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1 Appendix A: price indices

1.1 CUPI price index

Our baseline results use CUPI price indices at the plant level as deflators.
Here, we explain the details of their construction. The change in prices from
one period to the next is:
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we obtain:
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The term )‘; —-* is the Feenstra (2004) adjustment for changing varieties be-
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That is, ()\ fio1.0f ) is the share of period ¢t — 1 expenditures devoted
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to goods that are common to both periods. Similarly, ()\ jref 1) is the

share of period ¢ expenditure devoted to goods common to both periods.
With this, the change in prices between the two periods can be written:
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Shocks dy;; have been defined relative to plant appeal, dy;, such that
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appeal for continuing products, addressing the consumer valuation bias.

We similarly obtain a measure of materials by deflating material expendi-
ture by plant-level price indices for materials, pm;, using information on in-
dividual prices and quantities of material inputs. We construct pmy; using an
analogous approach to that used to construct output prices. The underlying
assumption is that My, the index of materials quantities used, is a CES ag-
gregate of individual inputs. As is the case with output prices, until we have
an estimate of the elasticity of substitution, we can only build a consecutively-
common-basket price index pmj, for plant f, and carry an adjustment factor

AM AM RWAMf ““ for which we later adjust prices. In particular, we deflate

! This is by contrast to empirical price indices that weight across products with variable
weights w ;s # wy, such as the commonly used Sato-Vartia approach (Sato, 1974, Vartia,

1974, Feenstra, 2004). Under such variable weights the assumption Z In ( dff:f ) e _
J 1
of,_,

0 does not hold. The fact that traditional approaches using variable weights ignore this
term leads to what Redding and Weinstein (2017) have called the "consumer valuation
bias" the traditional empirical approaches to economically motivated price indices.
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Once we have obtained an estimate of the elasticity of substitution we calcu-

late pmys = pmyp *m* (A% ) ﬁ, which is one of the fundamentals on the
cost side in our growth decomposition. We use this price index as deflator
for materials expenditure to obtain our T'F P() measure. We use for inputs
the same elasticity of substitution estimated for outputs. We recognize that
using the same elasticity for inputs and outputs is a strong assumption, but
find that it does no affect our results in an important way. In particular, we
find in Appendix I that using a Divisia price index (with updated input mix
each period) generates about the same contribution for materials prices in
sales and output volatility as the UPI. The Divisia materials price index does
not depend on the elasticity of substitution, suggesting that this assumption
is not critical for our results.

1.2 Initializing a plant’s CUPI price index

A plant’s price index is constructed as
1
_— o—1
Py = Prp * P, <A?t>

The initial level Pyp, where B is the base year for plant f, is constructed
as: Prp = Pyyse,B H (%)S“B , where D is the geometric average of the
g
price of product j in year B across plants, year B is the first year in which
plant f is present in the survey, and Pjese g is an overall base. We use 1982
as the base year, so Ppyse19s2 = 1. For plants with B # 1982, Py p is set
equal to the geometric mean of the price index across plants that we observe
prior to year B. Notice that our approach takes advantage of cross sectional
variability across plants for any given product or input j. In the plant’s base

year B, (%) = 1 for the average producer of product j. For other plants,

it will capture dispersion in price levels around that average.?

2We deal with excessive noise from partial year reporting and other sources by elimi-
nating outliers. In particular, in any given year we consider only products that represent
at least 2% of sales of the respective plant. Shares are re-calculated accordingly for this
restricted basket. We also winsorize the 2% tails at each step of the process of build-



1.3 Sato-Vartia indices

The Sato-Vartia approach (used in the results in Appendix C) is an alterna-
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and the consumer valuation bias would be positive. That is, the Sato Vartia
approach likely overstates price inflation for the common goods produced by
plant f in both ¢ — 1 and t. Such overstatement of price inflation implies

understatement of quantity growth and therefore TF P().

1.4 Tornqgvist index

Appendix C also presents results using Tornqvist indices, first imposing a
basket of goods that is fixed over the life cycle and constant weights for
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We also winsorize adjustment factors at the 5% level. Extreme changes in the baskets

of goods, where common (¢, — 1) products represent a negligible share of revenue in

either ¢t or t — 1 imply extreme values for In A?t. These extreme changes may partly
reflect measurement error in an enviroment where baskets of goods are auto-reported into
relatively wide product components.



them, and then imposing constant baskets only over consecutive periods (the
"divisia" case). Toérnqvist indices for the growth of prices of plant f at time
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In the constant baskets of goods version of the Térnqvist index, Q{ 1 =
0/ is a basket of all products ever produced (or materials ever used) by plant
f, and Sy; is the average share of j in that basket of products (or materials)
plant f produces over the whole period. In this approach, the plant level
index is initialized at In Pry = Z sfj (Inprja —Inpja). If product j is not

of
produced (or used as input) in years ¢ or ¢ —1 (or both), A In(Py;;) is inputed
at the average growth of the price of that product (or input) for other plants
within the sector. If no plant in the sector produces that good in ¢, then the
average over all plants is used, independent of sector.

