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1 Appendix A: price indices

1.1 CUPI price index

Our baseline results use CUPI price indices at the plant level as deflators.
Here, we explain the details of their construction. The change in prices from
one period to the next is:

Pft
Pft−1

=

( ∑
Ωft
dσfjtp

1−σ
fjt∑

Ωft
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

(1)

Defining as Ωf
t,t−1 the set of goods that is common to both periods, and

multiplying both the numerator and the denominator by
(∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1 ∗

∑
Ωft,t−1

dσfjtp
1−σ
fjt

) 1
1−σ

we obtain:
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Pft
Pft−1

=

( ∑
Ωft
dσfjtp

1−σ
fjt∑

Ωft,t−1
dσfjtp

1−σ
fjt

∑
Ωft,t−1

dσfjt−1p
1−σ
fjt−1∑

Ωft−1
dσfjt−1p

1−σ
fjt−1

∑
Ωft,t−1

dσfjtp
1−σ
fjt∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

(2)

=
λft−1,t

λft,t−1

( ∑
Ωft,t−1

dσfjtp
1−σ
fjt∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ

(3)

where λft−1,Ωft,t−1
=

(∑
Ω
f
t,t−1

dσfjt−1p
1−σ
fjt−1∑

Ω
f
t−1

dσfjt−1p
1−σ
fjt−1

) 1
1−σ

and λft,Ωft,t−1
=

(∑
Ω
f
t,t−1

dσfjtp
1−σ
fjt∑

Ω
f
t
dσfjtp

1−σ
fjt

) 1
1−σ

.

The term λft−1,t

λft,t−1
is the Feenstra (2004) adjustment for changing varieties be-

tween two periods.
Furthermore, since

sfjt =
pfjtqfjt
Rft

=
p1−σ
fjt

(
dσfjt
)

P 1−σ
fjt

(4)

we have that:

λft−1,Ωft,t−1
=

∑
Ωft,t−1

dσfjt−1p
1−σ
fjt−1∑

Ωft−1
dσfjt−1p

1−σ
fjt−1


1

1−σ

=

∑
Ωft,t−1

sfjt−1


1

1−σ

That is,
(
λft−1,Ωft,t−1

)1−σ
is the share of period t − 1 expenditures devoted

to goods that are common to both periods. Similarly,
(
λft,Ωft,t−1

)1−σ
is the

share of period t expenditure devoted to goods common to both periods.
With this, the change in prices between the two periods can be written:

Pft
Pft−1

=

( ∑
Ωft,t−1

sfjt∑
Ωft,t−1

sfjt−1

) 1
σ−1 P ∗ft

P ∗
ft−1,Ωft,t−1

(5)

where P ∗ft =
(∑

Ωft,t−1
dσfjtp

1−σ
fjt

) 1
1−σ

is a period t price index for the basket

of goods common to t and t−1 for firm f , and P ∗
ft−1,Ωft,t−1

=
(∑

Ωft,t−1
dσfjt−1p

1−σ
fjt−1

) 1
1−σ
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is a period t−1 price index for that same basket. Term
( ∑

Ω
f
t,t−1

sfjt∑
Ω
f
t,t−1

sfjt−1

) 1
σ−1

=

λQfeeft is the Feenstra adjustment for changing varieties, expressed in terms
of observables.
The Marshalian demands, given by qfjt = dσftd

σ
fjt

(
Pft
Pt

)−σ (
pfjt
Pft

)−σ
Et
Pt
,

imply

s∗fjt =
dσftd

σ
fjt

(
Pft
Pt

)−σ p1−σ
fjt

P−σft

Et
Pt∑

Ωft,t−1

dσftd
σ
fjt

(
Pft
Pt

)−σ p1−σ
fjt

P−σft

Et
Pt

=
dσfjtp

1−σ
fjt(

P ∗ft
)1−σ

and

s∗
fjt−1,Ωft,t−1

=
dσft−1d

σ
fjt−1

(
Pft−1

Pt−1

)−σ p1−σ
fjt−1

P−σft−1

Et−1

Pt−1∑
Ωft,t−1

dσft−1d
σ
fjt−1

(
Pft−1

Pt−1

)−σ p1−σ
fjt−1

P−σft−1

Et−1

Pt−1

=
dσfjt−1p

1−σ
fjt−1(

P ∗
ft−1,Ωft,t−1

)1−σ

so that
(

pfjt
pfjt−1

)
=

(
P ∗ft

P ∗
ft−1,Ω

f
t,t−1

)(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1
1−σ (

dfjt
dfjt−1

)− σ
1−σ
. Given

this and
∑

Ωft,t−1

s∗
fjt,Ωft,t−1

= 1, for plant-product weights ωft = 1

‖Ωft,t−1‖ such

that
∑

Ωft,t−1

ωft,t−1 = 1 ,

∑
Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖

= ln

 P ∗ft
P ∗
ft−1,Ωft,t−1

+
1

(1− σ)

∑
Ωft,t−1

ln

 s∗fjt
s∗
fjt−1,Ωft,t−1

 1

‖Ω
f
t,t−1‖

+
σ

σ − 1

∑
Ωft,t−1

ln

(
dfjt
dfjt−1

) 1

‖Ω
f
t,t−1‖
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Shocks dfjt have been defined relative to plant appeal, dft, such that∏
Ωft,t−1

d

1

‖Ω
f
t,t−1‖

fjt = 1, with the implication that

∑
Ωft,t−1

ln
(

dfjt
dfjt−1

) 1

‖Ω
f
t,t−1‖ = 0. Notice that this normalization still allows

for a distribution of product appeal that varies over time. 1

The consecutively common good price index growth

(
P ∗ft

P ∗
ft−1,Ω

f
t,t−1

)
there-

fore corresponds to

ln

 P ∗ft
P ∗
ft−1,Ωft,t−1

 =
∑

Ωft,t−1

ln

(
pfjt
pfjt−1

) 1

‖Ω
f
t,t−1‖− 1

(1− σ)

∑
Ωft,t−1

ln

 s∗fjt
s∗
fjt−1,Ωft,t−1

 1

‖Ω
f
t,t−1‖

The term lnλQRWft =
∑

Ωft,t−1

ln

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

‖Ω
f
t,t−1‖

adjusts for changes in

appeal for continuing products, addressing the consumer valuation bias.
We similarly obtain a measure of materials by deflating material expendi-

ture by plant-level price indices for materials, pmft, using information on in-
dividual prices and quantities of material inputs. We construct pmft using an
analogous approach to that used to construct output prices. The underlying
assumption is that Mft, the index of materials quantities used, is a CES ag-
gregate of individual inputs. As is the case with output prices, until we have
an estimate of the elasticity of substitution, we can only build a consecutively-
common-basket price index pm∗ft for plant f , and carry an adjustment factor
ΛM
ft = ΛMRW

ft ΛMfee
ft for which we later adjust prices. In particular, we deflate

1This is by contrast to empirical price indices that weight across products with variable
weights ωfjt 6= ωft, such as the commonly used Sato-Vartia approach (Sato, 1974, Vartia,

