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Appendix A Endogenous Markups

In this section, we show how our results can be extended to economies with endogenous
monopolistically-competitive markups. Recall that for each i ∈ N IRS, the consumer-
surplus ratio is given by

γi − 1 =
Fi(

yi
Yi

)

F′i(
yi
Yi

) yi
Yi

≥ 0.

The price elasticity of demand is given by

σi = −
F′i(

yi
Yi

)

F′′i ( yi
Yi

) yi
Yi

,

where σi > 1 if marginal revenue is positive. If marginal revenue is strictly decreasing
(xF′′′i (x) < −2F′′i (x) for every x), then the monopolistically-competitive markup is uniquely
determined by

µi =
1

1 − 1
σi

≥ 1.

The pass-through of marginal cost into the price is given by

ρi = 1 +
∂ logµi

∂ log mci
=

1

1 − µi

y
Yσ
′

i (
y
Y )

σi(
y
Y )

> 0.

Pass-through is greater than zero as long as marginal revenue curves are strictly downward
sloping.

Lemma 3. In the monopolistically-competitive equilibrium, the change in the markup of each
i ∈ N IRS is given by

d logµi = −
1 − ρi

ρi

γi

σi
d log Mi.

Hence, as long as pass-through is incomplete (ρi < 1), then an increase in the mass of
firms of type i will cause markups in i to decline. Proposition 5 uses Lemma 3 to provide
a version of Theorem 3 with endogenous markups.

Proposition 5 (Output Response with Inefficiencies and Endogenous Markups). Assume
monopolistically competitive markups in every i ∈ N . The response of aggregate output to shocks
d log A is given by

d log Y =
∑

i

λF
i d log Ai −

∑
i∈N IRS

λF
i

1 − ρi

ρi

γi

σi
d̂ logλπ,i (22)
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−

∑
i∈NDRS

λF
i (1 − εi)

(
d logλπ,i − d̂ logλπ,i

)
+

∑
i∈N IRS

λF
i
(
γi − 1

)
d̂ logλπ,i,

where we redefine ΨF to be

ΨF =

(
I − µΩV

−

[
(γ − ε) +

1 − ρ
ρ

γ

σ
ε

]
ζ̃′

(
ζ̃λπζ̃

′
)−1
λEΩE

)−1

.

There are two differences between Theorem 3, where markups are exogenous, and
Proposition 5. First, the definition of the forward Leontief inverse has been modified;
second, the term d logµi has been replaced by 1−ρi

ρi

γi
σi

d̂ logλπ,i. We discuss each in turn.
The modification of ΨF accounts for the fact that a change in the price of j can affect

the price of i by affecting the costs of entry into i via changes in markups. In particular, an
increase in the price of j can raise the entry costs for entering into i, this reduces the mass
of firms in i. If pass-through is incomplete, ρi < 1, then this raises the price of i and the
new definition of ΨF accounts for this fact.

The appearance of 1−ρi
ρi

γi
σi

d̂ logλπ,i in place of d logµi captures the fact that an increase in
profitability of i, if it raises quasi-rents, will cause markups in i to change endogenously.
If pass-through is incomplete ρi < 1, then this causes markups to fall.

Forward propagation, Proposition 1, can likewise be modified.

Proposition 6 (Forward Propagation with Endogenous Markups). Assume monopolistically
competitive markups in every i ∈ N . In response to shocks d log A, changes in prices are given by

d log Pi = −
∑
j∈N

ΨF
ijd log A j +

∑
j∈N IRS

ΨF
ij

1 − ρi

ρi

γi

σi
d̂ logλπ,i

+
∑

j∈NDRS

ΨF
ij

(
1 − ε j

) (
d logλπ, j − d̂ logλπ, j

)
−

∑
j∈N IRS

ΨF
ij

(
γ j − 1

)
d̂ logλπ, j,

where ΨF is defined according to Proposition 5.

Backward propagation, Proposition 2, is unchanged.

Appendix B Proofs

Proof of Theorem 1. Consider the Kuhn-Tucker conditions for the social planning problem

L = U(C1, . . . ,CN) +
∑
i∈N

ρi

Yi − Ci −

∑
k∈N

Mkxki −

∑
j∈E

xE, ji

 +
∑
i∈N

δi

(
MiFi

( yi

Yi

)
− 1

)
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+
∑
i∈N

αi

(
Ai fi(xi j − yi

)
+

∑
j∈E

β j

(
g j

{
xE, ji

}
−ME, j

)
+

∑
i∈N

κi

∑
j∈E

ζ( j, i)ME, j −Mi

 .
The first order conditions are

∂L
∂Ci

:
∂U
∂Ci
− ρi = 0,

∂L
∂Yi

: ρi − δiMiF′i(
yi

Yi
)

yi

Yi

1
Yi

= 0,

∂L
∂xi j

: −ρ jMi + αiAi
∂ fi

∂xi j
= 0,

∂L
∂Mi

: −
∑
k∈N

ρkxik + δiFi(
yi

Yi
) − κi = 0,

∂L
∂xE, ji

: −ρi + β j
∂g j

∂xE, ji
= 0,

∂L
∂yi

: δiMiF′i(
yi

Yi
)

1
Yi
− αi = 0,

∂L
∂ME, j

: −β j +
∑
i∈N

κiζ( j, i) = 0.

Rearrange these

∂U
∂Ci

= ρi,

ρi = δiMiF′i(
yi

Yi
)

yi

Yi

1
Yi
,

ρ jMi =αiAi
∂ fi

∂xi j
,

κi = −
∑
k∈N

ρkxik + δiFi(
yi

Yi
),

ρi = β j
∂g j

∂xE, ji
,

αi = δiMiF′i(
yi

Yi
)

1
Yi
,

β j =
∑
i∈N

κiζ( j, i).
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Now consider the equations that determine the decentralized equilibrium outcome, im-
posing that µi = γi = 1/µY

i :

∂U
∂Ci

=
Pi

PY

mciAi
∂ fi

∂xi j
= P j

pi

Pi
= F′i(

yi

Yi
)

PE, j
∂g j

∂xE, ji
= Pi

∑
i∈N

ζ( j, i)ME, j

Mi

Mipiyi −Mi

∑
j∈N

P jxi j

 =
∑
k∈N

PkxE, jk

Yi = Ci +
∑
j∈N

M jx ji +
∑
j∈E

ME, jxE, ji

Mi =
∑
j∈E

ζ( j, i)ME, j,

where mci is the marginal cost of producer i. Note that the first-order conditions for the
planning problem coincide with those that characterize the decentralized equilibrium.
Specifically,

Pi

PY = ρi

mci

PY Mi = αi,

PE, j

PY = β j,

δi = γi
PiYi

PY ,

γ−1
i = MiF′i(

yi

Yi
)

yi

Yi
,

1
PY

γiPiYi
1

Mi
−

∑
k∈N

Pixik

 = κi.

PE, j =
∑
i∈N

γiPiYi
1

Mi
−

∑
k∈N

Pixik

 ζ( j, i).
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To verify these relationships, it helps to recognize that

piyi = γi
PiYi

Mi
.

�

Proof of Theorem 2. This follows from an application of the envelope theorem. �

Lemma 4. In equilibrium, the change in the mass of producers in each market is given by

d log M = d̂ logλπ − ζ̃
′(ζ̃λπζ̃′)−1λE d log PE, (23)

where d log M is the |N| × 1 vector of changes in masses of producers, λE is the |E| × |E| diagonal
matrix of quasi-rents (expenditures on entry), and d log PE is the |E| × 1 vector of changes in entry
prices.1 Furthermore,

Proof of Lemma 4. We assume that the rows of ζ are linearly independent, otherwise there
are trivial entry types. Initialize the equilibrium where all ME have been normalized to
unity, we have the zero-profit conditions

λE,i =
∑
j∈N

(
ζi j∑

k∈E ζkj

)
λπ j ,

=
∑
j∈N

ζ̃i jλπ j ,

where ζ̃i j = ζi jME,i/
(∑

k∈E ζkjME,k

)
. Using the fact that

Mi =
∑

j

ζ jiME, j. (24)

loglinearize to get the zero-profit condition

∑
j

ζ̃i jλπ jd logλπ j −

∑
j

ζ̃i jλπ j


∑

j

ΩE
ijd log P j

 =
∑

j

ζ̃i jλπ jd log M j, (25)

or in matrix notation, where λE and λπ are diagonal matrices:

ζ̃λπd logλπ − λEΩEd log P = ζ̃λπζ̃
′d log ME. (26)

1The entry price PE, j of the jth entrant is the marginal cost associated with the production function in
equation (2).
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If ζ has linearly independent columns then

(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − λEΩEd log P

)
= d log ME, (27)

and
ζ̃′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
= d log M. (28)

From constant returns to scale, we know that ΩEd log P = d log PE. �

Proof of Theorem 3. The aggregation equation is

d log Y = −Ω(0,:)d log P. (29)

Define εi = 1 if i ∈ N IRS and γi = 1 if i ∈ NDRS. For each individual variety, we can write

d log pi = d logµi +
∑

j

(1 − πi)−1ΩV
ij d log P j − d log Ai +

1 − εi

εi
d log yi,

= d logµi +
∑

j

µi

εi
ΩV

ij d log P j − d log Ai +
1 − εi

εi
d log yi.