The divisia version of the Térnqvist index is similar, but Q{ .1 is the
basket of goods produced by f in either ¢ or ¢ — 1 and S¢;; is the average
share of product j in plant f’s sales over ¢ and ¢ — 1.

Tornqgvist prices with a constant basket of products do not quality-adjust
prices in any way, for either product turnover of changing quality of surviv-
ing products. Compared to this version, all versions allowing for evolving
baskets of goods (including divisia) have the advantage of capturing evolving
expenditure shares over time and therefore quality-adjusting prices, but the
disadvantage of being more biased by errors from product coding and coarse
aggregation, which are more likely in our context than in that of prices from
scan bar codes (Hottman et al 2016). Compared to our baseline estimation
with UPI prices, even versions with changing baskets quality-adjust in a less
precise (i.e. not exact) manner, by imposing restrictions to the extent to
which appeal many vary.

2 Appendix B: firm problem with Cobb Dou-
glas production function

Firm chooses X; to solve:
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Suppose Xy = K piLp My, where K, L and M are, respectively, capital,

labor and material inputs, and v = a + 8 + ¢. Consequently, C, is itself a
a B )

Cobb Douglas aggregate of factor prices: C = rjftw?tpm?t. Consequently
and
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capital. 9, Jp, x, and X, are analogous residuals for the specific cases of

employment and output. In particular: y, == ] < 2;) and xp = Iifta We

have used the fact that 1 + vk, (1 — —) = K.
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3 Appendix C: Sensitivity to Revenue Cur-
vature

To assess the contribution of TFP(Q) HKy, and composite wedges to sales
_1
growth, we first calculate TFPQ) HKy = R% (1=3) /X ;t using our estimates
B a

s
of o, ¢, B, a, and the implied X = M ;L?tK fi We call this calculation
TFPQ_HKj "unconstrained", since we use detailed parameter estimates
that would be hard to obtain if one were constrained by the lack of plant-level
data on prices. We also build an estimate of TFPQ _HKjy; "constrained"
where, following usual practice, we impose monopolistic competition, v = 1,
o, B, a equal to the corresponding cost shares, and a constant number for o



TableE1.Mecomposition®fEal dertaseli dEonstrainedfund al

Structural
(1) @) () (4) (5)

TFPQ_HKAinconstrained 1,280

TFPQ_HK®Zonstrained 1,116 1,161 2,250
TFPQ 0,154

Demand@®hock 1,128

InAnputBrices ,078

InBAverage@vage 0,081

InBMarkup @,006

Sales@Vedge ®,280 ®,117 ®,116 ®,161 (1,250
AvgReviTurvature 0,641 0,641 0,641 0,666 0,877
Max@RevTurvature 0,877 0,877 0,641 0,666 0,877

Reduced
(1) ) () () (5)

TFPQ_HKAinconstrained 0,574

TFPQ_HK&onstrained 0,703 0,684 0,412
TFPQ 0,050

Demand@hock 0,476

InAnputprices ®,007

InBAverage@vage 0,036

InMMarkup 0,107

SalesWedge 0,426 0,322 0,297 0,316 0,588
AvgRReviTurvature 0,641 0,641 0,641 0,666 0,877
Max@ReviTurvature 0,877 0,877 0,641 0,666 0,877

TFPQ_HK@sEFunction®fET FPQ,@lemandBhocks,Bind®heRlasticity®fBubstitution.frhe
unconstrained@ersionfises@heFactorf@ndBubstitution@lasticities@stimatedsing®
and@@ata,@eporteddniTabled.fThe®onstrained@ersion@ises®ost@BharessFactor
elasticities®onsistent@ithERSAnEroductionBndE@ emand®@lasticity@onsistent@ith
theRurvature®fthe@evenueFunction@n®he@eported@olumn.

(as in the macro misallocation literature).®> While in the unconstrained case
M is the materials quantitities index built deflating with our UPI plant-level
deflators for materials, in the constrained one it is materials expenditure
deflated with the PPI.

Figure C1 depicts the contribution of wedges vs. returns to scale in
revenue by sector, for different columns of Table C1. It shows that the esti-
mated contribution of wedges to sales is higher when the revenue curvature
parameter v (1 — 1) is high (i.e. curvature is low), and that the increase is
nonlinear: in sectors when -y (1 — %) is close to 1, wedges tend to dominate
the contribution of fundamentals.

3Under these assumptions, p;, = p = ~Z7. Since cost minimization implies 3 =
, L

wé‘OLstft'y = w’;ftf‘,u (Hall, 1994), we impose for each sector 5 = %ﬁ, calculating
; Ryt

B first for each year and then averaging over years. We proceed similarly for ¢, and then
obtain a =1 — 8 — ¢.
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Figure@1a: Structural@vedges Figure@1b:Drthogonal@vedges
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4 Appendix D: markups

Pft

The firm’s (potentially variable) markup after the distortion, y,, = Y Cl
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where the last line uses Sheppard’s lemma:
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The markup pp = is increasing in the firm’s market share.
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Thus, the markup is itself a fuction of fundamentals:
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so that
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St ( il Gl 1 >1—v(1—},) _ Dy ( )Aft 0-) <7(1 - Tft)(ll)_ §)> 1= (1-

The LHS is increasing in s and the RHS is increasing in D and A, and
decreasing in 7 and C'. Thus, sy; and the markup are increasing in D and A,
and decreasing in 7 and C.