1974, Feenstra, 2004). Under such variable weights the assumption
∑

Ωf
t,t−1

ln
(

dfjt
dfjt−1

)ωfjt
=

0 does not hold. The fact that traditional approaches using variable weights ignore this
term leads to what Redding and Weinstein (2017) have called the "consumer valuation
bias" the traditional empirical approaches to economically motivated price indices.
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materials expenditures to obtainM∗
ft =

materials expenditureft
pmfBpm

∗
ft

= Mft ∗
(
ΛM
ft

) 1
σ−1 .

Once we have obtained an estimate of the elasticity of substitution we calcu-

late pmft = pmfB ∗pm∗ft ∗
(
ΛM
ft

) 1
σ−1 , which is one of the fundamentals on the

cost side in our growth decomposition. We use this price index as deflator
for materials expenditure to obtain our TFPQ measure. We use for inputs
the same elasticity of substitution estimated for outputs. We recognize that
using the same elasticity for inputs and outputs is a strong assumption, but
find that it does no affect our results in an important way. In particular, we
find in Appendix I that using a Divisia price index (with updated input mix
each period) generates about the same contribution for materials prices in
sales and output volatility as the UPI. The Divisia materials price index does
not depend on the elasticity of substitution, suggesting that this assumption
is not critical for our results.

1.2 Initializing a plant’s CUPI price index

A plant’s price index is constructed as

Pft = PfB ∗ P ∗ft ∗
(

ΛQ
ft

) 1
σ−1

The initial level PfB, where B is the base year for plant f , is constructed

as: PfB = Pbase,B
∏
ΩfB

(
pfjB
p
jB

)sfjB
, where p

jB
is the geometric average of the

price of product j in year B across plants, year B is the first year in which
plant f is present in the survey, and Pbase,B is an overall base. We use 1982
as the base year, so Pbase,1982 = 1. For plants with B 6= 1982, Pbase,B is set
equal to the geometric mean of the price index across plants that we observe
prior to year B. Notice that our approach takes advantage of cross sectional
variability across plants for any given product or input j. In the plant’s base
year B,

(
PfjB
PjB

)
= 1 for the average producer of product j. For other plants,

it will capture dispersion in price levels around that average.2

2We deal with excessive noise from partial year reporting and other sources by elimi-
nating outliers. In particular, in any given year we consider only products that represent
at least 2% of sales of the respective plant. Shares are re-calculated accordingly for this
restricted basket. We also winsorize the 2% tails at each step of the process of build-
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1.3 Sato-Vartia indices

The Sato-Vartia approach (used in the results in Appendix C) is an alterna-

tive way of computing ln

(
P ∗ft

P ∗
ft−1,Ω

f
t,t−1

)
, using weights ωSVfjt,t−1 =

(s∗fjt−s
∗
fjt−1,t)

ln s∗
fjt

−ln s∗
fjt−1,t∑

Ω
f
t,t−1

(
(s∗
fjt

−s∗
fjt−1,t

)

ln s∗
fjt

−ln s∗
fjt−1,t

)

and imposing − σ
σ−1

∑
Ωft,t−1

ln
(

dfjt
dfjt−1

)ωSVfjt
= 0. That is, ln

(
P ∗ft

P ∗
ft−1,Ω

f
t,t−1

)SV

=

∑
Ωft,t−1

ln
(

pfjt
pfjt−1

)ωSVfjt
.

Notice, in the derivation above, that when using variable weights ωfjt 6=
ωft, the assumption

∑
Ωft,t−1

ln
(

dfjt
dfjt−1

)ωfjt
= 0 would not hold. In the Sato-

Vartia case, since product demand shocks dfjt
dfjt−1

are positively correlated

with the weights ωSVfjt,t−1 (Redding-Weinstein, 2020),
∑

Ωft,t−1

ln
(

dfjt
dfjt−1

)ωSVfjt
> 1

and the consumer valuation bias would be positive. That is, the Sato Vartia
approach likely overstates price inflation for the common goods produced by
plant f in both t − 1 and t. Such overstatement of price inflation implies
understatement of quantity growth and therefore TFPQ.

1.4 Törnqvist index

Appendix C also presents results using Törnqvist indices, first imposing a
basket of goods that is fixed over the life cycle and constant weights for

ing price indices. In particular, we winsorize

∑
Ω
f
l,l−1

sfjl∑
Ω
f
l,l−1

sfjl−1
;
∏

Ωf
t,t−1

(
s∗fjt

s∗
fjt−1,Ω

f
t,t−1

) 1

‖Ωt,t−1‖
;

pfjt
pfjt−1

;
P∗
ft

P∗
ft−1,Ω

f
t,t−1

; Pft
Pft−1

.

We also winsorize adjustment factors at the 5% level. Extreme changes in the baskets
of goods, where common (t,t − 1) products represent a negligible share of revenue in
either t or t − 1 imply extreme values for ln ΛQft. These extreme changes may partly
reflect measurement error in an enviroment where baskets of goods are auto-reported into
relatively wide product components.
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them, and then imposing constant baskets only over consecutive periods (the
"divisia" case). Törnqvist indices for the growth of prices of plant f at time

t are constructed as Pft
Pft−1

=
∏

Ωft,t−1

(
pfjt
pfjt−1

)sfjt
.

In the constant baskets of goods version of the Törnqvist index, Ωf
t,t−1 =

Ωf is a basket of all products ever produced (or materials ever used) by plant
f , and sfj is the average share of j in that basket of products (or materials)
plant f produces over the whole period. In this approach, the plant level
index is initialized at lnPfA =

∑
Ωf

sfj (ln pfjA − ln pjA). If product j is not

produced (or used as input) in years t or t−1 (or both), ∆ ln(Pfjt) is inputed
at the average growth of the price of that product (or input) for other plants
within the sector. If no plant in the sector produces that good in t, then the
average over all plants is used, independent of sector.
The divisia version of the Törnqvist index is similar, but Ωf

t,t−1 is the
basket of goods produced by f in either t or t − 1 and sfjt is the average
share of product j in plant f ′s sales over t and t− 1.
Törnqvist prices with a constant basket of products do not quality-adjust

prices in any way, for either product turnover of changing quality of surviv-
ing products. Compared to this version, all versions allowing for evolving
baskets of goods (including divisia) have the advantage of capturing evolving
expenditure shares over time and therefore quality-adjusting prices, but the
disadvantage of being more biased by errors from product coding and coarse
aggregation, which are more likely in our context than in that of prices from
scan bar codes (Hottman et al 2016). Compared to our baseline estimation
with UPI prices, even versions with changing baskets quality-adjust in a less
precise (i.e. not exact) manner, by imposing restrictions to the extent to
which appeal many vary.

