
ONLINE APPENDICES

Appendix A

Solving for MPE equilibria

We express the equilibrium as a system of equations in terms of choice continuation values.

Denote the per period profits by Πα(st) and let vα(1, st) and vα(0, st) be the continuation value

of entering the market given the state and exiting the market given the state respectively. In

other words, the vα(., st) are the non-random part of the value of choosing either of the two

alternatives, given the current state. The α notation inticates that we are looking for pairs

of values vα(., st)∀st ∈ S and Fα(st+1|., st)∀st ∈ S such that these vα(., st) imply the condi-

tional distribution for the state transition process Fα(st+1|., st) and the state transition process

induces the values vα(., st). This gives us the following recursive expression for the value

functions, which defines a system of equations:

vα(1, st) = Πα(st) + δ ·
∑

st+1∈S

∫
max

{
vα(0, st+1) + ε′(0), vα(1, st+1) + ε′(1)

}
dG(ε′)Fα(st+1|1, st) ∀st ∈ S (3)

vα(0, st) = Πα(st) + δ ·
∑

st+1∈S

∫
max

{
vα(0, st+1) + ε′(0), vα(1, st+1) + ε′(1)

}
dG(ε′)Fα(st+1|0, st) ∀st ∈ S (4)

We focus on symmetric Markov-perfect equilibria.s Since we have four states S = {(0, 0), (0, 1),

(1, 0), (1, 1)} we are solving a system of eight equations in eight unknowns, four of each

vα(1, st) ∀ st ∈ S and vα(0, st)∀ st ∈ S. When the player is in the market dG(ε′) is equal to

one and ε(0) is drawn uniformly from [0, 1], which is the support of the scrap value distribu-

tion. The entry cost ε(1) is always zero in this case. Likewise, if the player is outside of the

market dG(ε′) is equal to 1
1+C

and ε(1) is drawn uniformly from [C, 1 + C] whereas ε(0) is zero

in these states. Due to the possibility of multiple equilibria we solve this system of equations

from many different starting values. In practice we always found only one solution to this

system of equations for each of our parameter constellations of interest. While this is a strong

indication that in our simple case there exists a unique equilibrium, we cannot entirely rule

out that there are other equilibria that our numerical solver did not find. Note that once the

vα(., st) are obtained they imply a set of cutoff values for the scrap value and the random part

of the entry cost, which imply the choice equilibrium choice probabilities.
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Collusive Equilibrium

Let p(a = 1|st, δ) be the vector of MPE choice probabilities. For δ = 0.8, these are the choice

probabilities, which are identified in italics in Table 2. These probabilities maximize the value

function under the assumption that when both agents are in the market they play the stage

Nash equilibrium and receive a payoff of 2A − B. Likewise, let pc(a = 1|st, δ) represent the

probabilities that maximize the value function for the case that agents earn A, the collusive

quantity choice outcome, whenever they are in the market.

The collusive quantity-stage outcome may be supported as an SPE if defection from the

prescribed low quantity choice is punished. Strategies that support collusion have two phases:

the collusion phase and the punishment phase. In the collusion phase both players select

a low quantity in the first period and as long as both have always selected a low quantity

in the past.49 Under collusion they make their entry/exit decisions following the implied

choice probabilities pc(a = 1|st, δ). We consider a punishment that is akin to grim-trigger: if

one agent deviates from low production, then all entry/exit decisions are made according to

p(a = 1|st, δ); and whenever both agents are in the market, the choice is high quantity (stage-

game Nash). To express punishments formally, let mt be given by:

mt =

0 if qi,r = qj,r = 0 for all r ≤ t when st = (1,1)

1 otherwise

In each period, mt is therefore updated according to the latest quantity decisions. Due

to the timing assumptions agents know mt before they make their entry/exit decisions. If

both agents have selected a low quantity (whenever both have been in the market) up to and

including period t, then mt takes on a value of 0. If any agent selected high production in any

period up to and including t, then mt takes a value of 1. Let νi,t be the scrap value, or the

random component of the entry cost, whichever corresponds to the state of the player. In our

analysis we focus on grim-trigger strategies that specify an action for the quantity stage –in

case both agents are in the market– and a decision rule for entry/exit choices. Hence, for each

player i and time period t this class of strategies can be summarized by a pair (qit, ait) such

that:
49Note that both players start in the market.
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qit =

0 if mt−1 = 0 or t = 1

1 if mt−1 = 1

and

ait (st) =



1 if νit ≤ pc (st, δ) and mt = 0

0 if νit > pc (st, δ) and mt = 0

1 if νit ≤ p (st, δ) and mt = 1

0 if νit > p (st, δ) and mt = 1

Let C(δ) be the discounted value of collusion and let D(δ) be the discounted value of play-

ing according to the symmetric MPE. Now, consider deviations. To establish that a collusive

strategy can be supported as an SPE we check whether there is a profitable deviation from

such a strategy. According to the one-shot deviation principle it is enough to consider strate-

gies that deviate in period t but otherwise (for every following period) conform to the collu-

sive one. Whenever both agents are in the market in period t, an agent can deviate from the

production decision, from the exit decision, or from both. By construction of pc there are no

incentives to deviate only in the exit decision. If there were, then pc would not have been com-

puted correctly. An agent could deviate in the production decision. In that case, they would

receive a quantity stage payoff of 2A. If one agent deviates in the quantity stage of period t,

then mt = 0 and the exit decision in that period will be taken according to p. From period t+ 1

onwards agents would be in the punishment phase for all future periods, but this involves

playing according to the symmetric MPE, which is sub-game perfect. The payoff of a devia-

tion is: Def(δ) = 2A + E[ν|ν > p(sit = 1, sit = 1)] · (1 − p(sit = 1, sit = 1)) + δ × D(δ). The

grim-trigger strategy is a sub-game perfect equilibrium for all δ such that: Def(δ) ≤ C(δ).

In order to determine whether the trigger strategies constitute an SPE we first compute pc

for each treatment, which are reported in the second column of Table 2. We then use these

probabilities to check in each case if Def(0.8) < C(0.8). Our treatment parameters are chosen

so that trigger strategies can support the quantity- stage collusive outcome for AS and AM

but not for AL. Finally, we provide a measure of how much higher gains can be under the

trigger strategies in each treatment. This measure captures how high the collusion incentives

are and is summarized by the percentage increase of collusion over the MPE payoffs: GoC =

100 · (C(0.8)−D(0.8))/D(0.8). The figures are reported in the last row of Table 2.
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Joint Monopoly Entry/Exit Probabilities

In the fully collusive equilibrium firms not only collude in the quantity decision, they also

coordinate their entry and exit choices. To implement such a collusive strategy firms have to

solve a private monitoring problem since the random parts of the entry cost and the scrap

values are only privately observed by the players. We do not solve this private monitoring

problem. However, to still be able to obtain a benchmark on how much higher the gains

from collusion would be if firms also collude in the dynamic decision, we solve for the case

in which firms know the entry cost and scrap values of the other firm. Under this assump-

tion the problem can be solved as a simple single agent dynamic programming problem. For

each of the possible four states st ∈ S the combined firm has four possible actions at ∈ A =

{(0, 0), (0, 1), (1, 0), (1, 1)}. We solve for the choice continuation values that summarize the

non-random part of each of those four possible choices. In total there are sixteen equations:

v(at, st) = Π(st) + δ ·
∫

max
at∈A
{v(at, st+1) + ε′(at)} dG(ε′)F (st+1|at, st) ∀st ∈ S,∀at ∈ A (5)

Results are shown in Table 8, which is similar to Table 2 but includes the dynamic choice

probabilities on the most collusive equilibrium. Interestingly, the probability to be in the mar-

ket in each period is much lower compared to quantity-stage collusion for each of the four

states. This result has a simple intuition. The combined market value is the same no matter

whether there are two or only one firm in the market. Relative to the quantity-stage collu-

sive equilibrium firms now coordinate on entry exit choices, which allows them to exploit the

gains they can make from high scrap values and low entry cost. The prediction involves high

turnover to exploit these gains.

Table 8: Cutoff-strategies for each treatment: MPE, CE and joint monopoly (MON)

AS AM AL

Conditional probability MPE (p) CE (pc) MON MPE (p) CE (pc) MON MPE (p) CE (pc) MON

p(1, 0) 0.458 0.519 0.504 0.688 0.823 0.652 0.880 0.925 0.683

p(1, 1) 0.360 0.512 0.492 0.596 0.784 0.602 0.781 0.870 0.610

p(0, 0) 0.260 0.368 0.354 0.498 0.663 0.505 0.681 0.757 0.554

p(0, 1) 0.161 0.362 0.340 0.408 0.624 0.467 0.583 0.702 0.457

Is collusion in quantities an SPE? YES YES NO

Gains from collusion in quantities 450.8% 481.1% 75.9% 93.22% 32.1% 51.98%

Note: This table presents the conditional choice probabilities for each of the four states as indicated in the left column. The choice probabilities are presented for each of the three market sizes, which we implement

as treatments as indicated in the top row. Predictions are presented for the MPE(p) as well as the case where players collude in the marketstage, CE (pc). In the bottom the table indicates whether the collusive

equilibrium we highlight can be supported as an SPE and how high the gains over MPE would be.
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Mapping Choice Probabilities to Value Functions

In this section we provide details on the estimation procedure. In a first stage we estimate the

empirical dynamic choice probabilities P using simple frequency estimation, thus obtaining P̂ .

This means we compute the fraction of time a player stays in the market or leaves the market

respectively for each of the four states. Following the insight of Hotz and Miller (1993) the

value function can be expressed in terms of these choice probabilities. Since all agents under

the model assumption are planning with the equilibrium transitions that we estimate from the

data we can directly solve for the value function in terms of these probabilities. We can write

the value function as:

V =
∑
a

Pa(P̂ )[ua + ea(P̂ ) + δ · Fa(P̂ ) · V ]⇔

V =
[
I − δ ·

∑
a

Pa(P̂ ) · Fa(P̂ )
]−1[∑

a

Pa(P̂ )(ua + ea(P̂ ))
]

In our case with four states these objects take on a simple form:

V = [I − δ · [P1(P̂ ) · F1(P̂ ) + P0(P̂ ) · F0(P̂ )]]−1[P1(P̂ ) · (e1(P̂ ) + u1) + P0(P̂ ) · (e0(P̂ ) + u0)] (6)

with

u1 =


0

0

2 · A
2 · A−B

u0 =


−C
−C
2 · A

2 · A−B

 e1 =


0

0

1− p̂3
2

1− p̂4
2

 e0 =


− p̂1

2

− p̂2
2

0

0



P1 =


p̂1 0 0 0

0 p̂2 0 0

0 0 p̂3 0

0 0 0 p̂4

P0 =


1− p̂1 0 0 0

0 1− p̂2 0 0

0 0 1− p̂3 0

0 0 0 1− p̂4



F1 =


p̂1 1− p̂1 0 0

p̂3 1− p̂3 0 0

p̂2 1− p̂2 0 0

p̂4 1− p̂4 0 0

F0 =


0 0 p̂1 1− p̂1

0 0 p̂3 1− p̂3

0 0 p̂2 1− p̂2

0 0 p̂4 1− p̂4
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In the previous expressions, we use the following shortened notation: p1 = p(a = 1|s =

(0, 0)), p2 = p(a = 1|s = (0, 1)), p3 = p(a = 1|s = (1, 0)), p4 = p(a = 1|s = (1, 1)). Note

that Equation 6 expresses the value function only in terms of parameters and objects that are

composed of observables. The following section shows briefly how the expected values e1(P̂ )

and e0(P̂ ) are obtained from choice probabilities as indicated above. For a given parameter

guess and choice probabilities we therefore form a guess V̂ . Once we know V̂ , we can easily

compute v̂(1, st) ∀ st ∈ S and v̂(0, st)∀ st ∈ S from this.