5 Appendix E: Persistence in Fundamentals
and Endogenous Innovation

We have taken fundamentals as given, but noted that our results should help
guide future work, both theoretical and empirical, about the specific drivers
of measured productivity. To further understand the nature of TFPQ vs.
demand shock, and potential mechanisms through which businesses accumu-
late each of them, we have studied the relationship between these fundamen-
tals and reported innovation efforts. The Colombian Manufacturing Survey
can be merged with the Innovation Survey at the level of the firm (tax ID).
Since 2006 firms report number of innovations by type, defined by categories
named "product", "process", and "organizational" innovation. They also
report innovation expenditures, unfortunately not broken down in the same
categories.

Results from our structural decomposition of growth show that, given
fundamentals, high-fundamentals plants are being implicitly taxed while low-
fundamentals plants are implicitly subsidized (by the environment, not nec-
essarily by the government). Causality in the opposite direction is also likely:
technical efficiency and product-plant appeal, while partly determined by ex-
ogenous stochastic dynamics (as in, e.g., Hopenhayn (1992) and Hopenhayn
and Rogerson (1993)), partly also result from endogenous investments to im-
prove performance (as in Acemoglu et. al., 2017, or Aw, Roberts and Xu,
2011). In the latter class of models, firms invest in future fundamentals (e.g.
via R&D expenditure) to the extent that they expect high returns from such
investments. High fundamentals plants should, therefore, invest more in a
context with persistence in fundamentals. Since wedges make future prof-
itability less dependent in fundamentals, they should reduce the incentive to

13



invest given by high fundamentals, especially if wedges are negatively cor-
related with fundamentals (e.g. HK, 2014). Wedges may also have a direct
effect on investment if, for instance, the presence of fixed costs of production
implies that a subsidy directly increases the chances of surviving to enjoy the
returns from R&D.

Table E1 presents an OLS analysis of the persistence in wedges, and the
role of lagged wedges for the evolution of sales, output, TF PQ and demand.?
Wedges are standardized to facilitate interpretation. Both structural wedges
(upper panel) and reduced form wedges exhibit considerable positive persis-
tence, though less so in the case of structural wedges. This is consistent with
structural wedges in part reflecting non-convex adjustment costs. Such cost
generate a wedge that is correlated with fundamentals and that only persists
up to the moment in which the benefit of adjusting overcomes its fixed cost.

As in models of endogenous fundamentals, contemporaneous fundamen-
tals and wedges correlate with higher lagged wedges (higher implicit lagged
subsidies), even after controlling for persistence in fundamentals. The cor-
relation with lagged structural wedges is larger than that with reduced form
wedges but neither accounts for much variation in outcomes and fundamen-
tals. For example, a one standard deviation increase in lagged structural
wedges yields a 0.06 increase in T'F'P() and a 0.01 increase in demand. These
are small effects relative to the standard deviations of T'F P() and demand
reported in Table 2 (0.84 and 0.67, respectively). ® In turn, as hypothesized,
the interaction effect between the lagged dependent variable and lagged struc-
tural wedges (negatively correlated with lagged fundamentals, as seen above)
is negative. That is, while higher lagged structural wedges boost outcomes
and fundamentals, they correlate with reduced persistence in outcomes and
fundamentals. But, the interacted effects are also small.

Even though we find modest effects of lagged wedges on current funda-
mentals, this should not be interpreted as evidence against the endogenous
evolution of fundamentals via endogenous investment in innovation. For
a limited sample of the firms with positive R&D expenditures, Table E2
presents evidence of the determinants of R&D expenditures.® Lagged funda-

1 As background, the standard deviation of reduced-form (uncorrelated) wedges lies in
the same ball-park as the standard deviation of TFPQ and demand (Table 2), while that
of structural wedges doubles that (all in log points).

5Lagged wedges also have modest impact on current output and sales.