For the aggregated price, we have

d log Pi = d logµY
i + d log pi − (γi − 1)d log Mi

= d logµY
i + d logµi +

∑
j

µi

εi
ΩV

ij d log P j − d log Ai +
1 − εi

εi
d log yi − (γi − 1)d log Mi

= d logµY
i + d logµi +

∑
j

µi

εi
ΩV

ij d log P j − d log Ai

+
1 − εi

εi

(
d logλi − d log Pi − γid log Mi

)
− (γi − 1)d log Mi

= d logµY
i + d logµi +

∑
j

µi

εi
ΩV

ij d log P j − d log Ai

+
1 − εi

εi

(
d logλi − d log Pi − d log Mi

)
−

1
εi

(γi − 1)d log Mi

Using the fact that

d log M = d̂ logλπ − ζ̃
′
(
ζ̃λπζ̃

′
)−1
λEΩEd log P, (30)
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we have

d log P = εd logµ + εd logµY
− εd log A

+ (1 − εi)
(
d logλ − d̂ logλπ

)
− (γ − 1)

(
d̂ logλπ

)
+ µΩVd log P + (γ − ε)

(
ζ̃′

(
ζ̃λπζ̃

′
)−1
λEΩEd log P

)
Letting

ΨF =
(
I − εµΩV

− (γ − ε)ζ̃′
(
ζ̃λπζ̃

′
)−1
λEΩE

)−1

(31)

gives

d log P = ΨF
(
εd logµ + εd logµY

− εd log A + (1 − ε)
(
d logλ − d̂ logλπ

)
− (γ − 1)

(
d̂ logλπ

))
,

(32)
which can be rearranged, using d log Y = −Ω(0,:)d log P, to give desired result. �

Proof of Proposition 1. The proof for this is the same as that of Theorem 3. �

Proof of Proposition 2. Note that

λπi =

(
1 −

εi

µi

)
λB

i

µY
i

.

d logλπi = d logλB
i − d logµY

i + d logπi

= d logλB
i − d logµY

i +
1 − πi

πi
d logµi.

The free entry condition ensures that

λE = diag (ME) ζdiag(M)−1πλB, (33)

So,

λB′ = λB′ΩV + (λE)′ΩE,

= λB′ΩV + λB′πdiag(M)−1ζ′diag (ME) ΩE.

Therefore,

dλB′ = λB′dΩV + λB′dπdiag(M)−1ζ′diag (ME) ΩE.
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− λB′πdiag(M)−1diag(d log M)ζ′diag (ME) ΩE

+ λB′πdiag(M)−1ζ′diag (ME) dΩE

+ λB′πdiag(M)−1ζ′diag (ME) diag(d log ME)dΩE

+ dλB′
(
ΩV + πdiag(M)−1ζ′ΩE

)
,

= λB′
(
dΩV + dπdiag(M)−1ζ′diag (ME) ΩE

)
ΨB

− λB′
(
πdiag(M)−1diag(d log M)ζ′diag (ME) ΩE

)
ΨB

+ λB′
(
πdiag(M)−1ζ′diag (ME) diag(d log ME)dΩE

)
ΨB

+ λB′
(
πdiag(M)−1ζ′diag (ME) dΩE

)
, (34)

where, using the fact that in the initial equilibrium ζdiag(M)−1 = ζ̃

ΨB =
(
I −ΩV

− πdiag(M)−1ζ′diag (ME) ΩE
)
,

=
(
I −ΩV

− πζ̃′ΩE
)
.

Using the fact that

dΩV
ij = −ΩV

ij d log
(
µiµ

Y
i

)
+ µ−1

i (1 − θi)Covi

(
d log P, I( j)

)
, (35)

we can rewrite (34) as

dλB
i = −

∑
m∈N

λB
m

∑
k∈N

ΩV
mkΨ

B
kid log

(
µmµ

Y
m

)
+

∑
m

λB
mµ
−1
m (1 − θm)Covm

(
d log P,ΨB

(i)

)
+

∑
j∈E

∑
m∈N

∑
k∈N

λB
mεm

d logµm

µkµY
k

ζ̃ jmΩE
jkΨ

B
ki

−

∑
k∈N

∑
m∈N

∑
j∈E

λB
mπmζ̃ jmΩE

jk

(
d log Mm + d logµY

)
ΨB

ki

+
∑
k∈N

∑
m∈N

λB
m

∑
j∈E

πmζ̃ jmΩE
jkd log ME, jΨ

B
ki,

where we use the fact that we have assumed (without loss of generality) that ΩE is
degenerate.

In Appendix C, we introduce the notion of non-overlapping entry and show that we
can impose this without loss of generality. Under non-overlapping entry, we use the
following identity

Lemma 5. Under non-overlapping entry, the following identity holds:
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∑
k∈N

∑
m∈N

∑
j∈E

λB
mπmζ̃ jmΩE

jkd log MmΨB
ki =

∑
k∈N

∑
m∈N

∑
j∈E

λB
mπmζ̃ jmΩE

jkd log ME, jΨ
B
ki. (36)

Proof. Rearrange the left-hand side to be:

∑
k∈N

∑
m∈N

∑
j∈E

ζ̃ jmλπmΩE
jk

(
d log Mm − d log ME, j

)
ΨB

ki =
∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm − d log ME, j

)
=

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j


=

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j

 .
The free-entry condition is

PE, j =
∑
k∈N

ζ jkλπk

1
Mk
. (37)

λE, jd log PE, j =
∑
k∈N

ζ̃ jkλπkd logλπk −

∑
k∈N

ζ̃ jkλπkd log Mk,∑
k∈N

ζ̃ jkλπkd log Mk =
∑
k∈N

ζ̃ jkλπkd logλπk − λE, jd log PE, j

ζ̃λπd log M = ζ̃λπd logλπ − λEd log PE.

On the other hand,
λEd logλE = λEd log ME + λEd log PE. (38)

Finally, note that, free entry requires that

λE = ζ̃λπ,

λEd logλE = ζ̃λπd logλπ + ζ̃d log ζ̃λπ.

If there is non-overlapping entry, then

d log ζ̃ = 0. (39)

Hence,

λEd log ME = λEd logλE − λEd log PE
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= ζ̃λπd logλπ − λEd log PE

= ζ̃λπd log M.

Therefore, ∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j

 = 0, (40)

as needed. In general,

λE = ζ̃λπ,

λEd logλE = ζ̃λπd logλπ + dζ̃λπ

= ζ̃λπd logλπ + d log MEζ̃λπ − ζ̃d log Mλπ

Hence

λEd log ME = λEd logλE − λEd log PE

= ζ̃λπd logλπ + d log MEζ̃λπ − ζ̃d log Mλπ − λEd log PE

= ζ̃λπd log M + d log MEζ̃λπ − ζ̃d log Mλπ

= d log MEζ̃λπ

In other words,

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm − d log ME, j

) = 0. (41)

Simplify it a bit

ζ̃λπd log M = ζ̃λπζ̃
′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
= ζ̃λπd logλπ − λEΩEd log P

λEd log ME = λE

(
(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩFd log P

))
,

= diag(ζ̃λπ1)(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − λEΩFd log P

)
.
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Hence

ζ̃λπd log M − λEd log ME = ζ̃λπd logλπ

− diag(ζ̃λπ1)ΩFd log P

− diag(ζ̃λπ1)(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − diag(ζ̃λπ1)ΩFd log P

)
=

(
IE×E − diag(ζ̃λπ1)(ζ̃λπζ̃′)−1

) (
ζ̃λπd logλπ − diag(ζ̃λπ1)ΩFd log P

)
where we use the fact that

(ζ̃λπζ̃′)−1
(
ζ̃λπd logλπ − λEΩEd log P

)
= d log ME, (42)

and
ζ̃′(ζ̃λπζ̃′)−1

(
ζ̃λπd logλπ − λEΩEd log P

)
= d log M. (43)

Hence, in general we have

∑
k∈N

∑
j∈E

ΩE
jkΨ

B
ki

∑
m∈N

ζ̃ jmλπm

(
d log Mm

)
− λE, jd log ME, j

 =
[(

IE×E − diag(ζ̃λπ1)(ζ̃λπζ̃′)−1
)

(
ζ̃λπd logλπ − diag(ζ̃λπ1)ΩFd log P

)]′
ΩEΨB. (44)

�

Having defined
d log P̂ = ζ̃′(ζ̃λπζ̃′)−1λEΩFd log P, (45)

with the aid of the lemma above, if we have non-overlapping entry, we get the simpler
expressions

dλB
i = −

∑
m∈N

λB
m

∑
k∈N

ΩV
mkΨ

B
kid log

(
µmµ

Y
m

)
+

∑
j∈E

∑
m∈N

∑
k∈N

λB
mεm

d log
(
µm

)
µmµY

m
ζ̃ jmΩE

jkΨ
B
ki

−

∑
k∈N

∑
m∈N

∑
j∈E

λB
mπmζ̃ jmΩE

jkd logµY
mΨB

ki +
∑

m

λB
m

µY
m

(1 − θm)CovΩ̃V,m

(
d log P,ΨB

(i)

)
.

