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Appendix: Proof of propositions 

Lemma 1. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑

> −1.  If 𝑑𝑑 ≥ 4,
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑
𝑑𝑑

< 0. 

Proof.  Multiplying the cubic equation (8), ��3 + ��
�−1

�2 + ��
2��

�(�−1)
��− (�−2)��2��2

�2(�−1)2 = 0, by �3, we obtain 

𝜌𝜌(𝑑𝑑𝑑𝑑)3 +
𝑑𝑑𝜏𝜏𝐸𝐸
𝑑𝑑 − 1

(𝑑𝑑𝑑𝑑)2 +
𝑑𝑑𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸

(𝑑𝑑 − 1)𝜌𝜌𝑑𝑑𝑑𝑑 −
𝑑𝑑(𝑑𝑑 − 2)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2

(𝑑𝑑 − 1)2 = 0. (1) 

As � increases, the coefficients on the first three terms weakly decrease, while the last term increases. Therefore 

�� should be increasing in �. Since � > 0, we obtain ��
��

�
�

> −1.  

Next, applying the implicit function theorem to �(�, �) ≡ ��3 + ��
�−1

�2 + ��
2��

�(�−1) ��−
(�−2)��2��2

�2(�−1)2 = 0, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝜕𝜕𝜕𝜕 𝜕𝜕𝑑𝑑⁄
𝜕𝜕𝜕𝜕 𝜕𝜕𝑑𝑑⁄ = −�

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
�
−1

�−
𝜏𝜏𝐸𝐸

(𝑑𝑑 − 1)2 𝑑𝑑
2 −

(2𝑑𝑑 − 1)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌
𝑑𝑑2(𝑑𝑑 − 1)2 𝑑𝑑 −

(−3𝑑𝑑2 + 9𝑑𝑑 − 4)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2

𝑑𝑑3(𝑑𝑑 − 1)3 � , (2) 

where ��
��

= 3��2 + 2��
�−1

� + ��
2��

�(�−1) � > 0 is straightforwardly obtained because � > 0. Using �(�, �) = 0, the last term 

of �� ��⁄  is substituted out. The resulting expression is a polynomial of �  without constant terms, and each 

coefficient of � is greater than zero if � ≥ 4. Thus, we have �� ��⁄ > 0 if � ≥ 4, and ��
��

�
�

< 0 can be obtained. ■ 

Regarding Lemma 1, the equation for � in (5) indicates why the increase of � results in a decrease of �. There 

are two channels through which � affects the behavior of traders; its effect on liquidity (which is represented by � in 

�) and price informativeness (which is represented by �� and �). The liquidity channel is straightforward. Because the 

aggregate demand/supply function is linear in �, the increase of � makes the price inelastic with respect to the unit 

order flow: improvement of liquidity. In the imperfect competition model, when the market is more liquid (or the price 

is less elastic to the order flow), the traders become more eager to trade, i.e., � increases (this is implied by equation 

(5)).  

The price informativeness channel is more complicated because it can increase as well as decrease �. If price 

becomes more informationally efficient and revealing, each trader becomes reluctant to trade on their signals, and � 

decreases. Because informational efficiency is increasing in � (i.e., ��/�� > 0), the larger � reduces �. On the other 

hand, if total available information increases in �, the precision of signal for traders �� increases accordingly. Then, 

trading on price information becomes less risky, traders become more aggressive, and � increases. 
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If we assume a monopolistic competition model, the second effect of informational channel is shut down, because total 

available information is fixed: ��� = ��. Therefore, information channel only reduces �, which can overcome the 

liquidity channel and an increase in � result in decreasing �. 

Lemma 2. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0. 

Proof.  Differentiating the informational efficiency parameter � = (�−1)�2

(�−1)�2+��2��
 with respect to �, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �(𝑑𝑑 − 1)𝑑𝑑2 +
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸
𝑑𝑑

�
−2

�𝑑𝑑2 + 2(𝑑𝑑 − 1)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝑑𝑑 − (𝑑𝑑 − 1)𝑑𝑑2 �2(𝑑𝑑 − 1)
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

−
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸
𝑑𝑑2 �� . (3) 

The first parenthesis is clearly positive. The second parenthesis reduces to (2− 1
�
)�

2
+ 2(�− 1) ��

��
� . After 

rearranging terms, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 ⇔   
𝑑𝑑𝑑𝑑/𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑

> −
2𝑑𝑑 − 1

2(𝑑𝑑 − 1). 