6R&D expenditures are asked to manufacturing firms in a survey paralell to the Annual
Manufacturing Survey, that can be linked to the AMS via firm identifiers internal to the
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Tablef1.MWedge@ndFunda
4

mentalpersistence

w T @ e @ e
VARIABLES SalesMedge Output Sales TEPQ Demand
(subsidy) shock

Structural@vedge@both®rthogonal@ndRorrelatedBources)

LaggedMependent®ariable

LaggedWedgedsubsidy,Btandarized) 0.754***

(0.0020)

0.981%**  0,984***  0,928***  0,966***
’ ’ ’ v
(0.0008) " (0.0008) ~ (0.0014)  (0.0010)
0.0264***  0,0289***  0.0603***  0.0081***
- . - ,
(0.0015) " (0.0013) ~ (0.0014) ~ (0.0007)

Lagged@Vedgedsubsidy,Btandarized)*LaggedDV [D.0043*** [D.0052*** [.00185** [@D.0112***

" (0.0008)  (E.0007)  (@.0008) ' (0.0011)

Constant 0.0250%**  [.0074*** [D.0163*** [D.0103*** [D.0094***

(00017) " (0.0013) " (0.0011) " (0.0012) " (0.0006)

Observations 114,231 114,231 114231 114231 114,231
RBsquared 0.570 0.928 0.932 0.799 0.899
Sector*Time#E Yes Yes Yes Yes Yes
T T @ T e T @ T

Si‘:jzﬁj)ge Output Sales TFPQ D;T;:d

ReducedFformavedgeforthogonal@ofundamentals)

Lagged®ependentVariable

Lagged@Wedgedsubsidy,Btandarized) 0.933***

(0.0012)

0.971*%** 0.973*** 0.904*** 0.964***

" (0.0010) " (0.0010) " (0.0014) " (0.0010)

0.0219*%**  0.0237***  0.0202***  0.0111***
,

" (0.0018) " (0.0015) " (0.0011) " (0.0007)

0.00202***

Lagged@edgedsubsidy,Btandarized)*LaggedDV 0.000925  [@.0094*** [@D.0111***

" (0.0006) " (0.0006) ' (0.0011) ' (0.0009)

Constant 0.0032%**  [.0075%** [D.0148*** [D.0081*** [D.0088***

(0.0011) 7 (0.0014) " (0.0012) " (0.0011) " (0.0006)

Observations 114,231 114,231 114231 114231 114,231
RBsquared 0.848 0.928 0.932 0.79 0.899
Sector*TimeFE Yes Yes Yes Yes Yes

Standard@rrorsinfarentheses
*¥¥h<0,01, B *H<0.05, 5 <0.1
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Table®2.Annovation@s.Fundamentals
v

W T @ T @

VARIABLES R&DBpendingsilogs,Btandarized)
Lagged@FPQ{demeaned) 0.254%** 0.314%** 0.226%**
(0.00838)  (0.00892)  (0.00772)
LaggedMemandBhockfdemeaned) 0.682*** 0.738*** 0.666***
(0.0104) (0.0107)  (0.00946)
Lagged®@Vedgedsubsidy,Btructural Btandarized) 0.139%**
(0.00894)
Lagged®Vedgedsubsidy,Btructural Btandarized) *dlaggedTFPQ [(0.00115
(0.00434)
Lagged®@Vedgedsubsidy,Btructural Btandarized) *dagged®emandBhock 0.0504***
(0.0113)
Lagged®@Vedgedsubsidy,@educed,Btandarized) 0.331%**
(0.00629)
Lagged®Vedgedsubsidy,Beduced,Btandarized)*Aagged@FPQ 0.00673
(0.00561)
Lagged®@Vedgedsubsidy,@educed,Btandarized)*dagged@emandBhock [0.00460
(0.00801)
Constant ED.199%**  [@.210***  [D.289***

(0.00698)  (0.00712)  (0.00652)

Observations 16.547 16.539 16.539
RBZBquared 0.268 0.284 0.399
Sector*Timel®E Yes Yes Yes

Standard@rrorsfn@arentheses
***Eh<0.01, B <0.05,FFH<0.1

mentals and lagged wedges (subsidies) increase current R&D expenditures.
Lagged fundamentals account for much more of the variation in observed
R&D expenditures than lagged wedges. These endogenous innovation find-
ings are broadly consistent with the literature (see, e.g., Aw, Roberts and
Xu (2011)) and help provide further perspective on the strong persistence in
fundamentals.

6 Appendix F: details for the joint estimation
of production and demand functions

As in proxy methods for the estimation of the production function, the joint
estimation of production and demand is preceded by a first stage that ensures
that TFP() can be proxied by an observable factor, in this case materials,

two databases. Most firms report zero R&D expenditures. As is well known in the R&D
literature, this may reflect measurement limitations of expenditures in R&D. Thus, Table
E1 is only suggestive. In unreported results, we have estimated Table E1 using a Tobit
approach treating the zeros as reflecting true zero R&D expenditures. We obtain similar
qualitative results.
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which is conditionally monotonic in T'F'P(Q). The free input My, is a function
of TFPQy, conditional on quasi-fixed inputs. The FOC for materials is

925(1 _ Tft)th(

My = 1-1/c
1t e /o)
— P
— ¢(1 Tft) ftht(l_ 1/0)
pm gy
At PrAp KL (1 —75)(0%2)
ft -

pm gy

Within a sector, ¢ and o display no variability. We have measures for
all the variable terms in this FOC, except for 7. Since all firm choices

