
C Technical Appendix

C.1 Convergence to the Continuous State Model

For each of a sequence of values for the integer M, we assume a neighborhood
structure of the kind discussed in section 3.2 with M+1 states. The set of states is
ordered, XM = {0,1, . . . ,M}, and each pair of adjacent states forms a neighborhood,
Xi = {i, i + 1}, for all i ∈ {0,1, . . . , M − 1}. We will also assume that there is
an M + 1st neighborhood containing all of the states. Note that M indexes both
the number of states and the number of neighborhoods. We consider the limit as
M→ ∞.

To study this limit, we need to define how the prior beliefs, qM, and the magni-
tude of the information costs vary with M. For the initial beliefs, we shall assume
that there is a differentiable probability density function q : [0,1]→ R+, with full
support on the unit interval and with a derivative that is Lipschitz continuous. Using
this function, we define, for any i ∈ XM,

eT
i qM =

ˆ i+1
M+1

i
M+1

q(x)dx.

That is, for each value of M, the prior qM is assumed to be a discrete approximation
to the p.d.f. q(x), which becomes increasingly accurate as M→ ∞.

For our neighborhood structures, we assume that that the constants associated
with the cost of each neighborhood, c j, are equal to M2 for all j < M, and M−1

for j = M. In this particular example, the scaling ensures that the DM is neither
able to determine the state with certainty, nor prevented from gathering any useful
information, even as M is made arbitrarily large; moreover, the scaling ensures that
the neighborhood containing all states plays no role in the limiting behavior, so that
in the limit all information costs are local. We also scale the entire cost function by
a constant, θ > 0.

We also need to define the set of actions, and the utility from those actions. We
will assume the set of actions, A, remains fixed as N grows, and define the utility
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from a particular action, in a particular state, as

eT
i ua,M =

´ i+1
M+1

i
M+1

q(x)ua(x)dx

eT
i qM

.

Here, the utility ua : [0,1]→ R is a bounded measurable function for each action
a ∈ A.20 In other words, as M grows large, the prior converges to q(x) and the
utilities converge to the functions ua(x).

We consider only the case of neighborhood cost functions with ρ = 1. Under
these assumptions, the static model of section §2 can be written as

VN(qM;M)= max
πM∈P(A),{qa,M∈P(XM)}a∈A

∑
a∈A

πM(a)(uT
a,M ·qa,M)−θ ∑

a∈A
πM(a)DN(qa,M||qM;M),

(29)
subject to the constraint that

∑
a∈A

πN(a)qa,M = qM.

Here DN denotes the divergence associated with the neighborhood-based cost func-
tion introduced above, specialized to the particular neighborhood structure of this
section and ρ = 1:

DN(qa,M||qM;M)=M2(HN(qa,M;1,M)−HN(qM;1,M))+M−1(HS(qM;M)−HS(qa,M;M)),

where HN is defined by equation (13) in the main text and HS is Shannon’s entropy.
The following theorem shows that the solution to this problem, both in terms

of the value function and the optimal policies, converges to the solution of a static
rational inattention problem with a continuous state space.

Proposition 4. Consider the sequence of finite-state-space static rational inatten-

tion problems (29), with progressively larger state spaces indexed by the natural

20Note that we do not require the payoff resulting from an action to be a continuous function of
x at all points, though it will be continuous almost everywhere. This allows for the possibility that
a DM’s payoffs change discontinuously when the state x crosses some threshold, as in some of our
applications.
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numbers M. There exists a sub-sequence of integers n ∈ N for which the solutions

to the sub-sequence of problems converge, in the sense that, for some π∗ ∈P(A)

and {q∗a ∈P([0,1])}a∈A ,

i) limn→∞ VN(qn;n) = VN(q);

ii) limn→∞ π∗n = π∗; and

iii) for all a ∈ A and all x ∈ [0,1], limn→∞ ∑
bxnc
i=0 eT

i q∗a,n =
´ x

0 q∗a(y)dy.

Moreover, the limiting value function VN(q) is the value function for the following

continuous-state-space static rational inattention problem:

VN(q) = sup
π∈P(A),{qa∈PLipG([0,1])}a∈A

∑
a∈A

π(a)
ˆ

supp(q)
ua(x)qa(x)dx

− θ

4 ∑
a∈A
{π(a)

ˆ 1

0

(q′a(x))
2

qa(x)
dx}+ θ

4

ˆ 1

0

(q′(x))2

q(x)
dx,

subject to the constraint that, for all x ∈ [0,1],

∑
a∈A

π(a)qa(x) = q(x), (30)

and where PLipG([0,1]) denotes the set of differentiable probability density func-

tions with full support on [0,1], whose derivatives are Lipschitz-continuous. Fur-

thermore, the limiting action probabilities π∗(a) and posteriors q∗a are the optimal

policies for this continuous-state-space problem.

Proof. See the technical appendix, section C.4.

This theorem demonstrates that the value function, choice probabilities, and
posterior beliefs of the discrete state problem converge to the value function, choice
probabilities, and posterior beliefs associated with a continuous state problem. The
continuous state problem uses a particular cost function, the expected value of the
Fisher information IFisher(x; p), defined locally for each element of the continuum
of possible states x, with the expectation taken with respect to the prior over possible
states. The posterior beliefs in the continuous state problem, qa(x), are required to
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be differentiable, with a Lipschitz-continuous derivative, on their support. This is
a result; the limiting posterior beliefs of the discrete state problem will have these
properties. This restriction also ensures that the Fisher information is finite, so that
the optimization associated with the continuous state problem is well-behaved.

The static rational inattention problem for the limiting case of a continuous state
space can be given an alternative, equivalent formulation, in which the objects of
choice are the conditional probabilities of taking different actions in the different
possible states, rather than the posteriors associated with different actions. This is
essentially the continuous state analog of Lemma 2.

Lemma 4. Consider the alternative continuous-state-space static rational inatten-

tion problem:

V̄N(q) = sup
p∈PLipG(A)

ˆ 1

0
q(x) ∑

a∈A
pa(x)ua(x)dx − θ

4

ˆ 1

0
q(x) IFisher(x; p)dx,

where PLipG(A) is the set of mappings p : [0,1]→P(A) such that for each action

a, the function pa(x)21 is a differentiable function of x with a Lipschitz-continuous

derivative, and for any information structure p ∈PLipG(A), the Fisher information
at state x ∈ X is defined as

IFisher(x; p) ≡ ∑
a∈A

(p′a(x))
2

pa(x)
.

This problem is equivalent to the one defined in Theorem 4, in the sense that the

information structure p∗ that solves this problem defines action probabilities and

posteriors

π
∗(a) =

ˆ 1

0
q(x)p∗a(x), q∗a(x) =

q(x)p∗a(x)
π∗(a)

(31)

that solve the problem in Theorem 4, and conversely, the action probabilities and

posteriors {π∗(a),q∗a} that solve the problem stated in the theorem define state-

21Here for any x ∈ [0,1], we use the notation pa(x) to indicate the probability of action a implied
by the probability distribution p(x) ∈P(A).
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contingent action probabilities

p∗a(x) =
π∗(a)q∗a(x)

q(x)
(32)

that solve the problem stated here. Moreover, the maximum achievable value is the

same for both problems: V̄N(q) =VN(q).

Proof. See the appendix, section C.5.

C.2 Security Design and Acceptance with Certainty

In this section, we discuss the optimal security design application, and consider
the possibility that the seller designs the security to induce the buyer to accept
with probability one. In other words, the buyer’s “consideration set” in his rational
inattention problem consists only of L, instead of both L and R. As mentioned in
the text, we have chosen the parameters of our numerical example to ensure that,
for all of the cost functions, the seller is better off inducing information acquisition
(πL < 1) than avoiding information acquisition (πL = 1). Note that the πL = 0 case is
equivalent to trading a “nothing” security at zero price, and hence assuming πL > 0
is without loss of generality.