Lemma 1 claims that this is satisfied in � ≥ 4. ■ 

Lemma 3. 

𝑑𝑑𝜏𝜏𝐼𝐼
𝑑𝑑𝑑𝑑

< 0 if 𝜏𝜏𝐸𝐸 <
(𝑑𝑑 − 1)𝜎𝜎𝑧𝑧2𝜌𝜌

2(𝑑𝑑 − 2) . 

Proof.  By definition (4), �� ≡ �� + �� �⁄ + (�− 1)��� �⁄ . Differentiating with respect to �, we have  

𝑑𝑑𝜏𝜏𝐼𝐼
𝑑𝑑𝑑𝑑

= −
𝜏𝜏𝐸𝐸
𝑑𝑑2 +

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑑𝑑 − 1)
𝜏𝜏𝐸𝐸
𝑑𝑑

+ 𝑑𝑑
𝜏𝜏𝐸𝐸
𝑑𝑑2. 

Rearranging terms, we have 

𝑑𝑑𝜏𝜏𝐼𝐼
𝑑𝑑𝑑𝑑

< 0 ⇔   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

<
1 −𝑑𝑑

𝑑𝑑(𝑑𝑑 − 1). 

Substituting out �� ��⁄  with the equation (16) , this is rewritten: 

𝑑𝑑𝜏𝜏𝐼𝐼
𝑑𝑑𝑑𝑑

< 0 ⇔   
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

<
1 − 𝑑𝑑

𝑑𝑑(𝑑𝑑 − 1)  ⇔  
𝑑𝑑𝑑𝑑/𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑

< −1 +
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸

2𝑑𝑑(𝑑𝑑 − 1)2𝑑𝑑2
. 

We have the expression for �� ��⁄  with the equation (15). Rearranging it yields 

𝑑𝑑𝑑𝑑/𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑

= −
− 𝑑𝑑𝜏𝜏𝐸𝐸

(𝑑𝑑 − 1)2 𝑑𝑑
2 − (2𝑑𝑑 − 1)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌

𝑑𝑑(𝑑𝑑 − 1)2 𝑑𝑑 − (−3𝑑𝑑2 + 9𝑑𝑑 − 4)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2
𝑑𝑑2(𝑑𝑑 − 1)3

− 𝜏𝜏𝐸𝐸
(𝑑𝑑 − 1)𝑑𝑑

2 − 2𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌
𝑑𝑑(𝑑𝑑 − 1)𝑑𝑑 + 3(𝑑𝑑 − 2)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2

𝑑𝑑2(𝑑𝑑 − 1)2
. 
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Here, the denominator is obtained by substituting 3��3  out by �(�,�) = 0. Using this expression, after some 

calculations, we have  

𝑑𝑑𝑑𝑑/𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑

< −1 +
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸

2𝑑𝑑(𝑑𝑑 − 1)2𝑑𝑑2
 

⇔  
𝜏𝜏𝐸𝐸

(𝑑𝑑 − 1)𝑑𝑑
3 + �1 −

3
2
�

𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌
𝑑𝑑(𝑑𝑑 − 1)𝑑𝑑

2 + �
2
𝑑𝑑
− 1�

𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2

𝑑𝑑(𝑑𝑑 − 1)2 𝑑𝑑 −
𝜌𝜌𝜎𝜎𝑧𝑧4𝜏𝜏𝐸𝐸2

2𝑑𝑑2(𝑑𝑑 − 1)2 < 0. 

Again, we substitute out the last term by using �(�,�) = 0, and make sure each coefficient is negative. In the 

resulting expression, the coefficients on �2 and � are clearly negative. The coefficients on �3 is ��
(�−1) −

��
2�

2(�−2), which 

can be negative if �� < (�−1)��2�
2(�−2) . ■ 

Corollary 1. 

𝑑𝑑𝑅𝑅2

𝑑𝑑𝑑𝑑
< 0 and 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

> 0 if  𝜏𝜏𝐸𝐸 <
(𝑑𝑑 − 1)𝜎𝜎𝑧𝑧2𝜌𝜌

2(𝑑𝑑 − 2) . 