Choice Probabilities and Expectations for the Uniform

Let xout denote the states in which the player is out and xin be the states in which he is in. For

the entry-case under ψ ∼ U [0, 1] and 0 ≤ (v(1|xout)− v(0|xout)) ≤ 1 we have:

E[ψ|ψ < v(1|xout)− v(0|xout)] =

∫ v(1|xout)−v(0|xout)

0

ψ
1

v(1|xout)− v(0|xout)
dψ =

ψ2

2

1

v(1|xout)− v(0|xout)
|v(1|xout)−v(0|xout)
0 =

(v(1|xout)− v(0|xout))
2

=
P (in)

2

For the exit case under φ ∼ U [0, 1] and 0 ≤ (v(1|xout)− v(0|xout)) ≤ 1 we have:

E[φ|v(1|xin)− v(0|xin) < φ] =

∫ 1

v(1|xin)−v(0|xin)

φ
1

1− (v(1|xin)− v(0|xin))
dφ

=
1 + (v(1|xin)− v(0|xin))

2
= 1− P (in)

2

Monte Carlo

Data Generating Process

We generate data either under the assumption of the symmetric MPE or the CE play for our

parametrizations. We assume that there are 300 pairs of firms and each pair of firms is con-

sidered to be isolated from the rest. The interaction between each pair of firms ends after each

period with probability 0.2, which corresponds to the discount implemented in the labora-

tory. For the Monte Carlo study we will estimate parameters using 100 such data sets and

subsample each data set 30 times to obtain standard errors.
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Table 9: Monte Carlo results

AS AM AL

Estimates True value Estimates True value Estimates True value

Parameter MPE CE MPE CE MPE

A 0.052 0.044 0.05 0.249 0.246 0.25 0.390 0.4

(0.012) (0.045) (0.03) (0.049) (0.041)

B 0.620 0.032 0.6 0.611 0.24 0.6 0.575 0.6

(0.130) (0.173) (0.132) (0.144) (0.111)

C 0.142 0.148 0.15 0.146 0.148 0.15 0.153 0.15

(0.029) (0.04) (0.032) 0.021 (0.027)

Note: The table shows the results of the Monte Carlo estimation. For each of the three values of A it shows the estimates if the econometrician assumes

the correct data generating process (MPE) as well as the estimates if the econometrician incorrectly assumes the MPE and the data is in fact coming from

decisions on the equilibrium path of the highlighted collusive equilibrium (CE) for AM and AS . In the case of AL, the CE is not an SPE. Estimates are aver-

ages over 100 datasets. Each dataset assumes 300 markets of an average length of five periods (market terminates randomly with probability 0.2). Standard

errors are shown in parentheses below the estimates and are obtained by subsampling each data-set 30 times.

Monte Carlo Estimates

For each value of A, Table 9 presents the Monte Carlo estimates. In the “MPE” column we

present estimates when firms’ play is generated according to the symmetric MPE, while in the

“CE” column we display estimates when firms are assumed to follow the Collusive Equilib-

rium (and the econometrician wrongfully assumes MPE play). By comparing estimates in the

“MPE” column with the True Value column treatment by treatment we verify that the param-

eters can be recovered with tight standard errors from a data set of modest size.50

Comparing the CE estimates to the true value we notice that the bias from an incorrect

assumption on the equilibrium shows up in B. The parameter that captures the competitive

effect would be biased downwards. Intuitively, the estimator in recovering B compares the

choices of firm i when firm −i is in the market to those when firm −i is not in the market. For
50We also ran versions of the Monte Carlo in which players’ cost depends on individual specific cost shifters that are observable to the

econometrician. Such cost shifters would help to considerably improve the standard error of the interaction term B and improved identi-

fication at the limits of the parameter space. Under the current specification, the only observable variable that shifts player i’s action is the

action of player−i. Because of this minimal structure of the model, parameter estimates become noisy for B values very close to zero, where

the influence of the other player vanishes. However, in the experiment, other observable cost shifters (i.e. some variable x not determined

endogenously) would have increased the number of necessary treatments and the complexity considerably, which is why we decided against

such a setup.
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example, consider market AS and assume firm i is currently in the market. Because the CE

data is generated according to the second column of Table 2, firm i will be in the market next

period with probability 0.519 or 0.512, depending on whether firm −i is in the market or not.

This small difference in probabilities (a small effect of competition) will be rationalized with

an estimate for B that is smaller than the true value. In other words, a lower estimate for B is

consistent with the presence of collusion.

Monte Carlo Counterfactuals

For each baseline we perform an exercise in which there is full collusion in the Monte Carlo

generated data, but the econometrician wrongly assumes that there is no collusion. Then the

econometrician uses the estimates to predict behavior for other market sizes. To document the

maximum possible error in counterfactual predictions we assume that in each counterfactual

there is actually no collusion in the data.

The bias (as in Section 5.4 of the paper) is computed as the percentage deviation in the

value of the firm from the true value of the firm under the correct data generating process

for each state. The results are shown in Table 21. We then collapse these measures into a

single measure assigning equal weight to each state, what we refer to in Section 5.4 as MAPE

(V). No bias would result in a MAPE (V) of zero. These Monte Carlo results emphasize that

proper collusion if not accounted for by the econometrician would severely bias counterfactual

computations. Table 21 shows that the overestimate ranges from ≈ 36% to ≈ 110%.

AL AM AS

Baseline/Counterfactual MAPE(V) MAPE(V) MAPE(V)

AL - 35.4 56.5

AM 60.9 - 107.6

AS 107.3 113.5 -

Table 10: Maximal counterfactual error from collusion (in %)

This table (based on Monte Carlo results and NOT data) shows the maximal resulting bias if the econometrician wrongly assumes that firms

do not collude in the baseline and predicts the outcomes in a market (of the same market size) under the correct assumption that firms in the

counterfactual do not collude.
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Appendix B

In this appendix we study entry/exit choices in more detail. We first provide detailed hy-

potheses on comparative statics, which are afterwards tested.

Comparative Static Hypotheses

We now explicitly formulate MPE comparative statics in terms of entry and exit thresholds

using Table 2 as a reference. We can then contrast these predictions under MPE play with

what we actually observe in the data.

Comparative Statics 1 (CS1): Exit vs. Entry thresholds (within treatment). Exit thresholds

are predicted to be higher than entry thresholds.

In addition, there are predictions on how entry and exit thresholds should vary as a re-

sponse to the state of the other player (i.e. compare thresholds for s(·, 1) to s(·, 0)). When the

other is in the market there is competition, and quantity-stage payoffs correspond to the static

Nash equilibrium; these payoffs are lower than the (static monopoly) payoffs the agent gets

when the other is out of the market. In the equilibrium this is captured with a difference be-

tween the two exit thresholds and a difference between the two entry thresholds. We refer to

these predictions as the “effect of competition” on thresholds.

Comparative Statics 2 (CS2): Effect of competition in thresholds (within treatment). Fix

the agent’s own current state. Thresholds are higher when the other player is currently out than when

the other player is currently in the market.

The MPE also provides comparative statics across treatments. As the value of A increases,

the relative attractiveness of the market also increases and all corresponding thresholds are

higher: agents demand higher exit payments to leave the market and are willing to pay higher

entry fees to go in. This prediction is summarized below:

Comparative Statics 3 (CS3): Between treatments: All thresholds increase monotonically with

A.

The Collusive Equilibrium also provides hypotheses on comparative statics. For exam-

ple, exit and entry thresholds should respond to market behavior according to the collusive

strategy: the market is relatively less valuable after the other agent deviates from collusive be-

havior. As a consequence, agents would be willing to leave for lower scrap values and would

be willing to pay less in order to re-enter the market.51 We now state this as a hypothesis.

51As mentioned earlier, the characterized collusive equilibrium is one of possibly many equilibria that support collusion in the quantity
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Collusion Hypothesis 1 (CH1): Effect of Defection on Thresholds. According to the Col-

lusive Equilibrium, entry and exit thresholds are lower in all periods after defection in the quantity

stage.

Finally, we can also use Table 2 and compare thresholds between treatments that allow and

that do not allow for a quantity choice.

Collusion Hypothesis 2 (CH2): Standard vs. No Quantity Choice treatments. Fix the value

of A and compare Standard treatments to treatments with No Quantity Choice. There is evidence con-

sistent with the presence of collusion if: 1) the effect of competition is lower in the Standard treatments;

and 2) if thresholds for all states are higher in the Standard treatments.

States

There are large differences across treatments in terms of states’ frequencies, which are pre-

sented in Table 11. Considering the unit of observation as a pair of subjects in each period of

each supergame there are three possible states the pair can be at: both are out of the market,

one out and the other in or both are in the market. The table shows the proportion of periods in

which a pair was in either of these three states by treatment. Period 1 of every match is omitted

as by definition all subjects start out, so that the table only shows the results of endogenous

decisions.

There are clear patterns in the table. First, being out of the market is more likely when

A is lower. The state when both are out reaches the highest share for AS and its occurrence

diminishes whenA is higher. In fact, in only very few occasions do we observe pairs of subjects

in this state for AL. The opposite situation is observed for the state when both are in, which

reaches the highest share for AL. The lower likelihood of being out in the large market size

treatment will have consequences on the accurateness of the average entry threshold estimate.

This will be reflected as relatively larger confidence intervals as can be seen in Figure 2.

The second pattern is that the likelihood of being out is higher when there is No Quantity

Choice as long as A is not at the highest level. Consider, for instance, AS . The proportion of

times that both agents are out of the market is clearly larger when there is No Quantity Choice.

This is consistent with the fact that quantity choices present the alternative to obtain higher

payoffs and thus have the potential of making staying in the market more attractive. The effect

stage. However, any punishment phase that achieves collusion in the quantity stage is expected to involve lower thresholds. If collusion in

the quantity stage cannot be supported, then being in the market is less valuable, which is reflected by lower thresholds.
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State

Treatment Both Out One Out-One In Both In

AS , No Quantity Choice 34.8 51.2 14.0

AS , Standard 22.9 49.7 27.4

AM , No Quantity Choice 9.5 48.1 42.5

AM , Standard 5.7 41.1 53.2

AL, No Quantity Choice 2.8 32.5 64.7

AL, Standard 2.6 31.5 65.9

Table 11: States by treatment after period 1 (in percentages)

is smaller for AM and almost indistinguishable for AL, when there is a negligible number of

cases in either treatment where both agents are out of the market.

