Appendix：Proof of propositions

Lemma 1.

$$
\frac{d \beta}{d N} \frac{N}{\beta}>-1 . \quad \text { If } N \geq 4, \quad \frac{d \beta}{d N} \frac{N}{\beta}<0 .
$$

$$
\begin{equation*}
\rho(N \beta)^{3}+\frac{N \tau_{E}}{N-1}(N \beta)^{2}+\frac{N \sigma_{z}^{2} \tau_{E}}{(N-1)} \rho N \beta-\frac{N(N-2) \sigma_{z}^{2} \tau_{E}^{2}}{(N-1)^{2}}=0 \tag{1}
\end{equation*}
$$

As increases，the coefficients on the first three terms weakly decrease，while the last term increases．Therefore

$$
\begin{equation*}
\frac{d \beta}{d N}=-\frac{\partial F / \partial N}{\partial F / \partial \beta}=-\left(\frac{\partial F}{\partial \beta}\right)^{-1}\left(-\frac{\tau_{E}}{(N-1)^{2}} \beta^{2}-\frac{(2 N-1) \sigma_{z}^{2} \tau_{E} \rho}{N^{2}(N-1)^{2}} \beta-\frac{\left(-3 N^{2}+9 N-4\right) \sigma_{z}^{2} \tau_{E}^{2}}{N^{3}(N-1)^{3}}\right) \tag{2}
\end{equation*}
$$

 of 国／［？ is substituted out．The resulting expression is a polynomial of without constant terms，and each

Regarding Lemma 1，the equation for in（5）indicates why the increase of results in a decrease of There are two channels through which affects the behavior of traders；its effect on liquidity（which is represented by in （1）and price informativeness（which is represented by and ${ }^{\text {a }}$ ）．The liquidity channel is straightforward．Because the aggregate demand／supply function is linear in［］，the increase of makes the price inelastic with respect to the unit order flow：improvement of liquidity．In the imperfect competition model，when the market is more liquid（or the price is less elastic to the order flow），the traders become more eager to trade，i．e．，回 increases（this is implied by equation （5））．

The price informativeness channel is more complicated because it can increase as well as decrease．If price becomes more informationally efficient and revealing，each trader becomes reluctant to trade on their signals，and ar decreases．Because informational efficiency is increasing in（i．e．，国国 >0 ），the larger reduces ．On the other hand，if total available information increases in the precision of signal for traders increases accordingly．Then， trading on price information becomes less risky，traders become more aggressive，and increases．

If we assume a monopolistic competition model，the second effect of informational channel is shut down，because total available information is fixed：国国．Therefore，information channel only reduces which can overcome the liquidity channel and an increase in result in decreasing ．

Lemma 2.

$$
\frac{d \varphi}{d N}>0
$$

$$
\begin{equation*}
\frac{d \varphi}{d N}=\left((N-1) \beta^{2}+\frac{\sigma_{z}^{2} \tau_{E}}{N}\right)^{-2}\left\{\beta^{2}+2(N-1) \frac{d \beta}{d N} \beta-(N-1) \beta^{2}\left(2(N-1) \frac{d \beta}{d N}-\frac{\sigma_{z}^{2} \tau_{E}}{N^{2}}\right)\right\} \tag{3}
\end{equation*}
$$

The first parenthesis is clearly positive．The second parenthesis reduces to $\left(2-\frac{1}{2}\right)^{2}+2$（回－1）的国．After rearranging terms，we have

$$
\frac{d \varphi}{d N}>0 \Leftrightarrow \frac{d \beta / \beta}{d N / N}>-\frac{2 N-1}{2(N-1)}
$$

Lemma 1 claims that this is satisfied in ≥ 4 ．

Lemma 3.

$$
\frac{d \tau_{I}}{d N}<0 \text { if } \tau_{E}<\frac{(N-1) \sigma_{z}^{2} \rho}{2(N-2)}
$$

Proof．By definition（4），回

$$
\frac{d \tau_{I}}{d N}=-\frac{\tau_{E}}{N^{2}}+\frac{d \varphi}{d N}(N-1) \frac{\tau_{E}}{N}+\varphi \frac{\tau_{E}}{N^{2}}
$$

Rearranging terms，we have

$$
\frac{d \tau_{I}}{d N}<0 \Leftrightarrow \frac{d \varphi}{d N}<\frac{1-\varphi}{N(N-1)}
$$

