
Online Appendix of “Partial Identification and

Inference for Dynamic Models and Counterfactuals”

Myrto Kalouptsidi, Yuichi Kitamura, Lucas Lima, and Eduardo Souza-Rodrigues∗

February, 2020

This Online Appendix consists of the following sections: Section E provides several useful examples of

linear restrictions that are commonly employed in applied work. Section F describes the implementation

of the inferential procedure for the target parameter based on subsampling. Section G shows how to

calculate the gradient of the function f when it involves counterfactual average effects based on ergodic

distributions of the state variables. Section H discusses practical and computational aspects of calculating

the identified set of low-dimensional outcomes of interest; in particular, it presents our proposed stochastic

search algorithm to calculate the identified set without analytic gradients.

E Examples of Linear Restrictions

In this section, we provide several useful examples of linear restrictions, Reqπ = req and Riqπ ≤ riq,

that are commonly employed in applied work. For ease of exposition, we only consider restrictions on πJ

(unless otherwise stated). Recall that Req = [Req−J , R
eq
J] and Riq = [Riq−J , R

iq
J].

Example 1. (Compact Payoffs) Assume δlJ ≤ πJ ≤ δuJ . Then Riq−J = 0, RiqJ = [−I, I]′ , riq = [−δl′J , δu′J]′,

and the number of inequalities is m = 2X.

Example 2. (Exclusion Restriction I) Assume πJ (x1) = πJ (x2). Then, Reqπ = r, with Req−J = 0,

ReqJ =
[

1 −1 0 · · · 0
]
,

and req = 0. There is only one equality restriction: d = 1.

Example 3. (Exclusion Restriction II) Suppose we split the state space in x = (k,w), where k ∈ K =

{1, ...,K} and w ∈ W = {1, ...,W}, with K,W finite. Assume πJ does not depend on w, i.e., πJ (k, 1) =

∗Affiliations: Myrto Kalouptsidi, Harvard University, CEPR and NBER; Yuichi Kitamura, Yale University and Cowles
Foundation for Research in Economics; Lucas Lima, Harvard University; Eduardo Souza-Rodrigues, University of Toronto.

1

πJ (k, 2) = ... = πJ (k,W) for all k. When K = 2, W = 3, we obtain Req−J = 0,

ReqJ =


1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

 ,

and req = 0. The number of linear equalities is now d = K (W − 1) < KW = X.

Example 4. (Monotonicity) Without loss, arrange x in increasing order. Assume πJ increases with x.

Then πJ (1) ≤ πJ (2) ≤ ... ≤ πJ (X). In this case, take m = X − 1, riq = 0, Riq−J = 0, and

RiqJ =


1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · 1 −1

 .

Example 5. (Concavity) Arrange x in increasing order, take equidistant points for x. Assume πJ is

concave in x. Then πJ (xi−1) − 2πJ (xi) + πJ (xi+1) ≤ 0, for all i = 2, ..., X − 1. In this case, take

m = X − 2, riq = 0, Riq−J = 0, and

RiqJ =


1 −2 1 0 · · · 0

0 1 −2 1 0 · · ·

· · · · · · · · · · · · · · · · · ·

0 0 · · · 1 −2 1

 .

Example 6. (Smoothness). Suppose πJ ≥ 0 (take δla = 0) and assume πJ (x) is Lipschitz continuous in

x. Then, πJ (xi) − πJ (xi+1) ≤ L |xi − xi+1|, for some known constant L < ∞, for all x. In this case,

Riq−J = 0,

RiqJ =


1 −1 0 · · · 0

0 1 −1 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · 1 −1

 ,

riq is the vector with elements L |xi − xi+1|, and m = X − 2. Note that we can impose higher order

restrictions on the variation of the function π as well. This may be important when we discretize a

continuous state space and π is a smooth function of states.

Example 7. (Action-Monotonicity) Take the binary model with actions A = {a, J}, and assume that

2

πa (x) ≥ πJ (x) for some x. Then Riqa is the vector with −1 at position x and zeros elsewhere. Similarly,

RiqJ is the vector with 1 at position x and zero elsewhere. I.e.,

Riqπ =
[

0 · · · 0 −1 0 · · · 0 1 0 · · · 0
]πa

πJ

 ≤ 0,

where riq = 0 and m = 1.

Example 8. (Supermodularity) Take the binary model again. Without loss, arrange x in increasing order.

Assume the increasing differences for xi+1 ≥ xi:

πa (xi+1)− πa (xi) ≥ πJ (xi+1)− πJ (xi) .

Then, take

Riq =



1 −1 0 0 · · · 0

0 1 −1 0 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 0 1 −1︸ ︷︷ ︸
=Riqa

...

−1 1 0 0 · · · 0

0 −1 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 0 −1 1︸ ︷︷ ︸
=RiqJ


,

and riq = 0, with m = X − 1 inequalities.