(L, Kty Py, and Q) are themselves functions of 7, we condition on a flex-
1

ible polinomial on sy; rather than 7. Furthermore P = P Prp <A ft> o
and similarly pmg = PM P Mg (A% ) o= 1VVe thus re-write

P_ﬁPfB Q
InMypy=h|InAp,InKp,InLpp,In —————In A7, In A%}, Insp

PM3;,PM;p
so that
— p-1 FrB Q _
InAy = h <1ant,anft,lant,ln—PM; P lnAft,lnAft,lnsft) =
v (1)

Incorporating this expression, recognizing that @ is subject to measure-
ment error and other shocks not observed by either the econometrician or
the firm at the time of making input choices, and denoting by Q ft = Qs
measured Q) ¢, we write:

Qn = alnKp+BInLy+ oMy +h™ (W) +2
so that
Qf, = alnKp+fInLy +¢ln My, —

1 lnA?t + %IHA% (19)
—1 .4
—|—h %74 +€ft
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where €4, is measurement error, and the "x" refers to the fact that we are

estimating the transformed Q%}, = i—f{: rather than Qs = ];—x.

In the first stage we proxy productivity and eliminate measurement error
—
by estimating 19 through a flexible third-degree polinomial ¢* (W) estimated

via OLS and obtaining the predicted " <IT/>

We then estimate the system of demand and production functions replac-
ing In Q% with ¢* <IT/> in the production function. We use GMM methods
and rely on the moment conditions presented in the main text for identifi-
cation. For sectors where the estimated returns to scale in revenue exceed
0.9, we re-estimate imposing this bound for the curvature of revenue, in the
context of a positive elasticity of substitution.

Our estimates of production coefficients are initialized at the respective
OLS estimates of the production function augmented with A?t and A% re-
gressors (coefficients for A?t and A}] also freely estimated by OLS). Our o
estimate is initialized through an IV estimation of demand function, where
the instrument for @) is the residual from the OLS production function. The
IV procedure follows the spirit of Foster et al (2008), though only for initial-
ization.

7 Appendix G: Variance decomposition

This appendix explains the structural and reduced form variance decomposi-
tions presented in Figures 5 and 6. We follow a two stage procedure, similar
to that in Hottman et al. (2016).

7.1 Structural decomposition

The structural decomposition for sales is guided by:

By _ <%)m <%) (pmft)m (w) o (M) T o)
Ryo dyo afo pm o w o I fo v
Results for this decomposition are reported in Figure 3 of the main text
and reproduced in the top left panel of Figure G1. We conduct an analogous
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decomposition for output, following the corresponding equation in the main
text, and report its results in the bottom left panel of Figure G1.

1. Guided by the above equation, we obtain In x s, as a residual from the
following equation:

in (d ) (aft> -
In — = In + — | +8,In— 20
Rf(] BD df ﬁA ao 6# ,Ufo ( )
by Wyt (1-1)
+ 1n< )+ wln(—)—l—ln 7
B P o} wro (Xft)
where 8, = ki; B4 = Koy B, = —Vk2; By = —@ke; B, = —Pr2; k1 =

17(%1); Ko = (1 — %) k1. We calculate these parameters using our esti-

mates of factor elasticities in technology and the elasticity of substitution.
Because we use these parameters that stem from the structure of the model,
we label the residual as a “structural” wedge. The fundamentals dy, a,
pmy; and wy, correspond to the idiosyncratic components of demand, tech-
nology and input price shocks, estimated as already described (D, = Dydy;
and so on).

2. We then estimate the following equations:

d Ry,
ﬁD1n< ft> = p0D+pD1n +Vvpp (21)

dyo Ryo

a Ry
faln (J;) = PoaT Pa th_f; T VitA

= + lnR + v
Sfo = Pop T Pu R ft,A

pmgt Ry,

In = + In— +v
By In (pmfo> Po.m T Pm R ft.M
Uth R
pon(2) = o 2
U)fg 0, Rfo ft,

e~ Rf
1 = +p.,1 + v
N Xyt Poy T Pyl 57— Rf() Vrt,

We now prove that the contribution of each fundamental to the variance
of sales equals the ratio of its covariance with sales to the variance of sales
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multiplited by its structural parameter in equation 20. Also that, by the
properties of OLS, the contributionof the different factors considered add up
to 1. We conduct the proof for the two-covariance case for simplicity

For any given log-linear equation (such as 20):

Yy = [1Xay 4 B2 Xop + & (22)
If one estimates by OLS The set of equations

B1 Xy = Y10 T V1 Yr + v (23)
BoXop = Y10+ V2Yr + vai (24)

and
EF = Ve T VY +vey (25)

The estimated parameters for j = {1,2} are:

Cov(B;X;1,Yy) Cov(Xjs, Yy)

~

7 = Var(Y;) i Var (Yy)
Var(X;) ) ®
= B,;Corr(Xy;,Yy) (%)

Since 5 =Yy — (8, X15 + 53, Xar), 7. can be re-written as:

. Cov(Yy — (8, X1y + BXoy), Yy)
Te o2
_ Var (Yy) = 5,Cov(Xyy, Yy) — BoCov(Xap, Yy) 1—, — 7
Var (V) Y1 72

7.2 Reduced form decomposition

The reduced form decomposition follows a procedure analogous to the one
just described, but where the first stage estimates an OLS coefficient for each
fundamental rather than imposing the coefficients imposed by our structure.
In particular, the first stage estimates by OLS
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th (dft) (let> Pyt
n— = B In{—=)+8In[—=]+5 In—— 26
Rf() BD dfO BA a o 6# /,Lfo ( )

+5%, In <£Zﬁ> + G, In (%) +1In (Xft) (1-%)

10 Wro

where the ”7” index in each coefficient stands for "reduced form". Once
OLS estimates of each of these coefficients are obtained, the second stage
is implemented as in the structural decomposition, replacing each 3, with
B, where x stands for any fundamental. Results of this decomposition are
reported in Figure G1, right panels.

7.3 Decomposition by ages

To conduct the decomposition by ages, we expand equations 20 and 21 to
include interactions with the different age groups. Suppose there are two
mutualy exclusive groups: B and C. We redefine the equation 20 as:

Yy =51 X1y + By Xop + 6 (27)

m & _ Xy 4d Xy¢d 2
nQ_fo = BicXapdes + B1pXirdps (28)
+By.cXopdoy + By pXopdpy + & (29)

where dcy = 1 if f belongs to group C (say, an age), and everything else
as defined previously.
The new decomposition equation for, say, X; will be given by:

BreXigdey + BrpXapdpr = yerYedes +vpiYrdny + viy (30)
Ef = ’VCszdCf + ’yBszdBf + Vef (31)
Just as before yoy +ve. =751 + 75 = L.

8 Appendix H: Selection

By construction we focus on survivor growth: growth from birth to age a of
plants that have survived to age a. However, because we are able to follow
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Figure G1.: Life-cycle growth variance decomposition by age
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Figure H1: Life Cycle Growth
Current to initial
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life cycle growth directly at the plant level-by contrast to cross sectional com-
parisons of cohorts—the usual concern that selection drives average growth
because size at the initial age is biased downwards by exits-to-be does not
apply. We compare plant i’s size at age a to i’s own birth size. It is the case,
still, that plants that eventually exit may grow slower than others before
they exit and, in that sense, even true life-cycle average growth is affected
by selection: if the exiting plant had instead continued to the following age,
average growth would have been lower. Figure H1 illustrates that this is
indeed the case, since the life-cycle growth of plants that exit in the next
period does depart significantly, downwards, from that of continuers. But,
this growth of plants that exit only affects marginally the overall average.
That is, the average patterns described in the previous paragraph are mainly
driven by continuous plants (plants of age ¢ that continue on to age t + 1).
Still, in this section, we also explore how fundamentals relate to selection vs.
continuer growth.

Figure H2 illustrates average growth of fundamentals separately for plants
that continue for at least one additional year and those that exit the follow-
ing year. The most noteworthy difference is much poorer growth in demand
shocks for plants about to exit compared to those that will continue, sugges-
tive of demand side fundamentals being particularly important determinants
of exit.
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Figure H2: Life cycle growth of fundamentals: exiters vs. continuers
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Figure H3 further carries our decomposition of drivers of output growth
for these two groups of plants. Because exits are more likely at earlier ages
and we know the contribution of fundamentals varies across ages, we com-
pute the decomposition for each group at specific ages. We present three-year
moving averages because the patterns for plants about to exit are noisy.” Fun-
damentals still play an important role for exiters in explaining their growth
from birth to the moment in which they are about to exit. Despite de-
mand shocks being the dimension where most marked differences are ob-
served between exits-to-be and continuers, especially for young ages (Figure
H2), TF PQ tends to play a more significant (at least more sustained) role in
explaining growth up to age ¢ for plants about to exit compared to continuers,
simply capturing the extremely poor T'F' P() behavior of exits-to-be.

8.1 Appendix I: The value of Quality Adjustment

UPI plant price indices adjust real output for intra-firm quality /appeal dif-
ferences. Moreover, in the context of UPI prices, sales measure output that is
additionally adjusted for cross-plant quality differences. We now compare re-

"Since each point (age) in a figure for plants about to exit contains the plants that will
exit at age+1, the plants included in a given line are different for each age. This explains
the noisy patterns.
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Figure H3: Life cycle growth decomposition by age
Continuers vs. Exiters, 3 years moving average - Structural parameters
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sults to what would be obtained under two alternatives to price measurement.
First, we implement a “statistical” approach based on Tornqvist indices for a
constant basket of goods within the plant or, alternatively, on the divisia price
index that allows that basket to change and uses average t, t — 1 expenditure
shares. We implement a second alternative approach, using prices based on
the insights offered by Sato (1976), Vartia (1976) and Feenstra (1994). The
Sato-Vartia approach is economically motivated but keeps appeal shifters
and baskets of goods constant over two consecutive periods, implying a much
slower quality adjustment for both continuing products and those that enter
and exit. The Feenstra adjustment for changing varieties incorporated into
our UPI approach can also be added to the Sato-Vartia index to adjust for
changing baskets of goods over consecutive periods (it was, in fact, originally
implemented by Feenstra, 2004, within the Sato-Vartia approach). The UPI,
meanwhile, allows for both changing baskets of goods and varying appeal
shifters, dimensions of flexibility which respectively deal with the "consumer
valuation bias" and the "variety bias" (Redding and Weinstein, 2020). (For
a detailed discussion of each of these alternatives, contrasted with the UPI,
see Appendix A, and Redding and Weinstein, 2020).