Within Treatment Hypotheses on Thresholds

To test for the main within treatment hypotheses (CS1, CS2), we will use panel data analysis.

We conduct one regression per treatment, which are reported in Table 12. The left-hand-side

variable in all cases is the threshold selected by each subject. If in the corresponding period

the subject is deciding to exit (enter) the market, the threshold variable captures their report

for the exit (entry) threshold. On the right-hand side there are four variables. We exclude

the state when the subject is out and the other is in the market (s = (0, 1)), which in theory

corresponds to the case where the subject is least likely to enter the market next. Naturally,

the excluded state will be captured by the constant, and we add a dummy for each of the

three other possible states. Depending on the state, the corresponding dummy will report the

increment to the baseline threshold defined by the constant.

CS1 predicts that exit thresholds are higher than entry thresholds. This translates into

four comparisons by treatment, and in all 24 cases the differences are significant at the 1%

level in the direction predicted by the theory. In other words, there is strong support for this

hypothesis, which indicates that subjects do respond to one of the most basic incentives of the
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game.

There is also evidence in favor of CS2. In this case, the hypothesis implies two comparisons

by treatment: fixing si and testing whether there is a difference depending on the state of the

other. For the case when the subject is out of the market, the outcome for the comparison

is readily available in the estimates for coefficient (s = (0, 0)). In all cases the estimate is

positive: subjects are willing to pay more to enter the market if the other is out. However, the

coefficient is significant at the 5% level for AM treatments and at the 10% level in two other

cases. Moreover, while the theory predicts a 10-point difference (see Table 2), the estimate is

quantitatively smaller in all cases. The effect of competition, however, is more evident when

the subject is in the market. In this case, the difference between the coefficients (s = (1, 1)

and s = (1, 0)) is always as predicted by the theory and significant in all treatments. In a few

words, all comparisons are in line with the prediction and all but two are significant at least at

the 10% level.

Table 12: Panel regressions: Within treatment hypotheses

Variable AS AM AL

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

Intercept 20.377*** 19.273*** 36.365*** 33.879*** 45.488*** 37.391***

(2.412) (2.494) (3.001) (3.666) (5.503) (3.471)

s = (0, 0) 2.310* 1.150 5.828*** 5.387*** 2.302 1.658*

(1.375) (2.431) (1.077) (1.306) (5.575) (0.915)

s = (1, 1) 47.587*** 34.768*** 46.913*** 42.930*** 41.026*** 49.589***

(2.709) (5.136) (6.465) (6.102) (8.394) (2.272)

s = (1, 0) 54.119*** 50.047*** 51.202*** 49.650*** 46.221*** 53.658***

(3.306) (6.494) (5.700) (5.084) (6.678) (1.032)

Note: This table provides reduced form analysis of the within treatment comparative statics. The dependent variable is the selected threshold (entry or exit) that cor-

responds to the state. The independent variables are dummies for each state where the state (s = (0, 1)) is the excluded category. Standard Errors reported between

parentheses, Significance levels: 1%(***), 5%(**), 10%(*), Standard Errors are clustered at the session level

The analysis so far has focused on centrality measures, which are key for computing struc-

tural estimates. To provide a broader perspective of our data, Figure 4 displays the cumulative

distributions of thresholds by state for all treatments. Some patterns are present across treat-

ments. First, the distributions are largely ordered as predicted by the symmetric MPE. Entry

thresholds display lower values than exit thresholds, and within each case subjects largely
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select higher values when the other is out. Second, most distributions suggest that values

are centered around the mean. For example, in the case of the AS-Standard treatment, entry

thresholds display a significant mass between the relatively lower values (20 and 40), while

most of the mass in the case of exit thresholds is between 70 and 80.

Between Treatment Hypotheses on Thresholds

We now test statements that involve comparisons that depend on the value ofA or on whether

there is a quantity stage or not. With this aim we conduct two panel regressions, one for exit

and one for entry thresholds. More specifically, the “Entry Threshold” regression only consid-

ers periods when subjects had to select an entry threshold. The selected entry threshold con-

stitutes the left-hand side variable. On the right-hand side there are two sets of dummies. The

excluded group corresponds to the AS-Standard case. The first set of dummies will capture

the differential effect corresponding to the other five treatments. The second set of dummies

interacts the treatment dummy with the state of the other player. That is, for each treatment

there is a dummy that takes value 1 if the other is out of the market. The second regression

uses the same controls, but considers exit thresholds on the left-hand side instead. The results

are reported in Table 13.

CS3 states that thresholds increase with market size. There are 24 comparative statics:

for each of the four states there are three comparisons, and such comparisons can be made

for treatments with and without a quantity stage. Not all comparative statics are statistically

significant, but all differences are in the direction predicted by the hypothesis. In all treatments

the difference in entry and exit thresholds is significant at the 1% level when comparing the

AS treatment to either of the other market sizes. When comparing the AM to AL, the difference

between thresholds is statistically significant at the 5% level only for exit thresholds when

there is No Quantity Choice. In other cases differences are not statistically significant. Overall

this means that in 18 out of 24 comparisons differences are statistically significant.

Section 3 also presented hypotheses that would be consistent with the presence of collu-

sion. Part 1 of CH2 claims that there is evidence consistent with the presence of collusion if

the effect of competition is lower when there is a quantity choice. There would be evidence

supporting the claim if fixing the market size, the interaction dummy is significantly higher

when there is a quantity stage. Again, in all six comparisons the differences are in the direction

predicted by the hypothesis. For entry thresholds the differences are significant at the 5% and
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Figure 4: Cumulative distributions of thresholds across treatments
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10% level for AM and AL, respectively. For exit thresholds, the differences are significant at the

1% level only for AS .

Fixing the market size collusion is consistent with higher thresholds when there is a quan-

tity choice, which constitutes part 2 of CH2. This hypothesis involves 12 comparisons using

the estimates presented in Table 13. For example, consider the entry threshold regression and

AM . The hypothesis claims two comparisons, depending on whether the other is in or not: i)

the coefficient for AM -S is higher than for AM -NQ, and ii) adding the coefficients for AM -S and

the interaction AM -S × Other Out is lower than the addition of the same coefficients but when

there is no quantity choice. The direction of the differences is in line with the prediction in all

cases, but differences are not significant with the exception of the exit threshold for AS size

when the other is in the market.
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Table 13: Panel regressions: Between treatment hypotheses

Variable Entry Threshold Exit Threshold

Intercept 22.001*** 67.131***

(1.955) (1.951)

AS-NQ -3.110 -14.547***

(2.988) (3.337)

AM -S 10.046*** 14.652***

(3.566) (4.055)

AM -NQ 10.858*** 9.000***

(2.681) (3.177)

AL-S 13.498*** 18.087***

(2.578) (4.258)

AL-NQ 12.320*** 19.482***

(4.207) (2.585)

AS-S × Other Out 1.406* 7.490***

(0.830) (1.380)

AS-NQ × Other Out 1.968 14.398***

(2.595) (1.310)

AM -S × Other Out 2.204*** 4.479***

(0.450) (0.635)

AM -NQ × Other Out 3.945*** 6.476***

(0.348) (1.725)

AL-S × Other Out 1.139*** 3.521***

(0.229) (1.219)

AL-NQ × Other Out 4.297** 3.802***

(1.836) (1.390)

Note: Standard Errors reported between parentheses, Significance levels: 1%(***), 5%(**),

10%(*), Standard Errors are clustered at the session level. S: indicates Standard treatment;

NQ indicates No Quantity Choice treatment.
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Effect of Quantity-Stage Choices on Thresholds

CH1 claims that entry and exit thresholds are lower after defection. We present the results of

a random-effects probit regression where the left-hand side is the exit (or entry) threshold and

on the right-hand side there is a set of dummy variables that capture the outcome for the last

time subjects were in the market.52 Table 14 displays the results of these regressions for each

treatment.

Several patterns emerge. First, consider exit thresholds. In AS and AM treatments subjects

are more responsive to last period’s outcome. In these cases, subjects are significantly more

likely to select a higher exit threshold, while if the other defected in the previous market inter-

action they are more likely to select a lower threshold. This last effect is also present for AL.

When, instead, we look at entry thresholds, the pattern is less clear. It appears that in most

cases subjects are less responsive to recent market behavior when they are out of the market.

Outcome Last Quantity Stage

AS AM AL

Exit Threshold Entry Threshold Exit Threshold Entry Threshold Exit Threshold Entry Threshold

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

(Collude ,Collude) 5.551*** 0.956 0.997 0.947 5.688*** 0.622 4.478** 1.916 0.108 0.618 .704 3.479

(Collude, Defect) -6.867*** 1.172 -1.848* 1.01 -1.965*** 0.772 -1.013 1.657 -1.940*** 0.719 4.361 2.761

(Defect, Collude) -1.319 -1.17 -0.306 0.931 -0.377 0.773 0.538 1.484 -0.876 .126 4.885 3.073

Constant 69.484*** 1.868 37.84*** 2.639 81.81*** 2.246 47.08*** 2.982 85.88*** .124 49.7*** 3.396

Notes: The dependent variable is the threshold selected by subject i. The right-hand side variables include possible outcomes from last quantity stage, where the first action corresponds
to the choice of subject i. Significant at: *** 1%, **5%, *10%

Table 14: Effect of past market choices on thresholds

Choices As the Session Evolves

In principle it is possible that choices in the aggregate change as the session evolves. Figures

5 and 6 display average exit and entry thresholds for each supergame for each possible state

a subject may be at, for Standard and No Quantity Choice treatments, respectively. Visual

inspection suggests that in most cases a trend is not evident, which we indeed confirm with

statistical analysis.53 If we add a dummy for each supergame to the regressions of Tables
52In cases where subjects are deciding on an exit threshold the last period for which there is an outcome is the current period. The reference

is to the last period in which there was a market choice in the case of entry thresholds.
53The case of entry thresholds forAL when the other is not in the market does display volatility, but this is due to the relatively low number

of observations (see Table 11).
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12 and 13 the message is similar. In a few cases there is a significant effect of a particular

supergame; when such effect is present it happens in the earlier supergames of the session

and is quantitatively very small.

It is also possible that subjects change the thresholds within a supergame. This may be be-

cause they are following a strategy that conditions the threshold on past play (i.e. as in the CE)

or because they follow a strategy that conditions on a particular period. We know that some

subjects may be conditioning their thresholds on past play given that some aggregate choices

are consistent with CH1. In order to test if there is a strong pattern in aggregate thresholds

depending on the period, we include the regressions in Table 12: a) a set of period dummies

and b) interactions of each period dummy with the dummy that takes value 1 if the other is

not in the market. Results show that there is no clear pattern that indicates a period effect at

the aggregate level.54

Summary

We now summarize the main findings in this appendix:

• There is broad support in the data for the comparative statics predicted by the symmetric

MPE. Out of 60 comparisons implied by CS1, CS2 and CS3 all differences are in the

predicted direction and 50 (52) are significant at least at the 5% (10%) level.

• There is evidence that is consistent with market collusion having an effect on threshold

choices. The effect of market collusion on threshold choices appears to be higher for AS
and AM , and for exit thresholds.