2 Appendix B: firm problem with Cobb Dou-
glas production function

Firm chooses Xt to solve:

Max
{Xft}

πft = (1− τ ft)Rft − CftXft = DftA
1− 1

σ
ft X

γ(1− 1
σ )

ft − CftXft
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where Rft = PftQft and Pft = DftQ
− 1
σ

ft .Optimal input demand is

Xft =

(1− τ ft)DftA
1− 1

σ
ft γ

µftCft

 1

1−γ(1− 1
σ )

(6)

Proof. The firm’s problem can be written

Max
Xit

(1− τ ft)DftQ
1− 1

σ
ft − CftXft

where Dft = dft
P

1− 1
σ

t

E
1
σ
t

.

If the firm has market power, then ∂Pt
∂Xft

6= 0. The first order condition
for the firm is then given by

(1− τ ft)
(

1− 1

σ

)
dft

E
1
σ
t

(PtQft)
− 1
σ

(
Pt +Qft

∂Pt
∂Qft

)
∂Qft

∂Xft

= Cft

(1− τ ft)
(
σ − 1

σ

)
DftQ

− 1
σ

ft (1− sft)
∂Qft

∂Xft

= Cft

(1− τ ft)
µft

DftQ
− 1
σ

ft

(
γAftX

γ−1
ft

)
= Cft (7)

(1− τ ft)DftA
1− 1

σ
ft γ

µftCft
= X

1−γ(1− 1
σ )

ft (8)

Where the second line uses Sheppard’s lemma
(
− ∂Pt
∂Qft

Qft
Pt

= sft

)
, and the

third line uses (see Appendix D) µ−1 = 1−
(

1
σ

+
(
σ−1
σ

)
sft
)

=
σ−1−(σ−1)sft

σ
=

(σ−1)(1−sft)
σ

.

Suppose Xft = K
α
γ

ftL
β
γ

ftM
φ
γ

ft where K, L and M are, respectively, capital,
labor and material inputs, and γ = α + β + φ. Consequently, Cft is itself a

Cobb Douglas aggregate of factor prices: Cft = r
α
γ

ftw
β
γ

ftpm
φ
γ

ft. Consequently
and
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Xft

Xf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φ
γ
κ1
(
wft
wf0

)−β
γ
κ1

κtκ̂ft (9)

Lft
Lf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−κ1+(α+φ)κ2

t

ϑtϑft (10)

Qft

Qf0

=

(
dft
df0

)γκ1
(
aft
af0

)κ1
(
pmft

pmf0

)−φκ1
(
wft
wf0

)−βκ1

χtχft (11)

where κ1 = 1

1−γ(1− 1
σ )
; κ2 =

(
1− 1

σ

)
κ1; κt =

(
Dt
D0

)κ1
(
At
A0

)κ2
(
Ct
C0

)−κ1

captures aggregate growth between birth and age t, and ;κ̂ft =
(1−τft)

κ1r

−ακ1
γ

ft

(1−τf0)
κ1r

−ακ1
γ

f0

captures residual variation from wedges, and the unobserved user cost of
capital. ϑt, ϑft, χt and χft are analogous residuals for the specific cases of

employment and output. In particular: χt == κγt

(
At
A0

)
and χft = κ̂γft

αt
α0
. We

have used the fact that 1 + γκ1

(
1− 1

σ

)
= κ1.

Moreover, since Rft = DftQ
1− 1

σ
ft and 1 + γκ1

(
1− 1

σ

)
= κ1 then

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2 (
χ̂tχft

)1− 1
σ

3 Appendix C: Sensitivity to Revenue Cur-
vature

To assess the contribution of TFPQ_HKft and composite wedges to sales

growth, we first calculate TFPQ_HKft = R
1/(1− 1

σ
)

ft /Xγ
ft using our estimates

of σ, φ, β, α, and the implied X = M
φ
γ

ftL
β
γ

ftK
α
γ

ft. We call this calculation
TFPQ_HKft "unconstrained", since we use detailed parameter estimates
that would be hard to obtain if one were constrained by the lack of plant-level
data on prices. We also build an estimate of TFPQ_HKft "constrained"
where, following usual practice, we impose monopolistic competition, γ = 1,
φ, β, α equal to the corresponding cost shares, and a constant number for σ
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(1) (2) (3) (4) (5)

TFPQ_HK unconstrained 1,280
TFPQ_HK constrained 1,116 1,161 2,250
TFPQ 0,154
Demand shock 1,128
ln Input prices ­0,078
ln Average wage ­0,081
ln Markup ­0,006
Sales Wedge ­0,280 ­0,117 ­0,116 ­0,161 ­1,250

Avg Rev Curvature 0,641 0,641 0,641 0,666 0,877
Max Rev Curvature 0,877 0,877 0,641 0,666 0,877

(1) (2) (3) (4) (5)

TFPQ_HK unconstrained 0,574
TFPQ_HK constrained 0,703 0,684 0,412
TFPQ 0,050
Demand shock 0,476
ln Input prices ­0,007
ln Average wage 0,036
ln Markup 0,107
Sales Wedge 0,426 0,322 0,297 0,316 0,588

Avg Rev Curvature 0,641 0,641 0,641 0,666 0,877
Max Rev Curvature 0,877 0,877 0,641 0,666 0,877

Table C1. Decomposition of sales under baseline and constrained fundamentals
Structural

Reduced

TFPQ_HK is a function of TFPQ, demand shocks, and the elasticity of substitution. The
unconstrained version uses the factor and substitution elasticities estimated using P
and  Q data, reported in Table 1. The constrained version uses cost shares as factor
elasticities consistent with CRS in production and a demand elasticity consistent with
the curvature of the revenue function in the reported column.