In each approach, the aggregation from the plant to the sector level is
analogous to the aggregation from the product to the plant level, using
weights and shares that correspond to the basket of plants in aggregate expen-
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Figure 11: Distribution of output and fundamentals life-cycle growth
Alternative price indices
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diture by contrast to the basket of products in plants’ sales. For theory-based
indices this is directly implied by theory. For statistical indices we impose it
for consistency.

If the quality mix within the plant improves over time, plant-level quality
adjusted price indices will grow less than unadjusted ones, as a result yielding
less deflated output growth and less TFP(@) growth. This composes with
overall plant quality growth to imply economically motivated aggregate prices
that grow less than unadjusted ones. Not properly adjusting plant-level
prices for quality changes biases estimated idiosyncratic output and technical
efficiency growth downwards because such estimates will ignore the part of
price increases that reflects increasing valuation of goods and the services of
plants to their costumers, and thus mistakenly translate those price increases
into welfare decreases for given expenditure. Figure I1 shows that output and
TFPQ growth is dampened when revenue is deflated with price indices that
do not adjust for quality.

Figure 12 displays growth decomposition using alternative price indices.
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Figure 12: Life-cycle growth variance decomposition
Structural parameters, alternative Price indices
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Adjusting output for quality changes assigns a much larger weight to tech-
nical efficiency, TF P, and a lesser role to demand, in explaining output
life cycle growth (see Appendix I for detailed results). While with constant-
weights-Tornqvist-indices TF P() and demand are estimated to contribute
roughly equally to output growth, TFP() is assigned progressively more
relative importance as one moves to the Sato-Vartia and then to the UPI
approaches. But quality adjusting prices matters much more in decompos-
ing output than for sales because, beyond the more precise measurement of
fundamentals when quality is adjusted for, the measure of output itself is af-
fected by price indices. In addition, quality adjusting materials input prices
plays more of a modest role than quality adjusting output prices.
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Table J1: Decomposition of sales and output under baseline and adjusted
wages (2000 - 2012)

Structural
Sales Qutput

Wages as ijallty Wages as inahty

in baseline adjusted in baseline adjusted

wages wages

S ¢V I o I ¢ I .

TFPQ 0.287 0.244 1.129 1.080
Demand shock 1.141 1.141 0.273 0.273
In pm -0.051 -0.051 0.018 0.018
In wage -0.065 -0.026 -0.070 -0.025
In markup -0.005 -0.005 -0.005 -0.005
Wedge -0.307 -0.303 -0.345 -0.341
Average R curvature parameter 0.641 0.641 0.641 0.641
Max R curvature parameter 0.877 0.877 0.877 0.877

Restricting 1o 2000 onwards dus o the avalizbiidy of iInformation necessary 1o gusline
Hjustywages.

9 Appendix J: Decomposition with quality
adjusted wages

We take advantage of data on broad skill categories available for 2000-2012 to
construct quality-adjusted wages and a quality-adjusted labor input. Qual-
ity adjusted wages are built using a procedure analogous to the construction
of our price indices for outputs and material inputs. Quality adjusted la-
bor corresponds to the payroll deflated using quality-adjusted wages. The
available skill categories are production workers without tertiary education,
production workers with tertiary education and administrative workers.

Results of our sales growth decomposition using quality adjusted wages
are reported in table J1, compared to results with unadjusted wages for
the comparable subperiod. In turn, Table J2 presents results of the welfare
analysis with quality adjusted wages.
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Table@2:Tounterfactualivelfare@elative@oMK®fficientAvelfare,Avithout@ndivithFuality
adjustedivagesd200072012).BectordevelParameters.
Unadjustedivage Quality@djusted@vages

Average Average
Average Sector® Average Sector®
sector Revenue sector Revenue

Weighted Weighted
L4 L 4 r
(1) (2) (3) (4)
Panel@\:RActual@omKEfficient@Welfare

[ 4

0.295 0.126 0.286 0.123
Panel®:@Tounterfactual@o@KEfficient@Welfare
Plant TFPQEK 0.252 0.097 0.260 0.096
. DemandBhock 0.249 0.227 0.235 0.213
attribute .
setlio InputBricesEHMarkup 0.563 0.304 0.519 0.283
InputBrices 0.470 0.283 0.445 0.265
conterfact.
Level Markup 0.329 0.134 0.321 0.131
Wedge 0.488 0.288 0.496 0.299