F Computational Algorithm for Inference

We now describe the implementation of the inferential procedure for the target parameter θ. It builds on

the formulation developed in Kitamura and Stoye (2018), where the implications of economic models are

expressed in terms of the minimum value of a quadratic form.

Recall that we construct a confidence set by inverting tests of the type H0 : θ = θ0, which are

equivalent to testing H ′0 : J(θ0) = 0. We explain how we approximate the distribution of the test statistic

NĴN (θ0), from which we obtain the critical values ĉ1−α. We also emphasize ways in which we can make

the procedure computationally faster.

We assume that p̂N is a frequency estimator for p (collecting the frequency estimators for p and F),

and that the researcher has R replications p̂∗r, r = 1, ..., R. Recall that, for a fixed θ0, our test statistic is

ĴN (θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R(θ0,π,p̃; p̂N)=0

[b−J(p̂N)− M̂Nπ]′Ω [b−J(p̂N)− M̂Nπ]. (F1)

3

The corresponding test statistic being simulated is

Ĵ∗rhN (θ0) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R
(
θ0,π,p̃; p̂∗rhN

)
=0

[̂b∗r−J − M̂∗r
hN
π]′Ω[̂b∗r−J − M̂∗r

hN
π], (F2)

for r = 1, ..., R, where p̂∗rhN , b̂∗r−J and M̂∗r
hN

are the r-th subsampling replication of the estimator for p, b−J

and M; see Section 5 in the main paper for the definitions of these elements.

Recall the testing procedure: We use the empirical distribution of hN Ĵ
∗
hN

(θ0) to obtain the critical

value ĉ1−α. When the value of the test statistic is smaller than the critical value, NĴN (θ0) ≤ ĉ1−α, we do

not reject the null H ′0 : J(θ0) = 0, otherwise we reject it. The 1−α confidence set is the collection of θ0’s

for which these tests do not reject the null.

We now turn to several remarks that make this procedure operational and computationally fast (or

at least faster than approaches that ignore these remarks).

Grid-Search. When θ is a scalar, we can implement a limited grid-search on θ. Specifically, let θ̂
L

and θ̂
U

be the estimated lower and upper bounds of the identified set for θ, obtained by solving the

appropriate constrained minimization and maximization problems in the full data. Clearly, ĴN (θ0) = 0

for all θ0 ∈ [θ̂
L
, θ̂
U

], so no point in that interval would be rejected by the data. We therefore start the

grid-search at points slightly below θ̂
L

and slightly above θ̂
U

. To simplify, consider the points above θ̂
U

.

We start with the point, say, θ0 = θ̂
U

+ 0.01, and test the null H ′0 : J(θ0) = 0 using the subsampling

procedure described above. If we fail to reject the null, we then move to the next point, say, θ0 = θ̂
U

+0.02

and test the null for that new point. We keep doing so until we reject the null for the first time; we stop

the grid-search when we first reject the null because all points to the right will be rejected by the data as

well. We adopt a similar procedure for the lower end θ̂
L

, by taking θ̂
L
− 0.01, then θ̂

L
− 0.02, etc.

One benefit to this approach is that we just need to search over a limited region of the real line R:

right below θ̂
L

and right above θ̂
U

. If we reject the null for the first time at the points θl and θu, then

the asymptotically uniformly valid 1− α confidence set for the true θ is the interval [θl, θu].

Exploiting Continuity. We can solve a sequence of minimization problems (F1) exploiting the fact

that the model is smooth and well-behaved. Specifically, by changing θ0 sequentially and incrementally,

we always obtain good initial guesses for the next minimization problem, reducing the total computational

costs. More explicitly, suppose we have already solved the maximization problem (20)–(21) in the full

sample, and obtained the estimated maximum θ̂
U

. Denote the solution by (p̃s, πs), i.e., θ̂
U

= f(p̃s, πs; p̂).

This implies that the solution to the problem (F1) with θ0 = θ̂
U

is (p̃s, πs), and that ĴN (θ̂
U

) = 0 (by

construction). Then, by continuity, the solution to (F1) for θ0 = θ̂
U

+ η should be close to (p̃s, πs) when

η is small (e.g., η = 0.01), making (p̃s, πs) an excellent initial value for the numerical calculations. (That

4

also implies that ĴN (θ0) for θ0 = θ̂
U

+ η should be a small strictly positive number – a fact that we

exploit further below.) Solving a series of well-behaved minimization problems with good initial values

(by changing η incrementally) speeds up the computation of our test statistic in the full sample for various

θ0’s.

The same idea can be extended to the subsampling version (F2): We can solve the minimization (F2)

in the r-th replication for a fixed θ0 that equals θ̂
U

+ η by using the full data solution of (F1) as initial

guess. For larger values of η, we can use the solution to (F2) obtained for smaller η’s as initial guesses

(rather than always using the full data solution as initial guess).