Proof.  �2 ≡ 1 − �� ��⁄   is a definition. The sign of ��2 ��⁄  coincides with ��� ��⁄  because ��2

��
= �� 

��
2
���
��

. � ≡

(1 + �� ��⁄ )��2�2
 and �� ��⁄ > 0 immediately follow. ■  

Corollary 2. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

< 0  if  𝜏𝜏𝐸𝐸 <
(𝑑𝑑 − 1)𝜎𝜎𝑧𝑧2𝜌𝜌

2(𝑑𝑑 − 2) . 

Proof.  As equation (7) indicates, the price impact is � = 1
��
�1− ��

��
�. Lemma 1 suggests that 1 ��⁄  is decreasing 

in �, and Corollary 1 suggests 1− �� ��⁄  is also decreasing in �. Thus � is decreasing in �. ■  

Lemma 4. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

> 0. 

Proof.  Applying the implicit function theorem to �(�, �) ≡ ��3 + ��
�−1

�2 + ��
2��

�(�−1) ��−
(�−2)��2��2

�2(�−1)2 = 0, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

= −
𝜕𝜕𝜕𝜕 𝜕𝜕𝜏𝜏𝐸𝐸⁄
𝜕𝜕𝜕𝜕 𝜕𝜕𝑑𝑑⁄ = −�

𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
�
−1

�
1

(𝑑𝑑 − 1)𝑑𝑑
2 +

𝜎𝜎𝑧𝑧2𝜌𝜌
𝑑𝑑(𝑑𝑑 − 1)𝑑𝑑 −

2(𝑑𝑑 − 2)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸
𝑑𝑑2(𝑑𝑑 − 1)2 � . (4) 

We can show �� ��⁄ > 0 like Lemma 1. The last term is substitute out by �(�, �) = 0, and we have 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜏𝜏𝐸𝐸

= −
2𝜌𝜌𝑑𝑑3

𝜏𝜏𝐸𝐸
+ �

1
𝑑𝑑 − 1

−
2

𝑑𝑑 − 1
�𝑑𝑑2 + �

1
𝑑𝑑(𝑑𝑑 − 1)−

2
𝑑𝑑(𝑑𝑑 − 1)�𝜎𝜎𝑧𝑧

2𝜌𝜌𝑑𝑑 < 0, 
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because each term in parentheses is negative and � > 0. Combining these, we obtain �� ���⁄ > 0. ■ 

Lemma 5. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

> 0. 

Proof.  By definition (4), � ≡ (�−1)�2

(�−1)�2+��2��/�
. Differentiating with respect to by �� and rearranging terms, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

= �(𝑑𝑑 − 1)𝑑𝑑2 +
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸
𝑑𝑑

�
−2

�2(𝑑𝑑 − 1)
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

𝑑𝑑
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸
𝑑𝑑

− (𝑑𝑑 − 1)𝑑𝑑2
𝜎𝜎𝑧𝑧2

𝑑𝑑
�. 

The denominator is clearly positive, and it is enough to show the numerator is positive as well. Rearranging terms, 

we can show that the numerator is positive if and only if 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

𝜏𝜏𝐸𝐸
𝑑𝑑

>
1
2

.  

In the LHS, substituting out �� ���⁄  by (17), we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

𝜏𝜏𝐸𝐸
𝑑𝑑

= −

𝜏𝜏𝐸𝐸
(𝑑𝑑 − 1)𝑑𝑑

2 + 𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌
𝑑𝑑(𝑑𝑑 − 1)𝑑𝑑 −

2(𝑑𝑑 − 2)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2
𝑑𝑑2(𝑑𝑑 − 1)2

− 𝜏𝜏𝐸𝐸
(𝑑𝑑 − 1)𝑑𝑑

2 − 2𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌
𝑑𝑑(𝑑𝑑 − 1)𝑑𝑑 + 3(𝑑𝑑 − 2)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2

𝑑𝑑2(𝑑𝑑 − 1)2
. (5) 

Note that the denominator is positive. Rearranging terms, we have 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

𝜏𝜏𝐸𝐸
𝑑𝑑

>
1
2

 ⇔    
−𝜏𝜏𝐸𝐸

(𝑑𝑑 − 1)𝑑𝑑
2 +

(𝑑𝑑 − 2)𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2

𝑑𝑑2(𝑑𝑑 − 1)2 > 0 ⇔  𝜌𝜌𝑑𝑑3 +
𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝜌𝜌

𝑑𝑑(𝑑𝑑 − 1)𝑑𝑑 > 0. 

