Appendix: Proof of propositions

Lemma 1.
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Proof. Multiplying the cubic equation (8), BEE° + 2
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As [ increases, the coefficients on the first three terms weakly decrease, while the last term increases. Therefore
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Next, applying the implicit function theorem to B(B,B) = + .(. D @1y

= 0, we have
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where — = 368° + ﬁl B+ .:.'"l)l > 0 is straightforwardly obtained because B > 0. Using B(E,2) = 0, the last term

of BR/ER is substituted out. The resulting expression is a polynomial of without constant terms, and each

coefficient of @ is greater than zero if Bl = 4. Thus, we have BR/BR > 0 if B = 4, and EE < 0 can be obtained. Wl

Regarding Lemma 1, the equation for B in (5) indicates why the increase of B results in a decrease of B. There
are two channels through which B affects the behavior of traders; its effect on liquidity (which is represented by & in
Bl) and price informativeness (which is represented by and B). The liquidity channel is straightforward. Because the
aggregate demand/supply function is linear in B, the increase of B makes the price inelastic with respect to the unit
order flow: improvement of liquidity. In the imperfect competition model, when the market is more liquid (or the price
is less elastic to the order flow), the traders become more eager to trade, i.e., B increases (this is implied by equation
(5)).

The price informativeness channel is more complicated because it can increase as well as decrease B. If price
becomes more informationally efficient and revealing, each trader becomes reluctant to trade on their signals, and
decreases. Because informational efficiency is increasing in B (i.e., BB/ER > 0), the larger B reduces BE. On the other
hand, if total available information increases in &, the precision of signal for traders increases accordingly. Then,

trading on price information becomes less risky, traders become more aggressive, and B increases.



If we assume a monopolistic competition model, the second effect of informational channel is shut down, because total
available information is fixed: = [ly. Therefore, information channel only reduces B, which can overcome the

liquidity channel and an increase in B result in decreasing [l
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Proof. Differentiating the informational efficiency parameter & =
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The first parenthesis is clearly positive. The second parenthesis reduces to (2—) +2(—1). After

rearranging terms, we have
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Lemma 1 claims that this is satisfied in B> 4. W
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Proof. By definition (4), By = B + By /B + (B — 1)BE/E. Differentiating with respect to B, we have
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Rearranging terms, we have
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Substituting out BRE/BR with the equation (16) , this is rewritten:
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We have the expression for BR/BR with the equation (15). Rearranging it yields
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Here, the denominator is obtained by substituting 3B out by B(E, B) = 0. Using this expression, after some

calculations, we have
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Again, we substitute out the last term by using BI(B,B) = 0, and make sure each coefficient is negative. In the
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resulting expression, the coefficientson B and B are clearly negative. The coefficientson B is which
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Corollary 1.
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Proof. B2 =1-[y/B, is a definition. The sign of BEF?/BE coincides with BE,/BE because 2 _ T p=

(1+ /)(2)2 and BR/ER > 0 immediately follow. K
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Proof. Asequation (7) indicates, the price impactis B = (1 2 ) Lemma 1 suggests that 1/ is decreasing
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in @, and Corollary 1 suggests 1 — Bly/Bly is also decreasing in B. Thus B is decreasingin B. X
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Proof. Applying the implicit function theorem to B(E,B) = + .(. 1). PE1? 0, we have
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We can show BR/ER > 0 like Lemma 1. The last term is substitute out by BI(B,B) = 0, and we have
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because each term in parentheses is negative and B > 0. Combining these, we obtain PE/ER,; > 0. W

Lemma 5.
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Proof. By definition (4), B = R

Differentiating with respect to by and rearranging terms, we have
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The denominator is clearly positive, and it is enough to show the numerator is positive as well. Rearranging terms,

we can show that the numerator is positive if and only if
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In the LHS, substituting out BRE/ER, by (17), we have
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Note that the denominator is positive. Rearranging terms, we have
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Note that, evaluating , ) We can also argue the limiting case of — oo and

)

— oo, From equation 14), with B — oo, we have,
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Here should be finite to satisfy the equality. Taking the limit for B, we obtain (22)? = . Plugging this into the

definition of B, we find that  lim =1/21
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Lemma 6.

dt;
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! Theresult 0 <B < é is also stated in Kyle (1989).
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Proof. Differentiating =By + Z + B(Fy) with respect to By, we have 2

Applying Lemma 5, with B > 0 by definition, we have the desired result.

Corollary 3.
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Proof.  Differentiating of B? = (1 —) by B, we have =

. Applying Lemma 6, we have the desired

result.
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Proof.  Since B = B?/FB, taking a derivative of logP with respect to B, we have = - Since both
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some calculation, ignoring exogenous constants, we have
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sufficiently large. The cutoff value depends on other exogenous parameters.

Next, we show the second statement. Fist, we show that < 1. From equation (18), a direct calculation leads
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Note that we can also show that approaches to zero when goes to zero (from equation (8), (18)).

Lemma 8.
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Proof. Note that Bl = (1 + ) (2) = (1 + ) (1 - ) . Substituting out B, we obtain
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From Lemma 5 we have d¢/dty > 0, and the first parenthesis is positive because ¢ > 0. Also, we can show the

second parenthesis is negative. This results in dInV/dty > 0. B
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