• The evidence does not indicate substantial changes in aggregate behavior as the session

evolves.

54Given the large set of controls we do not report these regressions, but they are available upon request.
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Figure 5: Evolution of thresholds: No Quantity Choice treatments
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Figure 6: Evolution of thresholds: Standard treatments
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Appendix C

This appendix provides additional analysis on the quantity-stage choice. Figure 7 displays the

cooperation rate taking all periods of a supergame into consideration and basically reproduces

the same broad patterns presented in Figure 8, which only takes into account cooperation in

the first period of each supergame. Cooperation rates after period 1 will be endogenously

affected by behavior within the supergame. In this section we use two approaches to better

understand the determinants of quantity-stage choices. First, we take a non-structural ap-

proach and use panel regression analysis to study how cooperation in period t is affected by

behavior in previous periods and supergames. Second, we use a structural method to study

which strategies better capture subjects’ choices. Finally, we study further the connections

between quantity-stage and entry/exit-stage choices.
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Figure 7: Cooperation rates (all)

Cooperative Behavior: A Non-Structural Approach

To further study decisions in the quantity stage we run random effects probit regressions

where the market action is the variable on the left-hand side (1: cooperation) and the right-

hand side includes a series of usual controls. We control for the subjects’ last choice (Own past

action) and their partner’s past action (Other’s past action) last time they were in the market,

and we include period 1 decisions to control for dynamic unobserved effects. There are also

three dummies to capture the state in the last period, where the state in which both subjects are
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Figure 8: Cooperation rates (first period)

out is omitted. Match dummies and period dummies are also included, but for space reasons

omitted in Table 15.

Several patterns are consistent across treatments. First of all, the likelihood of cooperation

is higher when the subject or the other colluded last time they were in the market. In fact, the

probability of cooperating is higher when the other colluded previously. Second, the dummy

for the likelihood of cooperation if the state last period was (1, 0) is the most negative in all

treatments. This indicates that subjects are least likely to cooperate coming from a situation

when they were in the market, but the other was out. This also suggests that some subjects

may choose to be less cooperative in the market in order to incentivize the other to leave the

market.

Recovering Strategies Using SFEM

Cooperation rates provide one measure of collusion, but there are techniques –the Strategy

Frequency Estimation Method (SFEM) of Dal Bó and Fréchette (2011)– that recover which

strategies best rationalize the data. This would tell us to what extent choices in treatments

where collusion can be supported as an SPE are consistent with the CE.55

55In principle, another alternative consists of regressing choices on past play. However, such an exercise can be misleading. For example,

if only a small proportion of subjects are consistently conditioning their choices on some aspect of the history, the associated coefficient can
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Variable
AS AM AL

Coeff. Std. Err. Coeff. Std. Err. Coeff. Std. Err.

Own past action 0.369*** 0.124 .784*** 0.095 .836*** 0.105

Other’s past action 0.857*** 0.121 .966*** 0.103 1.259*** 0.119

Own action in period 1 2.191*** 0.150 2.039*** 0.124 1.336*** .126

Other’s action in period 1 0.659*** 0.120 0.809*** 0.107 0.738*** .124

st−1 = (0, 1) -0.262 0.191 -0.943*** 0.186 -0.215 .198

st−1 = (1, 0) -1.256*** 0.223 -1.264*** 0.186 -0.929*** .246

st−1 = (1, 1) -0.913*** 0.119 -1.049*** 0.105 -0.710*** .116

Note: Significant at: *** 1%, **5%, *10%

Table 15: Random effects probit results

In order to outline how the SFEM works, consider an infinitely repeated prisoners’ dilemma.

The game involves just a static decision, where in every period the agent faces a binary choice

(cooperate or defect), as if both subjects were in the market. In that simpler environment there

is a large set of possible strategies σ an agent can follow. Strategies may depend on past behav-

ior, and it is possible to compute for each σ ∈ Σ what choices the subject would have made had

she been exactly following strategy σ. On the other hand we have the subject’s actual choices.

The unit of observation is a history: the set of choices a subject made within a supergame. The

SFEM procedure works as a signal detection method and estimates via maximum likelihood

how close the actual choices are from the prescriptions of each strategy. The output is the

frequency for each strategy in the population sample.

To describe the method in further detail, assume that the experimental data has been gen-

erated for an infinitely repeated prisoners’ dilemma and define chicr as the choice of subject i

in period p of supergame g, chigp ∈ {Cooperate,Defect}. Consider a set of K strategies that

specify what to do in round 1 and in later rounds depending on past history. Thus, for each

history h, the decision prescribed by strategy k for subject i in period p of supergame g can

be computed: higp(hk). A choice is a perfect fit for a history if chigp = higp(h
k) for all rounds

of the history. The procedure allows for mistakes and models the probability that the choice

turn out to be significant. We could mistakenly conclude that past play does have an effect in the population, while it is actually driven by

a small share. The technique we use, on the other hand, allows us to estimate the proportion of choices that can be better rationalized as

conditioning on past play. We would, thus, observe if such proportion is a small share or not. More generally, using standard regression

analysis to evaluate whether behavior is Markovian or not can be very misleading; see Vespa (2019) for more details.
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corresponds to a strategy k as:

Pr(chigp = higp(h
k)) =

1

1 + exp
(
−1
γ

) = β. (7)

In (7) γ > 0 is a parameter to be estimated. As γ → 0, then Pr(chigp = higp(h
k)) → 1 and

the fit is perfect. Define yigp as a dummy variable that takes value one if the subject’s choice

matches the decision prescribed by the strategy, yigp = 1
{
chigp = higp(h

k)
}

. If (7) specifies the

probability that a choice in a specific round corresponds to strategy k, then the likelihood of

observing strategy k for subject i is given by:

pi
(
sk
)

=
∏
g

∏
p

 1

1 + exp
(
−1
γ

)
yigp 1

1 + exp
(

1
γ

)
1−yigp

(8)

Aggregating over subjects:
∑

i ln
(∑

k φkpi
(
sk
))

, where φk represents the parameter of in-

terest, the proportion of the data which is attributed to strategy sk. The procedure recovers an

estimate for γ and the corresponding value of β can be calculated using (7). The estimate of

β can be used to interpret how noisy the estimation is. For example, with only two actions a

random draw would be consistent with β = 0.5.

Our environment is more complex than an infinitely repeated prisoners’ dilemma; it in-

volves a dynamic (continuous) and a static (discrete) choice. While the SFEM procedure is

designed to study discrete choices, we can still use it to learn about the strategies that ratio-

nalize our subjects’ quantity choices. A necessary condition for CE is that subjects follow a

grim-trigger strategy whenever both are in the market. Likewise, a necessary condition for

the symmetric MPE is that both subjects always defect from cooperation in the static choice.

We use the SFEM procedure to study if subjects’ behavior in the quantity stage is consistent

with these necessary conditions.

We proceed in the following manner. First, for each history in our dataset we only keep the

static choices. All subjects make a quantity choice in period 1, but it is possible for example

that the next period with a market choice is period 4. In our constrained dataset we would

only keep the quantity stage choices for rounds 1 and 4 and would interpret them as the first

and the second quantity choices. In this way we obtain a dataset that resembles the dataset

coming from an infinitely repeated prisoners’ dilemma. Second, we define a set of strategies

K ⊂ Σ following the literature (see for example Dal Bó and Fréchette (2011) or Fudenberg et

al. (2012)). We include in K five strategies that have been shown to capture most behavior in
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infinitely repeated prisoners’ dilemma: 1) Always Defect (AD), 2) Always Cooperate (AC), 3)

Grim-Trigger (Grim), 4) Tit-for-Tat, and 5) Suspicious-Tit-for-Tat.56

All data Last 8 Supergames

AS AM AL AS AM AL

AD 0.394*** 0.403*** 0.549*** 0.463*** 0.404*** 0.604***

(0.077) (0.096) (0.109) (0.114) (0.121) (0.154)

AC 0.064 0.094* 0.024 0.123** 0.124** 0.026

(0.052) (0.050) (0.031) (0.057) (0.054) (0.038)

Grim 0.205*** 0.339*** 0.047 0.172* 0.335** 0.000

(0.088) (0.125) (0.047) (0.106) (0.151) (0.043)

Tit-for-Tat 0.285*** 0.111 0.188 0.206* 0.087 0.211*

(0.088) (0.083) (0.126) (0.128) (0.103) (0.128)

Susp.-Tit-for-Tat 0.052 0.052 0.192 0.036 0.048 0.158

γ 0.488*** 0.419*** 0.384*** 0.404*** 0.357*** 0.333***

(0.044) (0.054) (.033) (0.039) (0.051) (0.047)

β 0.885 0.916 0.931 0.922 0.943 0.953
Note: Significant at: *** 1%, **5%, *10%. See Appendix C for the definition of γ. β = 1

e(−1/γ)

Table 16: Strategy frequency estimation method results

Table 16 presents the results of the estimation for the three Standard treatments using all

data and using the last eight super games.57 The estimates uncover clear patterns in subjects’

choices. Consider first always defect (AD). In all cases this is the strategy with the highest fre-

quency, around 40% for AS and AM and close to 60% for AL. Second, comparing across treat-

ments we observe that Grim displays the opposite pattern of AD: while clearly non-existent

for AL, there is a large and significant mass in other cases.58

56In the cases of Tit-for-Tat and Suspicious-Tit-for-Tat from the second choice onwards the subject would simply select what the other chose

the previous time, but these strategies differ in the period 1 choice. Tit-for-Tat starts by cooperating, while Suspicious-tit-for-tat starts with

defection.
57We compute the standard deviations for the estimates bootstrapping 1000 repetitions. The procedure leaves unidentified the standard

error for the K-th strategy. The estimate of β can be used to interpret how noisy the estimation is. For example, with only two actions a

random draw would be consistent with β = 0.5. Notice that in all cases the estimate of β is relatively high, indicating that the set of strategies

used for the estimation can accurately accommodate the data.
58The proportion corresponding to Grim is relatively higher for AM than for AS . This is consistent with cooperation being more attractive

for AS . It may be that attracted by the gains of cooperation subjects are more willing to forgive and start a new cooperative phase, which is

feasible using Tit-for-Tat.
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More importantly, notice that strategy AC displays a frequency estimate of approximately

12% that is significant for AM and AS . This is the frequency of successful cooperation. In

other words, AC captures the mass that may be particularly influential in determining how

strong the Markov assumption for structural estimation is. A strategy such as Grim or Tit-for-

Tat can only be identified if subjects deviate from cooperation: along the cooperative phase

both strategies are identical. But once subjects enter a punishment phase market behavior is

closer to the stage Nash, and hence, discrepancies with respect to the MPE assumption for the

quantity choice are only present for the periods prior to defection.
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Appendix D

Robustness of Structural Estimates

Tables 17, 18, and 19 provide estimates of A, B, and C as the session evolves. The first row

in each table shows the estimates when we use all the sample (as reported in the text) and

each row reports the estimation as we exclude earlier matches. The last row uses the last five

matches of the session.