(as in the macro misallocation literature).3 While in the unconstrained case
M is the materials quantitities index built deflating with our UPI plant-level
deflators for materials, in the constrained one it is materials expenditure
deflated with the PPI.
Figure C1 depicts the contribution of wedges vs. returns to scale in

revenue by sector, for different columns of Table C1. It shows that the esti-
mated contribution of wedges to sales is higher when the revenue curvature
parameter γ

(
1− 1

σ

)
is high (i.e. curvature is low), and that the increase is

nonlinear: in sectors when γ
(
1− 1

σ

)
is close to 1, wedges tend to dominate

the contribution of fundamentals.
3Under these assumptions, µit = µ = σ

σ−1 . Since cost minimization implies β =

wftLft
Cost γ =

wftLft
Rft

µ (Hall, 1994), we impose for each sector β =

∑
f
wftLft∑
f
Rft

σ
σ−1 , calculating

β first for each year and then averaging over years. We proceed similarly for φ, and then
obtain α = 1− β − φ.
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Figure C1: Wedges vs. Revenue Curvature (by 3­digit sector)
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Figure C1a: Structural wedges
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Figure C1b: Orthogonal wedges

Constrained (RC=0.641)

Constrained (RC=0.877)

Unconstrained TFPQHK (AvRC=0.641)

Unconstrained fundamentals  (AvRC=0.641)

4 Appendix D: markups

The firm’s (potentially variable) markup after the distortion, µft =
Pft

mcft(1−τft)
−1 ,

is given by:

µft =
1

1−
(

1
σ
−
(
σ−1
σ

)
sft
) =

σ

(σ − 1) (1− sft)
(12)

Proof that:

µft =
1

1−
(

1
σ
−
(
σ−1
σ

)
sft
) =

σ

(σ − 1) (1− sft)
(13)

Proof. Max
Qft

(1− τ ft)PftQft−CT leads to first orden condition
(
Pft +Qft

dPft
dQft

)
=

mcft

(1−τft)
. Dividing by Pft we obtain 1

µft
= 1 +

Qft
Pft

dPft
dQft

= 1− ε−1 (where we

have denoted εft ≡ −Qft
Pft

dPft
dQft

), so that

µft =

(
εft

εft − 1

)
(14)
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In turn, underQft = dσftP
−σ
ft

Et
P 1−σ
t

and its implication that Pft = dftQ
− 1
σ

ft

(
Et

P 1−σ
t

) 1
σ

=

dftQ
− 1
σ

ft

(
Qt
P−σt

) 1
σ
and allowing for market power so that dPt

dQft
6= 0, the inverse

of the demand elasticity as perceived by the firm (ε−1
ft ≡ −

dPft
dQft

Qft
Pft
) is:

ε−1
ft = −

(
∂Pft
∂Qft

+
∂Pft
∂Pt

∂Pt
∂Qft

)
Qft

Pft
(15)

= −
(
− 1

σ

Pft
Qft

+

(
σ − 1

σ

)
Pft
Pt

∂Pt
∂Qft

)
Qft

Pft

=

(
1

σ
−
(
σ − 1

σ

)
∂Pt
∂Qft

Qft

Pt

)
=

(
1

σ
+

(
σ − 1

σ

)
sft

)
(16)

where the last line uses Sheppard’s lemma: − ∂Pt
∂Qft

Qft
Pt

= sft.

Equations (14) and (16) together imply µ−1
ft = 1−ε−1

ft = 1−
(

1
σ

+
(
σ−1
σ

)
sft
)

=(
σ−1
σ
−
(
σ−1
σ

)
sft
)
, so that

µft =
1

1−
(

1
σ

+
(
σ−1
σ

)
sft
)

µ =
σ

σ − 1
if sft = 0

The markup µft = σ

(σ−1)(1−sft)
is increasing in the firm’s market share.

Thus, the markup is itself a fuction of fundamentals:

sft =
PftQft

Et
=
DftQ

1− 1
σ

ft

Et
=
DftA

1− 1
σ

ft X
γ(1− 1

σ )
ft

Et
(17)

=
DftA

1− 1
σ

ft

Et

γ (1− τ ft)
(
1− 1

σ

)
DftA

1− 1
σ

ft

Cftµft
(
σ−1
σ

)


γ(1− 1
σ )

1−γ(1− 1
σ )

(18)
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so that

sft

(
σ − (σ − 1)sft

σ − (σ − 1)sft − 1

) γ(1− 1
σ )

1−γ(1− 1
σ )

=
D

1

1−γ(1− 1
σ )

ft A

1− 1
σ

1−γ(1− 1
σ )

ft

Et

(
γ (1− τ ft)

(
1− 1

σ

)
Cft
(
σ−1
σ

) ) γ(1− 1
σ )

1−γ(1− 1
σ )

The LHS is increasing in s and the RHS is increasing in D and A, and
decreasing in τ and C. Thus, sft and the markup are increasing in D and A,
and decreasing in τ and C.

5 Appendix E: Persistence in Fundamentals
and Endogenous Innovation

We have taken fundamentals as given, but noted that our results should help
guide future work, both theoretical and empirical, about the specific drivers
of measured productivity. To further understand the nature of TFPQ vs.
demand shock, and potential mechanisms through which businesses accumu-
late each of them, we have studied the relationship between these fundamen-
tals and reported innovation efforts. The Colombian Manufacturing Survey
can be merged with the Innovation Survey at the level of the firm (tax ID).
Since 2006 firms report number of innovations by type, defined by categories
named "product", "process", and "organizational" innovation. They also
report innovation expenditures, unfortunately not broken down in the same
categories.
Results from our structural decomposition of growth show that, given

fundamentals, high-fundamentals plants are being implicitly taxed while low-
fundamentals plants are implicitly subsidized (by the environment, not nec-
essarily by the government). Causality in the opposite direction is also likely:
technical effi ciency and product-plant appeal, while partly determined by ex-
ogenous stochastic dynamics (as in, e.g., Hopenhayn (1992) and Hopenhayn
and Rogerson (1993)), partly also result from endogenous investments to im-
prove performance (as in Acemoglu et. al., 2017, or Aw, Roberts and Xu,
2011). In the latter class of models, firms invest in future fundamentals (e.g.
via R&D expenditure) to the extent that they expect high returns from such
investments. High fundamentals plants should, therefore, invest more in a
context with persistence in fundamentals. Since wedges make future prof-
itability less dependent in fundamentals, they should reduce the incentive to
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invest given by high fundamentals, especially if wedges are negatively cor-
related with fundamentals (e.g. HK, 2014). Wedges may also have a direct
effect on investment if, for instance, the presence of fixed costs of production
implies that a subsidy directly increases the chances of surviving to enjoy the
returns from R&D.
Table E1 presents an OLS analysis of the persistence in wedges, and the