Consider the buyer’s problem,

V (q;s,K) = max
πL∈[0,1],qL,qR∈P(X)

πLqT
L (s−Kι)

−θπLDH(qL||q)−θ(1−πL)DH(qR||q),

subject to the constraint that πLqL +(1−πL)qR = q. Rewrite the choice variables
as q̂L = πLqL and q̂R = (1−πL)qR, and use the homogeneity of the H function, so
that the problem is

V (q;s,K) = max
q̂L,q̂R∈R

|X |
+

q̂T
L (s−Kι)

−θDH(q̂L||q)−θDH(q̂R||q),
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subject to q̂L + q̂R = q. Observe that the objective is concave and the constraints
linear, so it suffices to consider local perturbations.

Suppose that it is optimal to set πL = 1, implying q̂L = q. Consider a perturba-
tion to q̂L = q−εqR, q̂R = εqR, for any arbitrary qR ∈P(X). For such a perturbation
to reduce utility, we must have

−εqT
R(s−Kι)−θDH(q− εqR||q)−θεDH(qR||q)≤ 0.

Taking the limit as ε → 0+, we must have, for all qR, and hence for the minimizer,

min
qR∈P(X)

qT
R(s−Kι)+θDH(qR||q)≥ 0.

If this condition is satisfied, it is at least weakly optimal for the buyer to choose
πL = 1 and gather no information. Consequently, the Lagrangian version of the op-
timal security design problem, subject to the constraint of inducing no information
acquisition, is

max
s∈R|X |+ ,K≥0

min
λ≥0,qR∈P(X),ω∈R|X |+

qT (Kι−β s)+λ (qT
R(s−Kι)+θDH(qR||q))+ω

T (v−s),

where λ is the multiplier on the no-information-gathering constraint and ω is the
multiplier on the upper-bound of the limited liability requirement.

Defining q̃R = λqR, the dual of this problem is

min
q̃R∈R

|X |
+ ,ω∈R|X |+

max
s∈R|X |+ ,K≥0

qT (Kι−β s)+ q̃T
R(s−Kι)+θDH(q̃R||q)+ω

T (v− s),

which can be understood as

min
q̃R∈R

|X |
+ ,ω∈R|X |+

θDH(q̃R||q)+ω
T v,

subject to
q̃R−βq−ω ≤ 0,

1−qT
Rι ≤ 0.
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The multipliers of this convex minimization problem are the optimal security de-
sign and price. After solving the problem for q̃R and ω , we can use the first-order
condition to recover the security design:

s−Kι = Hq(q)−Hq(q̃R).

We use the convention that in the lowest state, the asset value is zero (eT
0 v = 0), and

therefore eT
0 s = 0, and hence

eT
x s = (ex− e0)

T (Hq(q)−Hq(q̃R)).

To implement the problem with the additional requirement of monotonicity for
the security design, write the monotonicity requirement as Ms� 0, where M is an
|X |−1×|X | matrix. The dual problem is

min
q̃R∈R

|X |
+ ,ω∈R|X |+ ,ρ∈R|X |+

θDH(q̃R||q)+ω
T v,

subject to
q̃R−βq−ω +MT

ρ ≤ 0,

1−qT
Rι ≤ 0.

As mentioned above, under our parameters it is not optimal for the seller to
avoid information acquisition. For completeness, we present the optimal securities
that avoid information acquisition below. Note the shapes of these securities are
very similar to their optimal counterparts, although the level is often quite differ-
ence.
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Figure 8: Optimal Security Designs that Avoid Info. Acquisition by Entropy Func-
tion

Figure 9: Optimal Monotone Security Designs that Avoid Info Acquisition by En-
tropy Function
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C.3 Additional Definition and Lemmas

Definition 1. Let XM be a sequence of state spaces, as described in section 4.3. A
sequence of policies {pM ∈P(XM)}M∈N satisfies the “convergence condition” if:

i) The sequence satisfies, for some constants cH > cL > 0, all M, and all i∈ XM,

cH

M+1
≥ eT

i pM ≥
cL

M+1
.

ii) The sequence satisfies, for some constant K1 > 0, all M, and all i ∈ XM \
{0,M},

M3|1
2
(eT

i+1 + eT
i−1−2eT

i )pM| ≤ K1,

and
M2|1

2
(eT

M− eT
M−1)pM| ≤ K1

and
M2|1

2
(eT

1 − eT
0 )pM| ≤ K1.

Definition 2. Let {pM ∈P(XM)}M∈N be a sequence of probability distributions
over the state spaces associated with Theorem 4. The interpolating functions {p̂M ∈
P([0,1])}M∈N are, for x ∈ [ 1

2(M+1) ,1−
1

2(M+1)),

p̂M(x) = (M+1)((M+1)x+
1
2
−b(M+1)x+

1
2
c)eT
b(M+1)x+ 1

2c
pM+

+(M+1)(
1
2
− (M+1)x+ b(M+1)x+

1
2
c)eT
b(M+1)x+ 1

2 c−1 pM,

and, for x ∈ [0, 1
2(M+1)),

p̂M(x) = (M+1)eT
0 qM,

and. for x ∈ [1− 1
2(M+1) ,1],

p̂M(x) = (M+1)eT
MqM.
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Lemma 5. Given a function p∈P([0,1]), define the sequence {pM ∈P(XM)}M∈N,

eT
i pM =

ˆ i+1
M+1

i
M+1

p(x)dx,

where XM is the state space described in section 4.3. If the function p is strictly

greater than zero for all x ∈ [0,1], differentiable, and its derivative is Lipschitz con-

tinuous, then the sequence {pM ∈P(XM)}N∈N satisfies the convergence condition,

and satisfies, for some constant K > 0, all M, and all i ∈ XN \{0,M},

M2| ln(1
2
(eT

i+1 + eT
i )qM)+ ln(

1
2
(eT

i−1 + eT
i )qM)−2ln(eT

i qM)| ≤ K,

and

M| ln(1
2
(eT

1 + eT
0 )qM)− ln(eT

0 qM))|< K

and

M| ln(1
2
(eT

M + eT
M−1)qM)− ln(eT

MqM))|< K.

Proof. See the technical appendix, C.7.

Lemma 6. Let {pM ∈P(XM)}M∈N be a sequence of probability distributions over

the state spaces associated with Theorem 4. If the sequence {pM ∈P(XM)}M∈N

satisfies the convergence condition (Definition 1), then there exists a sub-sequence,

whose elements we denote by n, such that:

i) The interpolating functions (2) p̂n(x) converge point-wise to a differentiable

function p(x)∈P([0,1]), whose derivative is Lipschitz-continuous, with p(x)>

0 for all x ∈ [0,1],

ii) the following sum converges:

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i +eT
i+1)pn)}=

1
4

ˆ 1

0

(p′(x))2

p(x)
dx,

where g(x) = x ln(x),

iii) for all a ∈ A, limn→∞ uT
a,n pn =

´ 1
0 ua(x)p(x)dx,

67



iv) and, if the sequence {pM ∈P(XM)}M∈N is constructed from some function

p̃(x), as in Lemma 5, then p(x) = p̃(x) for all x ∈ [0,1].

Proof. See the technical appendix, section C.8.

Lemma 7. Let πM(a) ∈P(A) and {qa,M ∈P(XM)}a∈A denote optimal policies

in the discrete state setting described in section 4.3. For each a ∈ A, the sequence

{qa,N} satisfies the convergence condition (Definition 1).

Proof. See the technical appendix, section C.9.

C.4 Proof of Theorem 4

By the boundedness of P(A), there exists a convergent sub-sequence of the optimal
policy πn(a), which we also denote by n. Define

π(a) = lim
n→∞

πn(a).