Overall the estimates for the medium and small market display relatively minor changes as

the sample is restricted. We do notice some changes in the estimates ofA andB in large market

treatments. For the Standard treatment we notice a relatively large change when the sample

is restricted to matches 9-16 and onwards. In the No Quantity Choice treatments we notice

changes mainly in the estimate of B starting when the sample is restricted to matches 4-16.

These changes in the estimates are consistent with the fact that in the large market treatments

there are relatively few observations when both subjects are out of the market. As a session

evolves the estimates rely on even fewer observations in this state.

Table 17: Sample used and estimates of A

Matches included
AL AM AS

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

1-16 0.18 0.22 0.14 0.17 0.10 0.08

2-16 0.18 0.22 0.14 0.17 0.10 0.08

3-16 0.18 0.21 0.15 0.18 0.10 0.08

4-16 0.18 0.17 0.15 0.17 0.10 0.08

5-16 0.18 0.16 0.15 0.18 0.09 0.08

6-16 0.18 0.16 0.15 0.17 0.10 0.08

7-16 0.22 0.16 0.14 0.17 0.10 0.09

8-16 0.23 0.16 0.14 0.17 0.10 0.08

9-16 0.42 0.16 0.14 0.18 0.10 0.09

10-16 0.46 0.16 0.14 0.18 0.09 0.09

11-16 0.68 0.15 0.14 0.21 0.09 0.10
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Table 18: Sample used and estimates of B

Matches included
AL AM AS

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

1-16 0.11 0.22 0.05 0.19 0.07 0.20

2-16 0.10 0.20 0.05 0.19 0.07 0.20

3-16 0.10 0.19 0.06 0.19 0.07 0.20

4-16 0.10 0.08 0.07 0.19 0.07 0.19

5-16 0.09 0.07 0.05 0.19 0.07 0.17

6-16 0.09 0.07 0.06 0.18 0.09 0.17

7-16 0.20 0.07 0.04 0.18 0.09 0.19

8-16 0.22 0.06 0.05 0.19 0.09 0.19

9-16 0.71 0.05 0.06 0.20 0.09 0.21

10-16 0.78 0.07 0.05 0.23 0.06 0.22

11-16 1.33 0.04 0.04 0.28 0.04 0.25

Table 19: Sample used and Estimates of C

Matches included
AL AM AS

Standard No Quantity Choice Standard No Quantity Choice Standard No Quantity Choice

1-16 0.54 0.56 0.55 0.47 0.53 0.43

2-16 0.55 0.56 0.55 0.47 0.53 0.43

3-16 0.55 0.57 0.56 0.46 0.52 0.44

4-16 0.56 0.56 0.56 0.47 0.52 0.43

5-16 0.55 0.57 0.55 0.48 0.52 0.44

6-16 0.56 0.58 0.57 0.48 0.52 0.45

7-16 0.56 0.58 0.58 0.48 0.52 0.45

8-16 0.57 0.57 0.58 0.47 0.52 0.45

9-16 0.54 0.57 0.57 0.47 0.52 0.46

10-16 0.55 0.57 0.57 0.46 0.53 0.46

11-16 0.52 0.58 0.57 0.43 0.53 0.46
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Robustness of Counterfactual Exercises

In this section we consider an alternative counterfactual experiment to measure the prediction

bias due to collusion. We use the parameters we estimate for the Standard treatments and

predict behavior in the No Quantity Choice treatments. We then contrast this prediction to

actual behavior in No Quantity Choice treatments. The results are shown on Table 20, where

for a fixed value of A the baseline corresponds to the treatment with no quantity choice, and

the counterfactual to the Standard treatment.

Baseline/Counterfactual AS AM AL

Standard/No Quantity Choice

AS 24.9 % - -

AM - 7.2 % -

AL - - 11.6 %

Table 20: Counterfactual Error From Collusion (MAPE(V)), Standard predicts No Quantity

Choice

This table shows the resulting bias in counterfactual computations if the econometrician wrongly assumes that firms do not collude in the

baseline (Standard treatment) and predicts the outcomes in a market (of the same market size) where firms do not collude. Then we contrast

the prediction to actual behavior in the No Quantity Choice treatments and compute prediction errors.

The counterfactual bias varies from 7% to 25%. By definition, the highest incentives to

collude are in theAS market. Therefore, it is natural that the largest bias takes place in this case,

where the magnitude means that averaging across states the difference between predicted

continuation value and actual continuation value is 25%. On the one hand, a twenty-five

percentage points bias in continuation values is relatively large. On the other hand, how large

are these magnitudes relative to a case where firms fully collude in the baseline? To answer this

question we perform a Monte Carlo exercise where in the baseline we generate data under full

collusion and we estimate parameters under the assumption of no collusion. We then compare

the prediction to counterfactual data where there is no collusion. Those results are shown in

Table 21

These results show that the counterfactual bias due to collusion that we observe in the data

is smaller than what would be observed if firms were successful at colluding. In the case of

the small and medium market it is 11% to 12% of the maximal possible bias and in the large

market it is 38% of the maximal possible bias. This means that especially in the scenario where
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Baseline/Counterfactual AS (Standard) AM (Standard) AL (Standard)

AS (No Quantity Choice) 197.1 % - -

AM (No Quantity Choice) - 62.9 % -

AL (No Quantity Choice) - - 30.2 %

Table 21: Maximal Counterfactual Error From Collusion, Standard predicts No Quantity

Choice (Monte Carlo Results)

This table (based on Monte Carlo results and NOT data) shows the maximal resulting bias (measured by MAPE(V)) if the econometrician

wrongly assumes that firms do not collude in the baseline and predicts the outcomes in a market (of the same market size) where firms do

not collude.

the incentives to collude are high and where they should be quantitatively important we only

observe a small fraction of the possible bias.
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Appendix E

One of the salient deviations from the theory in our data is that subjects do not enter and exit

the market as often as the MPE predicts in this setting. Table 3 summarizes the absolute differ-

ence between theoretical MPE probabilities and empirical probabilities across treatments. We

refer to the absolute difference between MPE and empirical probabilities in the No Quantity

Choice treatments as inertia. Average inertia (as measured in each treatment by the third col-

umn in Table 3) is comparable across No Quantity Choice treatments, ranging between 0.13

and 0.17.

In this appendix we describe three approaches to shed more light on inertia. In the first

part of the appendix, we first study three alternative ways to explicitly account for inertia at

the estimation stage. The goal is to obtain estimates closer to the true values. We will show

that the three procedures actually lead to improvements. The first one directly corrects en-

try thresholds and uses the fact that we observe the actual thresholds that subjects pick. We

then propose two different extended models that explicitly account for inertia and estimate an

additional parameter (which do not require to observe the thresholds and could therefore be

applied in a standard setting). The latter of the two is the most successful, and for this proce-

dure we also report the full exercise on counterfactuals. We do document that counterfactual

prediction errors are lower relative to the counterfactuals we report in the main text. How-

ever, the qualitative comparison between counterfactual prediction errors in Standard and No

Quantity Choice treatment is qualitatively similar.

In the second part of the appendix we take a different approach and use Monte Carlo

simulations to study how inertia affects parameter estimates. We show that inertia, for all

reasonable ranges, biases the estimates of C (the entry cost) upwards and B (the competition

parameter) downwards. However, the effect on A can be ambiguous. This is consistent with

what we observe in the data. A is biased downwards in AL and AM but upwards in AS . We

illustrate with Monte Carlo simulations that the upwards bias in Â can result when inertia is

mostly present in exit thresholds as in AS .59

59Notice that inspection of Table 3 confirms this is the case in our data. That is, while the averages are similar, the presence of inertia in

entry and exit thresholds changes with A. As A increases from AS to AL inertia shifts from exit to entry thresholds.
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E.1. Three Procedures to Account for Inertia at the Estimation Stage

Subject-Specific Effects

We first explore to what extent we can recover estimates closer to the true parameter values

by accounting for a subject-specific (“fixed-effect”) deviation from the theoretical threshold.

Creating a dataset that controls for the average deviation from the MPE threshold of each sub-

ject would allow us to reduce the amount of inertia in the data and should result in estimates

closer to the true values.

Recall that our experimental design asks subjects directly for their entry and exit thresholds

(such thresholds, however, are typically not observed in a standard empirical application).

The resulting binary entry and exit choices (which the estimation method uses) are computed

based on those thresholds. To generate a dataset that controls for average deviations from

theoretical predictions we proceed in three steps. We first compute a subject-specific mean

deviation from the theoretically predicted ones. Second, we adjust each threshold by this

amount. Finally, we compute a new set of entry-exit choices using the same random draws

from the experimental sessions and the adjusted thresholds.60 With this alternative dataset,

based on “adjusted” entry/exit thresholds, we re-estimate the parameters. For comparability,

the top panel of Table 22 reproduces the main estimates in the paper, and the second panel

shows the estimation results correcting for subject-specific effects.

What these results show is that this correction broadly moves all estimates in the right di-

rection. Specifically, the entry cost C is substantially reduced, and the A estimates are moving

in slightly closer to the true parameters. The estimate of B is also moving closer to the true

value of 0.6 in almost all treatments, though it still is far from such value. Of course, cor-

recting the data in this way is not feasible in a standard empirical application because (i) the

thresholds are not directly observed and even if they were (ii) the theoretical thresholds are

unknown.

Inertia-Augmented Model

We now present our first augmented model that allows to partially correct for inertia without

a priori knowledge of thresholds. Since our experiment was not designed to estimate such a

60Of course, because the choices implied by adjusted thresholds and the thresholds selected by the subject may not coincide, this alternative

data is no longer dynamically consistent. For example, using the adjusted thresholds we may compute that the firm exits in period t, but

would be actually observed next period in the market because this is the state that actually occurred in the laboratory.
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Treatment Standard No Quantity Choice

AS AM AL AS AM AL

Original (Reproduced from Table 4)

A 0.1 0.14 0.18 0.08 0.17 0.22

B 0.07 0.05 0.11 0.2 0.19 0.22

C 0.53 0.55 0.54 0.43 0.47 0.56

Thresholds Corrected for

Subject-Specific Effects

A 0.02 0.13 0.3 0.02 0.19 0.22

B 0.24 0.12 0.32 0.3 0.39 0.22

C 0.2 0.19 0.18 0.16 0.18 0.56

Inertia-Augmented Model

A 0.08 0.12 0.15 0.07 0.15 0.29

B 0.07 0.05 0.1 0.52 0.19 0.43

C 0.18 0.18 0.19 0.25 0.16 0.18

D 0.01 0.01 0.01 0.01 0.1 0.01

Myopic Inertia-Augmented Model

A 0.04 0.19 0.25 0.04 0.21 0.23

B 0.47 0.69 0.89 0.47 0.83 0.72

C 0.23 0.04 0.06 0.23 0.06 0.09

D 0.15 0.14 0.12 0.15 0.08 0.09

Table 22: Inertia: Parameter estimates

The top part of this table reproduces the parameter estimates of Table 4 and the bottom shows the estimates including inertia parameter

D, which captures a potential time inconsistent behavior where the firm assumed that there is an entry or exit cost that has to be paid for

changing the market status today but not at any point in the future. True values of parameters are: AS = 0.05, AM = 0.25, AL = 0.4,

B = 0.6, C = 0.15.
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model, we see the model we introduce here and in the third approach as more speculative. An

intuitive explanation for the observed behavior is that subjects perceive some general switch-

ing cost to change the market state. This would call for a straightforward extension of the

model with one extra parameter, the perceived switching cost, that needs to be estimated. Un-

like the entry cost it would have to be paid both for entering and exiting the market (this is,

intuitively, also how it would be separately identified). We now present our first augmented

model and start by re-writing the expressions that solve for the MPE recursively. For x ∈ {0, 1},
the following function captures the continuation value.