role of lagged wedges for the evolution of sales, output, TFPQ and demand.4

Wedges are standardized to facilitate interpretation. Both structural wedges
(upper panel) and reduced form wedges exhibit considerable positive persis-
tence, though less so in the case of structural wedges. This is consistent with
structural wedges in part reflecting non-convex adjustment costs. Such cost
generate a wedge that is correlated with fundamentals and that only persists
up to the moment in which the benefit of adjusting overcomes its fixed cost.
As in models of endogenous fundamentals, contemporaneous fundamen-

tals and wedges correlate with higher lagged wedges (higher implicit lagged
subsidies), even after controlling for persistence in fundamentals. The cor-
relation with lagged structural wedges is larger than that with reduced form
wedges but neither accounts for much variation in outcomes and fundamen-
tals. For example, a one standard deviation increase in lagged structural
wedges yields a 0.06 increase in TFPQ and a 0.01 increase in demand. These
are small effects relative to the standard deviations of TFPQ and demand
reported in Table 2 (0.84 and 0.67, respectively). 5 In turn, as hypothesized,
the interaction effect between the lagged dependent variable and lagged struc-
tural wedges (negatively correlated with lagged fundamentals, as seen above)
is negative. That is, while higher lagged structural wedges boost outcomes
and fundamentals, they correlate with reduced persistence in outcomes and
fundamentals. But, the interacted effects are also small.
Even though we find modest effects of lagged wedges on current funda-

mentals, this should not be interpreted as evidence against the endogenous
evolution of fundamentals via endogenous investment in innovation. For
a limited sample of the firms with positive R&D expenditures, Table E2
presents evidence of the determinants of R&D expenditures.6 Lagged funda-

4As background, the standard deviation of reduced-form (uncorrelated) wedges lies in
the same ball-park as the standard deviation of TFPQ and demand (Table 2), while that
of structural wedges doubles that (all in log points).

5Lagged wedges also have modest impact on current output and sales.
6R&D expenditures are asked to manufacturing firms in a survey paralell to the Annual

Manufacturing Survey, that can be linked to the AMS via firm identifiers internal to the
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(1) (2) (3) (4) (5)

VARIABLES
Sales Wedge

(subsidy)
Output Sales TFPQ

Demand
shock

Lagged Dependent Variable 0.981*** 0.984*** 0.928*** 0.966***
(0.0008) (0.0008) (0.0014) (0.0010)

Lagged Wedge (subsidy, standarized) 0.754*** 0.0264*** 0.0289*** 0.0603*** 0.0081***
(0.0020) (0.0015) (0.0013) (0.0014) (0.0007)

Lagged Wedge (subsidy, standarized)*Lagged DV ­0.0043*** ­0.0052*** ­0.00185** ­0.0112***
(0.0008) (­0.0007) (­0.0008) (0.0011)

Constant 0.0250*** ­0.0074*** ­0.0163*** ­0.0103*** ­0.0094***
(0.0017) (0.0013) (0.0011) (0.0011) (0.0006)

Observations 114,231 114,231 114,231 114,231 114,231
R­squared 0.570 0.928 0.932 0.799 0.899
Sector*Time FE Yes Yes Yes Yes Yes

(1) (2) (3) (4) (5)
Sales Wedge

(subsidy)
Output Sales TFPQ

Demand
shock

Lagged Dependent Variable 0.971*** 0.973*** 0.904*** 0.964***
(0.0010) (0.0010) (0.0014) (0.0010)

Lagged Wedge (subsidy, standarized) 0.933*** 0.0219*** 0.0237*** 0.0202*** 0.0111***
(0.0012) (0.0018) (0.0015) (0.0011) (0.0007)

Lagged Wedge (subsidy, standarized)*Lagged DV 0.00202*** 0.000925 ­0.0094*** ­0.0111***
(0.0006) (0.0006) (0.0011) (0.0009)

Constant 0.0032*** ­0.0075*** ­0.0148*** ­0.0081*** ­0.0088***
(0.0011) (0.0014) (0.0012) (0.0011) (0.0006)

Observations 114,231 114,231 114,231 114,231 114,231
R­squared 0.848 0.928 0.932 0.796 0.899
Sector*Time FE Yes Yes Yes Yes Yes
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table E1. Wedge and Fundamental persistence

Structural wedge (both orthogonal and correlated sources)

Reduced­form wedge (orthogonal to fundamentals)
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(1) (2) (3)
VARIABLES

Lagged TFPQ (demeaned) 0.254*** 0.314*** 0.226***
(0.00838) (0.00892) (0.00772)

Lagged Demand shock (demeaned) 0.682*** 0.738*** 0.666***
(0.0104) (0.0107) (0.00946)

Lagged Wedge (subsidy, structural, standarized) 0.139***
(0.00894)

Lagged Wedge (subsidy, structural, standarized)* Lagged TFPQ ­0.00115
(0.00434)

Lagged Wedge (subsidy, structural, standarized)* Lagged Demand shock 0.0504***
(0.0113)

Lagged Wedge (subsidy, reduced, standarized) 0.331***
(0.00629)

Lagged Wedge (subsidy, reduced, standarized)* Lagged TFPQ ­0.00673
(0.00561)

Lagged Wedge (subsidy, reduced, standarized)* Lagged Demand shock ­0.00460
(0.00801)

Constant ­0.199*** ­0.210*** ­0.289***
(0.00698) (0.00712) (0.00652)

Observations 16.547 16.539 16.539
R­squared 0.268 0.284 0.399
Sector*Time FE Yes Yes Yes
Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table E2. Innovation vs. Fundamentals

R&D spendings (logs, standarized)

mentals and lagged wedges (subsidies) increase current R&D expenditures.
Lagged fundamentals account for much more of the variation in observed
R&D expenditures than lagged wedges. These endogenous innovation find-
ings are broadly consistent with the literature (see, e.g., Aw, Roberts and
Xu (2011)) and help provide further perspective on the strong persistence in
fundamentals.