�

Proof of Proposition 3. We start with

d log Y =
∑

i

bid log Ci
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Cid log Ci = Yid log Yi −

∑
j∈N

x jid log x jiM j −

∑
j∈N

x jiM jd log M j −

∑
j∈E

xE, jid log xE, ji

PiCid log Ci = PiYid log Yi −

∑
j∈N

Pix jiM jd log x ji −

∑
j∈N

Pix jiM jd log M j −

∑
j∈E

PixE, jid log xE, ji

bid log Ci = λB
i d log Yi −

∑
j∈N

λB
j

Pix ji

P jY j
M j

(
d log x ji + d log M j

)
−

∑
j∈E

λE
j

PixE, ji

λE
j

d log xE, ji,

d log Y =
∑
i∈N

λB
i d log Yi −

∑
j∈N

λB
j

Pix ji

P jY j
M j

(
d log x ji + d log M j

)
−

∑
j∈E

λE
j

PixE, ji

λE
j

d log xE, ji

 ,
=

∑
i∈N

λB
i d log Yi −

∑
j∈N

λB
i

P jxi j

PiYi
Mi

(
d log xi j + d log Mi

)
−

∑
j∈E

λE
j

PixE, ji

λE
j

d log xE, ji

 ,
We also have

PiYi = µY
i Mip

y
i yi.

d log Yi = d log yi + γid log Mi. (46)

Let
qi = fi(xi j), yi = qεi

i . (47)

Let pq
i be the marginal cost of producing qi. Hence

∂ log qi

∂ log xi j
=

P jxi j

pq
i qi

= µY
i µi

1
εi

Mi
P jxi j

PiYi
= µY

i µi
1
εi

ΩV
ij , (48)

Furthremore,
d log qi =

∑
j

p jxi j

piqi
d log xi j. (49)

So,

d log Yi = d log yi + γid log Mi

= γid log Mi + εi

∑
j

∂ log qi

∂ log xi j
d log xi j

= γid log Mi + µY
i µ

y
i

∑
j

ΩV
ij d log xi j∑

j

ΩV
ij d log xi j +

∑
j

ΩV
ij d log Mi =

1
µiµY

i

d log Yi −
γi

µiµY
i

d log Mi +
εi

µiµY
i

d log Mi
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We can write

d log Y =
∑
i∈N

λB
i d log Yi −

∑
j∈N

λB
i

P jxi j

PiYi
Mi

(
d log xi j + d log Mi

)
−

∑
j∈E

λE
j

PixE, ji

λE
j

d log xE, ji

 ,
=

∑
i∈N

λB
i d log Yi − λ

B
i

∑
j∈N

ΩV
ij

(
d log xi j + d log Mi

)
−

∑
j∈E

λE
j

PixE, ji

λE
j

d log xE, ji

 ,
=

∑
i∈N

λB
i d log Yi − λ

B
i

1
µY

i µi

[
d log Yi − γid log Mi + εid log Mi

]
−

∑
j∈E

ΩE
jiλE, jd log xE, ji

 ,
=

∑
i∈N

(
λB

i

(
1 −

1
µY

i µi

)
d log Yi

)
+

∑
i∈N

λB
i

γi − εi

µY
i µi

d log Mi −

∑
j∈E

∑
i∈N

ΩE
jiλE, jd log xE, ji,

=
∑
i∈N

(
λB

i

(
1 −

1
µY

i µi

)
d log Yi

)
+

∑
i∈N

λB
i

γi − εi

µY
i µi

d log Mi −

∑
j∈E

λE, jd log ME, j,

=
∑
i∈N

(
λB

i

(
1 −

1
µY

i µi

)
d log Yi

)
+

∑
i∈N

λB
i

γi − εi

µY
i µi

∑
j∈E

ζ̃i jd log ME, j −

∑
j∈E

λE, jd log ME, j.

Finally, note that

λE, j =
∑

i

λB
i

µY
i

(
1 −

εi

µi

)
ζ̃i j

Hence,

d log Y =
∑
i∈N

(
λB

i

(
1 −

1
µY

i µi

)
d log Yi

)
+

∑
i∈N

λB
i

γi − εi

µY
i µi

∑
j∈E

ζ̃i jd log ME, j −

∑
j∈E

∑
i

λB
i

µY
i

(
1 −

εi

µi

)
ζ̃i jd log ME, j,

=
∑
i∈N

(
λB

i

(
1 −

1
µY

i µi

)
d log Yi

)
+

∑
i∈N

λB
i

µY
i

(
γi − εi

µi
− 1 +

εi

µi

)∑
j∈E

ζ̃i jd log ME, j,

=
∑
i∈N

(
λB

i

(
1 −

1
µY

i µi

)
d log Yi

)
+

∑
i∈N

λB
i

µY
i

(
γi

µi
− 1

)∑
j∈E

ζ̃i jd log ME, j.

Diffrentiate this expression a second time with respect to logµand logµYand evaluate it
at the efficient point to get

d2 log Y =
1
2

∑
i∈N

λB
i d log Yid log

(
µiµ

Y
i

)
−

∑
i∈N

λB
i γi

∑
j∈E

ζ̃i jd logµid log ME, j

 .
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Now use the fact that and use the fact that and

d log Mi =
∑
j∈E

ζ̃i jd log ME, j. (50)

to get

d2 log Y =
1
2

∑
i∈N

λB
i d log Yid log

(
µiµ

Y
i

)
−

∑
i∈N

λB
i γid logµid log Mi


=

1
2

∑
i∈N

λB
i
[
d log yi

]
d log

(
µiµ

Y
i

)
+

∑
i∈N

λB
i γid log Mid log

(
µiµ

Y
i

)
−

∑
i∈N

λB
i γid logµid log Mi


=

1
2

∑
i∈N

λB
i
[
d log yi

]
d log

(
µiµ

Y
i

)
+

∑
i∈N

λB
i γid log Mid logµY

i

 .
�

Proof of Proposition 4. We assume there is one primary factor with no incumbents, no
input-output in entry costs. For a model with entry in sectors, we can assume away
within-industry heterogeneity momentarily. Therefore, we can assume entry is fully
directed. We use the deadweight loss triangles formula, along with the fact that for each
i ∈ N

d log Yi = d logλB
i − d log Pi.

So,

d logλB
l =

∑
k

(
δlk −

λB
k

λB
l

ΨB
kl

)
d logµq

k −

∑
j

λ j

λl
(θ j − 1)Cov j(d log P,ΨB

(l)), (51)

where δlk is Kronecker’s delta, and

d logλπi = d logλB
i +

( 1
1 − εi

− 1
)

d logµi, (52)

d log P = ΨF

(
ε
γ

d logµ
)

+ ΨF
(
1 − ε

(
d logλ − d log λ̂π

))
,

= ΨF(ε)d logµ −ΨF (ε) d logµ = 0.

Hence

d logλB
l =

∑
k

(
δlk −

λB
k

λB
l

ΨB
kl

)
d logµq

k, (53)
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Furthermore, letting Λ denote labor’s share of income

d log ME = d logλπ − d log Λ,

= d logλB
i +

( 1
1 − εi

− 1
)

d logµi

∑
l

λB
l

(
d logλB

l − d log pl

)
d logµl =

∑
l

∑
k

(
λB

l δlk − λ
B
k ΨB

kl

)
d logµkd logµl

Next

∑
j∈E

∑
i∈N

λB
i ζ̃i j

µY
i γi

d log
(
µy

i µ
q
i

)
d log ME, j =

∑
i

λB
i d logµid logλB

i +
∑

i

λB
i

( 1
1 − εi

− 1
)

d logµid logµi

Combining everything gives

L =
∑

l

∑
k

(
λB

l δlk − λ
B
k ΨB

kl

)
d logµkd logµl −

∑
i

λid logµid logλB
i −

∑
i

λB
i

( 1
1 − εi

− 1
)

d logµid logµi.

d logλB
i = −

1
λB

i

∑
j

(
λB

j Ψ
B
ji − λ

B
j δi j

)
d logµ j, (54)

Or

L =
∑

k

λB
k

∑
l

(
δlk −ΨB

kl

)
d logµkd logµl +

∑
j

λB
j

∑
i

(
ΨB

ji − δi j

)
d logµ jd logµi

−

∑
i

λB
i

( 1
1 − εi

− 1
)

d logµid logµi,

= −
∑

i

λB
i

( 1
1 − εi

− 1
)

d logµid logµi.

This is the loss function for a model with homogeneous sectors.
To extend this into a sectoral model with within-sector heterogeneity, consider the

isomorphic sectoral model. We know that

d log Y =
d log Y
d log A

d log A +
d log Y
d logµ

d logµ (55)

1
2

d2 log Y =
1
2

d log A′
d2 log Y
d log A2 d log A+

d log Y
d log A

d2 log A+
1
2

d logµ′
d2 log Y
d logµ2 d logµ+

d log Y
d logµ

d2 logµ

(56)
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At the efficient point, d log A = 0 and d log Y/d logµ = 0,

−L =
1
2

d log Y
d log A

d2 log A +
1
2

d logµ′
d2 log Y
d logµ2 d logµ

where, from the proof of the previous proposition, we know that

d2 log Ak = −
1
2

1
1 − ε

Varδk

(
d logµ(k)

)
. (57)

Finally, recall note that at the efficient point, from Hulten’s theorem, d log Y/d log A= λB(ε),
so we get

d2 log Y = −
1
2

∑
I

λB
I

( 1
1 − εI

− 1
)

VarδI

(
d logµ(I)

)
−

1
2

∑
I

λB
I

( 1
1 − εI

− 1
)

EδI

(
d logµ(I)

)2

�

Appendix C The Role of Reallocation

To see how Theorem 3 can be decomposed into technical and allocative efficiency, without
loss of generality, we impose the follow assumption.

Assumption 3. Entry is non-overlapping. That is, for each i ∈ N , there is at most one
entrant type j ∈ E that can produce product i: ζ( j, i) , 0.2

Theorem 3 provides an interpretable decomposition of changes in output into changes
in technical and allocative efficiency along the lines of Baqaee and Farhi (2019a). To see
this, let X denote the (|N| + |E|) × |N| allocation matrix of the economy, where Xi j records
the fraction of good j used by a producer or entrant i ∈ N + E. Together with the vector of
productivity shifters A, the allocation matrix pins down the whole allocation, and hence
aggregate output Y(A,X).

In particular, equilibrium aggregate output is obtained by using the equilibrium allo-
cation matrix X(A, µ) where µ is the vector of markups/wedges. Changes in equilibrium

2To see why we can impose this without loss of generality, consider a situation where entrants 1 and
2 enter into the same market, so that Y = F(My) and M = ME,1 + ME,2. To turn this into a model with
non-overlapping entry, create two fictitious markets Yi = F(Miyi) with non-overlapping entry Mi = ME,i for
i ∈ {1, 2}. Now create a third fictitious market, with no entry, where Y3 aggregates Y1 and Y1 in the same
way as F. Since Y = Y3, we have recast a model with overlapping entry into an equivalent model with
non-overlapping entry. We impose this assumption throughout.
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aggregate output in response to shocks can therefore be written, in matrix notation, as

d log Y =
∂ log Y
∂ log A

d log A︸            ︷︷            ︸
∆Technical Efficiency

+
∂ log Y
∂X

dX︸       ︷︷       ︸
∆Allocative Efficiecny

,

where the first term is the direct effect of changes in technology, holding the allocation of
resources constant, and the second term is the indirect effect of equilibrium reallocations

dX =
∂X

∂ log A
d log A +

∂X
∂ logµ

d logµ.