Computing JN (θ0) in Practice. When f is costly to evaluate, it is difficult to solve the minimization

problems (F1) and (F2) in practice. The reason is that it is difficult to search over (p̃, π) to minimize

J(θ0) when the constraint θ0 = f(p̃, π; p) must be satisfied for a fixed θ0. Putting differently, finding

particular values for (p̃, π) that satisfy θ0 = f(p̃, π; p) can be computationally costly.

One way to bypass this difficulty is to take advantage of the relationship between the optimization

problems (20)–(21) and (F1) (and the subsampling version (F2)). We have mentioned briefly how these

optimization problems relate to each other in a previous paragraph. Now, we discuss it in more detail.

Abstracting from sampling issues, consider the relaxed version of the maximization (20)–(21):

θU (ε) ≡ max
(p̃,π)∈P̃×R(A+1)X

f (p̃, π; p) (F3)

subject to

∥∥M(p)π − b−J(p)
∥∥

Ω
≤ ε,

Req π = req, (F4)

Riq π ≤ riq,

(M̃(p)H)π = b̃−J (p̃, p)− M̃(p) g.

where ‖.‖Ω is the matrix norm defined as ‖x‖Ω = x′Ωx for x ∈ RAX , and ε ≥ 0. We also consider the

relaxed minimization problem by replacing the max operator in (F3) by the min operator. We index the

minimum and the maximum of the relaxed problems by ε, so that we have θL(ε) and θU (ε), respectively.

The difference between the original problem (20)–(21) and its relaxed version (F3)–(F4) is the in-

equality constraint
∥∥M(p)π − b−J(p)

∥∥
Ω
≤ ε. Evidently, the problems coincide when ε = 0. Furthermore,

θL(ε) ≤ θL(0) ≡ θL and θU (ε) ≥ θU (0) ≡ θU . I.e., the true identified set [θL, θU] is contained in the

interval [θL(ε), θU (ε)] when ε > 0.

Importantly, while J(θ0) = 0 for all points θ0 in the identified set [θL, θU], we have J(θ0) ≤ ε for all

points θ0 in the wider interval [θL(ε), θU (ε)] by construction. This implies that 0 < J(θ0) ≤ ε for all points

5

belonging to the wider interval, θ0 ∈ [θL(ε), θU (ε)], but not to the smaller set, θ0 /∈ [θL, θU]. Take such a

point, and denote it by θ∗0(ε). If we solve the following problem for θ∗0(ε),

J(θ∗0(ε)) := min
(p̃,π)∈P̃×R(A+1)X :Riqπ≤riq ,

R(θ∗0(ε),π,p̃; p)=0

[b−J(p)−M(p)π]′Ω [b−J(p)−M(p)π], (F5)

then the minimum J(θ∗0(ε)) must be strictly greater than 0 and (weakly) smaller than ε. Note that by

taking a sequence of ε′s, 0 = ε0 < ε1 < ... < εk < ... < εK , and solving the corresponding relaxed problem

(F3)–(F4) for all εk, we obtain the sequence of increasing intervals

[θL(0), θU (0)] ⊆ ... ⊆ [θL(εk), θ
U (εk)] ⊆ ... ⊆ [θL(εK), θU (εK)].

We also obtain a sequence of J ’s such that: (a) J(θ0) = 0 if θ0 ∈ [θL(0), θU (0)], and (b) εk−1 < J(θ0) ≤ εk
if θ0 ∈ [θL(εk), θ

U (εk)] and θ0 /∈ [θL(εk−1), θU (εk−1)]. This means that, by taking a fine grid of ε’s and

solving their corresponding relaxed problems (F3)–(F4), we obtain good approximations to the minimum

value of the problem (F5) for various θ′0s.

Note that this approach can exploit the continuity of the relaxed problem (F3)–(F4) with respect to ε.

That is, once we solve (F3)–(F4) for some εk, it is computationally cheap to solve the problem for a close

εk+1 > εk, by using the solution to the εk–relaxed problem as initial guess to the εk+1–relaxed problem.

Summarizing. We want to test the null H0 : θ = θ0 for various θ0’s. We estimate θ̂
L

and θ̂
U

by solving

the minimization and maximization problems (20)–(21). We then start with the point θ0 = θ̂
U

+ η, as

explained previously. For that point, solve the relaxed problem (F3)–(F4) for various εk, 0 = ε0 < ε1 <

... < ε2 < ... < εK , both in the full sample and in all R replicated samples (taking advantage of the

continuity of the solutions with respect to ε). If this particular θ0 lies the interval [θ̂
L

(εk), θ̂
U

(εk)] but

does not lie in [θ̂
L

(εk−1), θ̂
U

(εk−1)], then εk−1 < ĴN (θ0) ≤ εk. Assuming the difference between εk−1 and

εk is small enough, we approximate the test statistic by NĴN (θ0) ' N × εk. Applying the same reasoning

in each simulated sample r, we obtain approximated values for Ĵ∗rhN (θ0), r = 1, ..., R, from which we

can approximate hN Ĵ
∗r
hN

(θ0). Inverting the empirical distribution of these values we can construct the

critical value ĉ1−α and test the null for our particular θ0 = θ̂
U

+ η. Then, we repeat the procedure by

changing η incrementally until the null is rejected for the first time, providing the estimated endpoints of

the confidence interval.