6 Appendix F: details for the joint estimation
of production and demand functions

As in proxy methods for the estimation of the production function, the joint
estimation of production and demand is preceded by a first stage that ensures
that TFPQ can be proxied by an observable factor, in this case materials,

two databases. Most firms report zero R&D expenditures. As is well known in the R&D
literature, this may reflect measurement limitations of expenditures in R&D. Thus, Table
E1 is only suggestive. In unreported results, we have estimated Table E1 using a Tobit
approach treating the zeros as reflecting true zero R&D expenditures. We obtain similar
qualitative results.
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which is conditionally monotonic in TFPQ. The free inputMft is a function
of TFPQft, conditional on quasi-fixed inputs. The FOC for materials is

Mft =
φ(1− τ ft)Rft

pmft

(1− 1/σ)

=
φ(1− τ ft)PftQft

pmft

(1− 1/σ)

M1−φ
ft =

PftAftK
α
ftL

β
ft(1− τ ft)(φσ−1

σ
)

pmft

Within a sector, φ and σ display no variability. We have measures for
all the variable terms in this FOC, except for τ . Since all firm choices
(Lft, Kft, Pft, and Qft) are themselves functions of τ , we condition on a flex-

ible polinomial on sft rather than τ ft. Furthermore, Pft = P ∗ftPfB

(
ΛQ
ft

) 1
σ−1

and similarly pmft = PM∗
ftPMfB

(
ΛM
ft

) 1
σ−1We thus re-write

lnMft = h

(
lnAft, lnKft, lnLft, ln

P ∗ftPfB

PM∗
ftPMfB

, ln ΛQ
ft, ln Λm

ft, ln sft

)

so that

lnAft = h−1

(
lnMft, lnKft, lnLft, ln

P ∗ftPfB

PM∗
ftPMfB

, ln ΛQ
ft, ln Λm

ft, ln sft

)
≡

h−1
(−→
W
)
.

Incorporating this expression, recognizing that Qft is subject to measure-
ment error and other shocks not observed by either the econometrician or
the firm at the time of making input choices, and denoting by Q̂ft = Qftεft
measured Qft, we write:

Q̂ft = α lnKft + β lnLft + φ lnMft + h−1
(−→
W
)

+ εft

so that

Q̂∗ft = α lnKft + β lnLft + φ lnMft −
1

σ − 1
ln ΛQ

ft +
φ

σ − 1
ln ΛM

ft (19)

+h−1
(−→
W
)

+ εft
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where εft is measurement error, and the "∗" refers to the fact that we are
estimating the transformed Q∗ft =

Rft
P ∗ft

rather than Qft =
Rft
Pft
.

In the first stage we proxy productivity and eliminate measurement error
by estimating 19 through a flexible third-degree polinomial ϕ∗

(−→
W
)
estimated

via OLS and obtaining the predicted ϕ̂∗
(−→
W
)
.

We then estimate the system of demand and production functions replac-
ing lnQ∗ft with ϕ

∗
(−→
W
)
in the production function. We use GMM methods

and rely on the moment conditions presented in the main text for identifi-
cation. For sectors where the estimated returns to scale in revenue exceed
0.9, we re-estimate imposing this bound for the curvature of revenue, in the
context of a positive elasticity of substitution.
Our estimates of production coeffi cients are initialized at the respective

OLS estimates of the production function augmented with ΛQ
ft and ΛM

ft re-
gressors (coeffi cients for ΛQ

ft and ΛM
ft also freely estimated by OLS). Our σ

estimate is initialized through an IV estimation of demand function, where
the instrument for Q is the residual from the OLS production function. The
IV procedure follows the spirit of Foster et al (2008), though only for initial-
ization.

7 Appendix G: Variance decomposition

This appendix explains the structural and reduced form variance decomposi-
tions presented in Figures 5 and 6. We follow a two stage procedure, similar
to that in Hottman et al. (2016).

7.1 Structural decomposition

The structural decomposition for sales is guided by:

Rft

Rf0

=

(
dft
df0

)κ1
(
aft
af0

)κ2
(
pmft

pmf0

)−φκ2
(
wft
wf0

)−βκ2
(
µft
µf0

)−γκ2 (
χ̂tχft

)1− 1
σ

Results for this decomposition are reported in Figure 3 of the main text
and reproduced in the top left panel of Figure G1. We conduct an analogous
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decomposition for output, following the corresponding equation in the main
text, and report its results in the bottom left panel of Figure G1.
1. Guided by the above equation, we obtain lnχft as a residual from the

following equation:

ln
Rft

Rf0

= βD ln

(
dft
df0

)
+ βA ln

(
aft
af0

)
+ βµ ln

µft
µf0

(20)

+βM ln

(
pmft

pmf0

)
+ βw ln

(
wft
wf0

)
+ ln

(
χft
)(1− 1

σ )

where βD = κ1; βA = κ2; βµ = −γκ2; βM = −φκ2; βw = −βκ2; κ1 =
1

1−γ(1− 1
σ )
; κ2 =

(
1− 1

σ

)
κ1. We calculate these parameters using our esti-

mates of factor elasticities in technology and the elasticity of substitution.
Because we use these parameters that stem from the structure of the model,
we label the residual as a “structural”wedge. The fundamentals dft, aft,
pmft and wft correspond to the idiosyncratic components of demand, tech-
nology and input price shocks, estimated as already described (Dft = Dtdft
and so on).
2. We then estimate the following equations:

βD ln

(
dft
df0

)
= ρ0,D + ρD ln

Rft

Rf0

+ νft,D (21)

βA ln

(
aft
af0

)
= ρ0,A + ρA ln

Rft

Rf0

+ νft,A

βµ ln

(
g (sft)

g (sf0)

)
= ρ0,µ + ρµ ln

Rft

Rf0

+ νft,A

βM ln

(
pmft

pmf0

)
= ρ0,M + ρM ln

Rft

Rf0

+ νft,M

βw ln

(
wft
wf0

)
= ρ0,w + ρw ln

Rft

Rf0

+ νft,w

ln ̂̃χft = ρ0,υ + ρυ ln
Rft

Rf0

+ νft,υ

We now prove that the contribution of each fundamental to the variance
of sales equals the ratio of its covariance with sales to the variance of sales
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multiplited by its structural parameter in equation 20. Also that, by the
properties of OLS, the contributionof the different factors considered add up
to 1. We conduct the proof for the two-covariance case for simplicity
For any given log-linear equation (such as 20):

Yf = β1X1f + β2X2f + εi (22)

If one estimates by OLS The set of equations

β1X1f = γ1,0 + γ1Yf + ν1i (23)

β2X2f = γ1,0 + γ2Yf + ν2i (24)

and

εf = γε,0 + γεYf + νεf (25)

The estimated parameters for j = {1, 2} are:

γ̂j =
Cov(βjXjf , Yf )

V ar(Yf )
= βj

Cov(Xjf , Yf )

V ar (Yf )