Last equivalence holds from �(�, �) = 0. ■  

Note that, evaluating ��
���

, we have ��
���

��
�

= (1− �) �2 ��
���

��
�
− 1�. We can also argue the limiting case of �� → ∞ and 

� → ∞. From equation 14), with � → ∞, we have, 

𝜌𝜌(𝑑𝑑𝑑𝑑)3 + 𝜏𝜏𝐸𝐸(𝑑𝑑𝑑𝑑)2 + 𝜌𝜌𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸𝑑𝑑𝑑𝑑 − 𝜎𝜎𝑧𝑧2𝜏𝜏𝐸𝐸2 = 0. 

Here �� should be finite to satisfy the equality. Taking the limit for ��, we obtain (��)2 = ��2��. Plugging this into the 

definition of �, we find that lim
��→∞,�→∞

� = 1 2⁄ .1 

Lemma 6. 
𝑑𝑑𝜏𝜏𝐼𝐼
𝑑𝑑𝜏𝜏𝐸𝐸

> 0. 

                                                      
1 The result 0 < � < 1

2
 is also stated in Kyle (1989). 
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Proof.  Differentiating �� ≡ �� + ��
�

+ (�−1)��
�

�(��)  with respect to �� , we have ���
���

= 1
�

+ (�−1)
�

�(��) + (�−1)��
�

��
���

. 

Applying Lemma 5, with � > 0 by definition, we have the desired result. ■ 

Corollary 3. 

𝑑𝑑𝑅𝑅2

𝑑𝑑𝜏𝜏𝐸𝐸
> 0. 

Proof.   Differentiating of �2 = �1− ��
��(��)

� by ��, we have ��2

���
= ��

��
2
���
���

. Applying Lemma 6, we have the desired 

result. 

Lemma 7. 

𝜕𝜕𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑒𝑒𝐹𝐹𝑒𝑒𝑓𝑓𝑎𝑎𝐹𝐹𝑒𝑒𝑒𝑒 𝑝𝑝𝑎𝑎𝐹𝐹𝑎𝑎𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝐹𝐹𝑒𝑒, 𝑓𝑓ℎ𝑓𝑓𝐹𝐹𝑓𝑓 𝑓𝑓𝑒𝑒 𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑠𝑠𝑎𝑎 𝑠𝑠𝑎𝑎𝐹𝐹𝑒𝑒𝑓𝑓 𝜏𝜏𝐸𝐸 𝑓𝑓ℎ𝑎𝑎𝑓𝑓 𝑒𝑒𝑎𝑎𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

< 0. 

𝐴𝐴𝑠𝑠𝑒𝑒𝐹𝐹,𝑓𝑓𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑓𝑓𝑓𝑓 𝜏𝜏𝐸𝐸 , 𝑓𝑓ℎ𝑓𝑓𝐹𝐹𝑓𝑓 𝑓𝑓𝑒𝑒 𝑒𝑒𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑠𝑠𝑎𝑎 𝑠𝑠𝑎𝑎𝐹𝐹𝑒𝑒𝑓𝑓 𝜏𝜏𝑣𝑣 𝑓𝑓ℎ𝑎𝑎𝑓𝑓 𝑒𝑒𝑎𝑎𝑓𝑓𝑓𝑓𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑒𝑒 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

> 0.   

Proof.   Since � = �2 ��⁄ , taking a derivative of log � with respect to ��, we have ��
���

��
�

= ��2

���

��
�2 −

��
���

��
�

. Since both 

� and �� are positive, we examine the sign of ��
2

���

��
�2 −

��
���

��
�

 to explore the sign of ��
���

.  

Because of the definition of �� and � is bounded, as �� goes to infinity, ��/�� approach to 0 and �2 → 1. After 

some calculation, ignoring exogenous constants, we have  ��2

���

��
�2 = ��

��
2
���
���

��
�2 ~ 1

��
2 ��� + ��

���
��2�, which goes to zero as �� 

goes to infinity because ��
���

→ 0 (� is increasing but bounded). Since ��
���

��
�

> 1/2, ��
���

��
�

 becomes negative if �� is 

sufficiently large. The cutoff value depends on other exogenous parameters.  