In essence, to improve the performance of the subsampling procedure, we can exploit (i) the relation-

ship between the optimizations (20)–(21) and (F1) (or yet (F3)–(F4) and (F5)); (ii) the continuity of the

solutions to the optimization problems with respect to both ε and η; as well as (iii) a grid-search for θ

performed over a limited region of the real line. In doing so, we can compute an asymptotically uniformly

valid 1− α confidence set for the true outcome of interest θ in a tractable way.

6

G Gradient of f involving Ergodic Distribution

In this section, we show how to calculate the gradient of the function f when it involves counterfactual

average effects based on ergodic distributions of the state variables.

Assume the function f is given by

f(p̃, π; p, F) =
∑
x∈X̃

Ỹ (x;π)f̃∗(x)−
∑
x∈X

Y (x;π)f∗(x),

where Ỹ (x;π) and Y (x;π) are outcome variables of interest in the counterfactual and baseline scenarios

and that may depend on baseline payoffs π (e.g., consumer surplus, or the firm value). Note that all

examples presented in the Supplemental Material (Section B) are of this type; in the empirical application

of Section 6 in the main text, we take the ratio of objects of this type.

The term f̃∗(x) is the ergodic distribution of the (endogenous) Markovian process for the state variables

F̃ (x′|x) =
∑
a∈Ã

p̃(a|x)F̃ (x′|a, x).

(A similar expression holds for f∗(x).) In matrix notation, we have

f(p̃, π; p, F) = Ỹ′ f̃∗ −Y′ f∗,

where Ỹ and Y are vectors of the outcome variables in the counterfactual and baseline; and f̃∗ is the

vector of the ergodic distribution satisfying the steady-state condition

f̃∗′ = f̃∗′ F̃, (G1)

where

F̃ =
∑
a∈Ã

P̃aF̃a, (G2)

and P̃a is a diagonal matrix with p̃a in its diagonal, and F̃a is the counterfactual transition matrix con-

ditional on the choice a. (Again, a similar expression holds for f∗.) Importantly, the ergodic distribution

f̃∗ depends directly on p̃ (through equations (G1)–(G2)), and indirectly on the baseline payoff π, since p̃

depends on π through equation (15) presented in the main text.

We want to know the derivative of f with respect to π, holding all other arguments of f constant

(e.g., the baseline CCP p and the state transitions F). Clearly, we have

∂f

∂π′
=

(
f̃∗′

∂Ỹ

∂π′

)
−
(
f∗′

∂Y

∂π′

)
+

(
Ỹ′

∂f̃∗

∂π′

)
.

7

The derivatives ∂Ỹ
∂π′ and ∂Y

∂π′ depend on the specific outcome of interest. Here, we focus on the third

term of the right-hand-side, ∂f̃∗

∂π′ . By the chain rule, we have

∂f̃∗

∂π′
=
∂f̃∗

∂p̃′
∂p̃

∂π′
.

By equation (15), we know that

∂p̃

∂π′
=

(
∂b̃−J
∂p̃′

)−1

M̃H.

We now derive the remaining term ∂f̃∗

∂p̃′ . Let x, x′, x̃ be arbitrary states and ã 6= J . Then (G1) pointwise

becomes

f̃∗
(
x′
)

=
∑
x

f̃∗ (x)
∑
a

p̃a (x) F̃
(
x′|x, a

)
.

Therefore,

∂f̃∗
(
x′
)

∂p̃ã (x̃)
=
∑
x

∂f̃∗ (x)

∂p̃ã (x̃)
F̃
(
x′|x

)
+ f̃∗ (x̃)

[
F̃
(
x′|x̃, ã

)
− F̃

(
x′|x̃, J

)]
.

This is written compactly in matrix as,

∂f̃∗

∂p̃′a
= −(F̃′ − I)+(F̃ ′a − F̃ ′J) f̃∗, (G3)

where (F̃′ − I)+ is the pseudo-inverse of (F̃′ − I), and f̃∗ is a diagonal matrix with f̃∗ in its diagonal.

H A Proposed Algorithm Based on Stochastic Search

In this section, we discuss practical and computational aspects of calculating the identified set of low-

dimensional outcomes of interest θ. As explained in the main text, in our experience, standard solvers are

highly efficient in solving (20)–(21) when the researcher can provide the gradient of f . However, when

numerical (or analytical) gradients are costly to evaluate in practice, standard solvers can be slow in

converging to the maximum (again, in our experience). For such cases, we propose a stochastic algorithm

that exploits the structure of the problem and combines the strengths of alternative stochastic search

procedures, as we explain below.