= βjCorr(Xji, Yf )

(
V ar(Xjf )

V ar (Yf )

) 1
2

Since εf = Yf − (β1X1f + β2X2f ), γ̂ε can be re-written as:

γ̂ε =
Cov(Yf − (β1X1f + β2X2f ), Yf )

σ2
Y

=
V ar (Yf )− β1Cov(X1f , Yf )− β2Cov(X2f , Yf )

V ar (Yf )
= 1− γ̂1 − γ̂2

7.2 Reduced form decomposition

The reduced form decomposition follows a procedure analogous to the one
just described, but where the first stage estimates an OLS coeffi cient for each
fundamental rather than imposing the coeffi cients imposed by our structure.
In particular, the first stage estimates by OLS
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ln
Rft

Rf0

= βrD ln

(
dft
df0

)
+ βrA ln

(
aft
af0

)
+ βrµ ln

µft
µf0

(26)

+βrM ln

(
pmft

pmf0

)
+ βrw ln

(
wft
wf0

)
+ ln

(
χft
)(1− 1

σ )

where the ”r” index in each coeffi cient stands for "reduced form". Once
OLS estimates of each of these coeffi cients are obtained, the second stage
is implemented as in the structural decomposition, replacing each βx with
βrx, where x stands for any fundamental. Results of this decomposition are
reported in Figure G1, right panels.

7.3 Decomposition by ages

To conduct the decomposition by ages, we expand equations 20 and 21 to
include interactions with the different age groups. Suppose there are two
mutualy exclusive groups: B and C. We redefine the equation 20 as:

Yf = β1X1f + β2X2f + εi (27)

ln
Qft

Qf0

= β1,CX1fdCf + β1,BX1fdBf (28)

+β2,CX2fdCf + β2,BX2fdBf + εi (29)

where dCf = 1 if f belongs to group C (say, an age), and everything else
as defined previously.
The new decomposition equation for, say, X1 will be given by:

β1,CX1fdCf + β1,BX1fdBf = γC1YfdCf + γB1YfdBf + ν1f (30)

εf = γCεYfdCf + γBεYfdBf + νεf (31)

Just as before ˆγC1 + ˆγCε = ˆγB1 + ˆγBε = 1.

8 Appendix H: Selection

By construction we focus on survivor growth: growth from birth to age a of
plants that have survived to age a. However, because we are able to follow
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Figure G1: Life­cycle growth variance decomposition by age
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life cycle growth directly at the plant level—by contrast to cross sectional com-
parisons of cohorts—the usual concern that selection drives average growth
because size at the initial age is biased downwards by exits-to-be does not
apply. We compare plant i’s size at age a to i’s own birth size. It is the case,
still, that plants that eventually exit may grow slower than others before
they exit and, in that sense, even true life-cycle average growth is affected
by selection: if the exiting plant had instead continued to the following age,
average growth would have been lower. Figure H1 illustrates that this is
indeed the case, since the life-cycle growth of plants that exit in the next
period does depart significantly, downwards, from that of continuers. But,
this growth of plants that exit only affects marginally the overall average.
That is, the average patterns described in the previous paragraph are mainly
driven by continuous plants (plants of age t that continue on to age t + 1).
Still, in this section, we also explore how fundamentals relate to selection vs.
continuer growth.
Figure H2 illustrates average growth of fundamentals separately for plants

that continue for at least one additional year and those that exit the follow-
ing year. The most noteworthy difference is much poorer growth in demand
shocks for plants about to exit compared to those that will continue, sugges-
tive of demand side fundamentals being particularly important determinants
of exit.
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Figure H3 further carries our decomposition of drivers of output growth
for these two groups of plants. Because exits are more likely at earlier ages
and we know the contribution of fundamentals varies across ages, we com-
pute the decomposition for each group at specific ages. We present three-year
moving averages because the patterns for plants about to exit are noisy.7 Fun-
damentals still play an important role for exiters in explaining their growth
from birth to the moment in which they are about to exit. Despite de-
mand shocks being the dimension where most marked differences are ob-
served between exits-to-be and continuers, especially for young ages (Figure
H2), TFPQ tends to play a more significant (at least more sustained) role in
explaining growth up to age t for plants about to exit compared to continuers,
simply capturing the extremely poor TFPQ behavior of exits-to-be.

8.1 Appendix I: The value of Quality Adjustment

UPI plant price indices adjust real output for intra-firm quality/appeal dif-
ferences. Moreover, in the context of UPI prices, sales measure output that is
additionally adjusted for cross-plant quality differences. We now compare re-

7Since each point (age) in a figure for plants about to exit contains the plants that will
exit at age+1, the plants included in a given line are different for each age. This explains
the noisy patterns.
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sults to what would be obtained under two alternatives to price measurement.
First, we implement a “statistical”approach based on Törnqvist indices for a
constant basket of goods within the plant or, alternatively, on the divisia price
index that allows that basket to change and uses average t, t−1 expenditure
shares. We implement a second alternative approach, using prices based on
the insights offered by Sato (1976), Vartia (1976) and Feenstra (1994). The
Sato-Vartia approach is economically motivated but keeps appeal shifters
and baskets of goods constant over two consecutive periods, implying a much
slower quality adjustment for both continuing products and those that enter
and exit. The Feenstra adjustment for changing varieties incorporated into
our UPI approach can also be added to the Sato-Vartia index to adjust for
changing baskets of goods over consecutive periods (it was, in fact, originally
implemented by Feenstra, 2004, within the Sato-Vartia approach). The UPI,
meanwhile, allows for both changing baskets of goods and varying appeal
shifters, dimensions of flexibility which respectively deal with the "consumer
valuation bias" and the "variety bias" (Redding and Weinstein, 2020). (For
a detailed discussion of each of these alternatives, contrasted with the UPI,
see Appendix A, and Redding and Weinstein, 2020).
In each approach, the aggregation from the plant to the sector level is

analogous to the aggregation from the product to the plant level, using
weights and shares that correspond to the basket of plants in aggregate expen-
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Figure I1: Distribution of output and fundamentals life­cycle growth

diture by contrast to the basket of products in plants’sales. For theory-based
indices this is directly implied by theory. For statistical indices we impose it
for consistency.
If the quality mix within the plant improves over time, plant-level quality

adjusted price indices will grow less than unadjusted ones, as a result yielding
less deflated output growth and less TFPQ growth. This composes with
overall plant quality growth to imply economically motivated aggregate prices
that grow less than unadjusted ones. Not properly adjusting plant-level
prices for quality changes biases estimated idiosyncratic output and technical
effi ciency growth downwards because such estimates will ignore the part of
price increases that reflects increasing valuation of goods and the services of
plants to their costumers, and thus mistakenly translate those price increases
into welfare decreases for given expenditure. Figure I1 shows that output and
TFPQ growth is dampened when revenue is deflated with price indices that
do not adjust for quality.