By Lemma 7, for all a ∈ A, each sequence of optimal policies {qa,n} satisfies the
convergence condition (Definition 1). Therefore, by Lemma 6, each sequence of
interpolating functions (2), {q̂a,n(x)}, has a convergent sub-sequence that converges
to a differentiable function qa(x), whose derivative is Lipschitz continuous. We can
construct a sub-sequence in which πn(a) and all {q̂a,n(x)} converge by iteratively
applying this argument. Pass to this subsequence.

We can write the discrete value function, using Lemma 1, and defining g(x) =

x lnx, as

VN(qn;n) = max
{px,n∈P(A)}i∈X

∑
a∈A

eT
a pnDiag(q)unea

−θn2
∑
a∈A

(eT
a pnqn)

n−1

∑
i=0

[g(
eT

i qa,n

q̄i,a,n
)+g(

eT
i+1qa,n

q̄i,a,n
)]

+θn2
n−1

∑
i=0

[g(
eT

i qN

q̄i,a,N
)+g(

eT
i+1qN

q̄i,a,N
)]

−θn−1
n−1

∑
i=0

(eT
i qn)DKL(pnei||pnqn).
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We can re-arrange this to

VN(qn;n) = max
{px,n∈P(A)}i∈X

∑
a∈A

eT
a pnDiag(q)unea

−θn2
∑
a∈A

(eT
a pq)

n−1

∑
i=0

[g(eT
i qa,n)+g(eT

i+1qa,n)−2g(
1
2
(eT

i + eT
i+1)qa,n)]

+θn2
N−1

∑
i=0

[g(eT
i qn)+g(eT

i+1qn)−2g(
1
2
(eT

i + eT
i+1)qn)]

−θn−1
N−1

∑
i=0

(eT
i qN)DKL(pi,n||pnqn).

By Lemma 6 and the boundedness of the KL divergence,

lim
n→∞

VN(qn;n) = ∑
a∈A

π(a)
ˆ 1

0
ua(x)qa(x)dx

− θ

4 ∑
a∈A
{π(a)

ˆ 1

0

(q′a(x))
2

qa(x)
dx}+ θ

4

ˆ 1

0

(q′(x))2

q(x)
dx.

Suppose that π(a) and the qa(x) functions do not maximize this expression (subject
to the constraints stated in Theorem 4). Let π∗(a) and q∗a(x) be maximizers. Define,
for all n,

π̃n(a) = π
∗(a),

eT
i q̃a,n =

ˆ i+1
n+1

i
n+1

q∗a(x)dx.

Note that, by construction, q̃a,n ∈P(Xn) and ∑a∈A π̃N(a)q̃a,n = qn. That is, the
constraints of the discrete-state problem are satisfied for all n. Denote the value
function under these policies as ṼN(qn;n).

Because of the constraints stated in Theorem 4, each q∗a satisfies the conditions
of Lemma 5, and therefore the sequence q̃a,n satisfies the convergence condition for
all a ∈ A. It follows by Lemma 6 that this sequence of policies delivers, in the limit,
the value function VN(q). If this function is strictly larger than limn→∞VN(qn;n),
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there must exist some n̄ such that

ṼN(qn̄; n̄)>VN(qn̄; n̄),

contradicting optimality. Therefore, the functions qa(x) and π(a) are maximizers.
It remains to show that

lim
n→∞

bxnc

∑
i=0

eT
i qa,n =

ˆ x

0
qa(y)dy.

Note that

eT
i qa,n = (n+1)

ˆ i+1
n+1

i
n+1

q̂a,n(
2i+1

2(n+1)
)dy,

where q̂a,n is the function defined in Lemma 6. Therefore, the sum is equal to

bxnc

∑
i=0

eT
i qa,n =

ˆ bxnc+1
n+1

0
q̂a,n(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy.

By the boundedness of q̂a,n (which follows from the convergence condition) and the
dominated convergence theorem,

lim
n→∞

ˆ bxnc+1
n+1

0
q̂(
b(n+1)y+ 1

2c+
1
2

(n+1)
)dy =

ˆ x

0
qa(y)dy,

as required.

C.5 Proof of Lemma 4

We begin by observing that any information structure p∈PLipG(A) defines uncon-
ditional action frequencies π ∈P(A) and posteriors qa ∈PLipG([0,1]) satisfying
(30), using definitions (31). And conversely, any unconditional action frequencies
and posteriors satisfying (30) define an information structure, using definitions (32).
Hence the set of candidate structures is the same in both problems, and the prob-
lems are equivalent if the two objective functions are equivalent as well. It is also
easily seen that in each problem, the first term of the objective function is the ex-
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pected value of the DM’s reward u(x,a), integrating over the joint distribution for
(x,a). Hence it remains only to establish that the remaining terms of the objective
function are equivalent as well.

Consider any information structure p∈PLipG(A) and the corresponding uncon-
ditional action frequencies and posteriors, and let x be any point at which q(x)> 0,
and at which pa(x) is twice differentiable for all a (and as a consequence, qa(x) is
twice differentiable for all a as well). (We note that, given the Lipschitz continuity
of the first derivatives, the set of x for which this is true must be of full measure.)
Then the fact that ∑a∈A pa(x) = 1 for all x implies that

∑
a∈A

p′′a(x) = 0, (33)

and similarly, constraint (30) implies that

∑
a∈A

π(a)q′′a(x) = q′′(x). (34)

At any such point, the definition of the Fisher information implies that

IFisher(x) ≡ ∑
a∈A

(p′a(x))
2

pa(x)

= ∑
a

p′′a(x) − ∑
a∈A

pa(x)
∂ 2 log pa(x)

∂x2

= −π(a)qa(x)
q(x)

∂ 2

∂x2 [logπ(a)+ logqa(x)− logq(x)]

=
1

q(x)

[
∑
a∈A

π(a)
(q′a(x))

2

qa(x)
−∑

a∈A
π(a)q′′a(x) −

(q′(x))2

q(x)
+q′′(x)

]

=
1

q(x)

[
∑
a∈A

π(a)
(q′a(x))

2

qa(x)
− (q′(x))2

q(x)

]
.

Here the first line is the definition of the Fisher information (given in the lemma),
and the second line follows from twice differentiating the function log pa(x) with
respect to x. In the third line, the first term from the second line vanishes because
of (33); the remaining term from the second line is rewritten using (32). The fourth
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line follows from the third line by twice differentiating each of the terms inside the
square brackets with respect to x. The fifth line then follows from (34).

Since this result holds for a set of x of full measure, we obtain expression

ˆ 1

0
q(x)IFisher(x)dx = ∑

a∈A
π(a)

ˆ 1

0

(q′a(x))
2

qa(x)
dx −

ˆ 1

0

(q′(x))2

q(x)
dx

for the mean Fisher information. This shows that the information-cost terms in both
objective functions are equivalent, and hence the two problems are equivalent, and
have equivalent solutions.

C.6 Proof of Lemma 3

Let v
|v| = z1,z2, . . . ,zk be an orthonormal basis, and let V be the associated orthonor-

mal matrix (V TV = I) whose columns are the basis vectors. Suppose there is a
minimizer, Λ∗, with

Λ
∗ =V MV T

for some positive-definite, real symmetric M.
Consider a perturbation

Λ(ε) = Λ
∗+ εV MzzT MV T

for some arbitrary vector z. Such a perturbation is always feasible for ε > 0, and is
feasible for ε < 0 if

zT MV T
Λ
∗V Mz > 0.

We have
d

dε
(Λ(ε))−1|ε=0 =−(Λ∗)−1V MzzT MV T (Λ∗)−1.

Observing that
(Λ∗)−1 =V M−1V T
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and using the orthonormality of V ,

d
dε

(Λ(ε))−1|ε=0 =−V zzTV T .