Our proposed algorithm builds upon a couple of observations. First, while a search over π to maximize

f is feasible, it is computationally costly and (in our experience) takes a long time to converge when

calculating the gradient of f numerically is expensive. (In high-dimensional problems, this may become

impractical.) This procedure searches over the admissible values that π can take, and, for each candidate,

it finds the corresponding counterfactual CCP by solving the nonlinear equation (15), and then it evaluates

f – and its (numerical) derivative, to obtain updated directions for π – until reaching the maximum value

for θ. Although finding admissible values for π is not difficult in high-dimensional problems (as it only

8

depends on linear constraints), and solving the nonlinear equation (15) once is not computationally costly

(as standard quasi-Newton methods can be used to find p̃), solving (15) too many times and calculating

the gradient of f numerically can be demanding. Unless the econometrician imposes a sufficient number of

assumptions to make π effectively a low dimensional vector (e.g., 3-dimensional or smaller), this method

takes a long time to converge, as it requires too many evaluations before we can increase θ substantially

in the direction of its maximum.

Second, it is possible to perform a search over p̃, instead of over π, to calculate θU . For any given

p̃, existence of a π satisfying linear constraints is computationally cheap (for example, existence can be

easily checked as a solution to a quadratic programming problem). If there is no such π satisfying all

restrictions, we discard p̃, since it does not belong to the identified set P̃I . If there exists some π satisfying

the restrictions, we keep p̃, and compute the corresponding θ. This approach may be particularly useful

when f is not a direct function of π, in which case it is not necessary to find a particular π to calculate θ –

existence of some π suffices. The difficulty here is that, while an exhaustive grid search over p̃ can be used

to find the maximum θU , grid search is unfeasible for empirically-relevant high-dimensional problems.

An alternative would be to perform a stochastic search (to find good directions for p̃).1 Yet, and more

importantly, the random search must be performed on the ÃX̃–space P̃, while the identified set P̃I can

be of much smaller dimension: X−d, or smaller (depending on the rank of C(I−PQ); see Proposition 3).

In other words, P̃I may be a “thin” set in P̃. The combination of a “thin” set with an unknown shape

(recall that p̃ is a nonlinear function of π – see equation (15)) makes it is difficult to find points within

that set randomly. Further, it is easy for perturbation methods to “exit” the set, increasing the costs

of finding the maximum θ. Note that searching over π to maximize θ does not suffer from this problem

because finding admissible values (and updated directions) for π are computationally easier.

These trade-offs led us to consider an algorithm that exploits the structure of the problem and combines

the strengths of these alternative search procedures. Intuitively, we move in the “p̃-world” (to avoid solving

the nonlinear equation (15) repeatedly), but we keep a close eye on the “π-world” (to keep track of the

model restrictions and search in relevant directions). Searching in relevant directions without solving (15)

and computing the numerical gradient of f in every step improves substantially how fast θ moves on each

iteration to the maximum.

1For instance, one possibility is to perturb p̃ completely randomly (p̃+ ε) and check whether the perturbed vector lies in

the identified set P̃I (or within a tolerance level) – where checking this amounts to checking existence of π satisfying linear
restrictions, as mentioned above. We then keep the perturbed p̃′s that deliver large values for θ (and perturb them further),
and discard those with small values of θ. We iterate until θ cannot be increased any longer. (This is similar to genetic
algorithm, or to stochastic search methods more generally.)

9

H.1 The Proposed Stochastic Search Algorithm

We now present our proposed algorithm. In order to not worry about p̃ being positive and adding up to

one, we work with the transformation

δ̃ = ln p̃−J − ln p̃J ,

where ln p̃a is the X̃ × 1 vector with elements ln p̃a(x), for all x ∈ X̃ , and ln p̃−J stacks ln p̃a for all

a 6= J . The functions of p̃, namely b̃−J and f , are adjusted accordingly. To simplify notation, we drop the

subscript of the function b̃−J , as well as the arguments (p, F) of the function f . The algorithm proceed

as follows (we provide detailed discussions of the most important steps below):

The Proposed Stochastic Search Algorithm:

1. Initialize k = 0 ∈ N.

Set πk satisfying Reqπk = req and Riqπk ≤ riq. Find δ̃
k
by solving (15) with πk.

Calculate θk = f(δ̃
k
, πk).

2. Increment k.

3. Set (perturbed) direction ∆πk. Given ∆πk, set direction for δ̃
k
,

∆δ̃
k

=

(
∂b̃

∂δ̃

)−1

M̃H∆πk,

where
(
∂b̃

∂δ̃

)
is the derivative of b̃ with respect to δ̃ evaluated at δ̃

k
.

4. Solve for α ∈ R:

α∗ = argmax
α

f(δ̃
k

+ α∆δ̃
k
, πk + α∆πk),

subject to the constraints (21), allowing (15) to be violated at most by a

tolerance level, tol > 0.

5. Set δ̃
∗

= δ̃
k

+ α∗∆δ̃
k
and π∗ = πk + α∗∆πk.