Figure I2 displays growth decomposition using alternative price indices.
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Adjusting output for quality changes assigns a much larger weight to tech-
nical effi ciency, TFPQ, and a lesser role to demand, in explaining output
life cycle growth (see Appendix I for detailed results). While with constant-
weights-Törnqvist-indices TFPQ and demand are estimated to contribute
roughly equally to output growth, TFPQ is assigned progressively more
relative importance as one moves to the Sato-Vartia and then to the UPI
approaches. But quality adjusting prices matters much more in decompos-
ing output than for sales because, beyond the more precise measurement of
fundamentals when quality is adjusted for, the measure of output itself is af-
fected by price indices. In addition, quality adjusting materials input prices
plays more of a modest role than quality adjusting output prices.
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9 Appendix J: Decomposition with quality
adjusted wages

We take advantage of data on broad skill categories available for 2000-2012 to
construct quality-adjusted wages and a quality-adjusted labor input. Qual-
ity adjusted wages are built using a procedure analogous to the construction
of our price indices for outputs and material inputs. Quality adjusted la-
bor corresponds to the payroll deflated using quality-adjusted wages. The
available skill categories are production workers without tertiary education,
production workers with tertiary education and administrative workers.
Results of our sales growth decomposition using quality adjusted wages

are reported in table J1, compared to results with unadjusted wages for
the comparable subperiod. In turn, Table J2 presents results of the welfare
analysis with quality adjusted wages.
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Average
sector

Average
Sector ­

Revenue
Weighted

Average
sector

Average
Sector ­

Revenue
Weighted

(1) (2) (3) (4)

0.295 0.126 0.286 0.123

TFPQ HK 0.252 0.097 0.260 0.096
Demand Shock 0.249 0.227 0.235 0.213
Input prices + Markup 0.563 0.304 0.519 0.283
Input prices 0.470 0.283 0.445 0.265
Markup 0.329 0.134 0.321 0.131
Wedge 0.488 0.288 0.496 0.299

Unadjusted wage Quality adjusted wages

Panel A: Actual to HK Efficient Welfare

Panel B: Counterfactual to HK Efficient Welfare

Plant
attribute

set to
conterfact.

Level

Table J2: Counterfactual welfare relative to HK efficient welfare, without and with quality
adjusted wages (2000­2012). Sector level parameters.

10 Appendix K: Hottman, Redding and We-
instein framework accounting explicitly for
wedges

Our framework closely follows the modeling of the demand side in Hottman,
Redding and Weinstein (2016). On the cost side, however, they model total
costs rather than effi ciency and input prices individually, and do so at the
product level rathe than the firm level. They also abstract from wedges.
Expanding HRW’s framework to include wedges explicitly, and focusing on
the case of uniproduct firms where their approach and ours are equivalent,
the firm solves:

Max
Qft

(1− τ ft)PftQft − CTft (Qft)

where CTft (Qft) is total cost as a function of output. Profit maximiza-

tion leads to first orden condition
(
Pft +Qft

dPft
dQft

)
=

∂CTft
∂Qft

(1−τft)
, so that at the

optimum
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µft =
Pft

∂CTft
∂Qft

(1− τ ft)−1
(32)

. The associated optimal markup is given by (see appendix D):

µft =
1

1−
(

1
σ

+
(
σ−1
σ

)
sft
) (33)

Moreover, our demand structure is the same as in HRW. The implied
demand function in the case of a uniproduct firm is:

Qft = dσft

(
Pft
Pt

)−σ
Et
Pt

(34)

or

Rft = dσft

(
Pft
Pt

)1−σ

Et (35)

Pft
Pt

= d
σ
σ−1

ft s
1

1−σ
ft (36)

where Rft = PftQft is firm sales and sft =
Rft
Eft

is the firm’s share in aggregate
(sector) sales. Equation 34 is HRW’s equation (5) for the uniproduct case

(where dft = ϕ
σ−1
σ

ft and ϕft is the notation used in HRW. Equation 36 is
obtained by direct manipulation of 35.
Replacing the optimal markup rule 32 into 35 HRW decompose firm sales

into:

Rft = dσft
Et

P 1−σ
t

µft ∂CTft
∂Qft

1− τ ft

1−σ

(37)

which is equivalent to HRW’s equation (16). To see the equivalence, notice
that in the uniproduct case ∂CTfjt

∂Qfjt
=

∂CTft
∂Qft

(where j is a product and HRW
have denoted by γ̃ft the average marginal cost across products of a firm),

and that dft = ϕ
σ−1
σ

ft . Firm sales variability can thus be decomposed into
variation attributable to : 1) an aggregate component; 2) firm idiosyncratic
demand dft; 3) firm markup; 4) a distortion-adjusted marginal cost mcft

(1−τft)
.
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HRW’s empirical procedure is as follows:
1) Estimate the demand function 34, in differences with respect to aggre-

gates and over time, to obtain σ and decompose price (observable) into dft
(not observable) and sft (observable).
2) Estimate the markup µft based on observables, using 33.
3) With these components decompose the idiosyncratic variation of sales

from equation 37 into the contributions of dft, µft and the residual compo-

nent:
∂CTft
∂Qft

(1−τft)
. This is a distortion-adjusted marginal cost component, which

HRW do not further decompose into its ∂CTft
∂Qft

and (1− τ ft) components.

11 Appendix L: Supplementary results

Production function coeffi cients by sector are shown in Table L1.

Counterfactual analysis of the impact of life cycle of wedges and funda-
mentals on welfare.
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Table L2: Counterfactual welfare ­ relative to HK efficient welfare. Average sector, sector­level parameters

(1) (2) (3)

0,278 0,278 0,278

Demand Shock 0,126 0,122 0,315
D+TFPQ 0,123 0,108 0,354
Input prices + Markup 0,551 0,334 0,402
Wedge 0,490 0,335 0,285

Plant attribute set
to counterfactual

level

Specific plant
attributes set to
constant mean

value

Specific attributes of
high life cycle growth
plants (>P75) set to

average life cycle growth
for the rest

Specific attributes of low life
cycle growth plants (<P25)

set to average life cycle
growth for the rest

Benchmark: Actual to HK Efficient Welfare
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