Proposition 7 breaks Theorem 3 into two components.

Proposition 7 (Decomposition with Inefficiencies). In response to shocks (d log A,d logµ),
changes into aggregate output can be decomposed in changes in technical efficiency

∂ log Y
∂ log A

d log A =
∑
i∈N

λF
i d log Ai,

and changes in allocative efficiency

∂ log Y
∂X

dX = −
∑

i∈N IRS

λF
i d logµi −

∑
i∈NDRS

λF
i εid logµi (58)

−

∑
i∈NDRS

λF
i (1 − εi)

(
d logλB

i − d̂ logλπ,i
)

+
∑

i∈N IRS

λF
i
(
γi − 1

)
d̂ logλπ,i.

Changes in technical efficiency are a Hulten-like weighted sum of changes in produc-
tivities. The weights are forward Domar weights rather than traditional Domar weights.
This is because when the allocation of resources is kept constant, productivity shocks are
pushed forward through supply chains to the household, and the household’s exposure
in prices ΨF

0i to each good i is given by λF
i not λB

i .
Changes in allocative efficiency can be traced back to reductions in prices (shares)

of specific fixed factors associated with individual producers and with entry. Focus on
productivity shocks for simplicity, so that the first line of (58) is zero. This leaves two
terms on the second line.

The first term depends on decreasing internal returns to scale 1 − εi. When d logλB
i −

d̂ logλπ,i > 0, this means that individual producers in market i are scaling up and running
into diminishing returns. This raises the shadow price of their producer-specific fixed
factor and contributes negatively to changes in allocative efficiency in proportion to the
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forward Domar weightλF
i (1−εi) of these specific fixed factors.3,4 When d logλB

i −d̂ logλπ,i =

0, decreasing returns to scale do not matter since adjustments in market size are taking
place along the extensive margin (individual producers are not change their scale).

The second term depends on consumer surplus γi − 1. When d̂ logλπ,i > 0, this means
that entry is increasing in market i and triggering external economies from love of variety.
This reduces the (negative) shadow price of the specific fixed factor associated with entry
and contributes positively to changes in allocative efficiency in proportion to the forward
Domar weight λF

i (γi − 1) of these specific fixed factors.
Improvements in allocative efficiency can be measured by a forward-weighted sum

of reductions in the shadow prices of fixed factors. Beneficial equilibrium reallocations,
by using more resources more efficiently, reduce the shadow prices of fixed factors on
balance across markets. This can only occur when the economy is inefficient. When the
economy is efficient, reductions in the shadow prices of some specific fixed factors are
exactly compensated by increases in others.

Corollary 1 (Decomposition under Efficiency). In the marginal-cost pricing equilibrium, as
long as εi, γi < 1 for all i ∈ N , changes in technical and allocative efficiency are given by5

∂ log Y
∂ log A

d log A =
∑
i∈N

λF
i d log Ai and

∂ log Y
∂X

dX = 0,

with λF
i = λB

i .

In the efficient benchmark, technology shocks only have direct effects and not indirect
reallocation effects. Of course, this does not mean that reallocations do not occur in
efficient models, but merely that their impact is irrelevant to a first order.

Appendix D Beyond CES

Following Baqaee and Farhi (2019b), all the results in the paper to arbitrary neoclassical
production functions simply by replacing the input-output covariance operator with the

3When we refer to the price of producer-specific fixed factors, we rely on Lionel McKenzie’s insight that
any non-CRS production function h(x) can be represented by a CRS technology h̃(x, z) = zh(x/z) where z is a
producer-specific fixed factor with supply z = 1. The marginal cost of h(x) coincides with the marginal cost
of h̃(x, z), where the effect of scale in the former is captured by the (shadow) price of the fixed factor in the
latter.

4Recall that primary factors f ∈ F ⊂ N are captured as producer-specific fixed factors in factor markets
with zero-returns-to-scale individual producers (1−ε f = 1) aggregated linearly with no entry (d̂ logλπ, f = 0).

5The assumption that εi, γi < 1 ensures that entry is not socially wasteful. When it is violated, equilibrium
reallocations affecting entry can reduce (but not increase) aggregate output to a first order.
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input-output substitution operator instead. For a producer k with cost function Ck, the
Allen-Uzawa elasticity of substitution between inputs x and y is

θk(x, y) =
Ckd2Ck/(dpxdpy)

(dCk/dpx)(dCk/dpy)
=
εk(x, y)

Ωky
,

where εk(x, y) is the elasticity of the demand by producer k for input x with respect to the
price py of input y, and Ωky is the expenditure share in cost of input y. We also use this
definition for final demand aggregators.

The input-output substitution operator for producer k is defined as

Φk(Ψ(i),Ψ( j)) = −
∑

x,y∈N+F

Ωkx[δxy + Ωky(θk(x, y) − 1)]ΨxiΨyj, (59)

=
1
2

EΩ(k)

(
(θk(x, y) − 1)(Ψi(x) −Ψi(y))(Ψ j(x) −Ψ j(y))

)
, (60)

where δxy is the Kronecker delta, Ψi(x) = Ψxi and Ψ j(x) = Ψxj, and the expectation on the
second line is over x and y.

In the CES case with elasticity θk, all the cross Allen-Uzawa elasticities are identical
with θk(x, y) = θk if x , y, and the own Allen-Uzawa elasticities are given by θk(x, x) =

−θk(1 −Ωkx)/Ωkx. It is easy to verify that when Ck has a CES form we recover the input-
output covariance operator:

Φk(Ψ(i),Ψ( j)) = (θk − 1)CovΩ(k)(Ψ(i),Ψ( j)).

Even outside the CES case, the input-output substitution operator shares many prop-
erties with the input-output covariance operator. For example, it is immediate to verify,
that: Φk(Ψ(i),Ψ( j)) is bilinear in Ψ(i) and Ψ( j); Φk(Ψ(i),Ψ( j)) is symmetric in Ψ(i) and Ψ( j); and
Φk(Ψ(i),Ψ( j)) = 0 whenever Ψ(i) or Ψ( j) is a constant.

All the results in the paper can be extended to general non-CES economies by simply
replacing terms of the form (θk − 1)CovΩ(k)(Ψ(i),Ψ( j)) by Φk(Ψ(i),Ψ( j)).

Appendix E Details of Sectoral Models

For any sectoral model with heterogeneous firms in each sector, there is an isomorphic
companion sectoral model with homogenous firms in each sector. The companion model
assumes that all firms in a given sector I are identical with productivity shifter AI and
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markup µI defined by

AI =
µI
µ
I

∑
i∈I

λ
I,B
i

(
Ai/Ai

µi/µi

) ε
I

1−ε
I


1−ε
I

ε
I

and µI =
1∑

i∈I λ
I,B
i

1
µi

,

where for each i ∈ I, we define λB
I

=
∑

j∈I λ
B
j and λI,Bi = λB

i /λ
B
I
. Here we remind the

reader that we use overlines to signal initial values when there is an ambiguity but we
drop them when there is none. We denote by Y̌ the aggregate output in the companion
model without heterogeneity within sectors.

If Y denotes aggregate output in a sectoral model with heterogeneity, we denote by Y̌
denote aggregate output in the companion model without heterogeneity.

Proposition 8 (Sectoral Aggregation). For any sectoral model with within-sector heterogeneity,
the nonlinear response ∆ log Y of aggregate output to shocks to productivities and markups is
equal to the nonlinear response ∆ log Y̌ of aggregate output to shocks to sectoral productivities and
markups in the companion model with no within-sector heterogeneity.

Proof of Proposition 8. To prove this, for each industry with heterogeneous firms, we con-
struct an isomorphic industry with homogeneous firms which has the same price, quantity
and mass of entrants. To do this, consider some industry with heterogeneous firms, where
we drop the industry subscript to cut down on notation. The equations that determine
the industry’s mass of entrants, prices and quantity produced are

Y =

∑
i

Miyi

1/γ

yi = biqεi

py
i =

µy
i

bi

pq
i

ε
q1−ε

i

pq
i =

µq
i p

inputs

Ai

PY = µYγip
y
i Y1− 1

γ

Mi = biM,

M =
1
γ
µY

∑
i

1 −
ε

µq
iµ

y
i

λi,

where bi are the exogenous taste/productivity shifters for each firm. The comparison
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industry with homogeneous firms is

Y∗ =
(
M∗y∗

) 1
γ

y∗ = qε
∗

py
∗ = µy

∗

pq
∗

ε
q1−ε
∗

pq
∗ =

µq
∗p

inputs
∗

A∗
PY
∗

= µY
∗
py
∗Y1−1/γ

M∗ =
1
γ
µY
∗

(
1 −

ε

µq
∗µ

y
∗

)
λ∗.

We want to have µq, µy, µY, A, such that we match the quantity Y = Y∗ and the price P = P∗

in the two cases. We need also want the mass of entrants to be the same.