6. Update δ̃
k
:

δ̃
k+1

= δ̃
∗
−

(
∂b̃∗

∂δ̃

)−1 (
b̃∗ − M̃g − M̃Hπ∗

)
,

where
(
∂b̃∗

∂δ̃

)
is the derivative of b̃ with respect to δ̃ evaluated at δ̃

∗
, and

b̃∗ = b̃(δ̃
∗

). Set πk+1 = π∗.

7. Calculate θk+1 = f(δ̃
k+1

, πk+1).

If
∥∥∥θk+1 − θk

∥∥∥ ≤ ε go to 8; otherwise go to 2.

10

8. Set π = πk+1. Solve (15) exactly for π, and get δ̃. Return θU = f(δ̃, π).

We now discuss the rationale for each step. In Subsection H.2, we provide further details for the

implementation of each step, as well as a discussion about the overall cost of the algorithm.

Step 1. The first step requires finding a π that satisfies the model restrictions (7) and (8) so that

we obtain an initial p̃ (or δ̃) that lies inside the (potentially “thin”) set P̃I by construction, and a

corresponding θ in the identified set ΘI . Such initial π can be obtained as any solution to the following

quadratic programming problem

min
π

(Reqπ − req)
′
(Reqπ − req) + (Riqπ − riq)′+(Riqπ − riq)+, (H1)

where (x)+ = max {x, 0}. Another option is to start with a few points and project them into the identified

set for π, which can also be done easily. (Of note, if the minimum of (H1) is strictly greater than zero,

then there is no π that satisfies all the constraints.) Given π, we can solve (15) numerically using some

quasi-Newton method.

Step 3. After we have our starting point π (and corresponding δ̃), we need to obtain an updated

direction ∆π (and ∆δ̃). Overall, the idea of providing first a direction and only then optimize (as we do

here) is a standard way to solve complex optimization problems. Ideally, we would use the gradient of

f , but calculating this gradient can be expensive in some cases, as mentioned previously. An alternative

(that we use) is either to get a completely random direction for ∆π (e.g., ∆π = η, where η is a random

vector drawn from, say, a multivariate standard normal distribution), or a random direction weighted by

states that are more important (e.g., in terms of the ergodic distribution of the state variables).2

It is also important to not let an updated point to get too close to the boundary of the inequality

constraints (8). We follow the insights of interior-point methods to help the algorithm to not get stuck

early on a boundary. Specifically, we add a term to ∆π that moves it way from the most binding ones.

Formally,

∆π = η − λ
(

1

riq −Riqπ

)′
Riq,

where λ = λ0
N , with λ0 > 0 and N = the number of iterations; and

(
1

riq−Riqπ

)
denotes the m × 1

vector with the reciprocal elements of the vector riq − Riqπ (recall that m is the number of inequality

restrictions, so that Riq is m×X and riq is m× 1). The adjustment term λ
(

1
riq−Riqπ

)′
Riq is a common

2In practice, to weight the random direction η by states that are more important in terms of the steady-state distribution,
we draw η from a normal distribution with zero mean and a diagonal variance-covariance matrix with a diagonal that equals
the probabilities of the state variables under the ergodic distribution. The ergodic distribution is based on the latest updated
p̃.

11

way to handle inequality constraints. This is a simple implementation of a interior-point method, and

helps the algorithm to not get stuck early on a boundary.3

We link the direction ∆δ̃ with ∆π based on equation (15). We do so because completely random

directions on p̃ (or more precisely, on δ̃) will likely push p̃ outside of the “thin” set P̃I . The direction ∆δ̃

is obtained by differentiating the inverse function b̃−1 with respect to π in the direction ∆π.

Step 4. Given ∆δ̃, we now find how far in that direction we should go without moving away too

much from the identified set P̃I . To that end, we allow for small violations in equation (15) when searching

for α∗. Specifically, we replace the restriction (15) by
∥∥∥b̃− M̃g − M̃Hπ

∥∥∥ ≤ tol, where ‖.‖ is some matrix

norm and tol > 0 is a tolerance level. Here, the optimization is one-dimensional (line-search). We use a

simple golden rule search, but even more crude approaches work.

Step 5. We now update both δ̃ and π in their respective directions α∗∆δ̃ and α∗∆πJ , where α∗ is

obtained in step 4.

Step 6. This step is important because at the end of step 5 it is common that the intermediary δ̃
∗

violates the nonlinear system (15) by the maximum tolerance tol. So this step insures that we move δ̃

back to the set that violates (15) by strictly less than tol. Not doing so would constraint the directions

that ∆δ̃ can move in the next iteration and slow down the algorithm considerably.

Step 7. The ε > 0 in step 7 specifies the convergence tolerance. We focus on convergence on θ because

verifying a “derivative equals zero” condition for convergence is difficult given the high-dimensionality of

the problem and the complexity of computing derivatives of f (analytically or numerically).

Step 8. After convergence, we solve the nonlinear system (15) exactly to guarantee that p̃ lies in

the identified set P̃I , and so that the computed θU belongs to ΘI .