Substituting out［⿴囗十⿱冖⿴⿱冂一⿱一一厶儿国 with the equation（16），this is rewritten：

$$
\frac{d \tau_{I}}{d N}<0 \Leftrightarrow \frac{d \varphi}{d N}<\frac{1-\varphi}{N(N-1)} \Leftrightarrow \frac{d \beta / \beta}{d N / N}<-1+\frac{\sigma_{z}^{2} \tau_{E}}{2 N(N-1)^{2} \beta^{2}}
$$

We have the expression for ，国 with the equation（15）．Rearranging it yields

$$
\frac{d \beta / \beta}{d N / N}=-\frac{-\frac{N \tau_{E}}{(N-1)^{2}} \beta^{2}-\frac{(2 N-1) \sigma_{Z}^{2} \tau_{E} \rho}{N(N-1)^{2}} \beta-\frac{\left(-3 N^{2}+9 N-4\right) \sigma_{Z}^{2} \tau_{E}^{2}}{N^{2}(N-1)^{3}}}{-\frac{\tau_{E}}{(N-1)} \beta^{2}-\frac{2 \sigma_{Z}^{2} \tau_{E} \rho}{N(N-1)} \beta+\frac{3(N-2) \sigma_{Z}^{2} \tau_{E}^{2}}{N^{2}(N-1)^{2}}}
$$

Here, the denominator is obtained by substituting 3 ? ${ }^{3}$ out by (a) $=0$. Using this expression, after some calculations, we have

$$
\begin{gathered}
\frac{d \beta / \beta}{d N / N}<-1+\frac{\sigma_{z}^{2} \tau_{E}}{2 N(N-1)^{2} \beta^{2}} \\
\Leftrightarrow \frac{\tau_{E}}{(N-1)} \beta^{3}+\left(1-\frac{3}{2}\right) \frac{\sigma_{Z}^{2} \tau_{E} \rho}{N(N-1)} \beta^{2}+\left(\frac{2}{N}-1\right) \frac{\sigma_{Z}^{2} \tau_{E}^{2}}{N(N-1)^{2}} \beta-\frac{\rho \sigma_{Z}^{4} \tau_{E}^{2}}{2 N^{2}(N-1)^{2}}<0 .
\end{gathered}
$$

Again, we substitute out the last term by using $[$ [], [0] $=0$, and make sure each coefficient is negative. In the resulting expression, the coefficients on \square^{2} and $]$ are clearly negative. The coefficients on \square^{3} is $\frac{a_{\square}}{(\square-1)}-\frac{\left.e^{2}\right]}{2(\square-2)}$, which can be negative if $\square_{\square}<\frac{(\square-1) \text { ® }^{2} \text {. }}{2(\square-2)}$.

Corollary 1.

$$
\frac{d R^{2}}{d N}<0 \text { and } \frac{d V}{d N}>0 \text { if } \tau_{E}<\frac{(N-1) \sigma_{z}^{2} \rho}{2(N-2)}
$$

Corollary 2.

$$
\frac{d \lambda}{d N}<0 \quad \text { if } \quad \tau_{E}<\frac{(N-1) \sigma_{z}^{2} \rho}{2(N-2)}
$$

Lemma 4.

$$
\frac{d \beta}{d \tau_{E}}>0
$$

$$
\begin{equation*}
\frac{d \beta}{d \tau_{E}}=-\frac{\partial F / \partial \tau_{E}}{\partial F / \partial \beta}=-\left(\frac{\partial F}{\partial \beta}\right)^{-1}\left(\frac{1}{(N-1)} \beta^{2}+\frac{\sigma_{z}^{2} \rho}{N(N-1)} \beta-\frac{2(N-2) \sigma_{z}^{2} \tau_{E}}{N^{2}(N-1)^{2}}\right) \tag{4}
\end{equation*}
$$

We can show [回? >0 like Lemma 1. The last term is substitute out by (回) $=0$, and we have

$$
\frac{\partial F}{\partial \tau_{E}}=-\frac{2 \rho \beta^{3}}{\tau_{E}}+\left(\frac{1}{N-1}-\frac{2}{N-1}\right) \beta^{2}+\left(\frac{1}{N(N-1)}-\frac{2}{N(N-1)}\right) \sigma_{z}^{2} \rho \beta<0
$$

because each term in parentheses is negative and >0. Combining these, we obtain

Lemma 5.

$$
\frac{d \varphi}{d \tau_{E}}>0
$$

$$
\frac{d \varphi}{d \tau_{E}}=\left((N-1) \beta^{2}+\frac{\sigma_{z}^{2} \tau_{E}}{N}\right)^{-2}\left\{2(N-1) \frac{d \beta}{d \tau_{E}} \beta \frac{\sigma_{z}^{2} \tau_{E}}{N}-(N-1) \beta^{2} \frac{\sigma_{z}^{2}}{N}\right\}
$$