M∗ = M (61)

hence

µY
∗

(
1 −

ε

µq
∗µ

y
∗

)
= µY

∑
i

1 −
ε

µq
iµ

y
i

 λi

λ∗

= µY

1 − (ε)
∑

i

δi

µq
iµ

y
i

 ,
where δi is firm i’s sales shares in the industry. So, set

µY
∗

= µY (62)

µq
∗µ

y
∗ =

∑
i

δi

µq
iµ

y
i

−1

. (63)

To ensure that
PY = PY

∗
, (64)

we need

µy
∗µ

q
∗

1
A∗

q1−ε
∗

=
µy

i µ
q
i

bi

1
Ai

q1−ε
i (65)
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and we know that

PY = µY
µy

i

bi

µq
i p

inputs

(ε)Ai
q1−ε

i γY1−1/γ (66)

Hence  biPY(ε)Ai

Y1−1/γγµYµy
i µ

q
i p

inputs

 = q1−ε
i (67)

Therefore,

µy
∗µ

q
∗

1
A∗

q1−ε
∗

= µy
i µ

q
i

1
Ai

 PY(ε)Ai

Y1−1/γγµYµy
i µ

q
i p

inputs


q∗ =

 PY(ε)

Y1−1/γ
∗ γµYpinputs

 A∗
µy
∗µ

q
∗


1

1−ε

But we also must have

Y =

∑
i

Miqεi

 =
(
M∗qε∗

)
= Y∗ (68)

In other words

M∗

 PY(ε)

Y1−1/γ
∗ γµYpinputs

A∗
µy
∗µ

q
∗


ε

1−ε

=

∑
i

biM

 PY(ε)Ai

Y1−1/γγµYµy
i µ

q
i p

inputs


ε

1−ε
 (69)

(
A∗
µy
∗µ

q
∗

) ε
1−ε

=

∑
i

bi

 Ai

µy
i µ

q
i


ε

1−ε
 (70)

or

A∗ = µy
∗µ

q
∗

∑
i

bi

 Ai

µy
i µ

q
i


ε

1−ε


1−ε
ε

.

=

∑
i

bi

 Ai

µy
i µ

q
i /(µ

y
∗µ

q
∗)


ε

1−ε


1−ε
ε

.

Let sectoral productivity be given by A∗ and sectoral markups be given by µ∗ where
recall that µq

iµ
y
i = µi. �

The outer-elasticity γI, which distinguishes models with IRS from those with DRS, is
not relevant to how we aggregate firms within the sector since neither AI nor µI depend
on γI.

To break this problem into a within-sector and cross-sector problem, in vector notation,
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write

d log Y = d log Y̌ =
∑
I

d log Y̌
d log AI

d log AI +
∑
I

d log Y̌
d log(µI, µY

I
)

d log(µI, µY
I
).

We now differentiate a second time and evaluate the second derivative at the efficient
marginal-pricing equilibrium. We use the fact that at the efficient point d log AI = 0 and,
from the envelope theorem, that d log Y̌/d logµI = 0, we get a simpler expression for the
loss function L = −(1/2)d2 log Y̌ using

d2 log Y̌ =
∑
I

d log Y̌
d log AI

d2 log AI

+
∑
I,J

d log(µI, µY
I
)′

d2 log Y̌
d log(µI, µY

I
) d log(µJ , µY

J
)

d log(µJ , µY
J

), (71)

where d log Y̌/d log AI = λB
I
(εI) by Theorem 2. This expression can then be combined

with the following lemma.
Using Lemma 6 below, it becomes apparent that: the first term in the loss function

captures misallocation arising from distortions in relative producer sizes driven by the
dispersion of markups/wedges within sectors; the second term captures misallocation
arising from distortions in entry within sectors and relatives sizes across sectors arising
driven by the levels of markups. The losses increase with the returns to scale and go to
infinity in the constant-returns limit where 1 − εI goes to zero.

Lemma 6. At the efficient marginal-cost pricing equilibrium, changes in sectoral markups and
productivities in the companion model are related to changes in markups/wedges in the original
model according to

d logµI = EλI,B
(
d logµ

)
, d log AI = 0, and d2 log AI =

1
1 − εI

VarλI,B
(
d logµ

)
,

where these expressions denote within-sector weighted expectations and variances of the changes
in markups/wedges d logµi in the original model, with weights given by the within-sectoral sales
share distribution λI,Bi .

Proof of Lemma 6. First, we solve out for A as a function of primitives. Using the same
notation as in the proof of Proposition 8, note that

λi =
Mpy

i yi

PYY
.
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Use the fact that

py
i =

1
ε
µq

iµ
y
i

(qi

bi

)1−ε

pinputs = PY. (72)

Hence

yi = b1−ε
i qεi = b1−ε

i

 PY(ε)b1−ε
i

µq
iµ

y
i pinputs


ε

1−ε

. (73)

Next note that, firm i’s market share δi is given by

δi =
Myi

Y
=

Mb1−ε
i

(
PY(ε)b1−ε

i

µ
q
i µ

y
i pinputs

) ε
1−ε

∑
j Mb1−ε

j

(
PY(ε)b1−ε

j

µ
q
jµ

y
j pinputs

) ε
1−ε

=
biµ

−ε
1−ε
i∑

j b jµ
−ε
1−ε
j

.

Hence, substituting in, we have

µ∗ =

∑
i

δi

µi

−1

,

=

∑
i

biµ
−

1
1−ε

i∑
j b jµ

−ε
1−ε
j


−1

which means we can write

A =

∑
i

biµ
−

1
1−ε

i∑
j b jµ

1−ε−1
1−ε

j


−1 ∑

i

bi
(
µi

) 1−ε−1
1−ε


1−ε
ε

. (74)

First consider the derivatives of the sectoral productivity shifter

log A = −
1(∑

i bi

(
µ
−

1
1−ε

i

)) ∑
i

biµ
−

1
1−ε

i (−
1

1 − ε
)d logµi

 +
1

1−ε
1

1−ε − 1

1 − 1
1−ε(∑

i bi
(
µi

)1− 1
1−ε

) ∑
i

biµ
1− 1

1−ε
i d logµi


=

1
1−ε(∑

i bi

(
µ
−

1
1−ε

i

)) ∑
i

biµ
−

1
1−ε

i d logµi

 − 1
1 − ε

1(∑
i bi

(
µi

)1− 1
1−ε

) ∑
i

biµ
1− 1

1−ε
i d logµi


d2 log A = −

1
1−ε

2(∑
i bi

(
µ
−

1
1−ε

i

)) ∑
i

biµ
−

1
1−ε

i d logµ2
i

 +
1

1−ε
2(∑

i biµ
−

1
1−ε

i

) ∑
i

biµ
−

1
1−ε

i d logµi

2
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+
1

1 − ε
(1 − 1

1−ε )(∑
i bi

(
µi

)1− 1
1−ε

) ∑
i

biµ
1− 1

1−ε
i d logµi

2

−
1

1 − ε
(1 − 1

1−ε )(∑
i bi

(
µi

)1− 1
1−ε

) ∑
i

biµ
1− 1

1−ε
i d logµ2

i


= −

1
1 − ε

∑
i

bid logµ2
i

 +
1

1 − ε

∑
i

bid logµi

2

.

Obviously, at the efficient point d log A = 0.
Now consider the log-derivative of the sectoral markup

d logµ∗ = −
1
µ∗

−
∑

i

1
1 − ε

biµ
−

1
1−ε

i d logµi∑
j b jµ

1−ε−1
1−ε

j

−
1 − ε − 1

1 − ε

∑
i biµ

−
1

1−ε
i(∑

j b jµ
1−ε−1

1−ε
j

)2

∑
j

b jd logµ j


= −

− 1
1 − ε

∑
bid logµi −

1 − ε − 1
1 − ε

∑
j

b jd logµ j


=

∑
j

b jd logµ j.

�

Appendix F Relaxing Homotheticity/Iso-elasticity

In this section, we relax Assumption 1 by considering how the model changes if (i) entry
happens via a non-iso-elastic Kimball (1995) aggregator, and (ii) if the extent of decreasing
returns to scale is variable.

F.1 Relaxing IRS

For the IRS benchmark, we can relax the assumption that entry happens via a CES aggre-
gator by using the Kimball demand system instead. In other words, index firms in market
i by some parameter θ, and suppose the production function is given by

yi(θ) = Ai(θ)
[

fi(xi j(θ))
]εi
, (75)

where fi has constant returns to scale. Next, suppose that the inputs into the production
function are defined implictly via the equation:

1 =

∫
Υi j

(
xi j(θ, θ′)

xi j(θ)

)
M j(θ′)dθ′, (76)
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where Υi j is an increasing concave function and M j(θ) is the mass of type θ firms in j ∈ N .
The resource constraint for the output of this firm is then

yi(θ) =
∑

j

∫
x ji(θ′, θ)M j(θ′)dθ′ + ci(θ′). (77)

Let P(i, j) be the marginal cost of input xi j(θ).Because of homotheticity, we can consider the
marginal cost of xi j(θ) as depending only on {p j(θ′),M j(θ′)}θ′ . Define for each (i, j) ∈ N2,

the linear operator s(i, j) : L2(R)→ R

s(i, j) · z =

∫ (
pi(θ′)xi j(θ, θ′)Mi(θ′)

P(i, j)xi j(θ)

)
z(θ′)dθ. (78)

Then we can write the change in the marginal cost of xi j

d log P(i, j) = s(i, j) · d log p j − s(i, j) ·
[
(δi j − 1)d log M j

]
, (79)

where

δi j(θ) =

(∫
Υ′

(
xi j(θ, θ′)

xi j(θ)

)
xi j(θ, θ′)

xi j(θ)
M j(θ′)dθ′

)−1

. (80)

By homotheticity, δi j(θ) is not a function of θ. The variable δi j > 1 measures the love-of-
variety effect in this model.

The Proposition below generalizes Theorem 3 to an economy with Kimball demand.

Proposition 9. The response of aggregate output to shocks (d log A,d logµ) is given by

d log Y =
∑

i j

λF
ij

(
s(i, j) · (εi)

(
d logµi(θ) − Ai(θ)

)
− (1 − εi)s(i, j) ·

(
d logλi(θ) − d log λ̂π(θ)

))
+

∑
i j

λF
ij

(
s(i, j) · (δi j − 1)d log λ̂π(θ)

)
.

where λF
ij is the forward Domar weight of the price of the Kimball aggregator associated with i’s

inputs from j and s(i, j) is the sales distribution of varieties in j who sell to i.

This equation has a very similar form to Theorem 3 with similar intuition. Below,
we derive Proposition 9, and also generalize the Forward and Backward propagation
equations in Propositions 1 and 2.