One of the main computational cost of this algorithm is to calculate the inverse matrix
(
∂b̃

∂δ̃

)−1
, used

in steps 3 and 6. In the next subsection we discuss under which conditions calculating
(
∂b̃

∂δ̃

)−1
is not

extremely costly.

3Intuitively, to maximize f (x) subject to g (x) ≤ 0, an interior-point method can make use of the logarithmic “barrier
function” B (x, λ) = f (x) − λ

∑n
i=1 log

(
gi (x)

)
, where n is the dimension of g. The gradient of B is ∂f

∂x
− λ

∑n
i=1

1
g(x)

∂g
∂x

.

The idea is that when some element gi (x) is close to zero for some trial x, the barrier function “explodes” to minus infinity,
so that the algorithm does not get stuck on a boundary. However, because the solution may indeed lie on the boundary, it
is necessary to allow for the possibility that gi (x) = 0 at the optimum. To do so, λ must converge to zero as the number of

iterations grows larger. In the present case, we take λ = λ0
N
→ 0 (as N →∞). The term

(
1

riq−Riqπ

)′
Riq is the derivative of

the sum of the logs of (riq −Riqπ) with respect to π (i.e., the derivative of λ
∑
log(riq −Riqπ), where the summation runs

from 1 to m).

12

H.2 Further Comments on Implementation

We now comment on the computational costs of the algorithm.

1. The matrix Ma equals (I − βFa) (I − βFJ)−1, which involves the inversion of an X × X matrix.

The computational cost of inverting a matrix is of the order of O(X3) in general. There are ways

to reduce these costs, however. When action J is renewal or terminal, the matrix simplifies to

Ma = I + β (FJ − Fa), for all a ∈ A, which can be calculated fast since it involves no matrix

inversion.4 When all actions are neither renewal nor terminal, computing Ma requires calculating

the inverse of (I − βFJ). Because FJ is a transition matrix, we can approximate that inverse based

on the geometric series:

(I − βFJ)−1 =
∞∑
τ=0

βτF τJ .

By truncating the series, we can reduce the computational costs and obtain a reasonable approxi-

mation (see more on that below). Note that both Ma and M̃a can be precomputed, so they do not

add costs to the iterated procedure.

2. When we find the direction ∆δ̃ implied by ∆π we need to solve the linear system

∆δ̃ =

(
∂b̃

∂δ̃

)−1

M̃H∆π

Usually this would cost O(A3X3). However, we can take advantage of the structure of the function

b̃. Recall that b̃a (p̃) = M̃aψJ (p̃)− ψa (p̃). To simplify notation, take ψ̃J = ψJ (p̃) and ψ̃a = ψa (p̃),

let ψ̃−J stack ψ̃a for all actions a 6= J . For expositional convenience, consider the three actions case

with reference choice J = 3:

b̃ = M̃−J ψ̃J − ψ̃−J = δ̃ −


I

I

− M̃−J
 log

1 +
J−1∑
j=1

exp(δ̃j)

 ,

where I is the identity matrix. So

∂b̃

∂δ̃
= I−


I

I

− M̃−J
[P̃1 P̃2

]
,

where P̃j is an X ×X diagonal matrix with p̃j as its entries.

4Formally, when action J is either a renewal or a terminal action, then for all a, j ∈ A, FaFJ = FjFJ ; see Kalouptsidi,
Lima, and Souza-Rodrigues (2019).

13

Now we need its inverse

(
∂b̃

∂δ̃

)−1
(1)
= I +


I

I

− M̃−J

I−

[
P̃1 P̃2

]
I

I

− M̃−J


−1 [

P̃1 P̃2

]
=

= I +


I

I

− M̃−J
(I− P̃1 − P̃2 + P̃1M̃1 + P̃2M̃2

)−1 [
P̃1 P̃2

]
,

where (1) follows from the Woodbury formula (I−DB)−1 = I +D(I−BD)−1B.

Now notice that P̃J = I− P̃1 − P̃2 and that M̃j = (I− βF̃j)(I− βF̃J)−1. So

(
∂b̃

∂δ̃

)−1

= I +


I

I

− M̃−J
 (I− βF̃J)

(
P̃J(I− βF̃J) + P̃1(I− βF̃1) + P̃2(I− βF̃2)

)−1 [
P̃1 P̃2

]

= I + β

F̃1 − F̃J
F̃2 − F̃J

(I− β
(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1 [
P̃1 P̃2

]
.

This reduces the cost to O(X3) because the matrix

(
I− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1

has dimension X ×X.

But we can improve on that by noticing that for a given vector v,

(
I− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1

v =

∞∑
τ=0

βτ
(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)τ
v.