Γ(x, st) =
∑

st+1∈S

∫
max{vα(0, st+1) + ε′(0), vα(1, st+1) + ε′(1)}dG(ε′)Fα(st+1|x, st) ∀st (9)

A first aspect to notice is that inertia can be thought of as working asymmetrically for

a fixed agent i’s state. If agent i is in the market, which happens when the state is in set

s1
t = {(1, 0), (1, 1)}, then ‘inertia’ can be thought of as providing the agent an extra payment

(D1) if the agent stays in the market, but not if the agent decides to leave. Likewise, if the

agent is not in the market, that is if the state is in the set s0
t = {(0, 0), (0, 1)}, then inertia would

provide an extra payment (D0) if the agent stays out, a payment the agent would not receive if

she chooses to enter. That is, the extra payments, D0 and D1 act by making it more expensive

to leave the state in which the agent is located.

The recursive expressions that solve for MPE are given by:

vα(1, s1
t ) = Πα(s1

t ) +D1 + δ · Γ(1, s1
t ) ∀s1

t (10)

vα(1, s0
t ) = Πα(s0

t ) + δ · Γ(1, s0
t ) ∀s0

t (11)

vα(0, s1
t ) = Πα(s1

t ) + δ · Γ(0, s1
t ) ∀s1

t (12)

vα(0, s0
t ) = Πα(s0

t ) +D0 + δ · Γ(0, s0
t ) ∀s0

t (13)

Unfortunately, we cannot identify D0 separate from D1, so we impose that D0 = D1 = D.61

61As mentioned earlier, inertia is mostly present in exit thresholds when A is low (AS ), but shifts towards entry thresholds as A increases

to AL (see Table 3). Thus, if it were possible to estimate D0 separately from D1, the fit would be better. Our design was not planned to study

inertia and our ability to structurally characterize inertia is thus limited.
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Hence, the inertia-augmented model involves estimating one extra parameter (D) and the

estimates are presented in the third panel of Table 22.

The estimate of parameterD is relatively small in all treatments. With respect to the param-

eters in the original model, we note a substantial drop of parameter C, which is closer to the

true value in all treatments (relative to the original estimates). There are only small changes

in the estimates of A and the estimates of B, while in most cases higher than in the original

estimation, remain far from the true value. Even though such a model seems an intuitive

alternative to capture inertia, it does not lead to a marked improvements of the estimates.

Myopic Inertia-Augmented Model

The findings with the inertia-augmented model have lead us to explore another alternative, in

which inertia is present but in a time-inconsistent manner. A possible justification behind this

extension is that the agent considers a realized state differently than a potential state that can

happen in the future. That is, if the agent is in the market, the agent has an “extra” valuation

for the current state because that is what she has now. But when she considers the future, she

doesn’t attach an “extra” valuation to being in the market tomorrow because that state has not

yet materialized.

Since in this model inertia only affects the valuation in the present, we can re-express the

continuation values as follows:

vα(x, st) = Πα(st) + δ · Γ(x, st) ∀st (14)

for x ∈ {0, 1}.
However, the current valuations are affected by inertia. We express the value functions of

a problem with myopic inertia as follows.

ṽα(1, s1
t ) = Πα(s1

t ) +D1 + δ · Γ(1, s1
t ) ∀s1

t (15)

ṽα(1, s0
t ) = Πα(s0

t ) + δ · Γ(1, s0
t ) ∀s0

t (16)

ṽα(0, s1
t ) = Πα(s1

t ) + δ · Γ(0, s1
t ) ∀s1

t (17)

ṽα(0, s0
t ) = Πα(s0

t ) +D0 + δ · Γ(0, s0
t ) ∀s0

t (18)
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We cannot identify D0 separate from D1. Since we know that inertia is mostly present in

exit threshold in AS (see Table 3), we estimate D1 = D, D0 = 0 in AS . Inertia shifts towards

entry thresholds in AM and AL, so we estimate D0 = D, D1 = D in these two treatments.62

We estimateD together with the other parameters using a slight modification to the estima-

tion procedure described on Appendix A. We start with some initial values for all parameters

and compute the system of equations in (9)-(14). In addition, we use (9)-(14) and the initial

guesses to compute (15)-(18). We then use (9)-(14) to compute predicted choice probabilities

that we contrast to observed choice probabilities. The procedure is repeated until the parame-

ter estimates provides predicted choice probabilities that are sufficiently close to the observed

choice probabilities.

The bottom panel of Table 22 provides the estimates. The estimate of parameter D varies

from 0.05 to 0.15, depending on the treatment. With respect to the parameters in the original

model, we also note a substantial drop of parameter C, consistent with all corrections for

inertia (and the Monte Carlo exercises we report in the next section). As with other corrections,

the changes in estimates of A are more nuanced, but there is a large upward adjustment in

parameter B, which is closer to the true value of 0.6 in all treatments. Without controlling for

inertia the parameter is substantially underestimated, with values between 0.05 and 0.22 and

none of the previous corrections is very successful in bringing the estimate close to the true

value.63

Given that the myopic augmented-inertia model is relatively more successful in moving

all estimates closer to the true values, we inspect it further and use it to report counterfactual

predictions. The two top panels of Table 22 reproduce, as a reference, the predictions for coun-

terfactuals that we report in the text. The two bottom panels provide the same computations,

but using the myopic augmented-inertia model.

A first observation is that in 10 of 12 predictions, the myopic inertia-augmented model

involves a lower prediction error than the original model reported in the text.64 This suggests

that controlling for inertia can indeed reduce the prediction error. A second observation is that

while the prediction error is reduced in the majority of cases, there is no indication of higher

prediction error in the Standard treatments relative to the No Market Choice treatments. This

62An empirical researcher would not have information related to which thresholds are mostly affected by inertia, but the purpose of this

exercise is to provide an estimation that explicitly controls for inertia as well as possible.
63The Monte Carlo exercises in the next section will show that inertia biases the parameter B downwards.
64In the two cases where the prediction is higher in the myopic inertia-augmented model, the increase in the error is relatively small. From

0.38 to 0.39 when the AL Standard is the baseline and AM Standard the predicted counterfactual, and from 0.52 to 0.67 when the AM No

Market Choice is the baseline and AS No Market Choice the predicted counterfactual.
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suggests that the possibility of collusion is not leading to an increase in the prediction error

when we control for inertia. In a few words, the main comparative static that we report in the

paper for counterfactual exercises holds when we use the myopic inertia-augmented model.65

Baseline/Counterfactual AS AM AL

Standard

AS - 621.8 949.1

AM 65.1 - 82.3

AL 68.5 37.8 -

No Market Choice

AS - 326.4 716.2

AM 51.6 - 84.3

AL 64.9 40.8 -

Standard (Myopic Inertia)

AS - 96.9 98.3

AM 65.4 - 43.9

AL 66.1 35.3 -

No Market Choice (Myopic Inertia)

AS - 29.3 30.7

AM 42.7 - 70.2

AL 50.3 39.2 -

Table 23: Counterfactual prediction error

This table shows the counterfactual predictions using the MAPE(V ) measure if we account for inertia by using the myopic inertia-augmented

model.

E.2. Monte Carlo Study on Inertia

In this section we use a series of Monte Carlo exercises to study how differences between

observed probabilities and MPE probabilities can affect the estimates. We first provide an

65The counterfactual exercise we report here does not fully remove inertia from counterfactual prediction errors. We conduct the counter-

factual exercise scaling the A estimate and keeping the estimates of B, C and D from the baseline. As explained earlier, at the estimation

stage we assume that the researcher knows that inertia operates mostly through exit thresholds in AS and through both thresholds in other

treatments. But for the counterfactual exercise we keep the estimate of D from the baseline. Since inertia can operate differently in baseline

and counterfactual, the difference in counterfactual prediction errors can still capture some effect from inertia.
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informal discussion on the identification of each coefficient that we illustrate with simulations.

In a second step we outline how inertia affects the estimates in each of our treatments. What

we document is consistent with our findings in the previous section. In particular, inertia will

bias the estimate of C upwards and B downwards.

Table 24 reports several Monte Carlo simulations that connect entry-exit probabilities and

coefficient estimates. The baseline reference is simulation 0. The data for the simulation is

generated according to probabilities in the first four columns.66 These probabilities correspond

to the MPE equilibrium in the AM treatment, and as shown in the last three columns of the

Monte Carlo simulation, recovers the true parameters of this treatment. We now illustrate

how small optimization errors can generate a bias in each coefficient.

We start with the estimate ofA. Notice first that the structural procedure assigns a quantity-

stage contemporaneous payoff that includes A whenever the subject is in the market.67 This

suggests that the estimate of A will be large if subjects display a high propensity to be in the

market next period regardless of the state. Consider simulations 1 and 1’ of Table 24. In the

case of simulation 1 (1’) the data is generated with probabilities equal to those of simulation 0

minus (plus) 0.05. In other words, being in the market next period is less (more) likely for all

states in simulation 1 (1’). In line with the intuition, the estimate for A in simulation 1 (1’) is

below (above) the estimate in simulation 0.

Parameter B captures the effect of competition. Intuitively, B̂ is identified from compar-

ing the subject’s choices depending on whether the other is in the market or not; that is,

p(1, 0)−p(1, 1) and p(0, 0)−p(0, 1). In principle, the larger these differences the more the subject

reacts to the presence of the other in the market, which means that the effect of competition

is larger and the estimate of B will be correspondingly higher. This intuition is confirmed by

simulations 2 and 2’. Notice that in the baseline simulation 0 the difference in probabilities is

0.1 in both cases.68 In simulation 2 (2’) we reduce (increase) the difference in probabilities to

0.05 (0.15) and accordingly observe a reduction (increase) in B̂ relative to the baseline.

Finally, the estimate of C will be high when the probabilities indicate that subjects do not

want to pay the fixed fee to enter the market, which is consistent with subjects being very likely

to remain in the market if they are already in the market and to stay out if they are already out.

66For each simulation we proceed as described in section 4. We assume that there are 300 pairs of firms, and generate 100 data sets

(according to the probabilities described in the table) that we use to estimate parameters.
67Recall that the quantity-stage contemporaneous payoff when the subject is in the market is 100 × (2A + 0.60) if the other is out and

100× (2A−B + 0.60) if the other is also in. Meanwhile the quantity-stage payoff when the subject is out of the market is 100× 0.6.
68p(1,0)-p(1,1)=0.70-0.60=0.1; p(0,0)-p(0,1)=0.50-0.40=0.1.
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In other words, the estimate Ĉ is large if there is a large difference between probabilities when

the subject is in the market (p(1, ·)) and probabilities when the subject is out of the market

(p(0, ·)). In simulation 3 (3’) we subtract (add) 0.05 to p(1, ·) simulation 0 probabilities and add

(subtract) 0.05 to p(0, ·) simulation 0 probabilities. Correspondingly, we find a lower (higher)

estimate of C in simulation 3 (3’) relative to the baseline.