It follows that optimality requires

−vTV zzTV T v+ tr[V MzzT MV T ]≥ 0,

with equality if the perturbation is feasible in both directions.
Because v is a basis vector of the orthonormal basis that defines V ,

vTV =
vT v
|v|

eT
1 ,

where e1 is a basis vector with one in index 1 and zero otherwise. Again using
orthonormality to insert V TV = I, we must have

−|v|2eT
1 zzT e1 + tr[V MV TV zzTV TV MV T ]≥ 0,

which simplifies to
|v|2eT

1 zzT e1 ≤ tr[Λ∗V zzTV T
Λ
∗],

which is
zT (V T

Λ
∗
Λ
∗V −|v|2e1eT

1 )z≥ 0.

It follows that for all z with eT
1 z = 0, we must have

zTV T
Λ
∗
Λ
∗
Λ
∗V z = 0,

which requires
zT

j Λ
∗
Λ
∗
Λ
∗z j = 0

for all j 6= 1. It follows immediately that the nullity of Λ∗ is at least k−1, and hence
that the rank is at most one. Conjecture therefore that

Λ
∗ = xxT
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for some vector x. The objective is

lim
ε→0+

vT (εI + xxT )v+ xT x,

which by the Sherman-Morrison lemma is

lim
ε→0+

ε
−1vT v− ε−2vT xxT v

1+ ε−1xT x
+ xT x.

By Cauchy-Schwarz,

ε
−1vT v− ε−2vT xxT v

1+ ε−1xT x
≥ ε−1vT v

1+ ε−1xT x
,

and therefore holding fixed |x| is optimal to set

x
|x|

= v,

and the problem solves

inf
|x|2≥0

|v|2

|x|2
+ |x|2,

and hence
|x|2 = |v|.

It follows that
inf

Λ∈Mk
vT

Λ
−1v+ tr[Λ] = 2|v|.

C.7 Proof of Lemma 5

Proof. The function p is strictly greater than zero, and continuous, and therefore
attains a maximum and minimum on [0,1], which we denote with cH and cL, re-
spectively. By construction,

eT
i pM ≥

cL

M+1
and likewise for cH , satisfying the bounds.
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For all i ∈ XM \{M},

(eT
i+1− eT

i )pM =

ˆ i+1
M+1

i
M+1

(p(x+
1

M+1
)− p(x))dx

=

ˆ i+1
M+1

i
M+1

ˆ 1
M+1

0
p′(x+ y)dydx

and therefore, letting K2 be the maximum of the absolute value of p′ on [0,1] (which
exists by the continuity of p′), we have

|(eT
i+1− eT

i )pM| ≤
1

(M+1)2 K2, (35)

satisfying the convergence condition for the endpoints.
For all i ∈ XM \{0,M},

(eT
i+1 + eT

i−1−2eT
i )pM =

ˆ i+1
M+1

i
M+1

(p(x+
1

M+1
)+ p(x− 1

M+1
)−2p(x))dx

=

ˆ i+1
M+1

i
M+1

ˆ 1
M+1

0
(p′(x+ y)− p′(x− y))dydx.

Let K3 denote the Lipschitz constant associated with p′. It follows that

|(eT
i+1 + eT

i−1−2eT
i )pM| ≤

2K3

(M+1)3 .

Therefore, the convergence condition is satisfied for K1 = max(1
2K2,K3).

By the concavity of the log function, and the inequality ln(x)≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≤ 2ln(
1
4(e

T
i+1 + ei−1 +2eT

i )pM

eT
i pM

)

≤
1
2(e

T
i+1 + ei−1−2eT

i )pM

eT
i pM

.
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Therefore, by the convergence condition we have established,

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≤ (M+1)K1

M3cL
≤ 2K1

M2cL
.

By the inequality − ln(1
x )≤ x−1,

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≥
1
2(e

T
i+1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
+

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i−1 + eT

i )pM
.

We can rewrite this as

ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)≥

(
1
2(e

T
i+1 + eT

i−1−2eT
i )pM

1
2(e

T
i+1 + eT

i )pM
+

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
(

1
2(e

T
i+1 + eT

i )pM
1
2(e

T
i−1 + eT

i )pM
−1)).

By the bounds above,

1
2(e

T
i+1 + eT

i−1−2eT
i )pM

1
2(e

T
i+1 + eT

i )pM
≥− 2K1

M2cL

and, using equation (35),

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
(

1
2(e

T
i+1 + eT

i )pM
1
2(e

T
i−1 + eT

i )pM
−1) =

1
2(e

T
i−1− eT

i )pM
1
2(e

T
i+1 + eT

i )pM
(

1
2(e

T
i+1− eT

i−1)pM
1
2(e

T
i−1 + eT

i )pM
)

≥−M2

c2
L

1
(M+1)4 (K2)

2

≥−( K2

2McL
)2.

Therefore,

M2| ln(
1
2(e

T
i+1 + eT

i )pM

eT
i pM

)+ ln(
1
2(e

T
i−1 + eT

i )pM

eT
i pM

)| ≤ 2K1

cL
+(

K2

2cL
)2.
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For the end-points,

1
2(e

T
1 − eT

0 )qM
1
2(e

T
1 + eT

0 )qM
≤ ln(

1
2(e

T
1 + eT

0 )qM

eT
0 qM

)≤
1
2(e

T
1 − eT

0 )qM

eT
0 qM

and therefore

| ln(
1
2(e

T
1 + eT

0 )qM

eT
0 qM

)| ≤ K2

McL
.

A similar property holds for the other endpoint, and therefore the claim holds for
K = max(K2

cL
, 2K1

cL
+( K2

2cL
)2).

C.8 Proof of Lemma 6

Proof. We begin by noting that the functions p̂M(x) are absolutely continuous. Al-
most everywhere in [ 1

2(M+1) ,1−
1

2(M+1) ],

p̂′M(x) = (M+1)2(eT
b(M+1)x+ 1

2 c
− eT
b(M+1)x+ 1

2 c−1)pM,

and outside this region, p̂′M(x)= 0. Let p̃′M(x) denote the right-continuous Lebesgue-
integrable function on [0,1] such that

p̂M(x) = p̂M(0)+
ˆ x

0
p̃′M(y)dy,

which is equal to p̂′M(x) anywhere the latter exists.
The total variation of p̃′M(x) is equal to

TV (p̃′M) =
M−1

∑
i=1

(M+1)2|(eT
i+1 + eT

i−1−2eT
i )pM)|+

+(M+1)2|(eT
M− eT

M−1)pM|+(M+1)2|(eT
1 − eT

0 )pM|.

By the convergence condition,

TV (p̃′M)≤ (M+1)3

M3 2K1,
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and therefore the sequence of functions p̃′M(x) has uniformly bounded variation.
For any 1− 1

2(M+1) > x > y≥ 1
2(M+1) , the quantity

|p̃′M(x)− p̃′M(y)|= (M+1)2|
b(M+1)x+ 1

2 c

∑
i=b(M+1)y+ 1

2c
(eT

i+1 + eT
i−1−2eT

i )pM|

≤ (M+1)2((M+1)(x− y)+2)
M3 2K1.

At the end points, for all x ∈ [0, 1
2(M+1)),

|p̃′M(
1

2(M+1)
)− p̃′M(x)| ≤ 2K1

M+1
,

and for all x ∈ [1− 1
2(M+1) ,1],

|p̃′M(x)− lim
y↑1− 1

2(M+1)

p̃′M(y)| ≤ 2K1

M+1
.