Next, we show the second statement. Fist, we show that ��
���

��
�

< 1. From equation (18), a direct calculation leads 

��
���

��
�

< 1 ⇔ ��− �−2
�(�−1) �� < 0. Plugging �∗ = �−2

��(�−1)�� into the cubic equation (8), we find that �(�, �∗) > 0 . 

Since �(�,�) is an increasing function of �, � that satisfies �(�, �) = 0 is less than �∗. Thus, we can show that ��−

�−2
�(�−1) �� < 0. Second, we show that we can find �� that satisfies ��2

���

��
�2 > ��

���

��
�

. Expanding ��2

���

��
�2, we have  

𝑑𝑑𝑅𝑅2

𝑑𝑑𝜏𝜏𝐸𝐸
𝜏𝜏𝐸𝐸
𝑅𝑅2

=
𝜏𝜏𝑣𝑣
𝜏𝜏𝐼𝐼
�1 + (1 −𝑑𝑑) �2

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

𝜏𝜏𝐸𝐸
𝑑𝑑
− 1�𝑑𝑑

𝑑𝑑 − 1
1 + 𝑑𝑑(𝑑𝑑 − 1)

� (6) 

Thus, collecting terms on �� for ��
2

���

��
�2 > ��

���

��
�

, we can find the condition for ��. Note that �, �, ��
���

��
�

  are not a 

function of �� and 1
2

< ��
���

��
�

< 1 and 0 < � < 1
2
 ensure the existence of such ��. For a limiting case, the condition 

for �� reduces to �� > �
1−�

�� → �� when � → ∞. ■  
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Note that we can also show that ��
���

��
�

 approaches to zero when �� goes to zero (from equation (8), (18)). 

Lemma 8. 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

> 0. 

Proof.  Note that � = �1 + ��
��
� ��2�2 = �1 + ��

��
� �1 − ��

��
�

2
. Substituting out ��, we obtain 

𝑑𝑑 = �1 +
𝜏𝜏𝑣𝑣
𝜏𝜏𝐸𝐸
� �

1 + (𝑑𝑑 − 1)𝑑𝑑
1 + (𝑑𝑑 − 1)𝑑𝑑 + 𝑑𝑑𝜏𝜏𝑣𝑣 𝜏𝜏𝐸𝐸⁄ �

2

. 

Since � > 0, for obtaining ��
���

> 0, it is enough to show �ln�
���

> 0; 

𝑑𝑑ln𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

=
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏𝐸𝐸

�
2(𝑑𝑑 − 1)

1 + (𝑑𝑑 − 1)𝑑𝑑
−

2(𝑑𝑑 − 1)
1 + (𝑑𝑑 − 1)𝑑𝑑 +𝑑𝑑𝜏𝜏𝑣𝑣 𝜏𝜏𝐸𝐸⁄ � −

𝑑𝑑𝜏𝜏𝑣𝑣
𝜏𝜏𝐸𝐸2

�
1

𝑑𝑑 + 𝑑𝑑𝜏𝜏𝑣𝑣 𝜏𝜏𝐸𝐸⁄ −
2

1 + (𝑑𝑑 − 1)𝑑𝑑 + 𝑑𝑑𝜏𝜏𝑣𝑣 𝜏𝜏𝐸𝐸⁄ �. 

From Lemma 5 we have 𝑑𝑑𝑑𝑑 𝑑𝑑𝜏𝜏𝐸𝐸⁄ > 0, and the first parenthesis is positive because 𝑑𝑑 > 0. Also, we can show the 

second parenthesis is negative. This results in 𝑑𝑑ln𝑑𝑑 𝑑𝑑𝜏𝜏𝐸𝐸⁄ > 0. ■ 


	Appendix: Proof of propositions
	Lemma 1.
	Lemma 2.
	Lemma 3.
	Corollary 1.
	Corollary 2.
	Lemma 4.
	Lemma 5.
	Lemma 6.
	Corollary 3.
	Lemma 7.
	Lemma 8.


