it is unambiguous, we also report the sign of the derivatives.

Partial derivatives ∂UB/∂C .

∂UB

∂I
= ω(1−q)(1+ rI)> 0. (B.66)

∂UB

∂LIQ
= ω(1+ rI) log(ξ/ξ

∗)/∆ξ > 0. (B.67)

∂UB

∂D
=−ω

[
δ(1+ rD)(1+ rI) log(ξ/ξ

∗)/∆ξ +(1−δ)(1−q)(1+ r̄D)
]
< 0. (B.68)

∂UB

∂E
=−W ′(eB−E)< 0. (B.69)

∂UB

∂ξ
∗ =−

[
ω
(
(ξ∗I−δD(1+ rD)+LIQ)/ξ

∗(1+ rI)− (1−δ)D(1+ r̄D)
)
−X

]
/∆ξ < 0. (B.70)

∂UB

∂rI
= ω

[
(1−q)I− (δD(1+ rD)−LIQ) log(ξ/ξ

∗)/∆ξ

]
> 0. (B.71)

∂UB

∂rD
=−ωδD(1+ rI) log(ξ/ξ

∗)/∆ξ < 0. (B.72)

∂UB

∂r̄D
=−ω(1−δ)(1−q)D < 0. (B.73)

Partial derivatives ∂λ̂/∂C .

∂λ̂

∂I
= ξ

∗(1+ rI)/
[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

> 0. (B.74)

∂λ̂

∂LIQ
= (1+ rI)/

[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

> 0. (B.75)
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∂λ̂

∂D
=−ξ

∗(1+ r̄D)/
[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]
− λ̂/D < 0. (B.76)

∂λ̂

∂E
= 0. (B.77)

∂λ̂

∂ξ
∗ = [I(1+ rI)− (D(1+ r̄D)+X/ω)]/

[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

+ λ̂(1+ r̄D)/
[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
> 0. (B.78)

∂λ̂

∂rI
= (ξ∗I +LIQ)/

[
D
(
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
)]

− λ̂(1+ rD)/
[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
> 0. (B.79)

∂λ̂

∂rD
=−λ̂(1+ rI)/

[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
< 0. (B.80)

∂λ̂

∂r̄D
=−(1− λ̂)ξ∗/

[
(1+ rD)(1+ rI)−ξ

∗(1+ r̄D)
]
< 0. (B.81)

Partial derivatives ∂GG/∂C (see proof of Corollary 1).

∂GG
∂I

= ωD(1+ r̄D)
∂λ̂

∂I
−

∫ 1

ξ
∗

ξ
∗

λ
dλ > 0. (B.82)

∂GG
∂LIQ

= ωD(1+ r̄D)
∂λ̂

∂LIQ
−

∫ 1

ξ
∗

1
λ

dλ ≷ 0. (B.83)

∂GG
∂D

= ωD(1+ r̄D)

[
∂λ̂

∂D
+(λ̂−δ)/D

]
− (θ∗−δ)(1+ rD)< 0. (B.84)

∂GG
∂E

= 0. (B.85)

∂GG
∂ξ
∗ = ωD(1+ r̄D)

∂λ̂

∂ξ
∗ −

∫ 1

ξ
∗

I
λ

dλ > 0. (B.86)
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∂GG
∂rI

= ωD(1+ r̄D)
∂λ̂

∂rI
> 0. (B.87)

∂GG
∂rD

= ωD(1+ r̄D)
∂λ̂

∂rD
−D(θ∗−δ)< 0. (B.88)

∂GG
∂r̄D

= ωD(1+ r̄D)
∂λ̂

∂r̄D
+ωD(λ̂−δ)≷ 0. (B.89)

Partial derivatives ∂DS/∂C .