By p̃′M(0) = 0, we have, for all x ∈ [0,1],

|p̃′M(x)| ≤ (
(M+1)2((M+1)(1− 1

2(M+1))+2)

M3 +
1

M+1
)2K1,

proving that p̃′M(x) is bounded uniformly in M for all x ∈ [0,1].
Therefore Helly’s selection theorem applies. That is, there exists a sub-sequence,

which we denote by n, such that p̃′n(x) converges point-wise to some p′(x). More-
over, by the point-wise convergence of p̃′M to p′, for all x > y,

|p′(x)− p′(y)| ≤ 2K1(x− y),

meaning that p′ is Lipschitz-continuous. By the fact that p′(0) = 0, this implies that
|p′(x)| ≤ 2K1 for all x ∈ [0,1].

By the convergence condition, cL ≤ p̂N(0) ≤ cH . Therefore, there exists a
convergent sub-sequence. We now use n to denote the sub-sequence for which
limn→∞ p̂n(0) = p(0) and for which p̃′n(x) converges point-wise to p′(x). By the
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dominated convergence theorem, for all x ∈ [0,1],

lim
n→∞

p̂n(x) = lim
n→∞
{p̂n(0)+

ˆ x

0
p̃′n(y)dy}= p(0)+

ˆ x

0
p′(y)dy.

Define the function p(x) = p(0)+
´ x

0 p′(y)dy for all x ∈ [0,1]. By the convergence
conditions, this function is bounded, 0 < cL ≤ p(x) ≤ cH , by construction it is
differentiable, and its derivative is Lipschitz continuous. Moreover,

ˆ 1

0
p(x)dx = 1,

and therefore p ∈P([0,1]).
Next, consider the limiting cost function. We have, using the function g(x) =

x lnx and Taylor-expanding,

g(y) = g(x)+g′(x)(y− x)+
1
2

g′′(cy+(1− c)x)(y− x)2

for some c ∈ (0,1). Therefore,

g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i + eT
i+1)pM) =

1
8

g′′(c1eT
i pM +(1− c1)

1
2
(eT

i + eT
i+1)pM)((eT

i+1− eT
i )pM)2

+
1
8

g′′(c2eT
i pM +(1− c2)

1
2
(eT

i + eT
i+1)pM)((eT

i+1− eT
i )pM)2

for constants c1,c2 ∈ (0,1). Note that, by the boundedness p̂M(x) from below,
eT

i pM ≥ (M+1)−1cL for all i ∈ XM. It follows that

g′′(c1eT
i pM+(1−c1)

1
2
(eT

i +eT
i+1)pM)=

1
c1eT

i pM +(1− c1)
1
2(e

T
i + eT

i+1)pM
≤ (M+1)c−1

L .

Therefore,

0≤ g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i + eT
i+1)pM)≤

(M+1)c−1
L

4
((eT

i+1− eT
i )pM)2.
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By construction,

eT
i pM =

1
(M+1)

p̂M(
2i+1

2(M+1)
).

Therefore,

(M+1)(g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i + eT
i+1)pM)) =

g(p̂M(
2i+1

2(M+1)
))+g(p̂M(

2i+3
2(M+1)

))−2g(p̂M(
2i+2

2(M+1)
)).

and

g(eT
i pM)+g(eT

i+1 pM)−2g(
1
2
(eT

i +eT
i+1)pM)≤

c−1
L

4(M+1)
(p̂(

2i+3
2(M+1)

)− p̂(
2i+1

2(M+1)
))2.

By the boundedness of p̃′M(x),

g(p̂(
2i+1

2(M+1)
))+g(p̂(

2i+3
2(M+1)

))−2g(p̂(
2i+2

2(M+1)
))≤ B

(M+1)2

for some finite bound B.
Writing the limiting cost as an integral, and switching to the sub-sequence n

defined above,

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the bound above,

n3

n+1

ˆ 1

0
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx≤

n3

(n+1)3

ˆ 1

0
Bdx.
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Applying the dominated convergence theorem,

lim
n→∞

n2
∑

i∈Xn\{n}
{g(eT

i pn)+g(eT
i+1 pn)−2g(

1
2
(eT

i + eT
i+1)pn)}=

ˆ 1

0
lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}dx.

By the Taylor expansion above,

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
8

n3

n+1
{g′′(·)+g′′(·)}(p̂n(

2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

))2.

By definition,

(n+1)(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+1
2(n+1)

)) = p̃′n(
2bnxc+2
2(n+1)

)

and

lim
n→∞

g′′(p̂n(
2bnxc+2
2(n+1)

)+ cn(p̂n(
2bnxc+3
2(n+1)

)− p̂n(
2bnxc+2
2(n+1)

))) =
1

p(x)
,

with cn ∈ (0,1) for all n, and therefore

lim
n→∞

n3

n+1
{g(p̂n(

2bnxc+1
2(n+1)

))+g(p̂n(
2bnxc+3
2(n+1)

))−2g(p̂n(
2bnxc+2
2(n+1)

))}=

lim
n→∞

1
4
(p′(x))2

p(x)
,

proving the second claim.
Turning to the third claim, recall that, by definition,

eT
i ua,M =

´ i+1
M+1

i
M+1

ua(x)q(x)dx

´ i+1
M+1

i
M+1

q(x)dx.
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We define the function, for x ∈ [0,1), as

ua,M(x) = eT
b(M+1)xcua,M,

and let ua,M(1) = eT
Mua,M. We also define the function

x̃M(x) =
2b(M+1)xc+1

2(M+1)
.

By construction, p̂M(x̃M(x)) = (M + 1)eT
b(M+1)xcpa,M for all x ∈ [0,1), and equals

eT
M pa,M for x = 1. Therefore,

uT
a,M pM = ∑

i∈XM

(eT
i ua,M)(eT

i pM)

=

ˆ 1

0
p̂M(x̃M(x))ua,M(x)dx.

By the measurability of ua(x),

lim
M→∞

ua,M(x) = ua(x).

Therefore, by the boundedness of utilities and the dominated convergence theorem,

lim
n→∞

uT
a,n pn =

ˆ 1

0
p(x)ua(x)dx.

Finally, suppose that, for all M

eT
i pa,M =

ˆ i+1
M+1

i
M+1

p̃(x)dx.

It follows that limn→∞ p̂a,n(x) = p̃(x) for all x ∈ [0,1], and therefore p̃(x) = p(x).
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C.9 Proof of Lemma 7

Proof. We begin by noting that the conditions given for the function q(x) satisfy
the conditions of Lemma 5, and therefore the sequence qM satisfies the convergence
condition. We will use the constants cH and cL to refer to its bounds,

cH

M+1
≥ eT

i qM ≥
cL

M+1
,

and the constants K1 and K to refer to the constants described by convergence con-
dition and Lemma 5 for the sequence qM. By the convention that qa,M = qM if
πM(a) = 0, qa,M also satisfies the convergence condition whenever πM(a) = 0.

The problem of size M is

VN(qM;M)= max
πM∈P(A),{qa,M∈P(XM)}a∈A

∑
a∈A

πM(a)(uT
a,M ·qa,M)−θ ∑

a∈A
πM(a)DN(qa,M||qM;M)

subject to

∑
a∈A

πM(a)qa,M = qM,

where

DN(qa,M||qM;ρ,M)=M2(HN(qa,M;1,M)−HN(qM;1,M))+M−1(HS(qa,M;M)−HS(qM;M)

and

HN(q;1,M) = −
M−1

∑
i=0

q̄iHS(qi).

Let uM denote that |XM|×|A|matrix whose columns are ua,M. Using Lemma 2,
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we can rewrite the problem as

VN(qM;M) = max
{pi,M∈P(A)}i∈XM

∑
a∈A

eT
a pMDiag(q)uMea

−θM2
M−1

∑
i=0

(eT
i qM)DKL(pi,M||

pi,M(eT
i qM)+ pi+1,M(eT

i+1qM)

(eT
i + eT

i+1)qM
)

−θM2
M

∑
i=1

(eT
i qM)DKL(pi,M||

pi,M(eT
i qN)+ pi−1,M(eT

i−1qM)

(eT
i + eT

i−1)qM
)

−θM−1
M−1

∑
i=0

(eT
i qM)DKL(pi,M||pMqM).