By Shephard’s lemma

d log pi(θ) = −d log Ai(θ) + d logµi(θ) +
∑

j

ΩF
ijd log P(i, j) +

1 − εi

εi
d log yi(θ)
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= −d log Ai(θ) + d logµi(θ) +
∑

j

ΩF
ijd log P(i, j) +

1 − εi

εi
d logλi(θ)

−
1 − εi

εi
d log Mi(θ) −

1 − εi

εi
d log pi(θ)

= −(εi)d log Ai(θ) + (εi)d logµi(θ) + (εi)
∑

j

ΩF
ijd log P(i, j)

+ (1 − εi)
(
d logλi(θ) − d log Mi(θ)

)
Therefore

d log P(i, j) = s(i, j) ·

−(εi)d log Ai(θ) + (εi)d logµi(θ) + (εi)
∑

j

ΩF
ijd log P(i, j)


+ s(i, j) ·

(
(1 − εi)

(
d logλi(θ) − d log Mi(θ)

))
− s(i, j) ·

[
(δi j − 1)d log M j

]
=

s(i, j) · (εi)d log
µi(θ)
Ai(θ)

+ (εi)
∑

j

ΩF
ijd log P(i, j)


+ (1 − εi)s(i, j) ·

(
d logλi(θ) − d log Mi(θ)

)
− s(i, j) ·

[
(δi j − 1)d log M j

]
We also have that

λπi(θ) =

(
1 −

εi

µi(θ)

)
λi(θ). (81)

Define the function ζ j(i, θ) to be the mass of entrant j mapped to (i, θ).Zero-profit condition
for type j entrant is

Eζ j

(
λπi(θ)

)
= PE, (82)

where the expectation is with respect to ζ j. We also have

Mi(θ) =

∫
E
ζ j(i, θ)ME, jdj. (83)

So we can write

d logλπi(θ) = d logλi(θ) +

εi
µi(θ)(

1 − εi
µi(θ)

)d logµi(θ) (84)

∑
i

∫
ζ j(i, θ)

λπi(θ)
Mi(θ)

(
d logλπi(θ) − d log Mi(θ)

)
dθ = PEd log PE (85)
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d log Mi(θ) =

∫
E
ζ j(i, θ)ME, jd log ME, jdj∫

E
ζ j(i, θ)ME, jdj

. (86)

Let ζ̃ : E→ RNand λπ : RN → RNbe linear operators. Then we can write

d log Mi(θ) = ζ̃ · d log ME (87)

ζ̃∗ · λπ · d logλπ − ζ̃∗ · λπ · d log M = PEd log PE (88)

ζ̃∗ · λπ · d logλπ − ζ̃∗ · λπ · ζ̃ · d log ME = PEd log PE(
ζ̃∗ · λπ · ζ̃

)−1 (
ζ̃∗ · λπ · d logλπ − PEd log PE

)
= d log ME

ζ̃ ·
(
ζ̃∗ · λπ · ζ̃

)−1 (
ζ̃∗ · λπ · d logλπ − PEd log PE

)
= d log M,

where ζ̃∗is the adjoint operator. Define

d log λ̂π = ζ̃ ·
(
ζ̃∗ · λπ · ζ̃

)−1
ζ̃∗ · λπ · d logλπ

Hence, the forward equation becomes

d log P(i, j) =

s(i, j) · (εi)d log
µi(θ)
Ai(θ)

+ (εi)
∑

j

Ωi jd log P(i, j)

 (89)

+
(
(1 − εi)s(i, j) ·

(
d logλi(θ) − d log Mi(θ)

))
− s(i, j) ·

[
(δi j − 1)d log M j

]
(90)

=

s(i, j) · (εi)d log
µi(θ)
Ai(θ)

+ (εi)
∑

j

Ωi jd log P(i, j)

 (91)

+
(
(1 − εi)s(i, j) ·

(
d logλi(θ) − d logλπ(θ) + ζ̃ ·

(
ζ̃∗ · λπ · ζ̃

)−1
ζ̃∗ · λπ · λE ·Ω

Ed log P(i, j)
))

− s(i, j) · (δi j − 1)d logλπ(θ) −
[
s(i, j) · (δi j − 1)

]
ζ̃ ·

(
ζ̃∗ · λπ · ζ̃

)−1
ζ̃∗ · λπ · λE ·Ω

Ed log P(i, j)

(92)

This is a linear system in d log P(i, j). Group (i, j) together and write this linear system as
aN2

× 1 vector, with an appropriately defined ΨF,then we have

d log P(l,m) =
∑

i j

ΨF(lm, i j)
(
s(i, j) · (εi)d log

µi(θ)
Ai(θ)

+ (1 − εi)s(i, j) ·
(
d logλi(θ) − d log λ̂π(θ)

))
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−

∑
i j

ΨF(lm, i j)
(
s(i, j) · (δi j − 1)d log λ̂π(θ)

)
.

This is the generalization to Theorem 3 and Proposition 1, showing that those results
survive generalization.

Next, to pin down d logλ, we need an analogue to the backward equations.

yi(θ) =
∑

j

∫
x ji(θ′, θ)M j(θ′)M j(θ′)dθ′ + ci(θ′). (93)

λi(θ) = Mi(θ)pi(θ)yi(θ)

= Mi(θ)pi(θ)
∑

j

∫
x ji(θ′, θ)M j(θ′)dθ′.

Define

σ ji = −
Υ′

(
y ji(θ)

y ji

)
−

y ji(θ)
y ji

Υ′′
(

y ji(θ)
y ji

) , (94)

where y ji(θ) =
∫

x ji(θ′, θ)M j(θ′)dθ′ and y ji is defined implicitly via 1 =
∫

Υ ji

(
y ji(θ)

y ji

)
M j(θ)dθ.

Intuitively, because of homotheticity, we can assume that an intermediary purchases y ji

and sells it at marginal cost to all θ types in industry j. The quantity purchased by the
intermediary from firm θ′ in industry i is y ji(θ′) and the total output of the intermediary
is y ji.

The variable σ ji is the price-elasticity of residual demand.

−d log δi j =

∫ (
Υ′

(
yi j(θ)

yi j

)
yi j(θ)

yi j
M j(θ)

)  yij(θ)

yij
Υ′′

( yij(θ)

yij

)
Υ′

( yij(θ)

yij

) d log
(

yi j(θ)
yi j

)
+ d log

yi j(θ)
yi j

+ d log M j(θ)

 dθ

∫
Υ′

(
yi j(θ)

yi j

)
yi j(θ)

yi j
M j(θ)dθ.

=

∫ (
p j(θ)
δi jP(i, j)

yi j(θ)
yi j

M j(θ)
) [(

1 − 1
σ ji(θ)

)
d log

(
yi j(θ)

yi j

)
+ d log M j(θ)

]
dθ∫ p j(θ)

δi jP(i, j)
yi j(θ)

yi j
M j(θ)dθ.

= s(i, j) ·
[(

1 −
1

σ ji(θ)

)
d log

(
yi j(θ)

yi j

)
+ d log M j(θ)

]
(95)

d log
(

yi j(θ)
yi j

)
= d log(Υ′)−1

ji

(
pi(θ)
δ jiP( j, i)

)
(96)
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Hence

d log
(

yi j(θ)
yi j

)
= σi j(θ)

(
d log pi(θ) − d log δ ji − d log P( j, i)

)
. (97)

Use this in

λi(θ) = Mi(θ)pi(θ)yi(θ)

= Mi(θ)pi(θ)
∑

j

y ji(Υ′)−1
i j

(
pi(θ)
δ jiP( j, i)

)
,

where the final line follows from homotheticity. Hence

d logλi(θ) = d log Mi(θ) + d log pi(θ) +
∑

j

y ji(θ)
y ji

(
σ ji(θ)

(
d log pi(θ) − d log δ ji − d log P( j, i)

))
+

∑
j

y ji(θ)
y ji

d log y ji. (98)

Next, use

y ji =
ε j

µ̄ j

ΩF
jiλ j

P( j, i)
(99)

coupled with
ΩF

jid log ΩF
ji = (1 − θ j)Cov j(d log P( j,m), I(i)) (100)

to get

d log y ji = −d log µ̄ j + (1 − θ j)Cov j(d log P( j,m), I(i)) + d logλ j − d log P( j, i), (101)

where

µ̄ j =

∫ λi(θ)Mi(θ)∫
λi(θ)Mi(θ)dθ

1
µi(θ)

dθ

−1

, (102)

so

− d log µ̄i =

∫
λi(θ)Mi(θ)∫
λi(θ)Mi(θ)dθ

1
µi(θ)

[
−d logµi(θ) + d logλi(θ) + d log Mi(θ) − d logλi

]
dθ

(103)
Finally, use the fact that

λi =
∑

j

ε j

µ̄ j
ΩF

jiλ j +
∑

j

ΩE
jiλE, j (104)
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to get

dλi =
∑

j

dλ j
ε j

µ̄ j
ΩF

ji −

∑
j

λ j

µ̄ j
(ε j)ΩF

jid log µ̄ j +
∑

j

λ j

µ̄ j
(ε j)ΩF

jid log ΩF
ji +

∑
j

dλE, jΩ
E
ji. (105)

Equations (92), (95), (98), (100), (101), (103), (105) jointly complete the characterization.

F.2 Relaxing DRS

Suppose that

Y = MiAi fi

({
xi j

}
j

)
, (106)

where we do not impose homotheticity on fi. This means that every sector is DRS, but
need not be homothetic.

Proposition 10. The response of aggregate output to shocks (d log A,d logµ,d logµY) is given
by

d log Y = −λF′
(
d logµY

− d log A + (ε)d logµ
)
− λF′(1 − ε)

(
d logλ + d log(1 − ε) − d log λ̂π

)
,

where d log(1 − ε) is the change in the returns to scale in each market.