Table 24: Monte Carlo simulations and optimization errors

Probabilities Estimates

Simulation p(1, 0) p(1, 1) p(0, 0) p(0, 1) Â B̂ Ĉ

0 0.70 0.60 0.50 0.40 0.25 0.60 0.15

1 0.65 0.55 0.45 0.35 0.21 0.60 0.15

1’ 0.75 0.65 0.55 0.45 0.41 0.50 0.16

2 0.65 0.60 0.45 0.40 0.16 0.28 0.19

2’ 0.75 0.60 0.55 0.40 0.34 0.91 0.08

3 0.65 0.55 0.55 0.45 0.43 1.17 0.01

3’ 0.75 0.65 0.45 0.35 0.20 0.40 0.26

4 0.95 0.85 0.44 0.40 0.33 0.01 1.47

5 0.80 0.60 0.50 0.30 0.27 0.77 0.17

Note: p(s) indicates the probability of being in the market next period conditional on being in

state s in the current period.

Now, we use Monte Carlo simulations to evaluate how inertia can affect the estimates.

Suppose that MPE probabilities are given by p. We say that p′ exhibits inertia relative to p

if p′(1, ·) > p(1, ·) and p′(0, ·) < p(1, ·). Notice that the exercise described in simulation 3’

precisely involves the deviation from simulation 0 probabilities introduced by inertia. Inertia

makes transitions between states more rare and is always rationalized with a higher estimate

of Ĉ.

With respect to the estimates of A and B inertia can introduce an upwards or downwards

bias. The case presented in simulation 3’ shows a downwards bias in Â relative to simulation

0 (0.20 vs. 0.40). This downwards bias in Â is consistent with the estimates for AL and AM
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reported in Table 4. In these two treatments there is evidence of inertia in probabilities related

to both entry and exit thresholds. In the AS treatment inertia is present almost exclusively in

probabilities related to exit thresholds (p(1, ·)). Simulation 4 reproduces some of the inertia

conditions present in the AS treatment. Relative to the simulation 0 baseline, we add 0.25 to

both probabilities related to exit thresholds, and subtract 0.06 from p(0, 0).69 In this case, there

is an upwards bias in Â (0.33 vs. 0.25). Clearly, the equilibrium MPE probabilities in AS differ

from those in the simulation 0 baseline, but we observe a similar effect in the estimates, in

particular, with Â biased upwards.

In all B̂ reported in Table 4 there is a downwards bias relative to the true B parameter. This

is also consistent with the reports in simulations 3’ and 4 that also involve inertia. Although

we do not observe it in our data, it is possible to introduce inertia in a way that would bias

B upwards. Simulation 5 involves a change in probabilities relative to simulation 0 that is

consistent with inertia, but the ‘inertia’ in p(1, 0) and p(0, 1) is larger than the inertia in p(1, 1)

and p(0, 0). In other words, inertia increases how one subject responds to the presence of the

other in the market. In this case, we observe an upwards bias in B̂ (0.77 vs. 0.60).

We conclude this section with another set of Monte Carlo simulations that focus on how the

presence of inertia can bias the coefficients for different levels of collusion. As in section 4, the

data are generated from a model in which a proportion x ∈ [0, 1] of the pairs of firms collude.

We use the setup of the AM treatment, but add (subtract) 0.14 points to exit (entry) threshold

probabilities. In other words, the exercise reported in Figure 9 is comparable to Figure 1 except

that it includes inertia in the data. The main observations remain unchanged: the estimates of

A and C are basically unaffected by the presence of collusion, which does affect the estimate

of B, biasing it downwards as collusion increases.

Counterfactuals

Table 25 and Figure 10 provide further details of the counterfactual predictions presented in

subsection 5.3. Table 25 presents the predictions for p(s) for the counterfactual exercise re-

ported in Table 5 (predicted 1) and the second exercise reported in Table 6 (predicted 2). The

table also displays actual observed probabilities in each case. Figure 10 shows the actual prob-

abilities and the predictions for the first counterfactual exercise (see Table 5).

69As a consequence there is only a small difference between probabilities related to entry thresholds, which is consistent with what we find

for AS (see Appendix B).
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Baseline AL
AS AM

state predicted 1 predicted 2 actual predicted 1 predicted 2 actual

St
an

da
rd

p(1, 0) 0.56 0.74 0.76 0.79 0.87 0.88

p(1, 1) 0.50 0.68 0.71 0.72 0.80 0.85

p(0, 0) 0.02 0.21 0.21 0.24 0.31 0.34

p(0, 1) 0.00 0.15 0.20 0.18 0.24 0.30

N
o

Q
ua

nt
ity p(1, 0) 0.58 0.66 0.71 0.87 0.87 0.87

p(1, 1) 0.47 0.59 0.54 0.72 0.76 0.77

p(0, 0) 0.01 0.21 0.18 0.27 0.37 0.37

p(0, 1) 0.00 0.12 0.17 0.12 0.26 0.29

Baseline AM
AS AL

state predicted 1 predicted 2 actual predicted 1 predicted 2 actual

St
an

da
rd

p(1, 0) 0.58 0.76 0.76 1.00 0.98 0.95

p(1, 1) 0.55 0.73 0.71 1.00 0.95 0.89

p(0, 0) 0.03 0.23 0.21 0.55 0.44 0.38

p(0, 1) 0.00 0.20 0.20 0.53 0.41 0.34

N
o

Q
ua

nt
ity p(1, 0) 0.59 0.66 0.71 1.00 1.00 0.94

p(1, 1) 0.49 0.58 0.54 0.97 0.89 0.89

p(0, 0) 0.09 0.22 0.18 0.57 0.45 0.43

p(0, 1) 0.01 0.14 0.17 0.50 0.33 0.31

Baseline AS
AM AL

state predicted 1 predicted 2 actual predicted 1 predicted 2 actual

St
an

da
rd

p(1, 0) 1.00 0.88 0.88 1.00 0.97 0.95

p(1, 1) 1.00 0.83 0.85 1.00 0.93 0.89

p(0, 0) 1.00 0.34 0.34 1.00 0.43 0.38

p(0, 1) 1.00 0.28 0.30 1.00 0.39 0.34

N
o

Q
ua

nt
ity p(1, 0) 1.00 0.87 0.87 1.00 1.00 0.94

p(1, 1) 1.00 0.77 0.77 1.00 0.91 0.89

p(0, 0) 0.81 0.37 0.36 1.00 0.45 0.43

p(0, 1) 0.78 0.28 0.29 1.00 0.33 0.31
Notes: Predicted 1 (Predicted2) presents probabilities related to the counterfactual exercise reported in Table 5 (Table 6).

Table 25: Counterfactual calculations78
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Figure 9: Parameter estimates under different collusion probabilities for the AM treatment

with inertia.

Table 26 provides information on counterfactual calculations of the probability of observ-

ing a monopoly or a duopoly using the counterfactual exercise reported in Table 5.
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Figure 10: Counterfactual predictions
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Baseline AL
AL AS AM

probability predicted actual predicted actual predicted actual

Standard
p2 0.72 0.74 0.00 0.24 0.26 0.61

p1 0.24 0.23 0.04 0.35 0.38 0.29

No Quantity
p2 0.74 0.71 0.00 0.13 0.25 0.50

p1 0.25 0.25 0.03 0.32 0.47 0.35

Baseline AM
AM AS AL

probability predicted actual predicted actual predicted actual

Standard
p2 0.57 0.61 0.00 0.24 1.00 0.74

p1 0.30 0.29 0.03 0.35 0.00 0.23

No Quantity
p2 0.49 0.50 0.01 0.13 0.94 0.71

p1 0.36 0.35 0.18 0.32 0.06 0.25

Baseline AS
AS AM AL

probability predicted actual predicted actual predicted actual

Standard
p2 0.24 0.24 1.00 0.61 1.00 0.74

p1 0.35 0.35 0.00 0.29 0.00 0.23

No Quantity
p2 0.12 0.13 0.04 0.50 1.00 0.71

p1 0.32 0.32 0.23 0.35 0.00 0.25

Table 26: Counterfactual calculations for the probability of observing a monopoly (p1) or a

duopoly (p2)
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Appendix F

This appendix describes several additional details of the experimental implementation. We

implement the infinite time horizon as an uncertain time horizon (Roth and Murnighan, 1978).

After each period of play, there is one more period with probability δ = 0.8. We implement the

uncertain time horizon using a modified block design (Fréchette and Yuksel, 2013). Subjects

play the first five periods without being told after each period whether the supergame has

ended or not. Once period five ends they are informed whether the game ended in any of the

first five periods. Only periods prior to ending count for payoff (including the period when

the game ended). From the sixth period onwards subjects are told period by period whether

the game ended or not, and cumulative payoffs are computed for all periods until the game

ends. This procedure allows us to collect information for several periods without affecting the

theoretical incentives.70

Our sessions are divided into two parts. The difference between parts is in how subjects

report their dynamic choice to the interface. In Part 1, in the exit (entry) stage subjects are

informed of the randomly selected exit payment (entry fee) and then decide whether to exit

or not (enter or not). In Part 2 subjects first specify an exit threshold (entry threshold), that is

a number between [0, 100], with the understanding that if the exit payment is higher than the

threshold (entry fee is lower than the threshold) they will exit the market (enter the market).71

Part 1 consists of 1 supergame and Part 2 consists of the remaining 15 supergames.72

70See Fréchette and Yuksel (2013) for a comparison between this and other alternatives to implement infinite time horizons in the laboratory.
71Appendix G presents the instructions, screenshots of the interface and describes how subjects made their choices. In the case of the entry

fee subjects specify a threshold in [15,115], which includes the fixed portion of the entry fee. For the purpose of analysis in the paper we will

always present entry thresholds net of the fixed entry fee.
72The structural estimation procedure uses only information on whether subjects are in the market or not for estimation. Our implementa-

tion in part 2 provides us with additional information: we know the threshold of their decision. We use the additional information to evaluate

the aggregate information content of only using the binary information for being in the market or not. We find the binary information to be

consistent with thresholds if aggregate estimates on frequencies per state are of a comparable magnitude. If this were not the case, then using

only binary information may already introduce a bias in the estimation. However, in the data we do not find that using only whether firms

are in the market or not would lead to a bias.
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Appendix G

This appendix provides the instructions for the Standard treatment for AL. The instructions

consist of two parts. The first part presents the environment for the first cycle, and part 2 intro-

duces the thresholds for entry/exit decisions. Instructions for No Quantity Choice treatments

are identical except that we do not present a table for the quantity choice decision, and instead

subjects are told they would receive Nash payoff when they are both in the market. After the

instructions there is a set of figures with screen shots of the interface.