The FOC for this problem is, for all i ∈ [1,M−1] and a ∈ A such that eT
a pi,M > 0,

eT
i ua,M−θM2 ln(

eT
a pi,M(eT

i + eT
i+1)qM

eT
a (pi,M(eT

i qM)+ pi+1,M(eT
i+1qM))

)

−θM2 ln(
eT

a pi,M(eT
i + eT

i−1)qM

eT
a (pi,M(eT

i qM)+ pi−1,N(eT
i−1qM))

)−θM−1 ln(
eT

a pi,M

eT
a pMqM

)− eT
i κM = 0,

where κM ∈ RM+1 are the multipliers (scaled by eT
i qM) on the constraints that

∑a∈A eT
a pi,M = 1 for all i ∈ X . Defining eT

i−1qM = eT
M+1qM = 0, and defining p−1,M

and pM+1,M in arbitrary fashion, we can recover this FOC for all i ∈ X .
Rewriting the FOC in terms of the posteriors, and again defining eT

i−1qa,M =

eT
M+1qa,M = 0, for any a such that πM(a)> 0,

eT
i (ua,M−κM) = θM2 ln(

(eT
i qa,M)(1+ eT

i+1qM

eT
i qM

)

(ei+1 + ei)T qa,M
)+θM2 ln(

(eT
i qa,N)(1+

eT
i−1qN

eT
i qN

)

(ei−1 + ei)T qa,N
)

+θM−1 ln(
eT

a pi,M

eT
a pMqM

)

=−θM2 ln(1+
eT

i+1qa,M

eT
i qa,M

)+θM2 ln(1+
eT

i+1qM

eT
i qM

)−θM2 ln(1+
eT

i−1qa,M

eT
i qa,M

)

+θM2 ln(1+
eT

i−1qM

eT
i qM

)+θM−1 ln(
eT

i qa,M

eT
i qM

),
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which can be rewritten as

eT
i (ua,M−κM) =−θM2(ln(

1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)− (2+M−3) ln(eT

i qa,M))

+θM2(ln(
1
2
(eT

i+1 + eT
i )qM)+ ln(

1
2
(eT

i−1 + eT
i )qM)− (2+M−3) ln(eT

i qM)).

(36)

Our analysis proceeds by analyzing this first-order condition.
We next describe a series of lemmas that use this first-order condition to estab-

lish various bounds, which will ultimately be used to establish the bounds required
by the convergence condition. As part of the proof, we find it useful to consider
the interpolating functions q̂a,M(x) (2) constructed from qa,M. We define from these
interpolating functions the function

la,N(x) = (M+1)(ln(q̂a,M(x))− ln(q̂a,M(x− 1
2(M+1)

)))

on x ∈ [ 1
2(M+1) ,1], observing that, for any i ∈ XM \{0},

la,M(
2i+1

2(M+1)
) = (M+1) ln(

(M+1)eT
i qa,M

1
2(M+1)(eT

i + eT
i−1)qa,M

),

and for any i ∈ XM \{M},

la,M(
2i+2

2(M+1)
) = (M+1) ln(

1
2(M+1)(eT

i + eT
i+1)qa,M

(M+1)eT
i qa,M

).

Lemma 8. For all M ∈ N and i ∈ XM \{0,M}, eT
i κM ≤ Bκ for some positive con-

stant Bκ .

Proof. See the technical appendix, section C.10.

Lemma 9. For all M ∈ N and i ∈ {0,M}, |eT
i κM| ≤ B0 for some positive constant

B0, and

ln(
1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

)≤M−1B1
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and

ln(
eT

Mqa,M
1
2(e

T
M + eT

M−1)qa,M
)≥−M−1B1

for some positive constant B1.

Proof. See the technical appendix, section C.11.

Lemma 10. For all M ∈ N and j ∈ {2,3, . . . ,2M+1}, and some positive constant

Bl ,

|la,N(
j

2(M+1)
)| ≤ Bl.

Proof. See the technical appendix, section C.12. The proof uses the previous two
lemmas.

Armed with these lemmas, we prove that the convergence condition (Definition
1) is satisfied.

C.9.1 Proof that cH
M+1 ≥ eT

i qa,M ≥ cL
M+1

We next apply the above lemmas to prove that the first part of the convergence
condition is satisfied. Begin by observing that there must exist some ĩa,M ∈ XM

such that eT
ĩa,M

qa,M ≥ 1
N+1 , implying that

ln((M+1)eT
ĩa,M

qa,M)≥ 0.

By the definition of la,M, for any i ∈ XM \{0},

la,M(
2i+1

2(M+1)
)+ la,M(

2i
2(M+1)

) = (M+1) ln(
(M+1)eT

i qa,M

(M+1)eT
i−1qa,M

).
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For any i > ĩa,M, using Lemma 10,

ln((M+1)eT
i qa,M) = ln((M+1)eT

ĩa,M
qa,M)+

i

∑
j=ĩa,M+1

ln(
(M+1)eT

j qa,M

(M+1)eT
j−1qa,M

)

= ln((M+1)eT
ĩa,M

qa,M)+
1

M+1

i

∑
j=ĩa,M+1

la,M(
2 j+1

2(M+1)
)+ la,N(

2 j
2(M+1)

)

≥− 1
M+1

i

∑
j=ĩa,M+1

2Bl

≥−2Bl.

Similarly, for any i < ĩa,M,

ln((M+1)eT
ĩa,M

qa,M) = ln((M+1)eT
i qa,M)+

ĩa,M

∑
j=i+1

ln(
(N +1)eT

j qa,N

(N +1)eT
j−1qa,N

).

Therefore, for any i < ĩa,M,

ln((M+1)eT
i qa,M)≥−

ĩa,M

∑
j=i+1

ln(
(M+1)eT

j qa,M

(M+1)eT
j−1qa,M

),

and thus, using Lemma 10, for all i ∈ XM,

ln((M+1)eT
i qa,M)≥−2Bl.

Repeating this argument, there must be some îa,M such that eT
îa,M

qa,M ≤ M−1, and
using the bounds on la,M in similar fashion yields

ln((M+1)eT
i qa,M)≤ 2Bl.

It follows that, for all M, a ∈ A such that πM(a)> 0, and i ∈ XM,

exp(2Bl)

(M+1)
≥ eT

i qa,M ≥
exp(−2Bl)

M+1
, (37)
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demonstrating that qa,N satisfies the first part of the convergence condition.

C.9.2 Proof that M3|12(e
T
i+1 + eT

i−1−2eT
i )qa,M| ≤ K1

We start by proving a bound on (M+1)2|12(e
T
i+1− eT

i )qa,M|.
Using Lemma 10, and a Taylor expansion of ln(1+ x), for some c ∈ (0,1), for

any i ∈ XM \{M},

|la,M(
2i+2

2(M+1)
)|= |(M+1) ln(

1
2(M+1)(eT

i + eT
i+1)qa,M

(M+1)eT
i qa,M

)|

=
(M+1)|12(e

T
i+1− eT

i )qa,M|
eT

i qa,M + c
2(e

T
i+1− eT

i )qa,M

≤ Bl,

and therefore, by the bound on eT
i qa,M, for any i ∈ XM \{M},

(M+1)2|1
2
(eT

i+1− eT
i )qa,M| ≤ Bl exp(−2Bl). (38)

Returning to the first-order condition, for i ∈ XN \{0,N}, and using the bounds
on utility and on the terms involving qM,

eT
i κM ≥−ū−θK +θM−1 ln(

eT
i qM

eT
i qa,M

)

+θM2(ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)−2ln(eT

i qa,M)).