Proposition 10 generalizes Proposition 3. Below, we derive the Forward and Backward
propagation equations in 1 and 2.

Define

λY = PY = µYλy

λy = pyM

λπ =
1
µY

(
1 −

ε
µ

)
λY

which implies that

d logλπ = −d logµY
−

ε
µ(

1 − ε
µ

) [
d log(ε) − d logµ

]
+ d logλ

d log M = d log λ̂π − d log P̂

P = µY dC
dY

= µY
C/Y
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d log P = d logµY + d log p

d log p = d logµ − d log(ε) − d log yi + ΩFd log P +
∂ logCi

∂ log yi

(
d log yi − d log Ai

)
= d logµ − d log(ε) − d log yi + ΩFd log P +

1
ε

(
d log yi − d log Ai

)
= d logµ − d log(ε) + ΩFd log P +

1 − ε
ε

(
d logλ − d log p − d log M −

1
1 − ε

d log Ai

)
d log p = (ε)d logµ − (ε)d log(ε) + (ε)ΩFd log P + (1 − ε)

(
d logλ − d log M

)
− d log A

d log P = d logµY + d log p

= d logµY +
[
(ε)d logµ + d(1 − ε) + (ε)ΩFd log P + (1 − ε)

(
d logλ − d log M

)
− d log A

]
= d logµY + (ε)d logµ + d(1 − ε) + (ε)ΩFd log P

+ (1 − ε)
(
d logλ − d log λ̂π + d log P̂

)
− d log A

(I −ΩF)d log P = d logµY + (ε)d logµ + (1 − ε)
(
d logλ + d log(1 − ε) − d log λ̂π

)
− d log A

This last equation generalizes the forward equations in Proposition 1.
To get the backward equation, assuming some separability, we can write

fi

({
xi j

}
j

)
= fi(qi), (107)

where qi is CRS function of inputs. We can write

Ωi j =
MiP jxi j

PiYi
=

P jxi j

µYpiyi
=

P jxi j

µYµy
i (εi)µ

q
i mciqi

=
1

µiµY
i

1
εi

p jxi j

mciqi

d log Ωi j = −d logµiµ
Y
i + d logγi − d log (εi) + d log

(
p jxi j

mciqi

)

Denote the super-elasticity by ∂2 log fi
∂ log q2

i
= κi. Then we can write

d(εi) = κi

(
d logλq

i − d log pq
i

)
= d logλq

i − d logλy
i . (108)

Hence,
d(1 − ε) = dλy

i − dλq
i (109)

and
d logλq

i =
1

κi − 1

(
κid log pq

i − d logλy
i

)
. (110)
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Hence

d log Ωi j = −d logµiµ
Y
i − κi

(
d logλq

i − d log pq
i

)
+ d log

(
p jxi j

mciqi

)
= −d logµiµ

Y
i −

κi

εi

( 1
κi − 1

(
κid log pq

i − d logλy
i

)
− d log pq

i

)
+ d log

(
p jxi j

mciqi

)
= −d logµiµ

Y
i −

κi

εi

( 1
κi − 1

(
κid log pq

i − d logλy
i

)
− d log pq

i

)
+ (1 − θi)Covi(d log P, I(i))

= −d logµiµ
Y
i −

κi

εi

1
κi − 1

(
d log pq

i − d logλy
i

)
+ (1 − θi)Covi(d log P, I(i))

= −d logµiµ
Y
i −

κi

εi

1
κi − 1

∑
j

Ωi jP j − d logλy
i

 + (1 − θi)Covi(d log P, I(i))

Finally, combine this with

dλy′ = dλy′Ω + λy′dΩ + dλEΩE (111)

to pin down the backward equations, which is the equivalent of Proposition 2.

Appendix G Mapping Model to Data

Our calibrated model is sectoral in the formal sense defined in the paper. Our calibration is
very similar to Baqaee and Farhi (2019a), and we borrow much of the following discussion
from the Appendix of that paper.

We have two principal datasources: (i) aggregate data from the BEA, including the
input-output tables and the national income and product accounts; (ii) firm-level data
from Compustat. Below we describe how we treat the input-output data, merge it with
firm-level estimates of markups, and how we estimate markups at the firm-level.

G.1 Input-Output and Aggregate Data

Our input-output data comes from the BEA’s annual input-output tables. We calibrate
the data to the use tables from 1997-2015 before redefinitions. We also ignore the dis-
tinction between commodities and industries, assuming that each industry produces one
commodity. For each year, this gives us the backward expenditure share matrix ΩB at the
industry level. We drop the government, scrap, and noncomparable imports sectors from
our dataset, leaving us with 66 industries. We define the gross-operating surplus of each
industry to be the residual from sales minus intermediate input costs and compensation
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of employees. The expenditures on capital, at the industry level, are equal to the gross
operating surplus minus the share of profits (how we calculate the profit share is described
shortly). If this number is negative, we set it equal to zero. If any value in ΩB is negative,
we set it to zero.

In Appendix H, we use alternative ways of estimating the markups. For each markup
series, we compute the profit share (amongst Compustat firms) for each industry and year,
and then we use that profit share to separate payments to capital from gross operating
surplus in the BEA data for that industry and year. Conditional on the harmonic average
of markups in each industry-year, we can recover the forward matrix ΩF = µΩ, also at
the industry level. If for an industry and year we do not observe any Compustat firms,
then we assume that the profit share (and the average markup) of that industry is equal
to the aggregate profit share (and the industry-level markup is the same as the aggregate
markup).

We assume that the economy has an sectoral structure along the lines of Section 7,
so that all producers in each industry have the same production function up to a Hicks-
neutral productivity shifter. This means that for each producer i and j in the same industry
ΩF

ik = ΩF
jk. To populate each industry with individual firms, we divide the sales of each

industry across the firms in Compustat according to the sales share of these firms in
Compustat. In other words, if some firm i’s markup is µi and share of industry sales in
Compustat is x, then we assume that the mass of firms in that industry whose markups
are equal to µi is also equal to x. These assumptions allow us to use the markup data
and market share information from Compustat, and the industry-level IO matrix from the
BEA, to construct the firm-level cost-based IO matrix.

G.2 Estimates of Markups

Now, we briefly describe how our firm-level markup data is constructed. Firm-level
data is from Compustat, which includes all public firms in the U.S. The database covers
1950 to 2016, but we restrict ourselves to post-1997 data since that is the start of the
annual BEA data. We exclude firm-year observations with assets less than 10 million,
with negative book or market value, or with missing year, assets, or book liabilities. We
exclude firms with BEA code 999 because there is no BEA depreciation available for them;
and Financials (SIC codes 6000-6999 or NAICS3 codes 520-525). Firms are mapped to
BEA industry segments using ‘Level 3’ NAICS codes, according to the correspondence
tables provided by the BEA. When NAICS codes are not available, firms are mapped to
the most common NAICS category among those firms that share the same SIC code and
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have NAICS codes available.

G.2.1 Production Function Estimation Approach

This is our benchmark method for estimating markups, and the results in the main body
of the paper use this approach. For reference, we will call this the production function
estimation (or PF) markups.

For the production function estimation approach markups, we follow the procedure
PF1 described by De Loecker et al. (2019) with some minor differences. We estimate
the production function using Olley and Pakes (1996) (OP) rather than Levinsohn and
Petrin (2003). We use CAPX as the instrument and COGS as a variable input. We use the
classification based on SIC numbers instead of NAICS numbers since they are available for
a larger fraction of the sample. Finally, we exclude firms with COGS-to-sales and XSGA-
to-sales ratios in the top and bottom 2.5% of the corresponding year-specific distributions.
As with the other series, we use Compustat excluding all firms that did not report SIC or
NAICS indicators, and all firms with missing sales or COGS. Sales and COGS are deflated
using the gross output price indices from KLEMS sector-level data. CAPX and PPEGT –
using the capital price indices from the same source. Industry classification used in the
estimation is based on the 2-digit codes whenever possible, and 1-digit codes if there are
fewer than 500 observations for each industry and year.

To compute the PF Markups, we need to estimate elasticity of output with respect
to variable inputs. This is because once we know the output-elasticity with respect to a
variable input (in this case, the cost of goods sold or COGS), then following ?, the markup
is

µi =
∂ log Fi/∂ log COGSi

Ωi,COGS
,

where Ωi,COGS is the firm’s expenditures on COGS relative to its turnover.
The output-elasticities are estimated using Olley and Pakes (1996) methodology with

the correction advocated by Ackerberg et al. (2015) (ACF). To implement Olley-Pakes in
Stata, we use the prodest Stata package. OP estimation requires:

(i) outcome variable: log sales,

(ii) ”free” variable (variable inputs): log COGS,

(iii) ”state” variable: log capital stock, measured as log PPEGT in the Compustat data,

(iv) ”proxy” variable, used as an instrument for productivity: log investment, measured
as log CAPX in Compustat data.
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(v) in addition, SIC 3-digit and SIC 4-digit firm sales shares were used to control for
markups .

Given these data, we run the estimation procedure for every sector and every year.
Since panel data are required, we use 3-year rolling windows so that the elasticity estimates
based on data in years t − 1, t and t + 1 are assigned to year t. The estimation procedure
has two stages: in the first stage, log sales are regressed on the 3-rd degree polynomial
of state, free, proxy and control variables in order to remove the measurement error and
unanticipated shocks; in the second stage, we estimate elasticities of output with respect
to variable inputs and the state variable by fitting an AR(1) process for productivity to
the data (via GMM). Just like in De Loecker et al. (2019), we control for markups using a
linear function of firm sales shares (sales share at the 4-digit industry level).

In our benchmark estimates, we treat SG&A as a fixed cost. However, for robustness,
following De Loecker et al. (2019), we also compute markups using an approach where
SG&A is treated as a variable input in production. We call these the PF2 markups. The
overall estimation is still done via the ACF-corrected OP method (with CAPX as a proxy).