Because P̃J F̃J + P̃1F̃1 + P̃2F̃2 is a transition matrix we know that

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)τ
v → v∗

14

for some v∗ as τ goes to infinity.5 Therefore, we can approximate

(
I− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

))−1

v ≈
K−1∑
τ=0

βτ
(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)τ
v+

+
βK

1− β

(
P̃J F̃J + P̃1F̃1 + P̃2F̃2

)K
v,

which can be computed in O(KX2) operations. K can be taken small because we only need a

reasonable approximation (and, as long as the exogenous states are not too persistent, it should mix

fast.)

H.3 A Simple Example

We illustrate how the method performs in practice in a simple example. We consider the firm toy model

in the absence of exogenous shocks w. In the numerical exercise, we take s = 2, vp− fc = 1, ec = 3, and

β = 0.95. For these values, the baseline CCP is

p =

 Pr
(
a = 1|k = 0

)
Pr
(
a = 1|k = 1

)
 =

 0.65

0.83

 .

We assume the researcher correctly imposes the inequalities 0 ≤ s ≤ 5, and the equality π0(0) = 0.

So, the number of inequality restrictions is m = 2, while the number of equality restrictions is d = 1.

Given these assumptions, the identified set ΠI is a one-dimensional set (since X − d = 1).

Figure H1 shows the identified set for π. Figure H1.a presents the set for π0. (This set satisfies the

equality and inequality constraints by construction.) Figure H1.b shows the set for π1. The admissible

values for π1 are obtained from equation (2) in the main text (taking J = 0), and varies as scrap values

range from 0 to 5 (corresponding to the colors in the figure going from dark green to red). The true π is

the point π0 = (0, 2)′ and π1 = (−2, 1)′.

We consider a counterfactual entry subsidy that decreases entry cost e by 50%. The true counterfactual

CCP is p̃ = (0.74, 0.64)′. Figure H2 depicts the identified set P̃I . The counterfactual probability of entry

in the identified set ranges from 0.68 to 0.84; and the counterfactual probability of staying in the market

ranges from 0.42 to 0.78.6

Given the low dimension of this problem, we calculated the identified sets ΠI and P̃I using a grid

search. Next, we explain how we solve the maximization problem (20)–(21) using the proposed algorithm

described in Section H.1.

5Under the `1 norm, this convergence is a contraction and the contraction coefficient is known as Dobrushin ergodic
coefficient.

6These numbers vary as scrap values go from 0 to 5 (corresponding, as before, to the colors in the figure going from dark
green to red). As expected, when scrap values increase, the probability of staying in the market (in the y-axis) decreases,
since it becomes more profitable to exit, while the probability of entry increases (in the x-axis), given that the firm anticipates
greater earnings when exiting the market in the future.

15

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

out given out

-1

0

1

2

3

4

5

6

o
u

t
g

iv
e

n
 i
n

Pi

(a) π0

-5 -4 -3 -2 -1 0

in given out

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

in
 g

iv
e

n
 i

n

Pi

(b) π1

Figure H1: Identified Set for the Payoffs, ΠI .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

in given out

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

in
 g

iv
e
n

 i
n

ccp_tilde

ccp

0.78

0.42

0.68 0.84

Figure H2: Identified Set for the Counterfactual CCP, P̃I .

Consider the outcome of interest to be the counterfactual probability of entry, θ = P̃r(a = 1|k = 0).

We now use our proposed algorithm to compute the maximum probability of entry θU , which equals 0.84

in this example. Recall that we convert p̃ into δ̃. The identified set for δ̃ is depicted in Figure H3.a. The

(rescaled) parameter of interest is on the horizontal axis. The steps of our algorithm can be seen in Figure

H3.b. Note that the direction

∆δ̃ =

(
∂b̃

∂δ̃

)−1

M̃H∆π

is tangent to the identified set for δ̃. From an initial point, we move as much as we can in the direction

∆δ̃ until we are too far from the identified set (that is until we are violating the nonlinear dynamic system

(15) by more than tol). At this point, we do one step of the Newton-method for the nonlinear system,

which moves δ̃ closer to the identified set. This is repeated until we reach the maximum.

This is more efficient than searching in the two-dimensional space for p̃ and also more efficient than

solving the nonlinear dynamic system (15) for each different test point for π (which would guarantee that

16

we never leave the blue line in Figure H3.b, but would likely cost more).

0 0.5 1 1.5 2 2.5

given out

-1

-0.5

0

0.5

1

1.5

2

g
iv

e
n

 i
n

Delta

(a) Identified Set for δ̃

0 0.5 1 1.5 2 2.5

given out

-1

-0.5

0

0.5

1

1.5

2

g
iv

e
n

 i
n

Delta

(b) Directions for δ̃

Figure H3: Identified Set for δ̃, and Directions of our Proposed Algorithm.

References

Kalouptsidi, M., L. Lima, and E. Souza-Rodrigues (2019): “On Estimating Counterfactuals Di-

rectly in Dynamic Models,” Discussion paper, University of Toronto.

Kitamura, Y., and J. Stoye (2018): “Nonparametric Analysis of Random Utility Models,” Economet-

rica, 86(6), 1883–1909.

17