We have

M−1 ln(
eT

i qM

eT
i qa,M

)≥M−1 ln(
cL

exp(2Bl)
),

and therefore

eT
i κM ≥−ū−θK+M−1 ln(

cL

exp(2Bl)
)+θM2(ln(

1
2(e

T
i+1 + eT

i )qa,M

eT
i qa,M

)+ln(
1
2(e

T
i−1 + eT

i )qa,M

eT
i qa,M

)).
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Using the mean-value theorem, for some c1 ∈ (0,1),

ln(
1
2(e

T
i+1 + eT

i )qa,M

eT
i qa,M

) = ln(1+
1
2(e

T
i+1− eT

i )qa,M

eT
i qa,M

)

=
eT

i qa,M

eT
i qa,M + c1

1
2(e

T
i+1− eT

i )qa,M

1
2(e

T
i+1− eT

i )qa,M

eT
i qa,M

,

and likewise

ln(
1
2(e

T
i−1 + eT

i )qa,M

eT
i qa,M

) =
1
2(e

T
i−1− eT

i )qa,M

(1− 1
2c2)eT

i qa,M + 1
2c1eT

i−1qa,M

for some c2 ∈ (0,1). Therefore,

eT
i κM ≥−ū−θK +M−1 ln(

cL

exp(2Bl)
)

+θM2(
1
2(e

T
i+1− eT

i )qa,M

(1− 1
2c1)eT

i qa,M + 1
2c1eT

i+1qa,M
+

1
2(e

T
i−1− eT

i )qa,M

(1− 1
2c2)eT

i qa,M + 1
2c2eT

i−1qa,M
).

Multiplying through,

[(1− 1
2

c1)eT
i qa,M +

1
2

c1eT
i+1qa,M](eT

i κM + ū+θK−M−1 ln(
cL

exp(2Bl)
))

≥ θM2(
1
2
(eT

i+1− eT
i )qa,M +

1
2
(eT

i−1− eT
i )qa,M

(1− 1
2c1)eT

i qa,M + 1
2c1eT

i+1qa,M

(1− 1
2c2)eT

i qa,M + 1
2c2eT

i−1qa,M
).

≥ θM2(
1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M +
1
2
(eT

i−1− eT
i )qa,M(

1
2c1(eT

i+1− eT
i )qa,M− 1

2c2(eT
i − eT

i−1)qa,M

(1− 1
2c2)eT

i qa,M + 1
2c2eT

i−1qa,M
)).

Using equations (37) and (38),

[(1− 1
2

c1)eT
i qa,M +

1
2

c1eT
i+1qa,M](eT

i κM + ū+θK−M−1 ln(
cL

exp(2Bl)
))

≥ θM2(
1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M−
Bl exp(2Bl)

(M+1)2 (

2Bl exp(2Bl)
(M+1)2

exp(−2Bl)
M+1

))

≥ θM2 1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M−θ
2B2

l M2 exp(6Bl)

(M+1)3 .
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Summing over a, weighted by πN(a), and applying Lemma 5,

(eT
i κM + ū+θK−M−1 ln(

cL

exp(2Bl)
))≥−θ

K1
M +

2B2
l M2 exp(6Bl)

(M+1)3

cL
(M+1)

≥−θc−1
L (2K1 +2B2

l exp(6Bl)).

Therefore, |eT
i κN | is bounded below by some B+

κ > 0 for all i ∈ XN (recalling that
this was shown for i ∈ {0,N} in Lemma 9 and in the other direction in Lemma 8).

It also follows, using equation (37), that

θM2(M+1)
1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M ≤ exp(2Bl)(B+
κ + ū+θK−M−1 ln(

cL

exp(2Bl)
)

+θ
2B2

l M2 exp(6Bl)

(M+1)2 ,

which establishes one side of the bound on |12(e
T
i+1 + eT

i−1−2eT
i )qa,M|.

Rewriting the FOC (equation (36)) and using Lemma 5 and the boundedness of
the utility and the bound on |eT

i κN |,

−B+
κ − ū−θK−θM−1 ln(

eT
i qM

eT
i qa,M

)

≤θM2(ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)−2ln(eT

i qa,M)).

By equation (37),

M−1 ln(
eT

i qM

eT
i qa,M

)≤M−1 ln(
cH

exp(−2Bl)
),

and therefore, by the concavity of the log function,

−B+
κ − ū−θK−θM−1 ln(

cH

exp(−2Bl)
)≤ 2θM2 ln(

1
4(e

T
i+1 + eT

i−1 +2eT
i )qa,M

eT
i qa,M

).
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By the inequality ln(x)≤ x−1,

−B+
κ − ū−θK−θM−1 ln(

cH

exp(−2Bl)
)≤ 2θM2(

1
4(e

T
i+1 + eT

i−1−2eT
i )qa,M

eT
i qa,M

),

and therefore, using the lower bound on eT
i qa,M (equation (37)),

−B+
κ − ū−θK−θM−1 ln(

cH

exp(−2Bl)
)≤ θM2(M+1)

1
2
(eT

i+1 + eT
i−1−2eT

i )qa,M,

which proves the other side of the bound.

C.9.3 Proof that M2|12(e
T
1 − eT

0 )qa,M| ≤ K1

By Lemma 10,

−Bl ≤ (M+1) ln(
1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

)≤ Bl.

Using the mean-value theorem, for some c ∈ (0,1),

ln(
1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

) =
1
2(e

T
1 − eT

0 )qa,M

(1− 1
2c)eT

0 qa,M + 1
2ceT

i qa,M
.

Therefore, by equation (37),

exp(2Bl)

(M+1)2 Bl ≥
1
2
(eT

1 − eT
0 )qa,M ≥−

exp(2Bl)

(M+1)2 Bl,

proving the bound. The proof for the other endpoint is identical.

C.10 Proof of Lemma 8

First, using Lemma 5, for all i ∈ XM \{0,M}, observe that

M2| ln(1
2
(eT

i+1 + eT
i )qM)+ ln(

1
2
(eT

i−1 + eT
i )qM)−2ln(eT

i qM)| ≤ K.
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Rewriting the FOC (equation (36)) and using this bound,

eT
i κM ≤ eT

i ua,M +θK +θM−1 ln(eT
i qM)

+θM2(ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)− (2+M−3) ln(eT

i qa,M)).

By the boundedness of the utility function, this can be rewritten as

eT
i κM ≤ ū+θK−θM2(ln(

eT
i qa,M

1
2(e

T
i+1 + eT

i )qa,M
)+ln(

eT
i qa,M

1
2(e

T
i−1 + eT

i )qa,M
))−θM−1 ln(

eT
i qa,M

eT
i qM

).

By the concavity of the log function,

ln(
1
2
(eT

i+1 + eT
i )qa,M)+ ln(

1
2
(eT

i−1 + eT
i )qa,M)+M−3 ln(eT

i qM)≤

(2+M−3) ln(
1

2(2+M−3)
(eT

i+1 + eT
i−1 +2eT

i )qa,M +
M−3

2+M−3 eT
i qM),

It follows that

eT
i κN ≤ ū+θK+(2+M−3)θM2 ln(

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,M + N−3

2+N−3 eT
i qM

eT
i qa,M

).

Exponentiating,

(eT
i qa,M)exp(− 1

2+M−3 θ
−1M−2(ū+ θ̄K− eT

i κM))≤

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qa,M +

M−3

2+M−3 eT
i qM.