10 Appendix K: Hottman, Redding and We-
instein framework accounting explicitly for
wedges

Our framework closely follows the modeling of the demand side in Hottman,
Redding and Weinstein (2016). On the cost side, however, they model total
costs rather than efficiency and input prices individually, and do so at the
product level rathe than the firm level. They also abstract from wedges.
Expanding HRW'’s framework to include wedges explicitly, and focusing on
the case of uniproduct firms where their approach and ours are equivalent,
the firm solves:

]\g;m (1= 75) PriQpe — CT (Qr)

where CTy, (Qf:) is total cost as a function of output. Profit maximiza-
00T},

tion leads to first orden condition (Pft + Qrt 35;1) = (lant ik so that at the
e

optimum
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Kt = BoT 1 (32)
anit (1—=7p)
. The associated optimal markup is given by (see appendix D):
1
Myt (33)

Moreover, our demand structure is the same as in HRW. The implied
demand function in the case of a uniproduct firm is:

e (Pr\ T E
o = 4(F) 5 (34)
or
Pt l1—0o
Ry = d, (?i) E, (35)
P e
P, Ay sp (36)

where Ry = P Q) is firm sales and sy, = g—ﬁ is the firm’s share in aggregate

(sector) sales. Equation 34 is HRW’s equation (5) for the uniproduct case
o1

(where dy; = ¢,7 and @, is the notation used in HRW. Equation 36 is

obtained by direct manipulation of 35.

Replacing the optimal markup rule 32 into 35 HRW decompose firm sales
into:

octy, \ 1°

(37)

which is equivalent to HRW’s equation (16). To see the equivalence, notice
0CTy 4 0CTYy,

that in the uniproduct case 90, = 90n (where j is a product and HRW
J
have denoted by 7, the average marginal cost across products of a firm),
o—1

and that dy = goj?. Firm sales variability can thus be decomposed into
variation attributable to : 1) an aggregate component; 2) firm idiosyncratic

demand dy; 3) firm markup; 4) a distortion-adjusted marginal cost (1"1%
—
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HRW’s empirical procedure is as follows:

1) Estimate the demand function 34, in differences with respect to aggre-
gates and over time, to obtain ¢ and decompose price (observable) into dy,
(not observable) and sy, (observable).

2) Estimate the markup p, based on observables, using 33.

3) With these components decompose the idiosyncratic variation of sales

from equation 37 into the contributions of dy, f1y, and the residual compo-
aCTy,

nent: (fo - 5 This is a distortion-adjusted marginal cost component, which
T

acT
3in L and (1 — 7y;) components.

HRW do not further decompose into its

11 Appendix L: Supplementary results

Production function coefficients by sector are shown in Table L1.

Table L1. Factor and demand elasticities by sector

Sector B a ¢ o Y v(1-1/0)

311-313 0,14 0,06 0,81 7,61 1,01 0.88
321 0,16 0,09 0,70 4,34 0,94 0,69
322 0,10 0,08 0,77 512 0,95 0,76
323 0,12 0,06 0,75 5,63 0,93 0.77
324 0,25 0,13 0,57 2,26 0,96 0.53
331-332 0.48 0,07 0,36 1,53 0.91 0,31
341-342 0,37 0,12 0,55 2,15 1,04 0.55
351 0,32 029 0.43 2,40 1,04 061
352 0,18 0,07 0.81 4,29 1,06 0.81
355-356 0,25 0,18 0,62 3,34 1,05 0,71
362,369,371 0,50 0.21 0.36 2,50 1,08 0,65
381 0,26 0,08 0,66 3,39 1,01 0,60
382 0.49 0,08 0,44 1,68 1,01 0.41
383 0,27 0,06 0,66 6,26 1,00 0.84
384 0,10 0,07 0,79 4,00 0,96 0,72
385 0,18 0,15 0,76 1,64 1,08 0,42
390 0,05 0,14 0,85 2,12 1,04 0,55
Average 0,28 0,12 0,61 3,47 1,01 0,63

Counterfactual analysis of the impact of life cycle of wedges and funda-
mentals on welfare.
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Table@2:ounterfactual@velfare@@elativeRofHKRfficient@velfare.BverageBector,BectorBlevelarameters

Specific@ttributes@®f
Specificlant .peu' (cattributes Specifici@ttributesiflowdife
X hightife@ycle@rowth
attributesBet@o cycle@rowth@lantsf<P25)
plants@>P75)Bet&o X
constant@nean R set@overagelifeRycle
averagelife@ycle@rowth
value growth@ortheest
forhe@est
[ 4 4 r
1) () (3)
Benchmark:Bctual@ofHKE fficient@Velfare 0,278 0,278 0,278
Plant@ttributeBet DemandBhock 0,1;6 0,122 0,315
toRounterfactual D+TFPQ 0123 0,108 0354
level Input@rices@Markup 0,551 0,334 0,402
Wedge 0,490 0,335 0,285
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