INSTRUCTIONS

Welcome

You are about to participate in an experiment on decision-making. What you earn depends

partly on your decisions, partly on the decisions of others, and partly on chance. Please turn

off cell phones and similar devices now. Please do not talk or in any way try to communicate

with other participants. We will start with a brief instruction period. During the instruction

period you will be given a description of the main features of the experiment. If you have any

questions during this period, raise your hand and your question will be answered so everyone

can hear.

General Instructions: Part 1

1. This experiment is divided into 16 cycles. In each cycle you will be matched with a

randomly selected person in the room. In each cycle, you will be asked to make decisions

over a sequence of rounds.

2. The number of rounds in a cycle is randomly determined as follows:

• After each round, there is an 80% probability that the cycle will continue for at least

another round of payment.

• At the end of each round the computer rolls a 100-sided die.

• If the number is equal to or smaller than 80, there will be one more round that will

count for your payments.

• If the number is larger than 80, then subsequent rounds stop counting toward your

payment.
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• For example, if you are in round 2, the probability that the third round will count

is 80%. If you are in round 9, the probability round 10 also counts is 80%. In other

words, at any point in a cycle, the probability that the payment in the cycle contin-

ues is 80%.

3. You interact with the same person in all rounds of a cycle. After a cycle is finished, you

will be randomly matched with a participant for a new cycle. In each round, your payoff

depends on your choices and those of the person you are paired with. In each round

there is a market stage and an entry/exit stage. In the entry/exit stage you and the other

will decide whether to enter or exit the market. We first explain the market stage and

later we explain the entry/exit stage.

4. At the beginning of each cycle (in Round 1) you and the other start in the market. You

and the other will first make the market stage choices and then decide whether you want

to stay in the market or exit.

Market Stage

5. When you and the other are both in the market, your payoff depends on your choice and

the choice of the other:

• If you select 1, and the other selects 1, your payoff is 100, and the other’s is 100.

• If you select 1, and the other selects 2, your payoff is 40, and the other’s is 140.

• If you select 2, and the other selects 1, your payoff is 140, and the other’s is 40.

• If you select 2, and the other selects 2, your payoff is 80, and the other’s is 80.

The table below summarizes all the possible outcomes:

Other’s Choice

1 2

Your Choice
1 100,100 40,140

2 140,40 80,80

In this table, the rows indicate your choices and the columns the choices of the person

you are paired with. The first number of each cell represents your payoff, and the second

number (in italics) is the payoff of the person you are paired with.
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6. If in any round you are in the market and the other is out, your payoff will be equal to

140.

7. If in any round you are out of the market you make a payoff of 60.

8. Once the market stage is over, you will start the entry/exit stage.

Entry/Exit Stage

9. Exit decision. In each round when you are in the market, you will have to decide whether

you want to exit the market or not. If you exit the market you will receive an exit pay-

ment. The exit payment is a random number between 0 and 100. All numbers are equally

likely. The randomly selected exit payment will be presented to you on the screen. You

will have to indicate whether you want to take the exit payment and exit the market or

not take the payment and stay in the market.

10. The exit payment is selected separately for each participant. That means that you will

have one exit payment and when the other is selecting whether to exit or not, they will

have another randomly selected exit payment. The exit payment is selected randomly in

each round. This means that exit payments in different rounds will likely be different.

11. Entry decision. If in any round you are out of the market, you have to choose whether

you want to enter the market or not. To enter the market you have to pay an entry fee.

The entry fee is a random number between 15 and 115. All numbers are equally likely.

The randomly selected entry fee will be presented to you on the screen. You will have to

indicate whether you want to pay the entry fee and enter the market or not pay the fee

and stay out of the market.

12. The entry fee is selected separately for each participant. That means that you will have

one entry fee and when the other is selecting whether to enter or not, they will have

another randomly selected entry fee. The entry fee is selected randomly in each round.

This means that entry fees in different rounds will likely be different.

13. In each round after round 1 you first face the market stage and then the entry/exit stage.

If you are in the market in that round you will have to decide whether to exit or not. If

you are out of the market you will have to decide whether to enter or not.

Payoffs
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14. In each cycle you start with 30 points, and you will make choices for the first 5 rounds

without knowing whether or not the cycle payment has stopped. At the end of the fifth

round the interface will display on the screen the results of the 100-sided die roll for each

of the first 5 rounds.

15. If the roll of the 100-sided die was higher than 80 for any of the first five rounds, the cycle

will end, and the last round for payment is the first where the 100-sided die roll is higher

than 80.

• The interface subtracts entry fees that you pay, adds exit payments, and adds all

points that you make in the market stages of all rounds that count for payment

within a cycle.

• For example, assume that the 100-sided die in the first five rounds results in: 40, 84,

3, 95, 65. Because 84 is higher than 80, payments will stop after the second round.

The interface will add your market and entry/exit payoffs for rounds 1 and 2.

16. If the 100-sided die rolls were lower than or equal to 80 for the first five rounds, there will

be a sixth round. From the sixth round onwards the interface will display the 100-sided

die roll round by round. The cycle will end in the first round where the 100-sided die

roll is higher than 80.

• The interface subtracts entry fees that you pay, adds exit payments, and adds all

points that you make in the market stages of all rounds that count for payment

within a cycle.

• For example, assume that the 100-sided die in the first five rounds results in: 51, 24,

13, 80, 55. Because all numbers are equal to or lower than 80 there will be another

round, so the cycle continues to round 6. After you make your choices for round 6

you are shown that the 100-sided die for that round is 52, which is lower than 80 so

there will be a seventh round. After round 7 you are shown that the 100-sided die

for that round is 91. Because 91 is higher than 80 the cycle is over and the interface

will add your payoffs for all rounds 1 through 7.

17. If at any point in the cycle your total payoff for the cycle is less than 0, the cycle is over.
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18. Your total payoffs for the session are computed by adding the total payoffs of all 16

cycles. These payoffs will be converted to dollars at the rate of 0.0025$ for every point

earned.

Are there any questions?

Summary

Before we start, let me remind you that:

• The length of a cycle is randomly determined. After every round there is an 80% proba-

bility that the payment cycle will continue for another round.

• In Round 1 of each cycle you and the other start in the market.

• Each Round has a market stage and an entry/exit stage.

1. Market Stage Payoffs

Other

In the Market Out of the Market

You
In the Market See Payoff Table 140

Out of the Market 60 60

2. Exit/Entry Decision

– If you are out and decide to enter, you will pay the entry fee. If you stay out,

you do not have to pay any fee.

– If you are in and decide to leave, you will be paid the exit payment. If you

decide to stay in, you will not receive an extra payment.

• You interact with the same person in all rounds of a cycle. After a cycle is finished, you

will be randomly matched with a participant for a new cycle.

• Part 1 consists of 1 cycle. Once the first cycle is over we will give you brief instructions

for Part 2 that will consist of 15 cycles. The only difference between Part 1 and Part 2 will

be on how you report your choices to the interface. Other than that Part 1 and Part 2 are

identical.
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General Instructions: Part 2

1. The only difference in Part 2 is on how you report to the interface your entry/exit deci-

sions.

Exit Decision

2. Instead of deciding if you want to Exit or Stay In the market for a particular Exit Payment,

you will report an Exit Threshold.

3. You will report your Exit Threshold before you learn the Exit Payment that was ran-

domly selected.

4. The Exit Threshold specifies the minimum Exit Payment you would take to exit the mar-

ket. If the Exit Payment were to be higher than your choice for the Exit Threshold, then

you would exit the market and receive the Exit Payment. If the Exit Payment were to

be equal to or lower than your choice for the Exit Threshold, then you will Stay In the

market and not receive the Exit Payment.

5. After you submit your choice for the Exit Threshold the interface will show you the

randomly selected Exit Payment and will implement a choice for your Exit Threshold.

Entry Decision

6. Instead of deciding if you want to Enter or Stay Out of the market for a particular Entry

Fee, you will report an Entry Threshold.

7. You will report your Entry Threshold before you learn the Entry Fee that was randomly

selected.

8. The Entry Threshold specifies the maximum Entry Fee below which you are willing to

pay to enter the market. If the Entry Fee were to be higher than or equal to your choice

for the Entry Threshold, then you would not enter the market and not pay the Entry Fee.

If the Entry Fee were to be lower than your choice for the Entry Threshold, then you

would enter the market and pay the Entry Fee.

9. After you submit your choice for the Entry Threshold the interface will show you the

randomly selected Entry Fee and will implement a choice for your Entry Threshold.

Are there any questions?
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Screenshots of the Interface

Figure 11 displays the first screen that subjects see when the experiment starts in the case of a

Standard treatment with A = 0.4. At the top left subjects are reminded of general information:

the cycle and rounds within the cycle. The blank part on the left side of the screen will be

populated with past decisions as the session evolves. In round 1 of every cycle both start in

the market, which they are reminded of at the top right. The quantity stage table is presented

below and subjects are asked to select a row. In the laboratory we refer to the quantity stage

as the market stage.

Figure 12 shows a case where the first row has been selected. As soon as a row is selected

a ‘submit’ button appears. Subjects can change their choice as long as they haven’t clicked on

the ‘submit’ button. Figure 13 shows an example of the feedback subjects get in a case where

the subject selected row 2 and the other selected row 1.

After a quantity stage subjects face the entry/exit stage. Figure 14 shows an example of

an exit stage in cycle 1. Subjects are presented with a randomly selected scrap value and they

simply indicate if they exit or stay in the market. An entry stage is similar, except that subjects

decide between ‘enter’ or ‘stay out.’

Figure 15 shows an example when there is no quantity decision in the quantity stage. Sub-

jects in this case are simply informed of their quantity stage payoff. This screen is qualitatively

similar to what subjects in the No Quantity Choice treatment see if they are both in the market.

This screenshot, which corresponds to a case in round 5, also shows on the left side the table

with past decisions in the current cycle. As the session evolves subjects also have access to

choices for previous cycles. They simply enter the number for the cycle for which they wish

to see their feedback in the box after ‘History for Cycle’ and click on ‘Show.’
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Figure 11: Quantity Stage of Standard Treatment with A = 0.4.

Figure 12: Example where the subject selects row 1.
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Figure 13: Example of Feedback when the subject selects 2 and the other selects 1.

Figure 14: Example of an exit stage decision in cycle 1.
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Figure 15: Example of quantity stage where there is No Quantity Choice.

Figure 16 presents an example of the exit decision for part 2 of the session. Subjects can

select a threshold by clicking anywhere on the black line. Once they click on the horizontal

black line a red vertical line appears with a red number indicating the choice. In the example

the subject selects a threshold of 51. Once a choice is made the interface indicates with arrows

the values of the scrap value for which the subject would exit or stay in the market. Subjects

can change their choice by clicking anywhere else on the black line. They can also adjust their

choice by clicking on the plus/minus buttons at the bottom. Each click in the plus (minus)

button adds (subtracts) one unit to the current threshold. Once they click on ‘submit’ their

choice is final.

Finally, Figure 17 shows an example of the feedback that subjects receive after they make

an exit decision. First they are informed of the randomly selected scrap value (exit payment),

then they are reminded of the threshold they finally submitted. Given these two values they

are informed of the final decision.
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Figure 16: Example of an exit stage decision in cycles 2-16

Figure 17: Feedback after exit stage decision in cycles 2-16
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