The denominator is clearly positive, and it is enough to show the numerator is positive as well. Rearranging terms, we can show that the numerator is positive if and only if

$$
\frac{d \beta}{d \tau_{E}} \frac{\tau_{E}}{\beta}>\frac{1}{2}
$$

In the LHS, substituting out [17] [国] by (17) wave

$$
\begin{equation*}
\frac{d \beta}{d \tau_{E}} \frac{\tau_{E}}{\beta}=-\frac{\frac{\tau_{E}}{(N-1)} \beta^{2}+\frac{\sigma_{Z}^{2} \tau_{E} \rho}{N(N-1)} \beta-\frac{2(N-2) \sigma_{Z}^{2} \tau_{E}^{2}}{N^{2}(N-1)^{2}}}{-\frac{\tau_{E}}{(N-1)} \beta^{2}-\frac{2 \sigma_{Z}^{2} \tau_{E} \rho}{N(N-1)} \beta+\frac{3(N-2) \sigma_{Z}^{2} \tau_{E}^{2}}{N^{2}(N-1)^{2}}} \tag{5}
\end{equation*}
$$

Note that the denominator is positive. Rearranging terms, we have

$$
\frac{d \beta}{d \tau_{E}} \frac{\tau_{E}}{\beta}>\frac{1}{2} \Leftrightarrow \frac{-\tau_{E}}{(N-1)} \beta^{2}+\frac{(N-2) \sigma_{z}^{2} \tau_{E}^{2}}{N^{2}(N-1)^{2}}>0 \Leftrightarrow \rho \beta^{3}+\frac{\sigma_{z}^{2} \tau_{E} \rho}{N(N-1)} \beta>0
$$

Last equivalence holds from $[$ [迆 $]=0 . \boxtimes$
 $\rightarrow \infty$. From equation 14), with $\rightarrow \infty$, we have,

$$
\rho(N \beta)^{3}+\tau_{E}(N \beta)^{2}+\rho \sigma_{z}^{2} \tau_{E} N \beta-\sigma_{z}^{2} \tau_{E}^{2}=0
$$

Lemma 6.

$$
\frac{d \tau_{I}}{d \tau_{E}}>0
$$

[^0] Applying Lemma 5, with >0 by definition, we have the desired result.

Corollary 3.

$$
\frac{d R^{2}}{d \tau_{E}}>0
$$

 result.

Lemma 7.

For any finite exogenous parameters, there is sufficiently large τ_{E} that satisfies $\frac{d \lambda}{d \tau_{E}}$ <0.
Also, for any finite τ_{E},there is sufficiently large τ_{v} that satisfies $\frac{d \lambda}{d \tau_{E}}>0$.

 sufficiently large. The cutoff value depends on other exogenous parameters.

$$
\begin{equation*}
\frac{d R^{2}}{d \tau_{E}} \frac{\tau_{E}}{R^{2}}=\frac{\tau_{v}}{\tau_{I}}\left(1+(1-\varphi)\left(2 \frac{d \beta}{d \tau_{E}} \frac{\tau_{E}}{\beta}-1\right) \varphi \frac{N-1}{1+\varphi(N-1)}\right) \tag{6}
\end{equation*}
$$

Lemma 8.

$$
\frac{d V}{d \tau_{E}}>0
$$

$$
V=\left(1+\frac{\tau_{v}}{\tau_{E}}\right)\left(\frac{1+(N-1) \varphi}{1+(N-1) \varphi+N \tau_{v} / \tau_{E}}\right)^{2}
$$

$$
\frac{d \ln V}{d \tau_{E}}=\frac{d \varphi}{d \tau_{E}}\left(\frac{2(N-1)}{1+(N-1) \varphi}-\frac{2(N-1)}{1+(N-1) \varphi+N \tau_{v} / \tau_{E}}\right)-\frac{N \tau_{v}}{\tau_{E}^{2}}\left(\frac{1}{N+N \tau_{v} / \tau_{E}}-\frac{2}{1+(N-1) \varphi+N \tau_{v} / \tau_{E}}\right)
$$

From Lemma 5 we have $d \varphi / d \tau_{E}>0$, and the first parenthesis is positive because $\varphi>0$. Also, we can show the second parenthesis is negative. This results in $d \ln V / d \tau_{E}>0$.

[^0]: ${ }^{1}$ The result $0<0<\frac{1}{2}$ is also stated in Kyle (1989).