∂DS
∂I

= [βδ+β
2(1−β)] ·q ·

ξ
∗+ξ

2
· 1

D
> 0. (B.90)

∂DS
∂LIQ

= [βδ+β
2(1−β)] ·q · 1

D
> 0. (B.91)

∂DS
∂D

=U ′′(eS−D)− [βδ+β
2(1−β)] ·q ·

(
LIQ+ I ·

ξ
∗+ξ

2

)
1

D2

+(1−q)V ′′(D(1+ rD))(1+ rD)
2 < 0. (B.92)

∂DS
∂E

= 0. (B.93)

∂DS
∂ξ
∗ =

{
[βδ+β

2(1−β)]
LIQ+ξ

∗I
D

−δβ(1+ rD)

−(1−δ)β2
ω(1+ rD)−V ′(D(1+ rD))(1+ rD)

}
∆
−1
ξ

< 0. (B.94)

∂DS
∂rI

= 0. (B.95)

∂DS
∂rD

= (1−q)
[
βδ+V ′(D(1+ rD))+V ′′(D(1+ rD))D(1+ rD)

]
> 0. (B.96)

∂DS
∂r̄D

= ω ·β2(1−δ)(1−q)> 0. (B.97)
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Partial derivatives ∂LD/∂C .

∂LD
∂I

= ω(A− (1+ rI))
δD(1+ rD)−LIQ

I2
log(ξ/ξ

∗)

∆ξ

− (1−q)c′′(I)≶ 0. (B.98)

∂LD
∂LIQ

= ω(A− (1+ rI))
1
I

log(ξ/ξ
∗)

∆ξ

> 0. (B.99)

∂LD
∂D

=−ω(A− (1+ r))
δ(1+ rD)

I
log(ξ/ξ

∗)

∆ξ

< 0. (B.100)

∂LD
∂E

= 0. (B.101)

∂LD
∂ξ
∗ =−

[
ω(A− (1+ rI))

ξ
∗I−δD(1+ rD)+LIQ

ξ
∗I

− c′(I)
]

∆
−1
ξ

≷ 0. (B.102)

∂LD
∂rI

=−ω

[
(1−q)− δD(1+ rD)

I
log(ξ/ξ

∗)

∆ξ

]
< 0. (B.103)

∂LD
∂rD

=−ω(A− (1+ r))
δD
I

log(ξ/ξ
∗)

∆ξ

< 0. (B.104)

∂LD
∂r̄D

= 0. (B.105)

Partial derivatives ∂ES/∂C̃ for extension in section B.11 .

∂ES
∂I

=
1

E +O
ω(1−q)(1+ rI)> 0. (B.106)

∂ES
∂LIQ

=
1

E +O
ω(1+ rI) log(ξ/ξ

∗)/∆ξ > 0. (B.107)

∂ES
∂D

=− 1
E +O

ω

[
δ(1+ rD)(1+ rI) log(ξ/ξ

∗)/∆ξ +(1−δ)(1−q)(1+ r̄D)
]
< 0. (B.108)
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∂ES
∂E

=− 1
E +O

∫
ξ

ξ
∗

DPS(ξ,δ)
dξ

∆ξ

< 0. (B.109)

∂ES
∂O

= P2 ·W ′′(eO−P ·O)− 1
E +O

∫
ξ

ξ
∗

DPS(ξ,δ)
dξ

∆ξ

< 0. (B.110)

∂ES
∂ξ
∗ =−DPS(ξ∗,δ)/∆ξ < 0. (B.111)

∂ES
∂rI

=
1

E +O
ω

[
(1−q)I− (δD(1+ rD)−LIQ) log(ξ/ξ

∗)/∆ξ

]
> 0. (B.112)

∂ES
∂rD

=− 1
E +O

ωδD(1+ rI) log(ξ/ξ
∗)/∆ξ < 0. (B.113)

∂ES
∂r̄D

=− 1
E +O

ω(1−δ)(1−q)D < 0. (B.114)

∂ES
∂P

= P ·O ·W ′′(eO−P ·O)−W ′(eO−P ·O)< 0. (B.115)
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