Summing over a, weighted by πN(a),

(eT
i qM)exp(− 1

2+M−3 θ
−1M−2(ū+ θ̄K− eT

i κM))≤

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qM +

M−3

2+M−3 eT
i qM.
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Taking logs,

− 1
2+M−3 θ

−1M−2(ū+ θ̄K− eT
i κM)≤ ln(

1
2(2+M−3)

(eT
i+1 + eT

i−1 +2eT
i )qM + M−3

2+M−3 eT
i qM

(eT
i qM)

)

≤ ln(1+
M−3

2+M−3 +
1

2+M−3
K1M−3

cLM−1 ),

where the last step follows by Lemma 5, recalling that cL is the lower bound on
q(x). We have

eT
i κN ≤ 3θM2 ln(1+

M−3

2+M−3 +
1

2+M−3
K1

cL
M−2)+ ū+ θ̄K

≤ ū+θK +
3θM−1

2+M−3 +
3θ

2+M−3
K1

cL

≤ ū+θK +
3θ

2
+

3θ

2
K1

cL
.

where the second step follows by the inequality ln(1+ x)< x for x > 0.

C.11 Proof of Lemma 9

For the lower end point, the FOC (equation (36)) can be simplified to

eT
0 (ua,M−κM) =−θM2(ln(

1
2
(eT

1 + eT
0 )qa,M)+ ln(

1
2
)− (1+M−3) ln(eT

0 qa,M))

+θM2(ln(
1
2
(eT

1 + eT
0 )qM)+ ln(

1
2
)− (1+M−3) ln(eT

0 qM)).

Rearranging this,

θ
−1M−2eT

0 (ua,M−κM)+ ln(
1
2
(eT

1 + eT
0 )qa,M) =

(1+M−3) ln(
eT

0 qa,M

eT
0 qM

)+ ln(
1
2
(eT

1 + eT
0 )qM).
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Exponentiating,

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2eT

0 (ua,M−κM)) = (
eT

0 qa,M

eT
0 qM

)1+M−3 1
2
(eT

1 + eT
0 )qM.

By the boundedness of the utility function,

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2(ū− eT

0 κM))≥ (
eT

0 qa,M

eT
0 qM

)1+M−3 1
2
(eT

1 + eT
0 )qM.

Taking a sum over a, weighted by π(a), and applying Jensen’s inequality,

1
2
(eT

1 + eT
0 )qM exp(θ−1M−2(ū− eT

0 κM))≥ 1
2
(eT

1 + eT
0 )qM,

and therefore
eT

0 κM ≤ ū.

Observing that

M−1 ln(
eT

0 qa,M

eT
0 qM

)≤M−1 ln(
M
cL

)≤M−1(
M
cL
−1)≤ c−1

L , (39)

we have

θ
−1M−2eT

0 (ua,M−κM)+ln(
1
2
(eT

1 +eT
0 )qa,M)≤M−2c−1

L +ln(
eT

0 qa,M

eT
0 qM

)+ln(
1
2
(eT

1 +eT
0 )qM).

Exponentiating,

1
2
(eT

1 +eT
0 )qa,M exp(θ−1M−2(−θc−1

L +eT
0 (ua,M−κM)))≤ (

eT
0 qa,M

eT
0 qM

)
1
2
(eT

1 +eT
0 )qM

Using the boundedness of the utility function, then taking a sum over a, weighted
by π(a),

1
2
(eT

1 + eT
0 )qa,M exp(θ−1M−2(−θc−1

L − ū− eT
0 κM))≤ 1

2
(eT

1 + eT
0 )qM.
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Therefore,
eT

0 κM ≥−ū−θc−1
L ,

and thus
|eT

0 κM| ≤ B0

for B0 = ū+θc−1
L . A similar argument applies to the other end-point (eT

MκM).
Using the bound on utility and equation (39), the FOC requires that

ln(
1
2(e

T
1 + eT

0 )qa,M

eT
0 qa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+ ln(
1
2(e

T
1 + eT

0 )qM

eT
0 qM

).

By Lemma 5, it follows that

ln(
1
2(e

T
1 + eT

0 )qa,M

eT
0 qa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+M−1K,

and therefore the constraint with B1 = K +θ−1(ū+B0 +θc−1
L ) is satisfied.

Similarly, the FOC for the highest state is

θ
−1M−2eT

M(ua,M−κM)+ ln(
1
2(e

T
M + eT

M−1)qa,M

eT
Mqa,M

) =

(1+M−3) ln(
eT

Mqa,M

eT
MqM

)+ ln(
1
2
(eT

M + eT
M−1)qM),

and therefore

ln(
1
2(e

T
M + eT

M−1)qa,M

eT
Mqa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+ ln(
1
2(e

T
M + eT

M−1)qM

eT
MqM

),

implying that

ln(
1
2(e

T
M + eT

M−1)qa,M

eT
Mqa,M

)≤ θ
−1M−2(ū+B0 +θc−1

L )+M−1K,

and therefore

ln(
eT

Mqa,M
1
2(e

T
M + eT

M−1)qa,M
)≥−M−1B1.
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C.12 Proof of Lemma 10

The first-order condition is, for any i ∈ XM \ {0,M} can be re-written using the
function la,M (and the function lM, defined from q̂M along the same lines) as

eT
i (κM−ua,M)+θM−1 ln(

eT
i qa,M

eT
i qM

) = θ
M2

(M+1)
(la,M(

2i+2
2(M+1)

)− la,M(
2i+1

2(M+1)
))

−θ
M2

(M+1)
(lM(

2i+2
2(M+1)

)− lM(
2i+1

2(M+1)
)).

Note that

θM−1 ln(
eT

i qa,M

eT
i qM

)≤ θM−1 ln(
1

cLM−1 )≤ θM−1(
M
cL
−1)≤ θc−1

L .

By Lemma 5 and Lemma 8 and the bound on utility,

θ
M2

(M+1)
(la,M(

2i+2
2(M+1)

)− la,M(
2i+1

2(M+1)
)≤ Bκ + ū+θK +θc−1

L .

We also have, for all i ∈ XM \{M}

M2

M+1
(la,M(

2i+3
2(M+1)

)− la,M(
2i+2

2(M+1)
))

= M2(ln(
(M+1)eT

i+1qa,M
1
2(M+1)(eT

i+1 + eT
i )qa,M

)− ln(
1
2(M+1)(eT

i + eT
i+1)qa,M

(M+1)eT
i qa,M

))

≤ 0,

by the concavity of the log function. Observe also that, by Lemma 9,

la,M(
2

2(M+1)
) = (M+1) ln(

1
2(e

T
0 + eT

1 )qa,M

eT
0 qa,M

)≤ M+1
M

B1.
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It follows that, for all j ∈ {2,3, . . . ,2M+1},

la,M(
j

2(M+1)
) = la,M(

2
2(M+1)

)+
j−1

∑
k=2

(la,M(
k+1

2(N +1)
)− la,M(

k
2(M+1)

))

≤ θ
−1(Bκ + ū+θK +θc−1

L )
M+1

M2 ( j−2)+
M+1

M
B1.

Similarly, for all j ∈ {2,3, . . . ,2M+1},

la,M(
2M+1

2(M+1)
) = la,M(

j
2(M+1)

)+
2M

∑
k= j

(la,M(
k+1

2(M+1)
)− la,M(

k
2(M+1)

)).

Observing that

−la,M(
2M+1

2(M+1)
) =− ln(

(M+1)eT
Mqa,M

1
2(M+1)(eT

M + eT
M−1)qa,M

)≤ M+1
M

B1,

using Lemma 9,

−la,M(
j

2(M+1)
)≤ θ

−1(Bκ + ū+θK +θc−1
L )

M+1
M2 (2M− j+1)+

M+1
M

B1.

It follows that, for all j ∈ {2,3, . . . ,2M+1},

|la,N(
j

2(N +1)
)| ≤ θ

−1(Bκ + ū+θK +θc−1
L )

M+1
M2 (2M−1)+

M+1
M

B1

≤ 4θ
−1(Bκ + ū+θK +θc−1

L )+2B1.
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