Finally, before feeding these markup estimates into the structural model, we winsorize
the markups at the 20th and 80th percentile to reduce the influence of outliers.

G.2.2 User Cost Approach

Our second approach to measuring markups is the user-cost approach (UC) markups.
The idea here is to recover the profits of a firm by subtracting total costs from revenues.
To compute total cost, we must measure the cost of capital. For this measure, we rely on
the replication files from Gutiérrez and Philippon (2016) provided German Gutierrez. For
more information see Gutiérrez and Philippon (2016). To recover markups, we assume
that operating surplus of each firm is equal to payments to both capital as well as economic
rents due to markups. We write

OSi,t = rki,tKi,t +

(
1 −

1
µi

)
salesi,t,

where OSi,t is the operating income of the firm after depreciation and minus income taxes,
rki,t is the user-cost of capital and Ki,t is the quantity of capital used by firm i in industry
j in period t. This equation uses the fact that each firm has constant-returns to scale. In
other words,

OSi,t

Ki,t
= rki,t +

(
1 −

1
µi

)
salesi,t

Ki,t
, (112)
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To solve for the markup, we need to account for both the user cost (rental rate) of capital
as well as the quantity of capital. The user-cost of capital is given by

rki,t = rs
t + KRP j − (1 − δki,t)E(Πk

t+1),

where rs
t is the risk-free real rate, KPR j is the industry-level capital risk premium, δ j is the

industry-level BEA depreciation rate, and E(Πk
t+1) is the expected growth in the relative

price of capital. We assume that expected quantities are equal to the realized ones. To
calculate the user-cost, the risk-free real rate is the yield on 10-year TIPS starting in 2003.
Prior to 2003, we use the average spread between nominal and TIPS bonds to deduce the
real rate from nominal bonds prior to 2003. KRP is computed using industry-level equity
risk premia following Claus and Thomas (2001) using analyst forecasts of earnings from
IBES and using current book value and the average industry payout ratio to forecast future
book value. The depreciation rate is taken from BEA’s industry-level depreciation rates.
The capital gains E(Πk

t+1) is equal to the growth in the relative price of capital computed
from the industry-specific investment price index relative to the PCE deflator. Finally, we
use net property, plant, and equipment as the measure of the capital stock. This allows us
to solve equation (112) for a time-varying firm-level measure of the markup. We winsorize
markups at the 5-95th percentile by year.

G.2.3 Accounting Profits Approach

The final approach to estimating markups is the accounting profits approach (AC). For
the accounting-profit approach markups, we use operating income before depreciation,
minus depreciation to arrive at accounting profits. Our measure of depreciation is the
industry-level depreciation rate from the BEA’s investment series. The BEA depreciation
rates are better than the Compustat depreciation measures since accounting rules and tax
incentives incentivize firms to depreciate assets too quickly. We use the expression

pro f itsi =

(
1 −

1
µi

)
salesi,

to back out the markups for each firm in each year. We winsorize markups and changes
in markups at the 5-95th percentile by year. Intuitively, this is equivalent to assuming that
the cost of capital is simply the depreciation rate (equivalently, the risk-adjusted rate of
return on capital is zero). The advantage of this approach is its simplicity.
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Appendix H Additional Quantitative Results

IRS, ε = 0.875 No Entry Entry uses Factors Entry uses Goods and Factors

PF2 Markups 12% 39% 47%
UC Markups 3.0% 23% 34%
AC Markups 4.5% 54% 75%

IRS, ε = 0.75 No Entry Entry uses Factors Entry uses Goods and Factors

PF2 Markups 24% 32% 31%
UC Markups 7.2% 15% 17%
AC Markups 11% 14% 14%

DRS, ε = 0.875

PF2 Markups 19% 25% 25%
UC Markups 6.0% 11% 11%
AC Markups 8.2% 13% 12%

DRS, ε = 0.75

PF2 Markups 9.0% 28% 29%
UC Markups 4.8% 40% 43%
AC Markups 2.6% 18% 19%

Table 2: The gains from moving to the efficient allocation. The IRS specification sets
γI = εI = 0.875 and uses an imperfect-substitutes interpretation. The DRS specification
sets γI = 1, εI = 0.875 and uses a perfect-substitutes interpretation.

Appendix I Second-Best Policy

I.1 Bang for Buck of Marginal Policy Interventions

We end this section by considering the effect of a marginal policy intervention in the decen-
tralized equilibrium. Figure 6 shows the bang-for-buck elasticity of aggregate output with
respect to a marginal entry subsidy (a form of industrial policy) or markup reduction (a
form of competition policy) in different industries. The elasticity is scaled by the revenues
associated with the intervention, as in Section I, to make the magnitudes comparable.

For this exercise, we focus on the IRS case whereγ = 0.875. We consider two alternative
calibrations: one where we set markups equal to their CES monopolistic values, and one
where we set markups equal to their estimated values. We begin by discussing the case
where all markups are set equal to their CES Dixit and Stiglitz (1977) values. Then we
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Figure 6: The elasticity of output with respect to reductions in markups or an entry
subsidy to different sectors normalized by the cost of the intervention. The top row uses
CES markups, whereas the bottom row uses estimated PF markups.

discuss the case where markups are equal to their estimated values in the data. In both
cases, we abstract from endogenous changes in markups in response to the policy.6

The monopolistic-markups calibration is a useful starting point for understanding the
results, since by setting markups to be the same in every sector, it helps isolate the role
played by the input-output network on its own. In this case, markup reductions, plotted
in Figure 6a, are always beneficial. Because we have imposed the same love-of-variety
parameter in all sectors, the greatest bang-for-buck comes from reducing markups for
those sectors with more complex supply chains, namely manufacturing industries like

6Here, we assume that the policy maker can directly change the wedges. As pointed out by Gupta
(2020), in practice, a linear tax may not be able to achieve this since firm-level wedges may respond to the
policy instrument.
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motor vehicles, metals, and plastics. Intuitively, reducing markups in these sectors allows
more entry into their supply chains. The smallest gains come from those industries with
the simplest supply chains, mostly service industries like housing or legal services but
also primary industries like oil extraction or forestry. For entry subsidies, plotted in Figure
6b, the biggest gains, on the other hand, come from subsidizing those industries which
are upstream in complex supply chains, namely primary industries like forestry, oil, and
mining, whereas subsidizing entry into relatively downstream industries, like nursing,
hospitals, or social assistance, is actually harmful.

When we move to the estimated markups, plotted in Figures 6c and 6d, the shape of
the input-output network is not the only determinant of the relative ranking of different
industries, as now we must also consider whether each sector’s markups are too high
or too low on average relative to its external economies. Since, for simplicity, we have
imposed the same love-of-variety effect in all sectors but we have estimated markups
for each sector, we do not read too much into the exact relative ranking of the different
industries.

However, these figures are still useful because they show that as we move farther
away from the efficient frontier, which we do when we go from monopolistic markups
to estimated markups, the potency of second-best policies increases dramatically. To see
this, note that the elasticities in the top row are an order of magnitude smaller than the
elasticities in the bottom row of Figure 6.

But the larger effect sizes are a mixed blessing. Once we are far away from the frontier,
the scope for policy having unintended consequences also increases. Although there
appear to be many free lunches available to policy makers, interventions can equally have
large negative as well as positive effects. In other words, as implied by the theory of
the second-best, interventions that seem sensible in isolation, like reducing markups, can
reduce output once we are deep inside the frontier.

Appendix J Comparison to Simplified Models

Our analysis contends that careful modelling of the details of the production network and
the entry technology is qualitatively important. To illustrate this quantitatively, in Table
3, we compare the results of the benchmark model to simplified versions of the model
that employ some commonly used shortcuts: ignoring intermediate goods in production
or entry (assuming no input-output); using a single-sector economy but allowing for
intermediates (roundabout economy); ignoring firm-level heterogeneity within sectors
(no firm heterogeneity). We discuss each of these strawmen in turn.
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IRS No Entry Entry Uses Factors Entry uses Goods/Factors

Benchmark 36% 50% 40%
No Input-Output 16% 20% –
Roundabout 139% 182% 133%
Homogeneous Firms 4.6% 14% 10%

DRS

Benchmark 26% 35% 32%
No Input-Output 13% 18% –
Roundabout 91% 123% 108%
Homogeneous Firms 1.0% 7.8% 7.6%

Table 3: Efficiency losses from misallocation when different disaggregated aspects of the
economy are trivialized. We use firm-level returns to scale ε = 0.875 under DRS, and
γ = 0.875 under IRS. For IRS, this corresponds to an elasticity of substitution across firms
within industries of 8.

The “No Input-Output” economy assumes away intermediates, and calibrates the
size of each industry to be equal to its value-added share. Without entry, this economy
undershoots the benchmark model for reasons discussed by Jones (2011) or Baqaee and
Farhi (2019a). The undershooting becomes even more extreme once we allow for entry,
underscoring even more strongly the need to model input-output linkages.

The “Roundabout” economy assumes that all firms in the economy belong to a sin-
gle sector. The output of this sector is used both as the consumption good and as an
intermediate input into production. This is a commonly used shortcut for incorporating
intermediate inputs into a model. The one-sector roundabout economy overshoots the
benchmark by a large amount. This is to be expected since the roundabout economy
aggregates all firms in the economy into a single sector. This means cross-sectoral disper-
sions in markups (which are less costly than within-sectoral dispersions) are treated as if
they are within-sectors. Intuitively, dispersed markups now distort input choices across
producers by more, since firms in two different industries are treated as if they are highly
substitutable.

Finally, the “Homogeneous Firms” economy assumes that all firms in a sector are
identical, with the same productivity shifter and the same markup equal to the sectoral
markup. The homogeneous sectors economy undershoots the benchmark by a large
amount because even though it accounts for cross-sectoral distortions, it abstracts away
from within-sector misallocation.

All in all, the sensitivity of these numbers underscores the quantitative importance of
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modelling and measuring the details as best we can.
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